Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/sections.h>
  26#include <asm/setup.h>
 
  27#include <asm/smp_plat.h>
  28#include <asm/tlb.h>
  29#include <asm/highmem.h>
  30#include <asm/system_info.h>
  31#include <asm/traps.h>
  32#include <asm/procinfo.h>
  33#include <asm/memory.h>
  34
  35#include <asm/mach/arch.h>
  36#include <asm/mach/map.h>
  37#include <asm/mach/pci.h>
  38
  39#include "mm.h"
  40#include "tcm.h"
  41
  42/*
  43 * empty_zero_page is a special page that is used for
  44 * zero-initialized data and COW.
  45 */
  46struct page *empty_zero_page;
  47EXPORT_SYMBOL(empty_zero_page);
  48
  49/*
  50 * The pmd table for the upper-most set of pages.
  51 */
  52pmd_t *top_pmd;
  53
  54#define CPOLICY_UNCACHED	0
  55#define CPOLICY_BUFFERED	1
  56#define CPOLICY_WRITETHROUGH	2
  57#define CPOLICY_WRITEBACK	3
  58#define CPOLICY_WRITEALLOC	4
  59
  60static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  61static unsigned int ecc_mask __initdata = 0;
  62pgprot_t pgprot_user;
  63pgprot_t pgprot_kernel;
  64pgprot_t pgprot_hyp_device;
  65pgprot_t pgprot_s2;
  66pgprot_t pgprot_s2_device;
  67
  68EXPORT_SYMBOL(pgprot_user);
  69EXPORT_SYMBOL(pgprot_kernel);
  70
  71struct cachepolicy {
  72	const char	policy[16];
  73	unsigned int	cr_mask;
  74	pmdval_t	pmd;
  75	pteval_t	pte;
  76	pteval_t	pte_s2;
  77};
  78
  79#ifdef CONFIG_ARM_LPAE
  80#define s2_policy(policy)	policy
  81#else
  82#define s2_policy(policy)	0
  83#endif
  84
  85static struct cachepolicy cache_policies[] __initdata = {
  86	{
  87		.policy		= "uncached",
  88		.cr_mask	= CR_W|CR_C,
  89		.pmd		= PMD_SECT_UNCACHED,
  90		.pte		= L_PTE_MT_UNCACHED,
  91		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  92	}, {
  93		.policy		= "buffered",
  94		.cr_mask	= CR_C,
  95		.pmd		= PMD_SECT_BUFFERED,
  96		.pte		= L_PTE_MT_BUFFERABLE,
  97		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  98	}, {
  99		.policy		= "writethrough",
 100		.cr_mask	= 0,
 101		.pmd		= PMD_SECT_WT,
 102		.pte		= L_PTE_MT_WRITETHROUGH,
 103		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 104	}, {
 105		.policy		= "writeback",
 106		.cr_mask	= 0,
 107		.pmd		= PMD_SECT_WB,
 108		.pte		= L_PTE_MT_WRITEBACK,
 109		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 110	}, {
 111		.policy		= "writealloc",
 112		.cr_mask	= 0,
 113		.pmd		= PMD_SECT_WBWA,
 114		.pte		= L_PTE_MT_WRITEALLOC,
 115		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 116	}
 117};
 118
 119#ifdef CONFIG_CPU_CP15
 120/*
 121 * These are useful for identifying cache coherency
 122 * problems by allowing the cache or the cache and
 123 * writebuffer to be turned off.  (Note: the write
 124 * buffer should not be on and the cache off).
 125 */
 126static int __init early_cachepolicy(char *p)
 127{
 128	int i;
 129
 130	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 131		int len = strlen(cache_policies[i].policy);
 132
 133		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 134			cachepolicy = i;
 135			cr_alignment &= ~cache_policies[i].cr_mask;
 136			cr_no_alignment &= ~cache_policies[i].cr_mask;
 137			break;
 138		}
 139	}
 140	if (i == ARRAY_SIZE(cache_policies))
 141		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
 142	/*
 143	 * This restriction is partly to do with the way we boot; it is
 144	 * unpredictable to have memory mapped using two different sets of
 145	 * memory attributes (shared, type, and cache attribs).  We can not
 146	 * change these attributes once the initial assembly has setup the
 147	 * page tables.
 148	 */
 149	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 150		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
 151		cachepolicy = CPOLICY_WRITEBACK;
 152	}
 153	flush_cache_all();
 154	set_cr(cr_alignment);
 155	return 0;
 156}
 157early_param("cachepolicy", early_cachepolicy);
 158
 159static int __init early_nocache(char *__unused)
 160{
 161	char *p = "buffered";
 162	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
 163	early_cachepolicy(p);
 164	return 0;
 165}
 166early_param("nocache", early_nocache);
 167
 168static int __init early_nowrite(char *__unused)
 169{
 170	char *p = "uncached";
 171	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
 172	early_cachepolicy(p);
 173	return 0;
 174}
 175early_param("nowb", early_nowrite);
 176
 177#ifndef CONFIG_ARM_LPAE
 178static int __init early_ecc(char *p)
 179{
 180	if (memcmp(p, "on", 2) == 0)
 181		ecc_mask = PMD_PROTECTION;
 182	else if (memcmp(p, "off", 3) == 0)
 183		ecc_mask = 0;
 184	return 0;
 185}
 186early_param("ecc", early_ecc);
 187#endif
 188
 189static int __init noalign_setup(char *__unused)
 190{
 191	cr_alignment &= ~CR_A;
 192	cr_no_alignment &= ~CR_A;
 193	set_cr(cr_alignment);
 194	return 1;
 195}
 196__setup("noalign", noalign_setup);
 197
 198#ifndef CONFIG_SMP
 199void adjust_cr(unsigned long mask, unsigned long set)
 200{
 201	unsigned long flags;
 202
 203	mask &= ~CR_A;
 204
 205	set &= mask;
 206
 207	local_irq_save(flags);
 208
 209	cr_no_alignment = (cr_no_alignment & ~mask) | set;
 210	cr_alignment = (cr_alignment & ~mask) | set;
 211
 212	set_cr((get_cr() & ~mask) | set);
 213
 214	local_irq_restore(flags);
 215}
 216#endif
 217
 218#else /* ifdef CONFIG_CPU_CP15 */
 219
 220static int __init early_cachepolicy(char *p)
 221{
 222	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
 223}
 224early_param("cachepolicy", early_cachepolicy);
 225
 226static int __init noalign_setup(char *__unused)
 227{
 228	pr_warning("noalign kernel parameter not supported without cp15\n");
 229}
 230__setup("noalign", noalign_setup);
 231
 232#endif /* ifdef CONFIG_CPU_CP15 / else */
 233
 234#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 235#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 236#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 237
 238static struct mem_type mem_types[] = {
 239	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 240		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 241				  L_PTE_SHARED,
 242		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
 243				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 244				  L_PTE_SHARED,
 245		.prot_l1	= PMD_TYPE_TABLE,
 246		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 247		.domain		= DOMAIN_IO,
 248	},
 249	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 250		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 251		.prot_l1	= PMD_TYPE_TABLE,
 252		.prot_sect	= PROT_SECT_DEVICE,
 253		.domain		= DOMAIN_IO,
 254	},
 255	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 256		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 257		.prot_l1	= PMD_TYPE_TABLE,
 258		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 259		.domain		= DOMAIN_IO,
 260	},
 261	[MT_DEVICE_WC] = {	/* ioremap_wc */
 262		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 263		.prot_l1	= PMD_TYPE_TABLE,
 264		.prot_sect	= PROT_SECT_DEVICE,
 265		.domain		= DOMAIN_IO,
 266	},
 267	[MT_UNCACHED] = {
 268		.prot_pte	= PROT_PTE_DEVICE,
 269		.prot_l1	= PMD_TYPE_TABLE,
 270		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 271		.domain		= DOMAIN_IO,
 272	},
 273	[MT_CACHECLEAN] = {
 274		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 275		.domain    = DOMAIN_KERNEL,
 276	},
 277#ifndef CONFIG_ARM_LPAE
 278	[MT_MINICLEAN] = {
 279		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 280		.domain    = DOMAIN_KERNEL,
 281	},
 282#endif
 283	[MT_LOW_VECTORS] = {
 284		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 285				L_PTE_RDONLY,
 286		.prot_l1   = PMD_TYPE_TABLE,
 287		.domain    = DOMAIN_USER,
 288	},
 289	[MT_HIGH_VECTORS] = {
 290		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 291				L_PTE_USER | L_PTE_RDONLY,
 292		.prot_l1   = PMD_TYPE_TABLE,
 293		.domain    = DOMAIN_USER,
 294	},
 295	[MT_MEMORY_RWX] = {
 296		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 297		.prot_l1   = PMD_TYPE_TABLE,
 298		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 299		.domain    = DOMAIN_KERNEL,
 300	},
 301	[MT_MEMORY_RW] = {
 302		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 303			     L_PTE_XN,
 304		.prot_l1   = PMD_TYPE_TABLE,
 305		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 306		.domain    = DOMAIN_KERNEL,
 307	},
 308	[MT_ROM] = {
 309		.prot_sect = PMD_TYPE_SECT,
 310		.domain    = DOMAIN_KERNEL,
 311	},
 312	[MT_MEMORY_RWX_NONCACHED] = {
 313		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 314				L_PTE_MT_BUFFERABLE,
 315		.prot_l1   = PMD_TYPE_TABLE,
 316		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 317		.domain    = DOMAIN_KERNEL,
 318	},
 319	[MT_MEMORY_RW_DTCM] = {
 320		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 321				L_PTE_XN,
 322		.prot_l1   = PMD_TYPE_TABLE,
 323		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 324		.domain    = DOMAIN_KERNEL,
 325	},
 326	[MT_MEMORY_RWX_ITCM] = {
 327		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 328		.prot_l1   = PMD_TYPE_TABLE,
 329		.domain    = DOMAIN_KERNEL,
 330	},
 331	[MT_MEMORY_RW_SO] = {
 332		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 333				L_PTE_MT_UNCACHED | L_PTE_XN,
 334		.prot_l1   = PMD_TYPE_TABLE,
 335		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 336				PMD_SECT_UNCACHED | PMD_SECT_XN,
 337		.domain    = DOMAIN_KERNEL,
 338	},
 339	[MT_MEMORY_DMA_READY] = {
 340		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 341				L_PTE_XN,
 342		.prot_l1   = PMD_TYPE_TABLE,
 343		.domain    = DOMAIN_KERNEL,
 344	},
 345};
 346
 347const struct mem_type *get_mem_type(unsigned int type)
 348{
 349	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 350}
 351EXPORT_SYMBOL(get_mem_type);
 352
 353#define PTE_SET_FN(_name, pteop) \
 354static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
 355			void *data) \
 356{ \
 357	pte_t pte = pteop(*ptep); \
 358\
 359	set_pte_ext(ptep, pte, 0); \
 360	return 0; \
 361} \
 362
 363#define SET_MEMORY_FN(_name, callback) \
 364int set_memory_##_name(unsigned long addr, int numpages) \
 365{ \
 366	unsigned long start = addr; \
 367	unsigned long size = PAGE_SIZE*numpages; \
 368	unsigned end = start + size; \
 369\
 370	if (start < MODULES_VADDR || start >= MODULES_END) \
 371		return -EINVAL;\
 372\
 373	if (end < MODULES_VADDR || end >= MODULES_END) \
 374		return -EINVAL; \
 375\
 376	apply_to_page_range(&init_mm, start, size, callback, NULL); \
 377	flush_tlb_kernel_range(start, end); \
 378	return 0;\
 379}
 380
 381PTE_SET_FN(ro, pte_wrprotect)
 382PTE_SET_FN(rw, pte_mkwrite)
 383PTE_SET_FN(x, pte_mkexec)
 384PTE_SET_FN(nx, pte_mknexec)
 385
 386SET_MEMORY_FN(ro, pte_set_ro)
 387SET_MEMORY_FN(rw, pte_set_rw)
 388SET_MEMORY_FN(x, pte_set_x)
 389SET_MEMORY_FN(nx, pte_set_nx)
 390
 391/*
 392 * Adjust the PMD section entries according to the CPU in use.
 393 */
 394static void __init build_mem_type_table(void)
 395{
 396	struct cachepolicy *cp;
 397	unsigned int cr = get_cr();
 398	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 399	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 400	int cpu_arch = cpu_architecture();
 401	int i;
 402
 403	if (cpu_arch < CPU_ARCH_ARMv6) {
 404#if defined(CONFIG_CPU_DCACHE_DISABLE)
 405		if (cachepolicy > CPOLICY_BUFFERED)
 406			cachepolicy = CPOLICY_BUFFERED;
 407#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 408		if (cachepolicy > CPOLICY_WRITETHROUGH)
 409			cachepolicy = CPOLICY_WRITETHROUGH;
 410#endif
 411	}
 412	if (cpu_arch < CPU_ARCH_ARMv5) {
 413		if (cachepolicy >= CPOLICY_WRITEALLOC)
 414			cachepolicy = CPOLICY_WRITEBACK;
 415		ecc_mask = 0;
 416	}
 417	if (is_smp())
 418		cachepolicy = CPOLICY_WRITEALLOC;
 419
 420	/*
 421	 * Strip out features not present on earlier architectures.
 422	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 423	 * without extended page tables don't have the 'Shared' bit.
 424	 */
 425	if (cpu_arch < CPU_ARCH_ARMv5)
 426		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 427			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 428	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 429		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 430			mem_types[i].prot_sect &= ~PMD_SECT_S;
 431
 432	/*
 433	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 434	 * "update-able on write" bit on ARM610).  However, Xscale and
 435	 * Xscale3 require this bit to be cleared.
 436	 */
 437	if (cpu_is_xscale() || cpu_is_xsc3()) {
 438		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 439			mem_types[i].prot_sect &= ~PMD_BIT4;
 440			mem_types[i].prot_l1 &= ~PMD_BIT4;
 441		}
 442	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 443		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 444			if (mem_types[i].prot_l1)
 445				mem_types[i].prot_l1 |= PMD_BIT4;
 446			if (mem_types[i].prot_sect)
 447				mem_types[i].prot_sect |= PMD_BIT4;
 448		}
 449	}
 450
 451	/*
 452	 * Mark the device areas according to the CPU/architecture.
 453	 */
 454	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 455		if (!cpu_is_xsc3()) {
 456			/*
 457			 * Mark device regions on ARMv6+ as execute-never
 458			 * to prevent speculative instruction fetches.
 459			 */
 460			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 461			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 462			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 463			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 464
 465			/* Also setup NX memory mapping */
 466			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 467		}
 468		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 469			/*
 470			 * For ARMv7 with TEX remapping,
 471			 * - shared device is SXCB=1100
 472			 * - nonshared device is SXCB=0100
 473			 * - write combine device mem is SXCB=0001
 474			 * (Uncached Normal memory)
 475			 */
 476			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 477			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 478			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 479		} else if (cpu_is_xsc3()) {
 480			/*
 481			 * For Xscale3,
 482			 * - shared device is TEXCB=00101
 483			 * - nonshared device is TEXCB=01000
 484			 * - write combine device mem is TEXCB=00100
 485			 * (Inner/Outer Uncacheable in xsc3 parlance)
 486			 */
 487			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 488			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 489			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 490		} else {
 491			/*
 492			 * For ARMv6 and ARMv7 without TEX remapping,
 493			 * - shared device is TEXCB=00001
 494			 * - nonshared device is TEXCB=01000
 495			 * - write combine device mem is TEXCB=00100
 496			 * (Uncached Normal in ARMv6 parlance).
 497			 */
 498			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 499			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 500			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 501		}
 502	} else {
 503		/*
 504		 * On others, write combining is "Uncached/Buffered"
 505		 */
 506		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 507	}
 508
 509	/*
 510	 * Now deal with the memory-type mappings
 511	 */
 512	cp = &cache_policies[cachepolicy];
 513	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 514	s2_pgprot = cp->pte_s2;
 515	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 516	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 517
 518	/*
 519	 * We don't use domains on ARMv6 (since this causes problems with
 520	 * v6/v7 kernels), so we must use a separate memory type for user
 521	 * r/o, kernel r/w to map the vectors page.
 522	 */
 523#ifndef CONFIG_ARM_LPAE
 524	if (cpu_arch == CPU_ARCH_ARMv6)
 525		vecs_pgprot |= L_PTE_MT_VECTORS;
 526#endif
 527
 528	/*
 
 
 
 
 
 
 
 
 
 
 
 529	 * ARMv6 and above have extended page tables.
 530	 */
 531	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 532#ifndef CONFIG_ARM_LPAE
 533		/*
 534		 * Mark cache clean areas and XIP ROM read only
 535		 * from SVC mode and no access from userspace.
 536		 */
 537		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 538		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 539		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 540#endif
 541
 542		if (is_smp()) {
 543			/*
 544			 * Mark memory with the "shared" attribute
 545			 * for SMP systems
 546			 */
 547			user_pgprot |= L_PTE_SHARED;
 548			kern_pgprot |= L_PTE_SHARED;
 549			vecs_pgprot |= L_PTE_SHARED;
 550			s2_pgprot |= L_PTE_SHARED;
 551			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 552			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 553			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 554			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 555			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 556			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 557			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 558			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 559			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 560			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 561			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 562		}
 563	}
 564
 565	/*
 566	 * Non-cacheable Normal - intended for memory areas that must
 567	 * not cause dirty cache line writebacks when used
 568	 */
 569	if (cpu_arch >= CPU_ARCH_ARMv6) {
 570		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 571			/* Non-cacheable Normal is XCB = 001 */
 572			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 573				PMD_SECT_BUFFERED;
 574		} else {
 575			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 576			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 577				PMD_SECT_TEX(1);
 578		}
 579	} else {
 580		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 581	}
 582
 583#ifdef CONFIG_ARM_LPAE
 584	/*
 585	 * Do not generate access flag faults for the kernel mappings.
 586	 */
 587	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 588		mem_types[i].prot_pte |= PTE_EXT_AF;
 589		if (mem_types[i].prot_sect)
 590			mem_types[i].prot_sect |= PMD_SECT_AF;
 591	}
 592	kern_pgprot |= PTE_EXT_AF;
 593	vecs_pgprot |= PTE_EXT_AF;
 594#endif
 595
 596	for (i = 0; i < 16; i++) {
 597		pteval_t v = pgprot_val(protection_map[i]);
 598		protection_map[i] = __pgprot(v | user_pgprot);
 599	}
 600
 601	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 602	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 603
 604	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 605	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 606				 L_PTE_DIRTY | kern_pgprot);
 607	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 608	pgprot_s2_device  = __pgprot(s2_device_pgprot);
 609	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 610
 611	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 612	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 613	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 614	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 615	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 616	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 617	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 618	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 619	mem_types[MT_ROM].prot_sect |= cp->pmd;
 620
 621	switch (cp->pmd) {
 622	case PMD_SECT_WT:
 623		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 624		break;
 625	case PMD_SECT_WB:
 626	case PMD_SECT_WBWA:
 627		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 628		break;
 629	}
 630	pr_info("Memory policy: %sData cache %s\n",
 631		ecc_mask ? "ECC enabled, " : "", cp->policy);
 632
 633	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 634		struct mem_type *t = &mem_types[i];
 635		if (t->prot_l1)
 636			t->prot_l1 |= PMD_DOMAIN(t->domain);
 637		if (t->prot_sect)
 638			t->prot_sect |= PMD_DOMAIN(t->domain);
 639	}
 640}
 641
 642#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 643pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 644			      unsigned long size, pgprot_t vma_prot)
 645{
 646	if (!pfn_valid(pfn))
 647		return pgprot_noncached(vma_prot);
 648	else if (file->f_flags & O_SYNC)
 649		return pgprot_writecombine(vma_prot);
 650	return vma_prot;
 651}
 652EXPORT_SYMBOL(phys_mem_access_prot);
 653#endif
 654
 655#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 656
 657static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 658{
 659	void *ptr = __va(memblock_alloc(sz, align));
 660	memset(ptr, 0, sz);
 661	return ptr;
 662}
 663
 664static void __init *early_alloc(unsigned long sz)
 665{
 666	return early_alloc_aligned(sz, sz);
 667}
 668
 669static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 670{
 671	if (pmd_none(*pmd)) {
 672		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 673		__pmd_populate(pmd, __pa(pte), prot);
 674	}
 675	BUG_ON(pmd_bad(*pmd));
 676	return pte_offset_kernel(pmd, addr);
 677}
 678
 679static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 680				  unsigned long end, unsigned long pfn,
 681				  const struct mem_type *type)
 682{
 683	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 684	do {
 685		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 686		pfn++;
 687	} while (pte++, addr += PAGE_SIZE, addr != end);
 688}
 689
 690static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 691			unsigned long end, phys_addr_t phys,
 692			const struct mem_type *type)
 693{
 694	pmd_t *p = pmd;
 695
 696#ifndef CONFIG_ARM_LPAE
 697	/*
 698	 * In classic MMU format, puds and pmds are folded in to
 699	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 700	 * group of L1 entries making up one logical pointer to
 701	 * an L2 table (2MB), where as PMDs refer to the individual
 702	 * L1 entries (1MB). Hence increment to get the correct
 703	 * offset for odd 1MB sections.
 704	 * (See arch/arm/include/asm/pgtable-2level.h)
 705	 */
 706	if (addr & SECTION_SIZE)
 707		pmd++;
 708#endif
 709	do {
 710		*pmd = __pmd(phys | type->prot_sect);
 711		phys += SECTION_SIZE;
 712	} while (pmd++, addr += SECTION_SIZE, addr != end);
 713
 714	flush_pmd_entry(p);
 715}
 716
 717static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 718				      unsigned long end, phys_addr_t phys,
 719				      const struct mem_type *type)
 720{
 721	pmd_t *pmd = pmd_offset(pud, addr);
 722	unsigned long next;
 723
 724	do {
 725		/*
 726		 * With LPAE, we must loop over to map
 727		 * all the pmds for the given range.
 728		 */
 729		next = pmd_addr_end(addr, end);
 730
 
 
 731		/*
 732		 * Try a section mapping - addr, next and phys must all be
 733		 * aligned to a section boundary.
 734		 */
 735		if (type->prot_sect &&
 736				((addr | next | phys) & ~SECTION_MASK) == 0) {
 737			__map_init_section(pmd, addr, next, phys, type);
 738		} else {
 739			alloc_init_pte(pmd, addr, next,
 740						__phys_to_pfn(phys), type);
 741		}
 742
 743		phys += next - addr;
 744
 745	} while (pmd++, addr = next, addr != end);
 746}
 747
 748static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 749				  unsigned long end, phys_addr_t phys,
 750				  const struct mem_type *type)
 751{
 752	pud_t *pud = pud_offset(pgd, addr);
 753	unsigned long next;
 754
 755	do {
 756		next = pud_addr_end(addr, end);
 757		alloc_init_pmd(pud, addr, next, phys, type);
 758		phys += next - addr;
 759	} while (pud++, addr = next, addr != end);
 760}
 761
 762#ifndef CONFIG_ARM_LPAE
 763static void __init create_36bit_mapping(struct map_desc *md,
 764					const struct mem_type *type)
 765{
 766	unsigned long addr, length, end;
 767	phys_addr_t phys;
 768	pgd_t *pgd;
 769
 770	addr = md->virtual;
 771	phys = __pfn_to_phys(md->pfn);
 772	length = PAGE_ALIGN(md->length);
 773
 774	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 775		printk(KERN_ERR "MM: CPU does not support supersection "
 776		       "mapping for 0x%08llx at 0x%08lx\n",
 777		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 778		return;
 779	}
 780
 781	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 782	 *	Since domain assignments can in fact be arbitrary, the
 783	 *	'domain == 0' check below is required to insure that ARMv6
 784	 *	supersections are only allocated for domain 0 regardless
 785	 *	of the actual domain assignments in use.
 786	 */
 787	if (type->domain) {
 788		printk(KERN_ERR "MM: invalid domain in supersection "
 789		       "mapping for 0x%08llx at 0x%08lx\n",
 790		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 791		return;
 792	}
 793
 794	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 795		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
 796		       " at 0x%08lx invalid alignment\n",
 797		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 798		return;
 799	}
 800
 801	/*
 802	 * Shift bits [35:32] of address into bits [23:20] of PMD
 803	 * (See ARMv6 spec).
 804	 */
 805	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 806
 807	pgd = pgd_offset_k(addr);
 808	end = addr + length;
 809	do {
 810		pud_t *pud = pud_offset(pgd, addr);
 811		pmd_t *pmd = pmd_offset(pud, addr);
 812		int i;
 813
 814		for (i = 0; i < 16; i++)
 815			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 816
 817		addr += SUPERSECTION_SIZE;
 818		phys += SUPERSECTION_SIZE;
 819		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 820	} while (addr != end);
 821}
 822#endif	/* !CONFIG_ARM_LPAE */
 823
 824/*
 825 * Create the page directory entries and any necessary
 826 * page tables for the mapping specified by `md'.  We
 827 * are able to cope here with varying sizes and address
 828 * offsets, and we take full advantage of sections and
 829 * supersections.
 830 */
 831static void __init create_mapping(struct map_desc *md)
 832{
 833	unsigned long addr, length, end;
 834	phys_addr_t phys;
 835	const struct mem_type *type;
 836	pgd_t *pgd;
 837
 838	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 839		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
 840		       " at 0x%08lx in user region\n",
 841		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 842		return;
 843	}
 844
 845	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 846	    md->virtual >= PAGE_OFFSET &&
 847	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 848		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
 849		       " at 0x%08lx out of vmalloc space\n",
 850		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 851	}
 852
 853	type = &mem_types[md->type];
 854
 855#ifndef CONFIG_ARM_LPAE
 856	/*
 857	 * Catch 36-bit addresses
 858	 */
 859	if (md->pfn >= 0x100000) {
 860		create_36bit_mapping(md, type);
 861		return;
 862	}
 863#endif
 864
 865	addr = md->virtual & PAGE_MASK;
 866	phys = __pfn_to_phys(md->pfn);
 867	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 868
 869	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 870		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
 871		       "be mapped using pages, ignoring.\n",
 872		       (long long)__pfn_to_phys(md->pfn), addr);
 873		return;
 874	}
 875
 876	pgd = pgd_offset_k(addr);
 877	end = addr + length;
 878	do {
 879		unsigned long next = pgd_addr_end(addr, end);
 880
 881		alloc_init_pud(pgd, addr, next, phys, type);
 882
 883		phys += next - addr;
 884		addr = next;
 885	} while (pgd++, addr != end);
 886}
 887
 888/*
 889 * Create the architecture specific mappings
 890 */
 891void __init iotable_init(struct map_desc *io_desc, int nr)
 892{
 893	struct map_desc *md;
 894	struct vm_struct *vm;
 895	struct static_vm *svm;
 896
 897	if (!nr)
 898		return;
 899
 900	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 901
 902	for (md = io_desc; nr; md++, nr--) {
 903		create_mapping(md);
 904
 905		vm = &svm->vm;
 906		vm->addr = (void *)(md->virtual & PAGE_MASK);
 907		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 908		vm->phys_addr = __pfn_to_phys(md->pfn);
 909		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
 910		vm->flags |= VM_ARM_MTYPE(md->type);
 911		vm->caller = iotable_init;
 912		add_static_vm_early(svm++);
 913	}
 914}
 915
 916void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
 917				  void *caller)
 918{
 919	struct vm_struct *vm;
 920	struct static_vm *svm;
 921
 922	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
 923
 924	vm = &svm->vm;
 925	vm->addr = (void *)addr;
 926	vm->size = size;
 927	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
 928	vm->caller = caller;
 929	add_static_vm_early(svm);
 930}
 931
 932#ifndef CONFIG_ARM_LPAE
 933
 934/*
 935 * The Linux PMD is made of two consecutive section entries covering 2MB
 936 * (see definition in include/asm/pgtable-2level.h).  However a call to
 937 * create_mapping() may optimize static mappings by using individual
 938 * 1MB section mappings.  This leaves the actual PMD potentially half
 939 * initialized if the top or bottom section entry isn't used, leaving it
 940 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 941 * the virtual space left free by that unused section entry.
 942 *
 943 * Let's avoid the issue by inserting dummy vm entries covering the unused
 944 * PMD halves once the static mappings are in place.
 945 */
 946
 947static void __init pmd_empty_section_gap(unsigned long addr)
 948{
 949	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
 
 
 
 
 
 
 
 950}
 951
 952static void __init fill_pmd_gaps(void)
 953{
 954	struct static_vm *svm;
 955	struct vm_struct *vm;
 956	unsigned long addr, next = 0;
 957	pmd_t *pmd;
 958
 959	list_for_each_entry(svm, &static_vmlist, list) {
 960		vm = &svm->vm;
 
 
 961		addr = (unsigned long)vm->addr;
 962		if (addr < next)
 963			continue;
 964
 965		/*
 966		 * Check if this vm starts on an odd section boundary.
 967		 * If so and the first section entry for this PMD is free
 968		 * then we block the corresponding virtual address.
 969		 */
 970		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 971			pmd = pmd_off_k(addr);
 972			if (pmd_none(*pmd))
 973				pmd_empty_section_gap(addr & PMD_MASK);
 974		}
 975
 976		/*
 977		 * Then check if this vm ends on an odd section boundary.
 978		 * If so and the second section entry for this PMD is empty
 979		 * then we block the corresponding virtual address.
 980		 */
 981		addr += vm->size;
 982		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 983			pmd = pmd_off_k(addr) + 1;
 984			if (pmd_none(*pmd))
 985				pmd_empty_section_gap(addr);
 986		}
 987
 988		/* no need to look at any vm entry until we hit the next PMD */
 989		next = (addr + PMD_SIZE - 1) & PMD_MASK;
 990	}
 991}
 992
 993#else
 994#define fill_pmd_gaps() do { } while (0)
 995#endif
 996
 997#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
 998static void __init pci_reserve_io(void)
 999{
1000	struct static_vm *svm;
1001
1002	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1003	if (svm)
1004		return;
1005
1006	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1007}
1008#else
1009#define pci_reserve_io() do { } while (0)
1010#endif
1011
1012#ifdef CONFIG_DEBUG_LL
1013void __init debug_ll_io_init(void)
1014{
1015	struct map_desc map;
1016
1017	debug_ll_addr(&map.pfn, &map.virtual);
1018	if (!map.pfn || !map.virtual)
1019		return;
1020	map.pfn = __phys_to_pfn(map.pfn);
1021	map.virtual &= PAGE_MASK;
1022	map.length = PAGE_SIZE;
1023	map.type = MT_DEVICE;
1024	iotable_init(&map, 1);
1025}
1026#endif
1027
1028static void * __initdata vmalloc_min =
1029	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1030
1031/*
1032 * vmalloc=size forces the vmalloc area to be exactly 'size'
1033 * bytes. This can be used to increase (or decrease) the vmalloc
1034 * area - the default is 240m.
1035 */
1036static int __init early_vmalloc(char *arg)
1037{
1038	unsigned long vmalloc_reserve = memparse(arg, NULL);
1039
1040	if (vmalloc_reserve < SZ_16M) {
1041		vmalloc_reserve = SZ_16M;
1042		printk(KERN_WARNING
1043			"vmalloc area too small, limiting to %luMB\n",
1044			vmalloc_reserve >> 20);
1045	}
1046
1047	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1048		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1049		printk(KERN_WARNING
1050			"vmalloc area is too big, limiting to %luMB\n",
1051			vmalloc_reserve >> 20);
1052	}
1053
1054	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1055	return 0;
1056}
1057early_param("vmalloc", early_vmalloc);
1058
1059phys_addr_t arm_lowmem_limit __initdata = 0;
1060
1061void __init sanity_check_meminfo(void)
1062{
1063	phys_addr_t memblock_limit = 0;
1064	int i, j, highmem = 0;
1065	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1066
1067	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1068		struct membank *bank = &meminfo.bank[j];
1069		phys_addr_t size_limit;
1070
1071		*bank = meminfo.bank[i];
1072		size_limit = bank->size;
1073
1074		if (bank->start >= vmalloc_limit)
 
 
 
 
 
1075			highmem = 1;
1076		else
1077			size_limit = vmalloc_limit - bank->start;
1078
1079		bank->highmem = highmem;
1080
1081#ifdef CONFIG_HIGHMEM
1082		/*
1083		 * Split those memory banks which are partially overlapping
1084		 * the vmalloc area greatly simplifying things later.
1085		 */
1086		if (!highmem && bank->size > size_limit) {
 
1087			if (meminfo.nr_banks >= NR_BANKS) {
1088				printk(KERN_CRIT "NR_BANKS too low, "
1089						 "ignoring high memory\n");
1090			} else {
1091				memmove(bank + 1, bank,
1092					(meminfo.nr_banks - i) * sizeof(*bank));
1093				meminfo.nr_banks++;
1094				i++;
1095				bank[1].size -= size_limit;
1096				bank[1].start = vmalloc_limit;
1097				bank[1].highmem = highmem = 1;
1098				j++;
1099			}
1100			bank->size = size_limit;
1101		}
1102#else
 
 
1103		/*
1104		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1105		 */
1106		if (highmem) {
1107			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1108			       "(!CONFIG_HIGHMEM).\n",
1109			       (unsigned long long)bank->start,
1110			       (unsigned long long)bank->start + bank->size - 1);
1111			continue;
1112		}
1113
1114		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1115		 * Check whether this memory bank would partially overlap
1116		 * the vmalloc area.
1117		 */
1118		if (bank->size > size_limit) {
 
 
1119			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1120			       "to -%.8llx (vmalloc region overlap).\n",
1121			       (unsigned long long)bank->start,
1122			       (unsigned long long)bank->start + bank->size - 1,
1123			       (unsigned long long)bank->start + size_limit - 1);
1124			bank->size = size_limit;
1125		}
1126#endif
1127		if (!bank->highmem) {
1128			phys_addr_t bank_end = bank->start + bank->size;
1129
1130			if (bank_end > arm_lowmem_limit)
1131				arm_lowmem_limit = bank_end;
1132
1133			/*
1134			 * Find the first non-section-aligned page, and point
1135			 * memblock_limit at it. This relies on rounding the
1136			 * limit down to be section-aligned, which happens at
1137			 * the end of this function.
1138			 *
1139			 * With this algorithm, the start or end of almost any
1140			 * bank can be non-section-aligned. The only exception
1141			 * is that the start of the bank 0 must be section-
1142			 * aligned, since otherwise memory would need to be
1143			 * allocated when mapping the start of bank 0, which
1144			 * occurs before any free memory is mapped.
1145			 */
1146			if (!memblock_limit) {
1147				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1148					memblock_limit = bank->start;
1149				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1150					memblock_limit = bank_end;
1151			}
1152		}
1153		j++;
1154	}
1155#ifdef CONFIG_HIGHMEM
1156	if (highmem) {
1157		const char *reason = NULL;
1158
1159		if (cache_is_vipt_aliasing()) {
1160			/*
1161			 * Interactions between kmap and other mappings
1162			 * make highmem support with aliasing VIPT caches
1163			 * rather difficult.
1164			 */
1165			reason = "with VIPT aliasing cache";
1166		}
1167		if (reason) {
1168			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1169				reason);
1170			while (j > 0 && meminfo.bank[j - 1].highmem)
1171				j--;
1172		}
1173	}
1174#endif
1175	meminfo.nr_banks = j;
1176	high_memory = __va(arm_lowmem_limit - 1) + 1;
1177
1178	/*
1179	 * Round the memblock limit down to a section size.  This
1180	 * helps to ensure that we will allocate memory from the
1181	 * last full section, which should be mapped.
1182	 */
1183	if (memblock_limit)
1184		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1185	if (!memblock_limit)
1186		memblock_limit = arm_lowmem_limit;
1187
1188	memblock_set_current_limit(memblock_limit);
1189}
1190
1191static inline void prepare_page_table(void)
1192{
1193	unsigned long addr;
1194	phys_addr_t end;
1195
1196	/*
1197	 * Clear out all the mappings below the kernel image.
1198	 */
1199	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1200		pmd_clear(pmd_off_k(addr));
1201
1202#ifdef CONFIG_XIP_KERNEL
1203	/* The XIP kernel is mapped in the module area -- skip over it */
1204	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1205#endif
1206	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1207		pmd_clear(pmd_off_k(addr));
1208
1209	/*
1210	 * Find the end of the first block of lowmem.
1211	 */
1212	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1213	if (end >= arm_lowmem_limit)
1214		end = arm_lowmem_limit;
1215
1216	/*
1217	 * Clear out all the kernel space mappings, except for the first
1218	 * memory bank, up to the vmalloc region.
1219	 */
1220	for (addr = __phys_to_virt(end);
1221	     addr < VMALLOC_START; addr += PMD_SIZE)
1222		pmd_clear(pmd_off_k(addr));
1223}
1224
1225#ifdef CONFIG_ARM_LPAE
1226/* the first page is reserved for pgd */
1227#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1228				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1229#else
1230#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1231#endif
1232
1233/*
1234 * Reserve the special regions of memory
1235 */
1236void __init arm_mm_memblock_reserve(void)
1237{
1238	/*
1239	 * Reserve the page tables.  These are already in use,
1240	 * and can only be in node 0.
1241	 */
1242	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1243
1244#ifdef CONFIG_SA1111
1245	/*
1246	 * Because of the SA1111 DMA bug, we want to preserve our
1247	 * precious DMA-able memory...
1248	 */
1249	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1250#endif
1251}
1252
1253/*
1254 * Set up the device mappings.  Since we clear out the page tables for all
1255 * mappings above VMALLOC_START, we will remove any debug device mappings.
1256 * This means you have to be careful how you debug this function, or any
1257 * called function.  This means you can't use any function or debugging
1258 * method which may touch any device, otherwise the kernel _will_ crash.
1259 */
1260static void __init devicemaps_init(const struct machine_desc *mdesc)
1261{
1262	struct map_desc map;
1263	unsigned long addr;
1264	void *vectors;
1265
1266	/*
1267	 * Allocate the vector page early.
1268	 */
1269	vectors = early_alloc(PAGE_SIZE * 2);
1270
1271	early_trap_init(vectors);
1272
1273	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1274		pmd_clear(pmd_off_k(addr));
1275
1276	/*
1277	 * Map the kernel if it is XIP.
1278	 * It is always first in the modulearea.
1279	 */
1280#ifdef CONFIG_XIP_KERNEL
1281	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1282	map.virtual = MODULES_VADDR;
1283	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1284	map.type = MT_ROM;
1285	create_mapping(&map);
1286#endif
1287
1288	/*
1289	 * Map the cache flushing regions.
1290	 */
1291#ifdef FLUSH_BASE
1292	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1293	map.virtual = FLUSH_BASE;
1294	map.length = SZ_1M;
1295	map.type = MT_CACHECLEAN;
1296	create_mapping(&map);
1297#endif
1298#ifdef FLUSH_BASE_MINICACHE
1299	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1300	map.virtual = FLUSH_BASE_MINICACHE;
1301	map.length = SZ_1M;
1302	map.type = MT_MINICLEAN;
1303	create_mapping(&map);
1304#endif
1305
1306	/*
1307	 * Create a mapping for the machine vectors at the high-vectors
1308	 * location (0xffff0000).  If we aren't using high-vectors, also
1309	 * create a mapping at the low-vectors virtual address.
1310	 */
1311	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1312	map.virtual = 0xffff0000;
1313	map.length = PAGE_SIZE;
1314#ifdef CONFIG_KUSER_HELPERS
1315	map.type = MT_HIGH_VECTORS;
1316#else
1317	map.type = MT_LOW_VECTORS;
1318#endif
1319	create_mapping(&map);
1320
1321	if (!vectors_high()) {
1322		map.virtual = 0;
1323		map.length = PAGE_SIZE * 2;
1324		map.type = MT_LOW_VECTORS;
1325		create_mapping(&map);
1326	}
1327
1328	/* Now create a kernel read-only mapping */
1329	map.pfn += 1;
1330	map.virtual = 0xffff0000 + PAGE_SIZE;
1331	map.length = PAGE_SIZE;
1332	map.type = MT_LOW_VECTORS;
1333	create_mapping(&map);
1334
1335	/*
1336	 * Ask the machine support to map in the statically mapped devices.
1337	 */
1338	if (mdesc->map_io)
1339		mdesc->map_io();
1340	else
1341		debug_ll_io_init();
1342	fill_pmd_gaps();
1343
1344	/* Reserve fixed i/o space in VMALLOC region */
1345	pci_reserve_io();
1346
1347	/*
1348	 * Finally flush the caches and tlb to ensure that we're in a
1349	 * consistent state wrt the writebuffer.  This also ensures that
1350	 * any write-allocated cache lines in the vector page are written
1351	 * back.  After this point, we can start to touch devices again.
1352	 */
1353	local_flush_tlb_all();
1354	flush_cache_all();
1355}
1356
1357static void __init kmap_init(void)
1358{
1359#ifdef CONFIG_HIGHMEM
1360	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1361		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1362#endif
1363}
1364
1365static void __init map_lowmem(void)
1366{
1367	struct memblock_region *reg;
1368	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1369	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1370
1371	/* Map all the lowmem memory banks. */
1372	for_each_memblock(memory, reg) {
1373		phys_addr_t start = reg->base;
1374		phys_addr_t end = start + reg->size;
1375		struct map_desc map;
1376
1377		if (end > arm_lowmem_limit)
1378			end = arm_lowmem_limit;
1379		if (start >= end)
1380			break;
1381
1382		if (end < kernel_x_start || start >= kernel_x_end) {
1383			map.pfn = __phys_to_pfn(start);
1384			map.virtual = __phys_to_virt(start);
1385			map.length = end - start;
1386			map.type = MT_MEMORY_RWX;
1387
1388			create_mapping(&map);
1389		} else {
1390			/* This better cover the entire kernel */
1391			if (start < kernel_x_start) {
1392				map.pfn = __phys_to_pfn(start);
1393				map.virtual = __phys_to_virt(start);
1394				map.length = kernel_x_start - start;
1395				map.type = MT_MEMORY_RW;
1396
1397				create_mapping(&map);
1398			}
1399
1400			map.pfn = __phys_to_pfn(kernel_x_start);
1401			map.virtual = __phys_to_virt(kernel_x_start);
1402			map.length = kernel_x_end - kernel_x_start;
1403			map.type = MT_MEMORY_RWX;
1404
1405			create_mapping(&map);
1406
1407			if (kernel_x_end < end) {
1408				map.pfn = __phys_to_pfn(kernel_x_end);
1409				map.virtual = __phys_to_virt(kernel_x_end);
1410				map.length = end - kernel_x_end;
1411				map.type = MT_MEMORY_RW;
1412
1413				create_mapping(&map);
1414			}
1415		}
1416	}
1417}
1418
1419#ifdef CONFIG_ARM_LPAE
1420/*
1421 * early_paging_init() recreates boot time page table setup, allowing machines
1422 * to switch over to a high (>4G) address space on LPAE systems
1423 */
1424void __init early_paging_init(const struct machine_desc *mdesc,
1425			      struct proc_info_list *procinfo)
1426{
1427	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1428	unsigned long map_start, map_end;
1429	pgd_t *pgd0, *pgdk;
1430	pud_t *pud0, *pudk, *pud_start;
1431	pmd_t *pmd0, *pmdk;
1432	phys_addr_t phys;
1433	int i;
1434
1435	if (!(mdesc->init_meminfo))
1436		return;
1437
1438	/* remap kernel code and data */
1439	map_start = init_mm.start_code;
1440	map_end   = init_mm.brk;
1441
1442	/* get a handle on things... */
1443	pgd0 = pgd_offset_k(0);
1444	pud_start = pud0 = pud_offset(pgd0, 0);
1445	pmd0 = pmd_offset(pud0, 0);
1446
1447	pgdk = pgd_offset_k(map_start);
1448	pudk = pud_offset(pgdk, map_start);
1449	pmdk = pmd_offset(pudk, map_start);
1450
1451	mdesc->init_meminfo();
1452
1453	/* Run the patch stub to update the constants */
1454	fixup_pv_table(&__pv_table_begin,
1455		(&__pv_table_end - &__pv_table_begin) << 2);
1456
1457	/*
1458	 * Cache cleaning operations for self-modifying code
1459	 * We should clean the entries by MVA but running a
1460	 * for loop over every pv_table entry pointer would
1461	 * just complicate the code.
1462	 */
1463	flush_cache_louis();
1464	dsb();
1465	isb();
1466
1467	/* remap level 1 table */
1468	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1469		set_pud(pud0,
1470			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1471		pmd0 += PTRS_PER_PMD;
1472	}
1473
1474	/* remap pmds for kernel mapping */
1475	phys = __pa(map_start) & PMD_MASK;
1476	do {
1477		*pmdk++ = __pmd(phys | pmdprot);
1478		phys += PMD_SIZE;
1479	} while (phys < map_end);
1480
1481	flush_cache_all();
1482	cpu_switch_mm(pgd0, &init_mm);
1483	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1484	local_flush_bp_all();
1485	local_flush_tlb_all();
1486}
1487
1488#else
1489
1490void __init early_paging_init(const struct machine_desc *mdesc,
1491			      struct proc_info_list *procinfo)
1492{
1493	if (mdesc->init_meminfo)
1494		mdesc->init_meminfo();
1495}
1496
1497#endif
1498
1499/*
1500 * paging_init() sets up the page tables, initialises the zone memory
1501 * maps, and sets up the zero page, bad page and bad page tables.
1502 */
1503void __init paging_init(const struct machine_desc *mdesc)
1504{
1505	void *zero_page;
1506
 
 
1507	build_mem_type_table();
1508	prepare_page_table();
1509	map_lowmem();
1510	dma_contiguous_remap();
1511	devicemaps_init(mdesc);
1512	kmap_init();
1513	tcm_init();
1514
1515	top_pmd = pmd_off_k(0xffff0000);
1516
1517	/* allocate the zero page. */
1518	zero_page = early_alloc(PAGE_SIZE);
1519
1520	bootmem_init();
1521
1522	empty_zero_page = virt_to_page(zero_page);
1523	__flush_dcache_page(NULL, empty_zero_page);
1524}
v3.5.6
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
 
  19
  20#include <asm/cp15.h>
  21#include <asm/cputype.h>
  22#include <asm/sections.h>
  23#include <asm/cachetype.h>
 
  24#include <asm/setup.h>
  25#include <asm/sizes.h>
  26#include <asm/smp_plat.h>
  27#include <asm/tlb.h>
  28#include <asm/highmem.h>
  29#include <asm/system_info.h>
  30#include <asm/traps.h>
 
 
  31
  32#include <asm/mach/arch.h>
  33#include <asm/mach/map.h>
 
  34
  35#include "mm.h"
 
  36
  37/*
  38 * empty_zero_page is a special page that is used for
  39 * zero-initialized data and COW.
  40 */
  41struct page *empty_zero_page;
  42EXPORT_SYMBOL(empty_zero_page);
  43
  44/*
  45 * The pmd table for the upper-most set of pages.
  46 */
  47pmd_t *top_pmd;
  48
  49#define CPOLICY_UNCACHED	0
  50#define CPOLICY_BUFFERED	1
  51#define CPOLICY_WRITETHROUGH	2
  52#define CPOLICY_WRITEBACK	3
  53#define CPOLICY_WRITEALLOC	4
  54
  55static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  56static unsigned int ecc_mask __initdata = 0;
  57pgprot_t pgprot_user;
  58pgprot_t pgprot_kernel;
 
 
 
  59
  60EXPORT_SYMBOL(pgprot_user);
  61EXPORT_SYMBOL(pgprot_kernel);
  62
  63struct cachepolicy {
  64	const char	policy[16];
  65	unsigned int	cr_mask;
  66	pmdval_t	pmd;
  67	pteval_t	pte;
 
  68};
  69
 
 
 
 
 
 
  70static struct cachepolicy cache_policies[] __initdata = {
  71	{
  72		.policy		= "uncached",
  73		.cr_mask	= CR_W|CR_C,
  74		.pmd		= PMD_SECT_UNCACHED,
  75		.pte		= L_PTE_MT_UNCACHED,
 
  76	}, {
  77		.policy		= "buffered",
  78		.cr_mask	= CR_C,
  79		.pmd		= PMD_SECT_BUFFERED,
  80		.pte		= L_PTE_MT_BUFFERABLE,
 
  81	}, {
  82		.policy		= "writethrough",
  83		.cr_mask	= 0,
  84		.pmd		= PMD_SECT_WT,
  85		.pte		= L_PTE_MT_WRITETHROUGH,
 
  86	}, {
  87		.policy		= "writeback",
  88		.cr_mask	= 0,
  89		.pmd		= PMD_SECT_WB,
  90		.pte		= L_PTE_MT_WRITEBACK,
 
  91	}, {
  92		.policy		= "writealloc",
  93		.cr_mask	= 0,
  94		.pmd		= PMD_SECT_WBWA,
  95		.pte		= L_PTE_MT_WRITEALLOC,
 
  96	}
  97};
  98
 
  99/*
 100 * These are useful for identifying cache coherency
 101 * problems by allowing the cache or the cache and
 102 * writebuffer to be turned off.  (Note: the write
 103 * buffer should not be on and the cache off).
 104 */
 105static int __init early_cachepolicy(char *p)
 106{
 107	int i;
 108
 109	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 110		int len = strlen(cache_policies[i].policy);
 111
 112		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 113			cachepolicy = i;
 114			cr_alignment &= ~cache_policies[i].cr_mask;
 115			cr_no_alignment &= ~cache_policies[i].cr_mask;
 116			break;
 117		}
 118	}
 119	if (i == ARRAY_SIZE(cache_policies))
 120		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
 121	/*
 122	 * This restriction is partly to do with the way we boot; it is
 123	 * unpredictable to have memory mapped using two different sets of
 124	 * memory attributes (shared, type, and cache attribs).  We can not
 125	 * change these attributes once the initial assembly has setup the
 126	 * page tables.
 127	 */
 128	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 129		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
 130		cachepolicy = CPOLICY_WRITEBACK;
 131	}
 132	flush_cache_all();
 133	set_cr(cr_alignment);
 134	return 0;
 135}
 136early_param("cachepolicy", early_cachepolicy);
 137
 138static int __init early_nocache(char *__unused)
 139{
 140	char *p = "buffered";
 141	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
 142	early_cachepolicy(p);
 143	return 0;
 144}
 145early_param("nocache", early_nocache);
 146
 147static int __init early_nowrite(char *__unused)
 148{
 149	char *p = "uncached";
 150	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
 151	early_cachepolicy(p);
 152	return 0;
 153}
 154early_param("nowb", early_nowrite);
 155
 156#ifndef CONFIG_ARM_LPAE
 157static int __init early_ecc(char *p)
 158{
 159	if (memcmp(p, "on", 2) == 0)
 160		ecc_mask = PMD_PROTECTION;
 161	else if (memcmp(p, "off", 3) == 0)
 162		ecc_mask = 0;
 163	return 0;
 164}
 165early_param("ecc", early_ecc);
 166#endif
 167
 168static int __init noalign_setup(char *__unused)
 169{
 170	cr_alignment &= ~CR_A;
 171	cr_no_alignment &= ~CR_A;
 172	set_cr(cr_alignment);
 173	return 1;
 174}
 175__setup("noalign", noalign_setup);
 176
 177#ifndef CONFIG_SMP
 178void adjust_cr(unsigned long mask, unsigned long set)
 179{
 180	unsigned long flags;
 181
 182	mask &= ~CR_A;
 183
 184	set &= mask;
 185
 186	local_irq_save(flags);
 187
 188	cr_no_alignment = (cr_no_alignment & ~mask) | set;
 189	cr_alignment = (cr_alignment & ~mask) | set;
 190
 191	set_cr((get_cr() & ~mask) | set);
 192
 193	local_irq_restore(flags);
 194}
 195#endif
 196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 
 198#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 199
 200static struct mem_type mem_types[] = {
 201	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 202		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 203				  L_PTE_SHARED,
 
 
 
 204		.prot_l1	= PMD_TYPE_TABLE,
 205		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 206		.domain		= DOMAIN_IO,
 207	},
 208	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 209		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 210		.prot_l1	= PMD_TYPE_TABLE,
 211		.prot_sect	= PROT_SECT_DEVICE,
 212		.domain		= DOMAIN_IO,
 213	},
 214	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 215		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 216		.prot_l1	= PMD_TYPE_TABLE,
 217		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 218		.domain		= DOMAIN_IO,
 219	},	
 220	[MT_DEVICE_WC] = {	/* ioremap_wc */
 221		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 222		.prot_l1	= PMD_TYPE_TABLE,
 223		.prot_sect	= PROT_SECT_DEVICE,
 224		.domain		= DOMAIN_IO,
 225	},
 226	[MT_UNCACHED] = {
 227		.prot_pte	= PROT_PTE_DEVICE,
 228		.prot_l1	= PMD_TYPE_TABLE,
 229		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 230		.domain		= DOMAIN_IO,
 231	},
 232	[MT_CACHECLEAN] = {
 233		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 234		.domain    = DOMAIN_KERNEL,
 235	},
 236#ifndef CONFIG_ARM_LPAE
 237	[MT_MINICLEAN] = {
 238		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 239		.domain    = DOMAIN_KERNEL,
 240	},
 241#endif
 242	[MT_LOW_VECTORS] = {
 243		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 244				L_PTE_RDONLY,
 245		.prot_l1   = PMD_TYPE_TABLE,
 246		.domain    = DOMAIN_USER,
 247	},
 248	[MT_HIGH_VECTORS] = {
 249		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 250				L_PTE_USER | L_PTE_RDONLY,
 251		.prot_l1   = PMD_TYPE_TABLE,
 252		.domain    = DOMAIN_USER,
 253	},
 254	[MT_MEMORY] = {
 255		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 256		.prot_l1   = PMD_TYPE_TABLE,
 257		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 258		.domain    = DOMAIN_KERNEL,
 259	},
 
 
 
 
 
 
 
 260	[MT_ROM] = {
 261		.prot_sect = PMD_TYPE_SECT,
 262		.domain    = DOMAIN_KERNEL,
 263	},
 264	[MT_MEMORY_NONCACHED] = {
 265		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 266				L_PTE_MT_BUFFERABLE,
 267		.prot_l1   = PMD_TYPE_TABLE,
 268		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 269		.domain    = DOMAIN_KERNEL,
 270	},
 271	[MT_MEMORY_DTCM] = {
 272		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 273				L_PTE_XN,
 274		.prot_l1   = PMD_TYPE_TABLE,
 275		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 276		.domain    = DOMAIN_KERNEL,
 277	},
 278	[MT_MEMORY_ITCM] = {
 279		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 280		.prot_l1   = PMD_TYPE_TABLE,
 281		.domain    = DOMAIN_KERNEL,
 282	},
 283	[MT_MEMORY_SO] = {
 284		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 285				L_PTE_MT_UNCACHED,
 286		.prot_l1   = PMD_TYPE_TABLE,
 287		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 288				PMD_SECT_UNCACHED | PMD_SECT_XN,
 289		.domain    = DOMAIN_KERNEL,
 290	},
 291	[MT_MEMORY_DMA_READY] = {
 292		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 
 293		.prot_l1   = PMD_TYPE_TABLE,
 294		.domain    = DOMAIN_KERNEL,
 295	},
 296};
 297
 298const struct mem_type *get_mem_type(unsigned int type)
 299{
 300	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 301}
 302EXPORT_SYMBOL(get_mem_type);
 303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304/*
 305 * Adjust the PMD section entries according to the CPU in use.
 306 */
 307static void __init build_mem_type_table(void)
 308{
 309	struct cachepolicy *cp;
 310	unsigned int cr = get_cr();
 311	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 
 312	int cpu_arch = cpu_architecture();
 313	int i;
 314
 315	if (cpu_arch < CPU_ARCH_ARMv6) {
 316#if defined(CONFIG_CPU_DCACHE_DISABLE)
 317		if (cachepolicy > CPOLICY_BUFFERED)
 318			cachepolicy = CPOLICY_BUFFERED;
 319#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 320		if (cachepolicy > CPOLICY_WRITETHROUGH)
 321			cachepolicy = CPOLICY_WRITETHROUGH;
 322#endif
 323	}
 324	if (cpu_arch < CPU_ARCH_ARMv5) {
 325		if (cachepolicy >= CPOLICY_WRITEALLOC)
 326			cachepolicy = CPOLICY_WRITEBACK;
 327		ecc_mask = 0;
 328	}
 329	if (is_smp())
 330		cachepolicy = CPOLICY_WRITEALLOC;
 331
 332	/*
 333	 * Strip out features not present on earlier architectures.
 334	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 335	 * without extended page tables don't have the 'Shared' bit.
 336	 */
 337	if (cpu_arch < CPU_ARCH_ARMv5)
 338		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 339			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 340	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 341		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 342			mem_types[i].prot_sect &= ~PMD_SECT_S;
 343
 344	/*
 345	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 346	 * "update-able on write" bit on ARM610).  However, Xscale and
 347	 * Xscale3 require this bit to be cleared.
 348	 */
 349	if (cpu_is_xscale() || cpu_is_xsc3()) {
 350		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 351			mem_types[i].prot_sect &= ~PMD_BIT4;
 352			mem_types[i].prot_l1 &= ~PMD_BIT4;
 353		}
 354	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 355		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 356			if (mem_types[i].prot_l1)
 357				mem_types[i].prot_l1 |= PMD_BIT4;
 358			if (mem_types[i].prot_sect)
 359				mem_types[i].prot_sect |= PMD_BIT4;
 360		}
 361	}
 362
 363	/*
 364	 * Mark the device areas according to the CPU/architecture.
 365	 */
 366	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 367		if (!cpu_is_xsc3()) {
 368			/*
 369			 * Mark device regions on ARMv6+ as execute-never
 370			 * to prevent speculative instruction fetches.
 371			 */
 372			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 373			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 374			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 375			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 
 
 
 376		}
 377		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 378			/*
 379			 * For ARMv7 with TEX remapping,
 380			 * - shared device is SXCB=1100
 381			 * - nonshared device is SXCB=0100
 382			 * - write combine device mem is SXCB=0001
 383			 * (Uncached Normal memory)
 384			 */
 385			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 386			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 387			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 388		} else if (cpu_is_xsc3()) {
 389			/*
 390			 * For Xscale3,
 391			 * - shared device is TEXCB=00101
 392			 * - nonshared device is TEXCB=01000
 393			 * - write combine device mem is TEXCB=00100
 394			 * (Inner/Outer Uncacheable in xsc3 parlance)
 395			 */
 396			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 397			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 398			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 399		} else {
 400			/*
 401			 * For ARMv6 and ARMv7 without TEX remapping,
 402			 * - shared device is TEXCB=00001
 403			 * - nonshared device is TEXCB=01000
 404			 * - write combine device mem is TEXCB=00100
 405			 * (Uncached Normal in ARMv6 parlance).
 406			 */
 407			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 408			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 409			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 410		}
 411	} else {
 412		/*
 413		 * On others, write combining is "Uncached/Buffered"
 414		 */
 415		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 416	}
 417
 418	/*
 419	 * Now deal with the memory-type mappings
 420	 */
 421	cp = &cache_policies[cachepolicy];
 422	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 
 
 
 423
 424	/*
 425	 * Only use write-through for non-SMP systems
 
 
 426	 */
 427	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
 428		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
 
 
 429
 430	/*
 431	 * Enable CPU-specific coherency if supported.
 432	 * (Only available on XSC3 at the moment.)
 433	 */
 434	if (arch_is_coherent() && cpu_is_xsc3()) {
 435		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
 436		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
 437		mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 438		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
 439		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
 440	}
 441	/*
 442	 * ARMv6 and above have extended page tables.
 443	 */
 444	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 445#ifndef CONFIG_ARM_LPAE
 446		/*
 447		 * Mark cache clean areas and XIP ROM read only
 448		 * from SVC mode and no access from userspace.
 449		 */
 450		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 451		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 452		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 453#endif
 454
 455		if (is_smp()) {
 456			/*
 457			 * Mark memory with the "shared" attribute
 458			 * for SMP systems
 459			 */
 460			user_pgprot |= L_PTE_SHARED;
 461			kern_pgprot |= L_PTE_SHARED;
 462			vecs_pgprot |= L_PTE_SHARED;
 
 463			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 464			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 465			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 466			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 467			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
 468			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
 
 
 469			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 470			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
 471			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
 472		}
 473	}
 474
 475	/*
 476	 * Non-cacheable Normal - intended for memory areas that must
 477	 * not cause dirty cache line writebacks when used
 478	 */
 479	if (cpu_arch >= CPU_ARCH_ARMv6) {
 480		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 481			/* Non-cacheable Normal is XCB = 001 */
 482			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
 483				PMD_SECT_BUFFERED;
 484		} else {
 485			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 486			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
 487				PMD_SECT_TEX(1);
 488		}
 489	} else {
 490		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 491	}
 492
 493#ifdef CONFIG_ARM_LPAE
 494	/*
 495	 * Do not generate access flag faults for the kernel mappings.
 496	 */
 497	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 498		mem_types[i].prot_pte |= PTE_EXT_AF;
 499		if (mem_types[i].prot_sect)
 500			mem_types[i].prot_sect |= PMD_SECT_AF;
 501	}
 502	kern_pgprot |= PTE_EXT_AF;
 503	vecs_pgprot |= PTE_EXT_AF;
 504#endif
 505
 506	for (i = 0; i < 16; i++) {
 507		unsigned long v = pgprot_val(protection_map[i]);
 508		protection_map[i] = __pgprot(v | user_pgprot);
 509	}
 510
 511	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 512	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 513
 514	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 515	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 516				 L_PTE_DIRTY | kern_pgprot);
 
 
 
 517
 518	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 519	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 520	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
 521	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
 
 
 522	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 523	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
 524	mem_types[MT_ROM].prot_sect |= cp->pmd;
 525
 526	switch (cp->pmd) {
 527	case PMD_SECT_WT:
 528		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 529		break;
 530	case PMD_SECT_WB:
 531	case PMD_SECT_WBWA:
 532		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 533		break;
 534	}
 535	printk("Memory policy: ECC %sabled, Data cache %s\n",
 536		ecc_mask ? "en" : "dis", cp->policy);
 537
 538	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 539		struct mem_type *t = &mem_types[i];
 540		if (t->prot_l1)
 541			t->prot_l1 |= PMD_DOMAIN(t->domain);
 542		if (t->prot_sect)
 543			t->prot_sect |= PMD_DOMAIN(t->domain);
 544	}
 545}
 546
 547#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 548pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 549			      unsigned long size, pgprot_t vma_prot)
 550{
 551	if (!pfn_valid(pfn))
 552		return pgprot_noncached(vma_prot);
 553	else if (file->f_flags & O_SYNC)
 554		return pgprot_writecombine(vma_prot);
 555	return vma_prot;
 556}
 557EXPORT_SYMBOL(phys_mem_access_prot);
 558#endif
 559
 560#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 561
 562static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 563{
 564	void *ptr = __va(memblock_alloc(sz, align));
 565	memset(ptr, 0, sz);
 566	return ptr;
 567}
 568
 569static void __init *early_alloc(unsigned long sz)
 570{
 571	return early_alloc_aligned(sz, sz);
 572}
 573
 574static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 575{
 576	if (pmd_none(*pmd)) {
 577		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 578		__pmd_populate(pmd, __pa(pte), prot);
 579	}
 580	BUG_ON(pmd_bad(*pmd));
 581	return pte_offset_kernel(pmd, addr);
 582}
 583
 584static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 585				  unsigned long end, unsigned long pfn,
 586				  const struct mem_type *type)
 587{
 588	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 589	do {
 590		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 591		pfn++;
 592	} while (pte++, addr += PAGE_SIZE, addr != end);
 593}
 594
 595static void __init alloc_init_section(pud_t *pud, unsigned long addr,
 596				      unsigned long end, phys_addr_t phys,
 597				      const struct mem_type *type)
 598{
 599	pmd_t *pmd = pmd_offset(pud, addr);
 600
 
 601	/*
 602	 * Try a section mapping - end, addr and phys must all be aligned
 603	 * to a section boundary.  Note that PMDs refer to the individual
 604	 * L1 entries, whereas PGDs refer to a group of L1 entries making
 605	 * up one logical pointer to an L2 table.
 
 
 
 606	 */
 607	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
 608		pmd_t *p = pmd;
 
 
 
 
 
 609
 610#ifndef CONFIG_ARM_LPAE
 611		if (addr & SECTION_SIZE)
 612			pmd++;
 613#endif
 
 
 
 
 
 614
 615		do {
 616			*pmd = __pmd(phys | type->prot_sect);
 617			phys += SECTION_SIZE;
 618		} while (pmd++, addr += SECTION_SIZE, addr != end);
 
 
 619
 620		flush_pmd_entry(p);
 621	} else {
 622		/*
 623		 * No need to loop; pte's aren't interested in the
 624		 * individual L1 entries.
 625		 */
 626		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
 627	}
 
 
 
 
 
 
 
 
 
 628}
 629
 630static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 631	unsigned long end, unsigned long phys, const struct mem_type *type)
 
 632{
 633	pud_t *pud = pud_offset(pgd, addr);
 634	unsigned long next;
 635
 636	do {
 637		next = pud_addr_end(addr, end);
 638		alloc_init_section(pud, addr, next, phys, type);
 639		phys += next - addr;
 640	} while (pud++, addr = next, addr != end);
 641}
 642
 643#ifndef CONFIG_ARM_LPAE
 644static void __init create_36bit_mapping(struct map_desc *md,
 645					const struct mem_type *type)
 646{
 647	unsigned long addr, length, end;
 648	phys_addr_t phys;
 649	pgd_t *pgd;
 650
 651	addr = md->virtual;
 652	phys = __pfn_to_phys(md->pfn);
 653	length = PAGE_ALIGN(md->length);
 654
 655	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 656		printk(KERN_ERR "MM: CPU does not support supersection "
 657		       "mapping for 0x%08llx at 0x%08lx\n",
 658		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 659		return;
 660	}
 661
 662	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 663	 *	Since domain assignments can in fact be arbitrary, the
 664	 *	'domain == 0' check below is required to insure that ARMv6
 665	 *	supersections are only allocated for domain 0 regardless
 666	 *	of the actual domain assignments in use.
 667	 */
 668	if (type->domain) {
 669		printk(KERN_ERR "MM: invalid domain in supersection "
 670		       "mapping for 0x%08llx at 0x%08lx\n",
 671		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 672		return;
 673	}
 674
 675	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 676		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
 677		       " at 0x%08lx invalid alignment\n",
 678		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 679		return;
 680	}
 681
 682	/*
 683	 * Shift bits [35:32] of address into bits [23:20] of PMD
 684	 * (See ARMv6 spec).
 685	 */
 686	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 687
 688	pgd = pgd_offset_k(addr);
 689	end = addr + length;
 690	do {
 691		pud_t *pud = pud_offset(pgd, addr);
 692		pmd_t *pmd = pmd_offset(pud, addr);
 693		int i;
 694
 695		for (i = 0; i < 16; i++)
 696			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 697
 698		addr += SUPERSECTION_SIZE;
 699		phys += SUPERSECTION_SIZE;
 700		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 701	} while (addr != end);
 702}
 703#endif	/* !CONFIG_ARM_LPAE */
 704
 705/*
 706 * Create the page directory entries and any necessary
 707 * page tables for the mapping specified by `md'.  We
 708 * are able to cope here with varying sizes and address
 709 * offsets, and we take full advantage of sections and
 710 * supersections.
 711 */
 712static void __init create_mapping(struct map_desc *md)
 713{
 714	unsigned long addr, length, end;
 715	phys_addr_t phys;
 716	const struct mem_type *type;
 717	pgd_t *pgd;
 718
 719	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 720		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
 721		       " at 0x%08lx in user region\n",
 722		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 723		return;
 724	}
 725
 726	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 727	    md->virtual >= PAGE_OFFSET &&
 728	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 729		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
 730		       " at 0x%08lx out of vmalloc space\n",
 731		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 732	}
 733
 734	type = &mem_types[md->type];
 735
 736#ifndef CONFIG_ARM_LPAE
 737	/*
 738	 * Catch 36-bit addresses
 739	 */
 740	if (md->pfn >= 0x100000) {
 741		create_36bit_mapping(md, type);
 742		return;
 743	}
 744#endif
 745
 746	addr = md->virtual & PAGE_MASK;
 747	phys = __pfn_to_phys(md->pfn);
 748	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 749
 750	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 751		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
 752		       "be mapped using pages, ignoring.\n",
 753		       (long long)__pfn_to_phys(md->pfn), addr);
 754		return;
 755	}
 756
 757	pgd = pgd_offset_k(addr);
 758	end = addr + length;
 759	do {
 760		unsigned long next = pgd_addr_end(addr, end);
 761
 762		alloc_init_pud(pgd, addr, next, phys, type);
 763
 764		phys += next - addr;
 765		addr = next;
 766	} while (pgd++, addr != end);
 767}
 768
 769/*
 770 * Create the architecture specific mappings
 771 */
 772void __init iotable_init(struct map_desc *io_desc, int nr)
 773{
 774	struct map_desc *md;
 775	struct vm_struct *vm;
 
 776
 777	if (!nr)
 778		return;
 779
 780	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
 781
 782	for (md = io_desc; nr; md++, nr--) {
 783		create_mapping(md);
 
 
 784		vm->addr = (void *)(md->virtual & PAGE_MASK);
 785		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 786		vm->phys_addr = __pfn_to_phys(md->pfn); 
 787		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
 788		vm->flags |= VM_ARM_MTYPE(md->type);
 789		vm->caller = iotable_init;
 790		vm_area_add_early(vm++);
 791	}
 792}
 793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794#ifndef CONFIG_ARM_LPAE
 795
 796/*
 797 * The Linux PMD is made of two consecutive section entries covering 2MB
 798 * (see definition in include/asm/pgtable-2level.h).  However a call to
 799 * create_mapping() may optimize static mappings by using individual
 800 * 1MB section mappings.  This leaves the actual PMD potentially half
 801 * initialized if the top or bottom section entry isn't used, leaving it
 802 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 803 * the virtual space left free by that unused section entry.
 804 *
 805 * Let's avoid the issue by inserting dummy vm entries covering the unused
 806 * PMD halves once the static mappings are in place.
 807 */
 808
 809static void __init pmd_empty_section_gap(unsigned long addr)
 810{
 811	struct vm_struct *vm;
 812
 813	vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
 814	vm->addr = (void *)addr;
 815	vm->size = SECTION_SIZE;
 816	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
 817	vm->caller = pmd_empty_section_gap;
 818	vm_area_add_early(vm);
 819}
 820
 821static void __init fill_pmd_gaps(void)
 822{
 
 823	struct vm_struct *vm;
 824	unsigned long addr, next = 0;
 825	pmd_t *pmd;
 826
 827	/* we're still single threaded hence no lock needed here */
 828	for (vm = vmlist; vm; vm = vm->next) {
 829		if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
 830			continue;
 831		addr = (unsigned long)vm->addr;
 832		if (addr < next)
 833			continue;
 834
 835		/*
 836		 * Check if this vm starts on an odd section boundary.
 837		 * If so and the first section entry for this PMD is free
 838		 * then we block the corresponding virtual address.
 839		 */
 840		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 841			pmd = pmd_off_k(addr);
 842			if (pmd_none(*pmd))
 843				pmd_empty_section_gap(addr & PMD_MASK);
 844		}
 845
 846		/*
 847		 * Then check if this vm ends on an odd section boundary.
 848		 * If so and the second section entry for this PMD is empty
 849		 * then we block the corresponding virtual address.
 850		 */
 851		addr += vm->size;
 852		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 853			pmd = pmd_off_k(addr) + 1;
 854			if (pmd_none(*pmd))
 855				pmd_empty_section_gap(addr);
 856		}
 857
 858		/* no need to look at any vm entry until we hit the next PMD */
 859		next = (addr + PMD_SIZE - 1) & PMD_MASK;
 860	}
 861}
 862
 863#else
 864#define fill_pmd_gaps() do { } while (0)
 865#endif
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867static void * __initdata vmalloc_min =
 868	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
 869
 870/*
 871 * vmalloc=size forces the vmalloc area to be exactly 'size'
 872 * bytes. This can be used to increase (or decrease) the vmalloc
 873 * area - the default is 240m.
 874 */
 875static int __init early_vmalloc(char *arg)
 876{
 877	unsigned long vmalloc_reserve = memparse(arg, NULL);
 878
 879	if (vmalloc_reserve < SZ_16M) {
 880		vmalloc_reserve = SZ_16M;
 881		printk(KERN_WARNING
 882			"vmalloc area too small, limiting to %luMB\n",
 883			vmalloc_reserve >> 20);
 884	}
 885
 886	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
 887		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
 888		printk(KERN_WARNING
 889			"vmalloc area is too big, limiting to %luMB\n",
 890			vmalloc_reserve >> 20);
 891	}
 892
 893	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
 894	return 0;
 895}
 896early_param("vmalloc", early_vmalloc);
 897
 898phys_addr_t arm_lowmem_limit __initdata = 0;
 899
 900void __init sanity_check_meminfo(void)
 901{
 
 902	int i, j, highmem = 0;
 
 903
 904	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
 905		struct membank *bank = &meminfo.bank[j];
 
 
 906		*bank = meminfo.bank[i];
 
 907
 908		if (bank->start > ULONG_MAX)
 909			highmem = 1;
 910
 911#ifdef CONFIG_HIGHMEM
 912		if (__va(bank->start) >= vmalloc_min ||
 913		    __va(bank->start) < (void *)PAGE_OFFSET)
 914			highmem = 1;
 
 
 915
 916		bank->highmem = highmem;
 917
 
 918		/*
 919		 * Split those memory banks which are partially overlapping
 920		 * the vmalloc area greatly simplifying things later.
 921		 */
 922		if (!highmem && __va(bank->start) < vmalloc_min &&
 923		    bank->size > vmalloc_min - __va(bank->start)) {
 924			if (meminfo.nr_banks >= NR_BANKS) {
 925				printk(KERN_CRIT "NR_BANKS too low, "
 926						 "ignoring high memory\n");
 927			} else {
 928				memmove(bank + 1, bank,
 929					(meminfo.nr_banks - i) * sizeof(*bank));
 930				meminfo.nr_banks++;
 931				i++;
 932				bank[1].size -= vmalloc_min - __va(bank->start);
 933				bank[1].start = __pa(vmalloc_min - 1) + 1;
 934				bank[1].highmem = highmem = 1;
 935				j++;
 936			}
 937			bank->size = vmalloc_min - __va(bank->start);
 938		}
 939#else
 940		bank->highmem = highmem;
 941
 942		/*
 943		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
 944		 */
 945		if (highmem) {
 946			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
 947			       "(!CONFIG_HIGHMEM).\n",
 948			       (unsigned long long)bank->start,
 949			       (unsigned long long)bank->start + bank->size - 1);
 950			continue;
 951		}
 952
 953		/*
 954		 * Check whether this memory bank would entirely overlap
 955		 * the vmalloc area.
 956		 */
 957		if (__va(bank->start) >= vmalloc_min ||
 958		    __va(bank->start) < (void *)PAGE_OFFSET) {
 959			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
 960			       "(vmalloc region overlap).\n",
 961			       (unsigned long long)bank->start,
 962			       (unsigned long long)bank->start + bank->size - 1);
 963			continue;
 964		}
 965
 966		/*
 967		 * Check whether this memory bank would partially overlap
 968		 * the vmalloc area.
 969		 */
 970		if (__va(bank->start + bank->size) > vmalloc_min ||
 971		    __va(bank->start + bank->size) < __va(bank->start)) {
 972			unsigned long newsize = vmalloc_min - __va(bank->start);
 973			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
 974			       "to -%.8llx (vmalloc region overlap).\n",
 975			       (unsigned long long)bank->start,
 976			       (unsigned long long)bank->start + bank->size - 1,
 977			       (unsigned long long)bank->start + newsize - 1);
 978			bank->size = newsize;
 979		}
 980#endif
 981		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
 982			arm_lowmem_limit = bank->start + bank->size;
 983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984		j++;
 985	}
 986#ifdef CONFIG_HIGHMEM
 987	if (highmem) {
 988		const char *reason = NULL;
 989
 990		if (cache_is_vipt_aliasing()) {
 991			/*
 992			 * Interactions between kmap and other mappings
 993			 * make highmem support with aliasing VIPT caches
 994			 * rather difficult.
 995			 */
 996			reason = "with VIPT aliasing cache";
 997		}
 998		if (reason) {
 999			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1000				reason);
1001			while (j > 0 && meminfo.bank[j - 1].highmem)
1002				j--;
1003		}
1004	}
1005#endif
1006	meminfo.nr_banks = j;
1007	high_memory = __va(arm_lowmem_limit - 1) + 1;
1008	memblock_set_current_limit(arm_lowmem_limit);
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011static inline void prepare_page_table(void)
1012{
1013	unsigned long addr;
1014	phys_addr_t end;
1015
1016	/*
1017	 * Clear out all the mappings below the kernel image.
1018	 */
1019	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1020		pmd_clear(pmd_off_k(addr));
1021
1022#ifdef CONFIG_XIP_KERNEL
1023	/* The XIP kernel is mapped in the module area -- skip over it */
1024	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1025#endif
1026	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1027		pmd_clear(pmd_off_k(addr));
1028
1029	/*
1030	 * Find the end of the first block of lowmem.
1031	 */
1032	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1033	if (end >= arm_lowmem_limit)
1034		end = arm_lowmem_limit;
1035
1036	/*
1037	 * Clear out all the kernel space mappings, except for the first
1038	 * memory bank, up to the vmalloc region.
1039	 */
1040	for (addr = __phys_to_virt(end);
1041	     addr < VMALLOC_START; addr += PMD_SIZE)
1042		pmd_clear(pmd_off_k(addr));
1043}
1044
1045#ifdef CONFIG_ARM_LPAE
1046/* the first page is reserved for pgd */
1047#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1048				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1049#else
1050#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1051#endif
1052
1053/*
1054 * Reserve the special regions of memory
1055 */
1056void __init arm_mm_memblock_reserve(void)
1057{
1058	/*
1059	 * Reserve the page tables.  These are already in use,
1060	 * and can only be in node 0.
1061	 */
1062	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1063
1064#ifdef CONFIG_SA1111
1065	/*
1066	 * Because of the SA1111 DMA bug, we want to preserve our
1067	 * precious DMA-able memory...
1068	 */
1069	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1070#endif
1071}
1072
1073/*
1074 * Set up the device mappings.  Since we clear out the page tables for all
1075 * mappings above VMALLOC_START, we will remove any debug device mappings.
1076 * This means you have to be careful how you debug this function, or any
1077 * called function.  This means you can't use any function or debugging
1078 * method which may touch any device, otherwise the kernel _will_ crash.
1079 */
1080static void __init devicemaps_init(struct machine_desc *mdesc)
1081{
1082	struct map_desc map;
1083	unsigned long addr;
1084	void *vectors;
1085
1086	/*
1087	 * Allocate the vector page early.
1088	 */
1089	vectors = early_alloc(PAGE_SIZE);
1090
1091	early_trap_init(vectors);
1092
1093	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1094		pmd_clear(pmd_off_k(addr));
1095
1096	/*
1097	 * Map the kernel if it is XIP.
1098	 * It is always first in the modulearea.
1099	 */
1100#ifdef CONFIG_XIP_KERNEL
1101	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1102	map.virtual = MODULES_VADDR;
1103	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1104	map.type = MT_ROM;
1105	create_mapping(&map);
1106#endif
1107
1108	/*
1109	 * Map the cache flushing regions.
1110	 */
1111#ifdef FLUSH_BASE
1112	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1113	map.virtual = FLUSH_BASE;
1114	map.length = SZ_1M;
1115	map.type = MT_CACHECLEAN;
1116	create_mapping(&map);
1117#endif
1118#ifdef FLUSH_BASE_MINICACHE
1119	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1120	map.virtual = FLUSH_BASE_MINICACHE;
1121	map.length = SZ_1M;
1122	map.type = MT_MINICLEAN;
1123	create_mapping(&map);
1124#endif
1125
1126	/*
1127	 * Create a mapping for the machine vectors at the high-vectors
1128	 * location (0xffff0000).  If we aren't using high-vectors, also
1129	 * create a mapping at the low-vectors virtual address.
1130	 */
1131	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1132	map.virtual = 0xffff0000;
1133	map.length = PAGE_SIZE;
 
1134	map.type = MT_HIGH_VECTORS;
 
 
 
1135	create_mapping(&map);
1136
1137	if (!vectors_high()) {
1138		map.virtual = 0;
 
1139		map.type = MT_LOW_VECTORS;
1140		create_mapping(&map);
1141	}
1142
 
 
 
 
 
 
 
1143	/*
1144	 * Ask the machine support to map in the statically mapped devices.
1145	 */
1146	if (mdesc->map_io)
1147		mdesc->map_io();
 
 
1148	fill_pmd_gaps();
1149
 
 
 
1150	/*
1151	 * Finally flush the caches and tlb to ensure that we're in a
1152	 * consistent state wrt the writebuffer.  This also ensures that
1153	 * any write-allocated cache lines in the vector page are written
1154	 * back.  After this point, we can start to touch devices again.
1155	 */
1156	local_flush_tlb_all();
1157	flush_cache_all();
1158}
1159
1160static void __init kmap_init(void)
1161{
1162#ifdef CONFIG_HIGHMEM
1163	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1164		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1165#endif
1166}
1167
1168static void __init map_lowmem(void)
1169{
1170	struct memblock_region *reg;
 
 
1171
1172	/* Map all the lowmem memory banks. */
1173	for_each_memblock(memory, reg) {
1174		phys_addr_t start = reg->base;
1175		phys_addr_t end = start + reg->size;
1176		struct map_desc map;
1177
1178		if (end > arm_lowmem_limit)
1179			end = arm_lowmem_limit;
1180		if (start >= end)
1181			break;
1182
1183		map.pfn = __phys_to_pfn(start);
1184		map.virtual = __phys_to_virt(start);
1185		map.length = end - start;
1186		map.type = MT_MEMORY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187
1188		create_mapping(&map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190}
1191
 
 
1192/*
1193 * paging_init() sets up the page tables, initialises the zone memory
1194 * maps, and sets up the zero page, bad page and bad page tables.
1195 */
1196void __init paging_init(struct machine_desc *mdesc)
1197{
1198	void *zero_page;
1199
1200	memblock_set_current_limit(arm_lowmem_limit);
1201
1202	build_mem_type_table();
1203	prepare_page_table();
1204	map_lowmem();
1205	dma_contiguous_remap();
1206	devicemaps_init(mdesc);
1207	kmap_init();
 
1208
1209	top_pmd = pmd_off_k(0xffff0000);
1210
1211	/* allocate the zero page. */
1212	zero_page = early_alloc(PAGE_SIZE);
1213
1214	bootmem_init();
1215
1216	empty_zero_page = virt_to_page(zero_page);
1217	__flush_dcache_page(NULL, empty_zero_page);
1218}