Linux Audio

Check our new training course

Loading...
v3.15
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 10#include <linux/module.h>
 11#include <linux/pm.h>
 12#include <linux/clockchips.h>
 13#include <linux/random.h>
 14#include <linux/user-return-notifier.h>
 15#include <linux/dmi.h>
 16#include <linux/utsname.h>
 17#include <linux/stackprotector.h>
 18#include <linux/tick.h>
 19#include <linux/cpuidle.h>
 20#include <trace/events/power.h>
 21#include <linux/hw_breakpoint.h>
 22#include <asm/cpu.h>
 23#include <asm/apic.h>
 24#include <asm/syscalls.h>
 25#include <asm/idle.h>
 26#include <asm/uaccess.h>
 27#include <asm/i387.h>
 28#include <asm/fpu-internal.h>
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31
 32/*
 33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 35 * so they are allowed to end up in the .data..cacheline_aligned
 36 * section. Since TSS's are completely CPU-local, we want them
 37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 38 */
 39__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
 40
 41#ifdef CONFIG_X86_64
 42static DEFINE_PER_CPU(unsigned char, is_idle);
 43static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 44
 45void idle_notifier_register(struct notifier_block *n)
 46{
 47	atomic_notifier_chain_register(&idle_notifier, n);
 48}
 49EXPORT_SYMBOL_GPL(idle_notifier_register);
 50
 51void idle_notifier_unregister(struct notifier_block *n)
 52{
 53	atomic_notifier_chain_unregister(&idle_notifier, n);
 54}
 55EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 56#endif
 57
 58struct kmem_cache *task_xstate_cachep;
 59EXPORT_SYMBOL_GPL(task_xstate_cachep);
 60
 61/*
 62 * this gets called so that we can store lazy state into memory and copy the
 63 * current task into the new thread.
 64 */
 65int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 66{
 67	int ret;
 68
 
 
 69	*dst = *src;
 70	if (fpu_allocated(&src->thread.fpu)) {
 71		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 72		ret = fpu_alloc(&dst->thread.fpu);
 73		if (ret)
 74			return ret;
 75		fpu_copy(dst, src);
 76	}
 77	return 0;
 78}
 79
 80void free_thread_xstate(struct task_struct *tsk)
 81{
 82	fpu_free(&tsk->thread.fpu);
 83}
 84
 85void arch_release_task_struct(struct task_struct *tsk)
 86{
 87	free_thread_xstate(tsk);
 88}
 89
 90void arch_task_cache_init(void)
 91{
 92        task_xstate_cachep =
 93        	kmem_cache_create("task_xstate", xstate_size,
 94				  __alignof__(union thread_xstate),
 95				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 96}
 97
 
 
 
 
 
 
 
 
 
 
 98/*
 99 * Free current thread data structures etc..
100 */
101void exit_thread(void)
102{
103	struct task_struct *me = current;
104	struct thread_struct *t = &me->thread;
105	unsigned long *bp = t->io_bitmap_ptr;
106
107	if (bp) {
108		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109
110		t->io_bitmap_ptr = NULL;
111		clear_thread_flag(TIF_IO_BITMAP);
112		/*
113		 * Careful, clear this in the TSS too:
114		 */
115		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116		t->io_bitmap_max = 0;
117		put_cpu();
118		kfree(bp);
119	}
120
121	drop_fpu(me);
122}
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124void flush_thread(void)
125{
126	struct task_struct *tsk = current;
127
128	flush_ptrace_hw_breakpoint(tsk);
129	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
130	drop_init_fpu(tsk);
131	/*
132	 * Free the FPU state for non xsave platforms. They get reallocated
133	 * lazily at the first use.
134	 */
135	if (!use_eager_fpu())
136		free_thread_xstate(tsk);
137}
138
139static void hard_disable_TSC(void)
140{
141	write_cr4(read_cr4() | X86_CR4_TSD);
142}
143
144void disable_TSC(void)
145{
146	preempt_disable();
147	if (!test_and_set_thread_flag(TIF_NOTSC))
148		/*
149		 * Must flip the CPU state synchronously with
150		 * TIF_NOTSC in the current running context.
151		 */
152		hard_disable_TSC();
153	preempt_enable();
154}
155
156static void hard_enable_TSC(void)
157{
158	write_cr4(read_cr4() & ~X86_CR4_TSD);
159}
160
161static void enable_TSC(void)
162{
163	preempt_disable();
164	if (test_and_clear_thread_flag(TIF_NOTSC))
165		/*
166		 * Must flip the CPU state synchronously with
167		 * TIF_NOTSC in the current running context.
168		 */
169		hard_enable_TSC();
170	preempt_enable();
171}
172
173int get_tsc_mode(unsigned long adr)
174{
175	unsigned int val;
176
177	if (test_thread_flag(TIF_NOTSC))
178		val = PR_TSC_SIGSEGV;
179	else
180		val = PR_TSC_ENABLE;
181
182	return put_user(val, (unsigned int __user *)adr);
183}
184
185int set_tsc_mode(unsigned int val)
186{
187	if (val == PR_TSC_SIGSEGV)
188		disable_TSC();
189	else if (val == PR_TSC_ENABLE)
190		enable_TSC();
191	else
192		return -EINVAL;
193
194	return 0;
195}
196
197void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
198		      struct tss_struct *tss)
199{
200	struct thread_struct *prev, *next;
201
202	prev = &prev_p->thread;
203	next = &next_p->thread;
204
205	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
206	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
207		unsigned long debugctl = get_debugctlmsr();
208
209		debugctl &= ~DEBUGCTLMSR_BTF;
210		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
211			debugctl |= DEBUGCTLMSR_BTF;
212
213		update_debugctlmsr(debugctl);
214	}
215
216	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
217	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
218		/* prev and next are different */
219		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
220			hard_disable_TSC();
221		else
222			hard_enable_TSC();
223	}
224
225	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
226		/*
227		 * Copy the relevant range of the IO bitmap.
228		 * Normally this is 128 bytes or less:
229		 */
230		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
231		       max(prev->io_bitmap_max, next->io_bitmap_max));
232	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
233		/*
234		 * Clear any possible leftover bits:
235		 */
236		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
237	}
238	propagate_user_return_notify(prev_p, next_p);
239}
240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241/*
242 * Idle related variables and functions
243 */
244unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
245EXPORT_SYMBOL(boot_option_idle_override);
246
247static void (*x86_idle)(void);
 
 
 
 
 
 
 
 
 
 
 
248
249#ifndef CONFIG_SMP
250static inline void play_dead(void)
251{
252	BUG();
253}
254#endif
255
256#ifdef CONFIG_X86_64
257void enter_idle(void)
258{
259	this_cpu_write(is_idle, 1);
260	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
261}
262
263static void __exit_idle(void)
264{
265	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
266		return;
267	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
268}
269
270/* Called from interrupts to signify idle end */
271void exit_idle(void)
272{
273	/* idle loop has pid 0 */
274	if (current->pid)
275		return;
276	__exit_idle();
277}
278#endif
279
280void arch_cpu_idle_enter(void)
 
 
 
 
 
 
281{
282	local_touch_nmi();
283	enter_idle();
284}
 
 
 
 
 
 
285
286void arch_cpu_idle_exit(void)
287{
288	__exit_idle();
289}
290
291void arch_cpu_idle_dead(void)
292{
293	play_dead();
294}
295
296/*
297 * Called from the generic idle code.
298 */
299void arch_cpu_idle(void)
300{
301	x86_idle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302}
303
304/*
305 * We use this if we don't have any better idle routine..
 
306 */
307void default_idle(void)
308{
309	trace_cpu_idle_rcuidle(1, smp_processor_id());
310	safe_halt();
311	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312}
313#ifdef CONFIG_APM_MODULE
314EXPORT_SYMBOL(default_idle);
315#endif
316
317#ifdef CONFIG_XEN
318bool xen_set_default_idle(void)
319{
320	bool ret = !!x86_idle;
321
322	x86_idle = default_idle;
323
324	return ret;
325}
326#endif
327void stop_this_cpu(void *dummy)
328{
329	local_irq_disable();
330	/*
331	 * Remove this CPU:
332	 */
333	set_cpu_online(smp_processor_id(), false);
334	disable_local_APIC();
335
336	for (;;)
337		halt();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338}
339
340bool amd_e400_c1e_detected;
341EXPORT_SYMBOL(amd_e400_c1e_detected);
342
343static cpumask_var_t amd_e400_c1e_mask;
344
345void amd_e400_remove_cpu(int cpu)
346{
347	if (amd_e400_c1e_mask != NULL)
348		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
349}
350
351/*
352 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
353 * pending message MSR. If we detect C1E, then we handle it the same
354 * way as C3 power states (local apic timer and TSC stop)
355 */
356static void amd_e400_idle(void)
357{
 
 
 
358	if (!amd_e400_c1e_detected) {
359		u32 lo, hi;
360
361		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
362
363		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
364			amd_e400_c1e_detected = true;
365			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
366				mark_tsc_unstable("TSC halt in AMD C1E");
367			pr_info("System has AMD C1E enabled\n");
368		}
369	}
370
371	if (amd_e400_c1e_detected) {
372		int cpu = smp_processor_id();
373
374		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
375			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
376			/*
377			 * Force broadcast so ACPI can not interfere.
378			 */
379			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
380					   &cpu);
381			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
 
382		}
383		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
384
385		default_idle();
386
387		/*
388		 * The switch back from broadcast mode needs to be
389		 * called with interrupts disabled.
390		 */
391		local_irq_disable();
392		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
393		local_irq_enable();
394	} else
395		default_idle();
396}
397
398void select_idle_routine(const struct cpuinfo_x86 *c)
399{
400#ifdef CONFIG_SMP
401	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
402		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 
 
403#endif
404	if (x86_idle || boot_option_idle_override == IDLE_POLL)
405		return;
406
407	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
 
 
 
 
 
 
408		/* E400: APIC timer interrupt does not wake up CPU from C1e */
409		pr_info("using AMD E400 aware idle routine\n");
410		x86_idle = amd_e400_idle;
411	} else
412		x86_idle = default_idle;
413}
414
415void __init init_amd_e400_c1e_mask(void)
416{
417	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
418	if (x86_idle == amd_e400_idle)
419		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
420}
421
422static int __init idle_setup(char *str)
423{
424	if (!str)
425		return -EINVAL;
426
427	if (!strcmp(str, "poll")) {
428		pr_info("using polling idle threads\n");
 
429		boot_option_idle_override = IDLE_POLL;
430		cpu_idle_poll_ctrl(true);
 
 
431	} else if (!strcmp(str, "halt")) {
432		/*
433		 * When the boot option of idle=halt is added, halt is
434		 * forced to be used for CPU idle. In such case CPU C2/C3
435		 * won't be used again.
436		 * To continue to load the CPU idle driver, don't touch
437		 * the boot_option_idle_override.
438		 */
439		x86_idle = default_idle;
440		boot_option_idle_override = IDLE_HALT;
441	} else if (!strcmp(str, "nomwait")) {
442		/*
443		 * If the boot option of "idle=nomwait" is added,
444		 * it means that mwait will be disabled for CPU C2/C3
445		 * states. In such case it won't touch the variable
446		 * of boot_option_idle_override.
447		 */
448		boot_option_idle_override = IDLE_NOMWAIT;
449	} else
450		return -1;
451
452	return 0;
453}
454early_param("idle", idle_setup);
455
456unsigned long arch_align_stack(unsigned long sp)
457{
458	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
459		sp -= get_random_int() % 8192;
460	return sp & ~0xf;
461}
462
463unsigned long arch_randomize_brk(struct mm_struct *mm)
464{
465	unsigned long range_end = mm->brk + 0x02000000;
466	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
467}
468
v3.5.6
 
 
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 15#include <linux/stackprotector.h>
 16#include <linux/tick.h>
 17#include <linux/cpuidle.h>
 18#include <trace/events/power.h>
 19#include <linux/hw_breakpoint.h>
 20#include <asm/cpu.h>
 21#include <asm/apic.h>
 22#include <asm/syscalls.h>
 23#include <asm/idle.h>
 24#include <asm/uaccess.h>
 25#include <asm/i387.h>
 26#include <asm/fpu-internal.h>
 27#include <asm/debugreg.h>
 28#include <asm/nmi.h>
 29
 30/*
 31 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 32 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 33 * so they are allowed to end up in the .data..cacheline_aligned
 34 * section. Since TSS's are completely CPU-local, we want them
 35 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 36 */
 37DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
 38
 39#ifdef CONFIG_X86_64
 40static DEFINE_PER_CPU(unsigned char, is_idle);
 41static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 42
 43void idle_notifier_register(struct notifier_block *n)
 44{
 45	atomic_notifier_chain_register(&idle_notifier, n);
 46}
 47EXPORT_SYMBOL_GPL(idle_notifier_register);
 48
 49void idle_notifier_unregister(struct notifier_block *n)
 50{
 51	atomic_notifier_chain_unregister(&idle_notifier, n);
 52}
 53EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 54#endif
 55
 56struct kmem_cache *task_xstate_cachep;
 57EXPORT_SYMBOL_GPL(task_xstate_cachep);
 58
 59/*
 60 * this gets called so that we can store lazy state into memory and copy the
 61 * current task into the new thread.
 62 */
 63int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 64{
 65	int ret;
 66
 67	unlazy_fpu(src);
 68
 69	*dst = *src;
 70	if (fpu_allocated(&src->thread.fpu)) {
 71		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 72		ret = fpu_alloc(&dst->thread.fpu);
 73		if (ret)
 74			return ret;
 75		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 76	}
 77	return 0;
 78}
 79
 80void free_thread_xstate(struct task_struct *tsk)
 81{
 82	fpu_free(&tsk->thread.fpu);
 83}
 84
 85void arch_release_task_struct(struct task_struct *tsk)
 86{
 87	free_thread_xstate(tsk);
 88}
 89
 90void arch_task_cache_init(void)
 91{
 92        task_xstate_cachep =
 93        	kmem_cache_create("task_xstate", xstate_size,
 94				  __alignof__(union thread_xstate),
 95				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 96}
 97
 98static inline void drop_fpu(struct task_struct *tsk)
 99{
100	/*
101	 * Forget coprocessor state..
102	 */
103	tsk->fpu_counter = 0;
104	clear_fpu(tsk);
105	clear_used_math();
106}
107
108/*
109 * Free current thread data structures etc..
110 */
111void exit_thread(void)
112{
113	struct task_struct *me = current;
114	struct thread_struct *t = &me->thread;
115	unsigned long *bp = t->io_bitmap_ptr;
116
117	if (bp) {
118		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
119
120		t->io_bitmap_ptr = NULL;
121		clear_thread_flag(TIF_IO_BITMAP);
122		/*
123		 * Careful, clear this in the TSS too:
124		 */
125		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
126		t->io_bitmap_max = 0;
127		put_cpu();
128		kfree(bp);
129	}
130
131	drop_fpu(me);
132}
133
134void show_regs_common(void)
135{
136	const char *vendor, *product, *board;
137
138	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
139	if (!vendor)
140		vendor = "";
141	product = dmi_get_system_info(DMI_PRODUCT_NAME);
142	if (!product)
143		product = "";
144
145	/* Board Name is optional */
146	board = dmi_get_system_info(DMI_BOARD_NAME);
147
148	printk(KERN_CONT "\n");
149	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
150		current->pid, current->comm, print_tainted(),
151		init_utsname()->release,
152		(int)strcspn(init_utsname()->version, " "),
153		init_utsname()->version);
154	printk(KERN_CONT " %s %s", vendor, product);
155	if (board)
156		printk(KERN_CONT "/%s", board);
157	printk(KERN_CONT "\n");
158}
159
160void flush_thread(void)
161{
162	struct task_struct *tsk = current;
163
164	flush_ptrace_hw_breakpoint(tsk);
165	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
166	drop_fpu(tsk);
 
 
 
 
 
 
167}
168
169static void hard_disable_TSC(void)
170{
171	write_cr4(read_cr4() | X86_CR4_TSD);
172}
173
174void disable_TSC(void)
175{
176	preempt_disable();
177	if (!test_and_set_thread_flag(TIF_NOTSC))
178		/*
179		 * Must flip the CPU state synchronously with
180		 * TIF_NOTSC in the current running context.
181		 */
182		hard_disable_TSC();
183	preempt_enable();
184}
185
186static void hard_enable_TSC(void)
187{
188	write_cr4(read_cr4() & ~X86_CR4_TSD);
189}
190
191static void enable_TSC(void)
192{
193	preempt_disable();
194	if (test_and_clear_thread_flag(TIF_NOTSC))
195		/*
196		 * Must flip the CPU state synchronously with
197		 * TIF_NOTSC in the current running context.
198		 */
199		hard_enable_TSC();
200	preempt_enable();
201}
202
203int get_tsc_mode(unsigned long adr)
204{
205	unsigned int val;
206
207	if (test_thread_flag(TIF_NOTSC))
208		val = PR_TSC_SIGSEGV;
209	else
210		val = PR_TSC_ENABLE;
211
212	return put_user(val, (unsigned int __user *)adr);
213}
214
215int set_tsc_mode(unsigned int val)
216{
217	if (val == PR_TSC_SIGSEGV)
218		disable_TSC();
219	else if (val == PR_TSC_ENABLE)
220		enable_TSC();
221	else
222		return -EINVAL;
223
224	return 0;
225}
226
227void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
228		      struct tss_struct *tss)
229{
230	struct thread_struct *prev, *next;
231
232	prev = &prev_p->thread;
233	next = &next_p->thread;
234
235	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
236	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
237		unsigned long debugctl = get_debugctlmsr();
238
239		debugctl &= ~DEBUGCTLMSR_BTF;
240		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
241			debugctl |= DEBUGCTLMSR_BTF;
242
243		update_debugctlmsr(debugctl);
244	}
245
246	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
247	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
248		/* prev and next are different */
249		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
250			hard_disable_TSC();
251		else
252			hard_enable_TSC();
253	}
254
255	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
256		/*
257		 * Copy the relevant range of the IO bitmap.
258		 * Normally this is 128 bytes or less:
259		 */
260		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
261		       max(prev->io_bitmap_max, next->io_bitmap_max));
262	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
263		/*
264		 * Clear any possible leftover bits:
265		 */
266		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
267	}
268	propagate_user_return_notify(prev_p, next_p);
269}
270
271int sys_fork(struct pt_regs *regs)
272{
273	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
274}
275
276/*
277 * This is trivial, and on the face of it looks like it
278 * could equally well be done in user mode.
279 *
280 * Not so, for quite unobvious reasons - register pressure.
281 * In user mode vfork() cannot have a stack frame, and if
282 * done by calling the "clone()" system call directly, you
283 * do not have enough call-clobbered registers to hold all
284 * the information you need.
285 */
286int sys_vfork(struct pt_regs *regs)
287{
288	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
289		       NULL, NULL);
290}
291
292long
293sys_clone(unsigned long clone_flags, unsigned long newsp,
294	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
295{
296	if (!newsp)
297		newsp = regs->sp;
298	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
299}
300
301/*
302 * This gets run with %si containing the
303 * function to call, and %di containing
304 * the "args".
305 */
306extern void kernel_thread_helper(void);
307
308/*
309 * Create a kernel thread
310 */
311int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
312{
313	struct pt_regs regs;
314
315	memset(&regs, 0, sizeof(regs));
316
317	regs.si = (unsigned long) fn;
318	regs.di = (unsigned long) arg;
319
320#ifdef CONFIG_X86_32
321	regs.ds = __USER_DS;
322	regs.es = __USER_DS;
323	regs.fs = __KERNEL_PERCPU;
324	regs.gs = __KERNEL_STACK_CANARY;
325#else
326	regs.ss = __KERNEL_DS;
327#endif
328
329	regs.orig_ax = -1;
330	regs.ip = (unsigned long) kernel_thread_helper;
331	regs.cs = __KERNEL_CS | get_kernel_rpl();
332	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
333
334	/* Ok, create the new process.. */
335	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
336}
337EXPORT_SYMBOL(kernel_thread);
338
339/*
340 * sys_execve() executes a new program.
341 */
342long sys_execve(const char __user *name,
343		const char __user *const __user *argv,
344		const char __user *const __user *envp, struct pt_regs *regs)
345{
346	long error;
347	char *filename;
348
349	filename = getname(name);
350	error = PTR_ERR(filename);
351	if (IS_ERR(filename))
352		return error;
353	error = do_execve(filename, argv, envp, regs);
354
355#ifdef CONFIG_X86_32
356	if (error == 0) {
357		/* Make sure we don't return using sysenter.. */
358                set_thread_flag(TIF_IRET);
359        }
360#endif
361
362	putname(filename);
363	return error;
364}
365
366/*
367 * Idle related variables and functions
368 */
369unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
370EXPORT_SYMBOL(boot_option_idle_override);
371
372/*
373 * Powermanagement idle function, if any..
374 */
375void (*pm_idle)(void);
376#ifdef CONFIG_APM_MODULE
377EXPORT_SYMBOL(pm_idle);
378#endif
379
380static inline int hlt_use_halt(void)
381{
382	return 1;
383}
384
385#ifndef CONFIG_SMP
386static inline void play_dead(void)
387{
388	BUG();
389}
390#endif
391
392#ifdef CONFIG_X86_64
393void enter_idle(void)
394{
395	this_cpu_write(is_idle, 1);
396	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
397}
398
399static void __exit_idle(void)
400{
401	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
402		return;
403	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
404}
405
406/* Called from interrupts to signify idle end */
407void exit_idle(void)
408{
409	/* idle loop has pid 0 */
410	if (current->pid)
411		return;
412	__exit_idle();
413}
414#endif
415
416/*
417 * The idle thread. There's no useful work to be
418 * done, so just try to conserve power and have a
419 * low exit latency (ie sit in a loop waiting for
420 * somebody to say that they'd like to reschedule)
421 */
422void cpu_idle(void)
423{
424	/*
425	 * If we're the non-boot CPU, nothing set the stack canary up
426	 * for us.  CPU0 already has it initialized but no harm in
427	 * doing it again.  This is a good place for updating it, as
428	 * we wont ever return from this function (so the invalid
429	 * canaries already on the stack wont ever trigger).
430	 */
431	boot_init_stack_canary();
432	current_thread_info()->status |= TS_POLLING;
433
434	while (1) {
435		tick_nohz_idle_enter();
 
 
436
437		while (!need_resched()) {
438			rmb();
 
 
439
440			if (cpu_is_offline(smp_processor_id()))
441				play_dead();
442
443			/*
444			 * Idle routines should keep interrupts disabled
445			 * from here on, until they go to idle.
446			 * Otherwise, idle callbacks can misfire.
447			 */
448			local_touch_nmi();
449			local_irq_disable();
450
451			enter_idle();
452
453			/* Don't trace irqs off for idle */
454			stop_critical_timings();
455
456			/* enter_idle() needs rcu for notifiers */
457			rcu_idle_enter();
458
459			if (cpuidle_idle_call())
460				pm_idle();
461
462			rcu_idle_exit();
463			start_critical_timings();
464
465			/* In many cases the interrupt that ended idle
466			   has already called exit_idle. But some idle
467			   loops can be woken up without interrupt. */
468			__exit_idle();
469		}
470
471		tick_nohz_idle_exit();
472		preempt_enable_no_resched();
473		schedule();
474		preempt_disable();
475	}
476}
477
478/*
479 * We use this if we don't have any better
480 * idle routine..
481 */
482void default_idle(void)
483{
484	if (hlt_use_halt()) {
485		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
486		trace_cpu_idle_rcuidle(1, smp_processor_id());
487		current_thread_info()->status &= ~TS_POLLING;
488		/*
489		 * TS_POLLING-cleared state must be visible before we
490		 * test NEED_RESCHED:
491		 */
492		smp_mb();
493
494		if (!need_resched())
495			safe_halt();	/* enables interrupts racelessly */
496		else
497			local_irq_enable();
498		current_thread_info()->status |= TS_POLLING;
499		trace_power_end_rcuidle(smp_processor_id());
500		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
501	} else {
502		local_irq_enable();
503		/* loop is done by the caller */
504		cpu_relax();
505	}
506}
507#ifdef CONFIG_APM_MODULE
508EXPORT_SYMBOL(default_idle);
509#endif
510
511bool set_pm_idle_to_default(void)
 
512{
513	bool ret = !!pm_idle;
514
515	pm_idle = default_idle;
516
517	return ret;
518}
 
519void stop_this_cpu(void *dummy)
520{
521	local_irq_disable();
522	/*
523	 * Remove this CPU:
524	 */
525	set_cpu_online(smp_processor_id(), false);
526	disable_local_APIC();
527
528	for (;;) {
529		if (hlt_works(smp_processor_id()))
530			halt();
531	}
532}
533
534/* Default MONITOR/MWAIT with no hints, used for default C1 state */
535static void mwait_idle(void)
536{
537	if (!need_resched()) {
538		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
539		trace_cpu_idle_rcuidle(1, smp_processor_id());
540		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
541			clflush((void *)&current_thread_info()->flags);
542
543		__monitor((void *)&current_thread_info()->flags, 0, 0);
544		smp_mb();
545		if (!need_resched())
546			__sti_mwait(0, 0);
547		else
548			local_irq_enable();
549		trace_power_end_rcuidle(smp_processor_id());
550		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
551	} else
552		local_irq_enable();
553}
554
555/*
556 * On SMP it's slightly faster (but much more power-consuming!)
557 * to poll the ->work.need_resched flag instead of waiting for the
558 * cross-CPU IPI to arrive. Use this option with caution.
559 */
560static void poll_idle(void)
561{
562	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
563	trace_cpu_idle_rcuidle(0, smp_processor_id());
564	local_irq_enable();
565	while (!need_resched())
566		cpu_relax();
567	trace_power_end_rcuidle(smp_processor_id());
568	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
569}
570
571/*
572 * mwait selection logic:
573 *
574 * It depends on the CPU. For AMD CPUs that support MWAIT this is
575 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
576 * then depend on a clock divisor and current Pstate of the core. If
577 * all cores of a processor are in halt state (C1) the processor can
578 * enter the C1E (C1 enhanced) state. If mwait is used this will never
579 * happen.
580 *
581 * idle=mwait overrides this decision and forces the usage of mwait.
582 */
583
584#define MWAIT_INFO			0x05
585#define MWAIT_ECX_EXTENDED_INFO		0x01
586#define MWAIT_EDX_C1			0xf0
587
588int mwait_usable(const struct cpuinfo_x86 *c)
589{
590	u32 eax, ebx, ecx, edx;
591
592	/* Use mwait if idle=mwait boot option is given */
593	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
594		return 1;
595
596	/*
597	 * Any idle= boot option other than idle=mwait means that we must not
598	 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
599	 */
600	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
601		return 0;
602
603	if (c->cpuid_level < MWAIT_INFO)
604		return 0;
605
606	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
607	/* Check, whether EDX has extended info about MWAIT */
608	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
609		return 1;
610
611	/*
612	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
613	 * C1  supports MWAIT
614	 */
615	return (edx & MWAIT_EDX_C1);
616}
617
618bool amd_e400_c1e_detected;
619EXPORT_SYMBOL(amd_e400_c1e_detected);
620
621static cpumask_var_t amd_e400_c1e_mask;
622
623void amd_e400_remove_cpu(int cpu)
624{
625	if (amd_e400_c1e_mask != NULL)
626		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
631 * pending message MSR. If we detect C1E, then we handle it the same
632 * way as C3 power states (local apic timer and TSC stop)
633 */
634static void amd_e400_idle(void)
635{
636	if (need_resched())
637		return;
638
639	if (!amd_e400_c1e_detected) {
640		u32 lo, hi;
641
642		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
643
644		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
645			amd_e400_c1e_detected = true;
646			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
647				mark_tsc_unstable("TSC halt in AMD C1E");
648			printk(KERN_INFO "System has AMD C1E enabled\n");
649		}
650	}
651
652	if (amd_e400_c1e_detected) {
653		int cpu = smp_processor_id();
654
655		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
656			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
657			/*
658			 * Force broadcast so ACPI can not interfere.
659			 */
660			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
661					   &cpu);
662			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
663			       cpu);
664		}
665		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
666
667		default_idle();
668
669		/*
670		 * The switch back from broadcast mode needs to be
671		 * called with interrupts disabled.
672		 */
673		 local_irq_disable();
674		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
675		 local_irq_enable();
676	} else
677		default_idle();
678}
679
680void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
681{
682#ifdef CONFIG_SMP
683	if (pm_idle == poll_idle && smp_num_siblings > 1) {
684		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
685			" performance may degrade.\n");
686	}
687#endif
688	if (pm_idle)
689		return;
690
691	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
692		/*
693		 * One CPU supports mwait => All CPUs supports mwait
694		 */
695		printk(KERN_INFO "using mwait in idle threads.\n");
696		pm_idle = mwait_idle;
697	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
698		/* E400: APIC timer interrupt does not wake up CPU from C1e */
699		printk(KERN_INFO "using AMD E400 aware idle routine\n");
700		pm_idle = amd_e400_idle;
701	} else
702		pm_idle = default_idle;
703}
704
705void __init init_amd_e400_c1e_mask(void)
706{
707	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
708	if (pm_idle == amd_e400_idle)
709		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
710}
711
712static int __init idle_setup(char *str)
713{
714	if (!str)
715		return -EINVAL;
716
717	if (!strcmp(str, "poll")) {
718		printk("using polling idle threads.\n");
719		pm_idle = poll_idle;
720		boot_option_idle_override = IDLE_POLL;
721	} else if (!strcmp(str, "mwait")) {
722		boot_option_idle_override = IDLE_FORCE_MWAIT;
723		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
724	} else if (!strcmp(str, "halt")) {
725		/*
726		 * When the boot option of idle=halt is added, halt is
727		 * forced to be used for CPU idle. In such case CPU C2/C3
728		 * won't be used again.
729		 * To continue to load the CPU idle driver, don't touch
730		 * the boot_option_idle_override.
731		 */
732		pm_idle = default_idle;
733		boot_option_idle_override = IDLE_HALT;
734	} else if (!strcmp(str, "nomwait")) {
735		/*
736		 * If the boot option of "idle=nomwait" is added,
737		 * it means that mwait will be disabled for CPU C2/C3
738		 * states. In such case it won't touch the variable
739		 * of boot_option_idle_override.
740		 */
741		boot_option_idle_override = IDLE_NOMWAIT;
742	} else
743		return -1;
744
745	return 0;
746}
747early_param("idle", idle_setup);
748
749unsigned long arch_align_stack(unsigned long sp)
750{
751	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
752		sp -= get_random_int() % 8192;
753	return sp & ~0xf;
754}
755
756unsigned long arch_randomize_brk(struct mm_struct *mm)
757{
758	unsigned long range_end = mm->brk + 0x02000000;
759	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
760}
761