Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2003, 04, 07 Ralf Baechle <ralf@linux-mips.org>
  7 * Copyright (C) MIPS Technologies, Inc.
  8 *   written by Ralf Baechle <ralf@linux-mips.org>
  9 */
 10#ifndef _ASM_HAZARDS_H
 11#define _ASM_HAZARDS_H
 12
 13#include <linux/stringify.h>
 
 
 14
 15#define ___ssnop							\
 16	sll	$0, $0, 1
 17
 18#define ___ehb								\
 19	sll	$0, $0, 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20
 21/*
 22 * TLB hazards
 23 */
 24#if defined(CONFIG_CPU_MIPSR2) && !defined(CONFIG_CPU_CAVIUM_OCTEON)
 25
 26/*
 27 * MIPSR2 defines ehb for hazard avoidance
 28 */
 29
 30#define __mtc0_tlbw_hazard						\
 31	___ehb
 32
 33#define __tlbw_use_hazard						\
 34	___ehb
 35
 36#define __tlb_probe_hazard						\
 37	___ehb
 38
 39#define __irq_enable_hazard						\
 40	___ehb
 41
 42#define __irq_disable_hazard						\
 43	___ehb
 44
 45#define __back_to_back_c0_hazard					\
 46	___ehb
 47
 48/*
 49 * gcc has a tradition of misscompiling the previous construct using the
 50 * address of a label as argument to inline assembler.	Gas otoh has the
 51 * annoying difference between la and dla which are only usable for 32-bit
 52 * rsp. 64-bit code, so can't be used without conditional compilation.
 53 * The alterantive is switching the assembler to 64-bit code which happens
 54 * to work right even for 32-bit code ...
 55 */
 56#define instruction_hazard()						\
 57do {									\
 58	unsigned long tmp;						\
 59									\
 60	__asm__ __volatile__(						\
 61	"	.set	mips64r2				\n"	\
 62	"	dla	%0, 1f					\n"	\
 63	"	jr.hb	%0					\n"	\
 64	"	.set	mips0					\n"	\
 65	"1:							\n"	\
 66	: "=r" (tmp));							\
 67} while (0)
 68
 69#elif (defined(CONFIG_CPU_MIPSR1) && !defined(CONFIG_MIPS_ALCHEMY)) || \
 70	defined(CONFIG_CPU_BMIPS)
 71
 72/*
 73 * These are slightly complicated by the fact that we guarantee R1 kernels to
 74 * run fine on R2 processors.
 75 */
 76
 77#define __mtc0_tlbw_hazard						\
 78	___ssnop;							\
 79	___ssnop;							\
 80	___ehb
 81
 82#define __tlbw_use_hazard						\
 83	___ssnop;							\
 84	___ssnop;							\
 85	___ssnop;							\
 86	___ehb
 87
 88#define __tlb_probe_hazard						\
 89	___ssnop;							\
 90	___ssnop;							\
 91	___ssnop;							\
 92	___ehb
 93
 94#define __irq_enable_hazard						\
 95	___ssnop;							\
 96	___ssnop;							\
 97	___ssnop;							\
 98	___ehb
 99
100#define __irq_disable_hazard						\
101	___ssnop;							\
102	___ssnop;							\
103	___ssnop;							\
104	___ehb
105
106#define __back_to_back_c0_hazard					\
107	___ssnop;							\
108	___ssnop;							\
109	___ssnop;							\
110	___ehb
111
112/*
113 * gcc has a tradition of misscompiling the previous construct using the
114 * address of a label as argument to inline assembler.	Gas otoh has the
115 * annoying difference between la and dla which are only usable for 32-bit
116 * rsp. 64-bit code, so can't be used without conditional compilation.
117 * The alterantive is switching the assembler to 64-bit code which happens
118 * to work right even for 32-bit code ...
119 */
120#define __instruction_hazard()						\
121do {									\
122	unsigned long tmp;						\
123									\
124	__asm__ __volatile__(						\
125	"	.set	mips64r2				\n"	\
126	"	dla	%0, 1f					\n"	\
127	"	jr.hb	%0					\n"	\
128	"	.set	mips0					\n"	\
129	"1:							\n"	\
130	: "=r" (tmp));							\
131} while (0)
132
133#define instruction_hazard()						\
134do {									\
135	if (cpu_has_mips_r2)						\
136		__instruction_hazard();					\
137} while (0)
138
139#elif defined(CONFIG_MIPS_ALCHEMY) || defined(CONFIG_CPU_CAVIUM_OCTEON) || \
140	defined(CONFIG_CPU_LOONGSON2) || defined(CONFIG_CPU_R10000) || \
141	defined(CONFIG_CPU_R5500) || defined(CONFIG_CPU_XLR)
142
143/*
144 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
145 */
146
147#define __mtc0_tlbw_hazard
148
149#define __tlbw_use_hazard
150
151#define __tlb_probe_hazard
152
153#define __irq_enable_hazard
 
 
 
 
 
 
154
155#define __irq_disable_hazard
156
157#define __back_to_back_c0_hazard
 
 
 
 
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159#define instruction_hazard() do { } while (0)
160
161#elif defined(CONFIG_CPU_SB1)
162
163/*
164 * Mostly like R4000 for historic reasons
165 */
166#define __mtc0_tlbw_hazard
167
168#define __tlbw_use_hazard
169
170#define __tlb_probe_hazard
171
172#define __irq_enable_hazard
173
174#define __irq_disable_hazard						\
175	___ssnop;							\
176	___ssnop;							\
177	___ssnop
178
179#define __back_to_back_c0_hazard
180
181#define instruction_hazard() do { } while (0)
182
183#else
184
185/*
186 * Finally the catchall case for all other processors including R4000, R4400,
187 * R4600, R4700, R5000, RM7000, NEC VR41xx etc.
188 *
189 * The taken branch will result in a two cycle penalty for the two killed
190 * instructions on R4000 / R4400.  Other processors only have a single cycle
191 * hazard so this is nice trick to have an optimal code for a range of
192 * processors.
193 */
194#define __mtc0_tlbw_hazard						\
195	nop;								\
196	nop
197
198#define __tlbw_use_hazard						\
199	nop;								\
200	nop;								\
201	nop
202
203#define __tlb_probe_hazard						\
204	nop;								\
205	nop;								\
206	nop
207
208#define __irq_enable_hazard						\
209	___ssnop;							\
210	___ssnop;							\
211	___ssnop
212
213#define __irq_disable_hazard						\
214	nop;								\
215	nop;								\
216	nop
217
218#define __back_to_back_c0_hazard					\
219	___ssnop;							\
220	___ssnop;							\
221	___ssnop
222
223#define instruction_hazard() do { } while (0)
224
225#endif
226
227
228/* FPU hazards */
229
230#if defined(CONFIG_CPU_SB1)
231
232#define __enable_fpu_hazard						\
233	.set	push;							\
234	.set	mips64;							\
235	.set	noreorder;						\
236	___ssnop;							\
237	bnezl	$0, .+4;						\
238	___ssnop;							\
239	.set	pop
240
241#define __disable_fpu_hazard
242
243#elif defined(CONFIG_CPU_MIPSR2)
244
245#define __enable_fpu_hazard						\
246	___ehb
247
248#define __disable_fpu_hazard						\
249	___ehb
250
251#else
252
253#define __enable_fpu_hazard						\
254	nop;								\
255	nop;								\
256	nop;								\
257	nop
258
259#define __disable_fpu_hazard						\
260	___ehb
261
262#endif
263
264#ifdef __ASSEMBLY__
265
266#define _ssnop ___ssnop
267#define	_ehb ___ehb
268#define mtc0_tlbw_hazard __mtc0_tlbw_hazard
269#define tlbw_use_hazard __tlbw_use_hazard
270#define tlb_probe_hazard __tlb_probe_hazard
271#define irq_enable_hazard __irq_enable_hazard
272#define irq_disable_hazard __irq_disable_hazard
273#define back_to_back_c0_hazard __back_to_back_c0_hazard
274#define enable_fpu_hazard __enable_fpu_hazard
275#define disable_fpu_hazard __disable_fpu_hazard
276
277#else
278
279#define _ssnop()							\
280do {									\
281	__asm__ __volatile__(						\
282	__stringify(___ssnop)						\
283	);								\
284} while (0)
285
286#define	_ehb()								\
287do {									\
288	__asm__ __volatile__(						\
289	__stringify(___ehb)						\
290	);								\
291} while (0)
292
293
294#define mtc0_tlbw_hazard()						\
295do {									\
296	__asm__ __volatile__(						\
297	__stringify(__mtc0_tlbw_hazard)					\
298	);								\
299} while (0)
300
301
302#define tlbw_use_hazard()						\
303do {									\
304	__asm__ __volatile__(						\
305	__stringify(__tlbw_use_hazard)					\
306	);								\
307} while (0)
308
309
310#define tlb_probe_hazard()						\
311do {									\
312	__asm__ __volatile__(						\
313	__stringify(__tlb_probe_hazard)					\
314	);								\
315} while (0)
316
317
318#define irq_enable_hazard()						\
319do {									\
320	__asm__ __volatile__(						\
321	__stringify(__irq_enable_hazard)				\
322	);								\
323} while (0)
324
325
326#define irq_disable_hazard()						\
327do {									\
328	__asm__ __volatile__(						\
329	__stringify(__irq_disable_hazard)				\
330	);								\
331} while (0)
332
333
334#define back_to_back_c0_hazard() 					\
335do {									\
336	__asm__ __volatile__(						\
337	__stringify(__back_to_back_c0_hazard)				\
338	);								\
339} while (0)
340
341
342#define enable_fpu_hazard()						\
343do {									\
344	__asm__ __volatile__(						\
345	__stringify(__enable_fpu_hazard)				\
346	);								\
347} while (0)
348
349
350#define disable_fpu_hazard()						\
351do {									\
352	__asm__ __volatile__(						\
353	__stringify(__disable_fpu_hazard)				\
354	);								\
355} while (0)
356
357/*
358 * MIPS R2 instruction hazard barrier.   Needs to be called as a subroutine.
359 */
360extern void mips_ihb(void);
361
362#endif /* __ASSEMBLY__  */
363
364#endif /* _ASM_HAZARDS_H */
v3.5.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2003, 04, 07 Ralf Baechle <ralf@linux-mips.org>
  7 * Copyright (C) MIPS Technologies, Inc.
  8 *   written by Ralf Baechle <ralf@linux-mips.org>
  9 */
 10#ifndef _ASM_HAZARDS_H
 11#define _ASM_HAZARDS_H
 12
 13#ifdef __ASSEMBLY__
 14#define ASMMACRO(name, code...) .macro name; code; .endm
 15#else
 16
 17#include <asm/cpu-features.h>
 
 18
 19#define ASMMACRO(name, code...)						\
 20__asm__(".macro " #name "; " #code "; .endm");				\
 21									\
 22static inline void name(void)						\
 23{									\
 24	__asm__ __volatile__ (#name);					\
 25}
 26
 27/*
 28 * MIPS R2 instruction hazard barrier.   Needs to be called as a subroutine.
 29 */
 30extern void mips_ihb(void);
 31
 32#endif
 33
 34ASMMACRO(_ssnop,
 35	 sll	$0, $0, 1
 36	)
 37
 38ASMMACRO(_ehb,
 39	 sll	$0, $0, 3
 40	)
 41
 42/*
 43 * TLB hazards
 44 */
 45#if defined(CONFIG_CPU_MIPSR2) && !defined(CONFIG_CPU_CAVIUM_OCTEON)
 46
 47/*
 48 * MIPSR2 defines ehb for hazard avoidance
 49 */
 50
 51ASMMACRO(mtc0_tlbw_hazard,
 52	 _ehb
 53	)
 54ASMMACRO(tlbw_use_hazard,
 55	 _ehb
 56	)
 57ASMMACRO(tlb_probe_hazard,
 58	 _ehb
 59	)
 60ASMMACRO(irq_enable_hazard,
 61	 _ehb
 62	)
 63ASMMACRO(irq_disable_hazard,
 64	_ehb
 65	)
 66ASMMACRO(back_to_back_c0_hazard,
 67	 _ehb
 68	)
 69/*
 70 * gcc has a tradition of misscompiling the previous construct using the
 71 * address of a label as argument to inline assembler.  Gas otoh has the
 72 * annoying difference between la and dla which are only usable for 32-bit
 73 * rsp. 64-bit code, so can't be used without conditional compilation.
 74 * The alterantive is switching the assembler to 64-bit code which happens
 75 * to work right even for 32-bit code ...
 76 */
 77#define instruction_hazard()						\
 78do {									\
 79	unsigned long tmp;						\
 80									\
 81	__asm__ __volatile__(						\
 82	"	.set	mips64r2				\n"	\
 83	"	dla	%0, 1f					\n"	\
 84	"	jr.hb	%0					\n"	\
 85	"	.set	mips0					\n"	\
 86	"1:							\n"	\
 87	: "=r" (tmp));							\
 88} while (0)
 89
 90#elif (defined(CONFIG_CPU_MIPSR1) && !defined(CONFIG_MIPS_ALCHEMY)) || \
 91	defined(CONFIG_CPU_BMIPS)
 92
 93/*
 94 * These are slightly complicated by the fact that we guarantee R1 kernels to
 95 * run fine on R2 processors.
 96 */
 97ASMMACRO(mtc0_tlbw_hazard,
 98	_ssnop; _ssnop; _ehb
 99	)
100ASMMACRO(tlbw_use_hazard,
101	_ssnop; _ssnop; _ssnop; _ehb
102	)
103ASMMACRO(tlb_probe_hazard,
104	 _ssnop; _ssnop; _ssnop; _ehb
105	)
106ASMMACRO(irq_enable_hazard,
107	 _ssnop; _ssnop; _ssnop; _ehb
108	)
109ASMMACRO(irq_disable_hazard,
110	_ssnop; _ssnop; _ssnop; _ehb
111	)
112ASMMACRO(back_to_back_c0_hazard,
113	 _ssnop; _ssnop; _ssnop; _ehb
114	)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115/*
116 * gcc has a tradition of misscompiling the previous construct using the
117 * address of a label as argument to inline assembler.  Gas otoh has the
118 * annoying difference between la and dla which are only usable for 32-bit
119 * rsp. 64-bit code, so can't be used without conditional compilation.
120 * The alterantive is switching the assembler to 64-bit code which happens
121 * to work right even for 32-bit code ...
122 */
123#define __instruction_hazard()						\
124do {									\
125	unsigned long tmp;						\
126									\
127	__asm__ __volatile__(						\
128	"	.set	mips64r2				\n"	\
129	"	dla	%0, 1f					\n"	\
130	"	jr.hb	%0					\n"	\
131	"	.set	mips0					\n"	\
132	"1:							\n"	\
133	: "=r" (tmp));							\
134} while (0)
135
136#define instruction_hazard()						\
137do {									\
138	if (cpu_has_mips_r2)						\
139		__instruction_hazard();					\
140} while (0)
141
142#elif defined(CONFIG_MIPS_ALCHEMY) || defined(CONFIG_CPU_CAVIUM_OCTEON) || \
143	defined(CONFIG_CPU_LOONGSON2) || defined(CONFIG_CPU_R10000) || \
144	defined(CONFIG_CPU_R5500)
145
146/*
147 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
148 */
149
150ASMMACRO(mtc0_tlbw_hazard,
151	)
152ASMMACRO(tlbw_use_hazard,
153	)
154ASMMACRO(tlb_probe_hazard,
155	)
156ASMMACRO(irq_enable_hazard,
157	)
158ASMMACRO(irq_disable_hazard,
159	)
160ASMMACRO(back_to_back_c0_hazard,
161	)
162#define instruction_hazard() do { } while (0)
163
164#elif defined(CONFIG_CPU_RM9000)
165
166/*
167 * RM9000 hazards.  When the JTLB is updated by tlbwi or tlbwr, a subsequent
168 * use of the JTLB for instructions should not occur for 4 cpu cycles and use
169 * for data translations should not occur for 3 cpu cycles.
170 */
171
172ASMMACRO(mtc0_tlbw_hazard,
173	 _ssnop; _ssnop; _ssnop; _ssnop
174	)
175ASMMACRO(tlbw_use_hazard,
176	 _ssnop; _ssnop; _ssnop; _ssnop
177	)
178ASMMACRO(tlb_probe_hazard,
179	 _ssnop; _ssnop; _ssnop; _ssnop
180	)
181ASMMACRO(irq_enable_hazard,
182	)
183ASMMACRO(irq_disable_hazard,
184	)
185ASMMACRO(back_to_back_c0_hazard,
186	)
187#define instruction_hazard() do { } while (0)
188
189#elif defined(CONFIG_CPU_SB1)
190
191/*
192 * Mostly like R4000 for historic reasons
193 */
194ASMMACRO(mtc0_tlbw_hazard,
195	)
196ASMMACRO(tlbw_use_hazard,
197	)
198ASMMACRO(tlb_probe_hazard,
199	)
200ASMMACRO(irq_enable_hazard,
201	)
202ASMMACRO(irq_disable_hazard,
203	 _ssnop; _ssnop; _ssnop
204	)
205ASMMACRO(back_to_back_c0_hazard,
206	)
 
 
207#define instruction_hazard() do { } while (0)
208
209#else
210
211/*
212 * Finally the catchall case for all other processors including R4000, R4400,
213 * R4600, R4700, R5000, RM7000, NEC VR41xx etc.
214 *
215 * The taken branch will result in a two cycle penalty for the two killed
216 * instructions on R4000 / R4400.  Other processors only have a single cycle
217 * hazard so this is nice trick to have an optimal code for a range of
218 * processors.
219 */
220ASMMACRO(mtc0_tlbw_hazard,
221	nop; nop
222	)
223ASMMACRO(tlbw_use_hazard,
224	nop; nop; nop
225	)
226ASMMACRO(tlb_probe_hazard,
227	 nop; nop; nop
228	)
229ASMMACRO(irq_enable_hazard,
230	 _ssnop; _ssnop; _ssnop;
231	)
232ASMMACRO(irq_disable_hazard,
233	nop; nop; nop
234	)
235ASMMACRO(back_to_back_c0_hazard,
236	 _ssnop; _ssnop; _ssnop;
237	)
 
 
 
 
 
 
 
 
 
 
 
238#define instruction_hazard() do { } while (0)
239
240#endif
241
242
243/* FPU hazards */
244
245#if defined(CONFIG_CPU_SB1)
246ASMMACRO(enable_fpu_hazard,
247	 .set	push;
248	 .set	mips64;
249	 .set	noreorder;
250	 _ssnop;
251	 bnezl	$0, .+4;
252	 _ssnop;
253	 .set	pop
254)
255ASMMACRO(disable_fpu_hazard,
256)
257
258#elif defined(CONFIG_CPU_MIPSR2)
259ASMMACRO(enable_fpu_hazard,
260	 _ehb
261)
262ASMMACRO(disable_fpu_hazard,
263	 _ehb
264)
 
265#else
266ASMMACRO(enable_fpu_hazard,
267	 nop; nop; nop; nop
268)
269ASMMACRO(disable_fpu_hazard,
270	 _ehb
271)
 
 
 
 
272#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273
274#endif /* _ASM_HAZARDS_H */