Loading...
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/gfp.h>
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
21#include <linux/dma-contiguous.h>
22#include <linux/highmem.h>
23#include <linux/memblock.h>
24#include <linux/slab.h>
25#include <linux/iommu.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/sizes.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39
40#include "mm.h"
41
42/*
43 * The DMA API is built upon the notion of "buffer ownership". A buffer
44 * is either exclusively owned by the CPU (and therefore may be accessed
45 * by it) or exclusively owned by the DMA device. These helper functions
46 * represent the transitions between these two ownership states.
47 *
48 * Note, however, that on later ARMs, this notion does not work due to
49 * speculative prefetches. We model our approach on the assumption that
50 * the CPU does do speculative prefetches, which means we clean caches
51 * before transfers and delay cache invalidation until transfer completion.
52 *
53 */
54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55 size_t, enum dma_data_direction);
56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 size_t, enum dma_data_direction);
58
59/**
60 * arm_dma_map_page - map a portion of a page for streaming DMA
61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62 * @page: page that buffer resides in
63 * @offset: offset into page for start of buffer
64 * @size: size of buffer to map
65 * @dir: DMA transfer direction
66 *
67 * Ensure that any data held in the cache is appropriately discarded
68 * or written back.
69 *
70 * The device owns this memory once this call has completed. The CPU
71 * can regain ownership by calling dma_unmap_page().
72 */
73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 unsigned long offset, size_t size, enum dma_data_direction dir,
75 struct dma_attrs *attrs)
76{
77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 __dma_page_cpu_to_dev(page, offset, size, dir);
79 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80}
81
82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 unsigned long offset, size_t size, enum dma_data_direction dir,
84 struct dma_attrs *attrs)
85{
86 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87}
88
89/**
90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92 * @handle: DMA address of buffer
93 * @size: size of buffer (same as passed to dma_map_page)
94 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 *
96 * Unmap a page streaming mode DMA translation. The handle and size
97 * must match what was provided in the previous dma_map_page() call.
98 * All other usages are undefined.
99 *
100 * After this call, reads by the CPU to the buffer are guaranteed to see
101 * whatever the device wrote there.
102 */
103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 size_t size, enum dma_data_direction dir,
105 struct dma_attrs *attrs)
106{
107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 handle & ~PAGE_MASK, size, dir);
110}
111
112static void arm_dma_sync_single_for_cpu(struct device *dev,
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114{
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 __dma_page_dev_to_cpu(page, offset, size, dir);
118}
119
120static void arm_dma_sync_single_for_device(struct device *dev,
121 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122{
123 unsigned int offset = handle & (PAGE_SIZE - 1);
124 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
125 __dma_page_cpu_to_dev(page, offset, size, dir);
126}
127
128struct dma_map_ops arm_dma_ops = {
129 .alloc = arm_dma_alloc,
130 .free = arm_dma_free,
131 .mmap = arm_dma_mmap,
132 .get_sgtable = arm_dma_get_sgtable,
133 .map_page = arm_dma_map_page,
134 .unmap_page = arm_dma_unmap_page,
135 .map_sg = arm_dma_map_sg,
136 .unmap_sg = arm_dma_unmap_sg,
137 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
138 .sync_single_for_device = arm_dma_sync_single_for_device,
139 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
140 .sync_sg_for_device = arm_dma_sync_sg_for_device,
141 .set_dma_mask = arm_dma_set_mask,
142};
143EXPORT_SYMBOL(arm_dma_ops);
144
145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 dma_addr_t handle, struct dma_attrs *attrs);
149
150struct dma_map_ops arm_coherent_dma_ops = {
151 .alloc = arm_coherent_dma_alloc,
152 .free = arm_coherent_dma_free,
153 .mmap = arm_dma_mmap,
154 .get_sgtable = arm_dma_get_sgtable,
155 .map_page = arm_coherent_dma_map_page,
156 .map_sg = arm_dma_map_sg,
157 .set_dma_mask = arm_dma_set_mask,
158};
159EXPORT_SYMBOL(arm_coherent_dma_ops);
160
161static int __dma_supported(struct device *dev, u64 mask, bool warn)
162{
163 unsigned long max_dma_pfn;
164
165 /*
166 * If the mask allows for more memory than we can address,
167 * and we actually have that much memory, then we must
168 * indicate that DMA to this device is not supported.
169 */
170 if (sizeof(mask) != sizeof(dma_addr_t) &&
171 mask > (dma_addr_t)~0 &&
172 dma_to_pfn(dev, ~0) < max_pfn) {
173 if (warn) {
174 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 mask);
176 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 }
178 return 0;
179 }
180
181 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182
183 /*
184 * Translate the device's DMA mask to a PFN limit. This
185 * PFN number includes the page which we can DMA to.
186 */
187 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 if (warn)
189 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 mask,
191 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 max_dma_pfn + 1);
193 return 0;
194 }
195
196 return 1;
197}
198
199static u64 get_coherent_dma_mask(struct device *dev)
200{
201 u64 mask = (u64)DMA_BIT_MASK(32);
202
203 if (dev) {
204 mask = dev->coherent_dma_mask;
205
206 /*
207 * Sanity check the DMA mask - it must be non-zero, and
208 * must be able to be satisfied by a DMA allocation.
209 */
210 if (mask == 0) {
211 dev_warn(dev, "coherent DMA mask is unset\n");
212 return 0;
213 }
214
215 if (!__dma_supported(dev, mask, true))
216 return 0;
217 }
218
219 return mask;
220}
221
222static void __dma_clear_buffer(struct page *page, size_t size)
223{
224 /*
225 * Ensure that the allocated pages are zeroed, and that any data
226 * lurking in the kernel direct-mapped region is invalidated.
227 */
228 if (PageHighMem(page)) {
229 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 phys_addr_t end = base + size;
231 while (size > 0) {
232 void *ptr = kmap_atomic(page);
233 memset(ptr, 0, PAGE_SIZE);
234 dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 kunmap_atomic(ptr);
236 page++;
237 size -= PAGE_SIZE;
238 }
239 outer_flush_range(base, end);
240 } else {
241 void *ptr = page_address(page);
242 memset(ptr, 0, size);
243 dmac_flush_range(ptr, ptr + size);
244 outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 }
246}
247
248/*
249 * Allocate a DMA buffer for 'dev' of size 'size' using the
250 * specified gfp mask. Note that 'size' must be page aligned.
251 */
252static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253{
254 unsigned long order = get_order(size);
255 struct page *page, *p, *e;
256
257 page = alloc_pages(gfp, order);
258 if (!page)
259 return NULL;
260
261 /*
262 * Now split the huge page and free the excess pages
263 */
264 split_page(page, order);
265 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 __free_page(p);
267
268 __dma_clear_buffer(page, size);
269
270 return page;
271}
272
273/*
274 * Free a DMA buffer. 'size' must be page aligned.
275 */
276static void __dma_free_buffer(struct page *page, size_t size)
277{
278 struct page *e = page + (size >> PAGE_SHIFT);
279
280 while (page < e) {
281 __free_page(page);
282 page++;
283 }
284}
285
286#ifdef CONFIG_MMU
287
288static void *__alloc_from_contiguous(struct device *dev, size_t size,
289 pgprot_t prot, struct page **ret_page,
290 const void *caller);
291
292static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293 pgprot_t prot, struct page **ret_page,
294 const void *caller);
295
296static void *
297__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298 const void *caller)
299{
300 struct vm_struct *area;
301 unsigned long addr;
302
303 /*
304 * DMA allocation can be mapped to user space, so lets
305 * set VM_USERMAP flags too.
306 */
307 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 caller);
309 if (!area)
310 return NULL;
311 addr = (unsigned long)area->addr;
312 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313
314 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315 vunmap((void *)addr);
316 return NULL;
317 }
318 return (void *)addr;
319}
320
321static void __dma_free_remap(void *cpu_addr, size_t size)
322{
323 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324 struct vm_struct *area = find_vm_area(cpu_addr);
325 if (!area || (area->flags & flags) != flags) {
326 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327 return;
328 }
329 unmap_kernel_range((unsigned long)cpu_addr, size);
330 vunmap(cpu_addr);
331}
332
333#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
334
335struct dma_pool {
336 size_t size;
337 spinlock_t lock;
338 unsigned long *bitmap;
339 unsigned long nr_pages;
340 void *vaddr;
341 struct page **pages;
342};
343
344static struct dma_pool atomic_pool = {
345 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346};
347
348static int __init early_coherent_pool(char *p)
349{
350 atomic_pool.size = memparse(p, &p);
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355void __init init_dma_coherent_pool_size(unsigned long size)
356{
357 /*
358 * Catch any attempt to set the pool size too late.
359 */
360 BUG_ON(atomic_pool.vaddr);
361
362 /*
363 * Set architecture specific coherent pool size only if
364 * it has not been changed by kernel command line parameter.
365 */
366 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367 atomic_pool.size = size;
368}
369
370/*
371 * Initialise the coherent pool for atomic allocations.
372 */
373static int __init atomic_pool_init(void)
374{
375 struct dma_pool *pool = &atomic_pool;
376 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377 gfp_t gfp = GFP_KERNEL | GFP_DMA;
378 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379 unsigned long *bitmap;
380 struct page *page;
381 struct page **pages;
382 void *ptr;
383 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384
385 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386 if (!bitmap)
387 goto no_bitmap;
388
389 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 if (!pages)
391 goto no_pages;
392
393 if (IS_ENABLED(CONFIG_DMA_CMA))
394 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395 atomic_pool_init);
396 else
397 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398 atomic_pool_init);
399 if (ptr) {
400 int i;
401
402 for (i = 0; i < nr_pages; i++)
403 pages[i] = page + i;
404
405 spin_lock_init(&pool->lock);
406 pool->vaddr = ptr;
407 pool->pages = pages;
408 pool->bitmap = bitmap;
409 pool->nr_pages = nr_pages;
410 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411 (unsigned)pool->size / 1024);
412 return 0;
413 }
414
415 kfree(pages);
416no_pages:
417 kfree(bitmap);
418no_bitmap:
419 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420 (unsigned)pool->size / 1024);
421 return -ENOMEM;
422}
423/*
424 * CMA is activated by core_initcall, so we must be called after it.
425 */
426postcore_initcall(atomic_pool_init);
427
428struct dma_contig_early_reserve {
429 phys_addr_t base;
430 unsigned long size;
431};
432
433static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434
435static int dma_mmu_remap_num __initdata;
436
437void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438{
439 dma_mmu_remap[dma_mmu_remap_num].base = base;
440 dma_mmu_remap[dma_mmu_remap_num].size = size;
441 dma_mmu_remap_num++;
442}
443
444void __init dma_contiguous_remap(void)
445{
446 int i;
447 for (i = 0; i < dma_mmu_remap_num; i++) {
448 phys_addr_t start = dma_mmu_remap[i].base;
449 phys_addr_t end = start + dma_mmu_remap[i].size;
450 struct map_desc map;
451 unsigned long addr;
452
453 if (end > arm_lowmem_limit)
454 end = arm_lowmem_limit;
455 if (start >= end)
456 continue;
457
458 map.pfn = __phys_to_pfn(start);
459 map.virtual = __phys_to_virt(start);
460 map.length = end - start;
461 map.type = MT_MEMORY_DMA_READY;
462
463 /*
464 * Clear previous low-memory mapping
465 */
466 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467 addr += PMD_SIZE)
468 pmd_clear(pmd_off_k(addr));
469
470 iotable_init(&map, 1);
471 }
472}
473
474static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475 void *data)
476{
477 struct page *page = virt_to_page(addr);
478 pgprot_t prot = *(pgprot_t *)data;
479
480 set_pte_ext(pte, mk_pte(page, prot), 0);
481 return 0;
482}
483
484static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485{
486 unsigned long start = (unsigned long) page_address(page);
487 unsigned end = start + size;
488
489 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
490 flush_tlb_kernel_range(start, end);
491}
492
493static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494 pgprot_t prot, struct page **ret_page,
495 const void *caller)
496{
497 struct page *page;
498 void *ptr;
499 page = __dma_alloc_buffer(dev, size, gfp);
500 if (!page)
501 return NULL;
502
503 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504 if (!ptr) {
505 __dma_free_buffer(page, size);
506 return NULL;
507 }
508
509 *ret_page = page;
510 return ptr;
511}
512
513static void *__alloc_from_pool(size_t size, struct page **ret_page)
514{
515 struct dma_pool *pool = &atomic_pool;
516 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 unsigned int pageno;
518 unsigned long flags;
519 void *ptr = NULL;
520 unsigned long align_mask;
521
522 if (!pool->vaddr) {
523 WARN(1, "coherent pool not initialised!\n");
524 return NULL;
525 }
526
527 /*
528 * Align the region allocation - allocations from pool are rather
529 * small, so align them to their order in pages, minimum is a page
530 * size. This helps reduce fragmentation of the DMA space.
531 */
532 align_mask = (1 << get_order(size)) - 1;
533
534 spin_lock_irqsave(&pool->lock, flags);
535 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536 0, count, align_mask);
537 if (pageno < pool->nr_pages) {
538 bitmap_set(pool->bitmap, pageno, count);
539 ptr = pool->vaddr + PAGE_SIZE * pageno;
540 *ret_page = pool->pages[pageno];
541 } else {
542 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543 "Please increase it with coherent_pool= kernel parameter!\n",
544 (unsigned)pool->size / 1024);
545 }
546 spin_unlock_irqrestore(&pool->lock, flags);
547
548 return ptr;
549}
550
551static bool __in_atomic_pool(void *start, size_t size)
552{
553 struct dma_pool *pool = &atomic_pool;
554 void *end = start + size;
555 void *pool_start = pool->vaddr;
556 void *pool_end = pool->vaddr + pool->size;
557
558 if (start < pool_start || start >= pool_end)
559 return false;
560
561 if (end <= pool_end)
562 return true;
563
564 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565 start, end - 1, pool_start, pool_end - 1);
566
567 return false;
568}
569
570static int __free_from_pool(void *start, size_t size)
571{
572 struct dma_pool *pool = &atomic_pool;
573 unsigned long pageno, count;
574 unsigned long flags;
575
576 if (!__in_atomic_pool(start, size))
577 return 0;
578
579 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580 count = size >> PAGE_SHIFT;
581
582 spin_lock_irqsave(&pool->lock, flags);
583 bitmap_clear(pool->bitmap, pageno, count);
584 spin_unlock_irqrestore(&pool->lock, flags);
585
586 return 1;
587}
588
589static void *__alloc_from_contiguous(struct device *dev, size_t size,
590 pgprot_t prot, struct page **ret_page,
591 const void *caller)
592{
593 unsigned long order = get_order(size);
594 size_t count = size >> PAGE_SHIFT;
595 struct page *page;
596 void *ptr;
597
598 page = dma_alloc_from_contiguous(dev, count, order);
599 if (!page)
600 return NULL;
601
602 __dma_clear_buffer(page, size);
603
604 if (PageHighMem(page)) {
605 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606 if (!ptr) {
607 dma_release_from_contiguous(dev, page, count);
608 return NULL;
609 }
610 } else {
611 __dma_remap(page, size, prot);
612 ptr = page_address(page);
613 }
614 *ret_page = page;
615 return ptr;
616}
617
618static void __free_from_contiguous(struct device *dev, struct page *page,
619 void *cpu_addr, size_t size)
620{
621 if (PageHighMem(page))
622 __dma_free_remap(cpu_addr, size);
623 else
624 __dma_remap(page, size, PAGE_KERNEL);
625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626}
627
628static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629{
630 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631 pgprot_writecombine(prot) :
632 pgprot_dmacoherent(prot);
633 return prot;
634}
635
636#define nommu() 0
637
638#else /* !CONFIG_MMU */
639
640#define nommu() 1
641
642#define __get_dma_pgprot(attrs, prot) __pgprot(0)
643#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
644#define __alloc_from_pool(size, ret_page) NULL
645#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
646#define __free_from_pool(cpu_addr, size) 0
647#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
648#define __dma_free_remap(cpu_addr, size) do { } while (0)
649
650#endif /* CONFIG_MMU */
651
652static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653 struct page **ret_page)
654{
655 struct page *page;
656 page = __dma_alloc_buffer(dev, size, gfp);
657 if (!page)
658 return NULL;
659
660 *ret_page = page;
661 return page_address(page);
662}
663
664
665
666static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
667 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668{
669 u64 mask = get_coherent_dma_mask(dev);
670 struct page *page = NULL;
671 void *addr;
672
673#ifdef CONFIG_DMA_API_DEBUG
674 u64 limit = (mask + 1) & ~mask;
675 if (limit && size >= limit) {
676 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677 size, mask);
678 return NULL;
679 }
680#endif
681
682 if (!mask)
683 return NULL;
684
685 if (mask < 0xffffffffULL)
686 gfp |= GFP_DMA;
687
688 /*
689 * Following is a work-around (a.k.a. hack) to prevent pages
690 * with __GFP_COMP being passed to split_page() which cannot
691 * handle them. The real problem is that this flag probably
692 * should be 0 on ARM as it is not supported on this
693 * platform; see CONFIG_HUGETLBFS.
694 */
695 gfp &= ~(__GFP_COMP);
696
697 *handle = DMA_ERROR_CODE;
698 size = PAGE_ALIGN(size);
699
700 if (is_coherent || nommu())
701 addr = __alloc_simple_buffer(dev, size, gfp, &page);
702 else if (!(gfp & __GFP_WAIT))
703 addr = __alloc_from_pool(size, &page);
704 else if (!IS_ENABLED(CONFIG_DMA_CMA))
705 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706 else
707 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708
709 if (addr)
710 *handle = pfn_to_dma(dev, page_to_pfn(page));
711
712 return addr;
713}
714
715/*
716 * Allocate DMA-coherent memory space and return both the kernel remapped
717 * virtual and bus address for that space.
718 */
719void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720 gfp_t gfp, struct dma_attrs *attrs)
721{
722 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723 void *memory;
724
725 if (dma_alloc_from_coherent(dev, size, handle, &memory))
726 return memory;
727
728 return __dma_alloc(dev, size, handle, gfp, prot, false,
729 __builtin_return_address(0));
730}
731
732static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734{
735 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
736 void *memory;
737
738 if (dma_alloc_from_coherent(dev, size, handle, &memory))
739 return memory;
740
741 return __dma_alloc(dev, size, handle, gfp, prot, true,
742 __builtin_return_address(0));
743}
744
745/*
746 * Create userspace mapping for the DMA-coherent memory.
747 */
748int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749 void *cpu_addr, dma_addr_t dma_addr, size_t size,
750 struct dma_attrs *attrs)
751{
752 int ret = -ENXIO;
753#ifdef CONFIG_MMU
754 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756 unsigned long pfn = dma_to_pfn(dev, dma_addr);
757 unsigned long off = vma->vm_pgoff;
758
759 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760
761 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762 return ret;
763
764 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765 ret = remap_pfn_range(vma, vma->vm_start,
766 pfn + off,
767 vma->vm_end - vma->vm_start,
768 vma->vm_page_prot);
769 }
770#endif /* CONFIG_MMU */
771
772 return ret;
773}
774
775/*
776 * Free a buffer as defined by the above mapping.
777 */
778static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779 dma_addr_t handle, struct dma_attrs *attrs,
780 bool is_coherent)
781{
782 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783
784 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785 return;
786
787 size = PAGE_ALIGN(size);
788
789 if (is_coherent || nommu()) {
790 __dma_free_buffer(page, size);
791 } else if (__free_from_pool(cpu_addr, size)) {
792 return;
793 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
794 __dma_free_remap(cpu_addr, size);
795 __dma_free_buffer(page, size);
796 } else {
797 /*
798 * Non-atomic allocations cannot be freed with IRQs disabled
799 */
800 WARN_ON(irqs_disabled());
801 __free_from_contiguous(dev, page, cpu_addr, size);
802 }
803}
804
805void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 dma_addr_t handle, struct dma_attrs *attrs)
807{
808 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809}
810
811static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812 dma_addr_t handle, struct dma_attrs *attrs)
813{
814 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815}
816
817int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818 void *cpu_addr, dma_addr_t handle, size_t size,
819 struct dma_attrs *attrs)
820{
821 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822 int ret;
823
824 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825 if (unlikely(ret))
826 return ret;
827
828 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829 return 0;
830}
831
832static void dma_cache_maint_page(struct page *page, unsigned long offset,
833 size_t size, enum dma_data_direction dir,
834 void (*op)(const void *, size_t, int))
835{
836 unsigned long pfn;
837 size_t left = size;
838
839 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840 offset %= PAGE_SIZE;
841
842 /*
843 * A single sg entry may refer to multiple physically contiguous
844 * pages. But we still need to process highmem pages individually.
845 * If highmem is not configured then the bulk of this loop gets
846 * optimized out.
847 */
848 do {
849 size_t len = left;
850 void *vaddr;
851
852 page = pfn_to_page(pfn);
853
854 if (PageHighMem(page)) {
855 if (len + offset > PAGE_SIZE)
856 len = PAGE_SIZE - offset;
857
858 if (cache_is_vipt_nonaliasing()) {
859 vaddr = kmap_atomic(page);
860 op(vaddr + offset, len, dir);
861 kunmap_atomic(vaddr);
862 } else {
863 vaddr = kmap_high_get(page);
864 if (vaddr) {
865 op(vaddr + offset, len, dir);
866 kunmap_high(page);
867 }
868 }
869 } else {
870 vaddr = page_address(page) + offset;
871 op(vaddr, len, dir);
872 }
873 offset = 0;
874 pfn++;
875 left -= len;
876 } while (left);
877}
878
879/*
880 * Make an area consistent for devices.
881 * Note: Drivers should NOT use this function directly, as it will break
882 * platforms with CONFIG_DMABOUNCE.
883 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884 */
885static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886 size_t size, enum dma_data_direction dir)
887{
888 unsigned long paddr;
889
890 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891
892 paddr = page_to_phys(page) + off;
893 if (dir == DMA_FROM_DEVICE) {
894 outer_inv_range(paddr, paddr + size);
895 } else {
896 outer_clean_range(paddr, paddr + size);
897 }
898 /* FIXME: non-speculating: flush on bidirectional mappings? */
899}
900
901static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902 size_t size, enum dma_data_direction dir)
903{
904 unsigned long paddr = page_to_phys(page) + off;
905
906 /* FIXME: non-speculating: not required */
907 /* don't bother invalidating if DMA to device */
908 if (dir != DMA_TO_DEVICE)
909 outer_inv_range(paddr, paddr + size);
910
911 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912
913 /*
914 * Mark the D-cache clean for these pages to avoid extra flushing.
915 */
916 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
917 unsigned long pfn;
918 size_t left = size;
919
920 pfn = page_to_pfn(page) + off / PAGE_SIZE;
921 off %= PAGE_SIZE;
922 if (off) {
923 pfn++;
924 left -= PAGE_SIZE - off;
925 }
926 while (left >= PAGE_SIZE) {
927 page = pfn_to_page(pfn++);
928 set_bit(PG_dcache_clean, &page->flags);
929 left -= PAGE_SIZE;
930 }
931 }
932}
933
934/**
935 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
936 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
937 * @sg: list of buffers
938 * @nents: number of buffers to map
939 * @dir: DMA transfer direction
940 *
941 * Map a set of buffers described by scatterlist in streaming mode for DMA.
942 * This is the scatter-gather version of the dma_map_single interface.
943 * Here the scatter gather list elements are each tagged with the
944 * appropriate dma address and length. They are obtained via
945 * sg_dma_{address,length}.
946 *
947 * Device ownership issues as mentioned for dma_map_single are the same
948 * here.
949 */
950int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
951 enum dma_data_direction dir, struct dma_attrs *attrs)
952{
953 struct dma_map_ops *ops = get_dma_ops(dev);
954 struct scatterlist *s;
955 int i, j;
956
957 for_each_sg(sg, s, nents, i) {
958#ifdef CONFIG_NEED_SG_DMA_LENGTH
959 s->dma_length = s->length;
960#endif
961 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
962 s->length, dir, attrs);
963 if (dma_mapping_error(dev, s->dma_address))
964 goto bad_mapping;
965 }
966 return nents;
967
968 bad_mapping:
969 for_each_sg(sg, s, i, j)
970 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
971 return 0;
972}
973
974/**
975 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
976 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
977 * @sg: list of buffers
978 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
979 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980 *
981 * Unmap a set of streaming mode DMA translations. Again, CPU access
982 * rules concerning calls here are the same as for dma_unmap_single().
983 */
984void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
985 enum dma_data_direction dir, struct dma_attrs *attrs)
986{
987 struct dma_map_ops *ops = get_dma_ops(dev);
988 struct scatterlist *s;
989
990 int i;
991
992 for_each_sg(sg, s, nents, i)
993 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
994}
995
996/**
997 * arm_dma_sync_sg_for_cpu
998 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
999 * @sg: list of buffers
1000 * @nents: number of buffers to map (returned from dma_map_sg)
1001 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002 */
1003void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004 int nents, enum dma_data_direction dir)
1005{
1006 struct dma_map_ops *ops = get_dma_ops(dev);
1007 struct scatterlist *s;
1008 int i;
1009
1010 for_each_sg(sg, s, nents, i)
1011 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012 dir);
1013}
1014
1015/**
1016 * arm_dma_sync_sg_for_device
1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018 * @sg: list of buffers
1019 * @nents: number of buffers to map (returned from dma_map_sg)
1020 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021 */
1022void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023 int nents, enum dma_data_direction dir)
1024{
1025 struct dma_map_ops *ops = get_dma_ops(dev);
1026 struct scatterlist *s;
1027 int i;
1028
1029 for_each_sg(sg, s, nents, i)
1030 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031 dir);
1032}
1033
1034/*
1035 * Return whether the given device DMA address mask can be supported
1036 * properly. For example, if your device can only drive the low 24-bits
1037 * during bus mastering, then you would pass 0x00ffffff as the mask
1038 * to this function.
1039 */
1040int dma_supported(struct device *dev, u64 mask)
1041{
1042 return __dma_supported(dev, mask, false);
1043}
1044EXPORT_SYMBOL(dma_supported);
1045
1046int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047{
1048 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049 return -EIO;
1050
1051 *dev->dma_mask = dma_mask;
1052
1053 return 0;
1054}
1055
1056#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1057
1058static int __init dma_debug_do_init(void)
1059{
1060 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061 return 0;
1062}
1063fs_initcall(dma_debug_do_init);
1064
1065#ifdef CONFIG_ARM_DMA_USE_IOMMU
1066
1067/* IOMMU */
1068
1069static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070
1071static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072 size_t size)
1073{
1074 unsigned int order = get_order(size);
1075 unsigned int align = 0;
1076 unsigned int count, start;
1077 unsigned long flags;
1078 dma_addr_t iova;
1079 int i;
1080
1081 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083
1084 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085 align = (1 << order) - 1;
1086
1087 spin_lock_irqsave(&mapping->lock, flags);
1088 for (i = 0; i < mapping->nr_bitmaps; i++) {
1089 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090 mapping->bits, 0, count, align);
1091
1092 if (start > mapping->bits)
1093 continue;
1094
1095 bitmap_set(mapping->bitmaps[i], start, count);
1096 break;
1097 }
1098
1099 /*
1100 * No unused range found. Try to extend the existing mapping
1101 * and perform a second attempt to reserve an IO virtual
1102 * address range of size bytes.
1103 */
1104 if (i == mapping->nr_bitmaps) {
1105 if (extend_iommu_mapping(mapping)) {
1106 spin_unlock_irqrestore(&mapping->lock, flags);
1107 return DMA_ERROR_CODE;
1108 }
1109
1110 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111 mapping->bits, 0, count, align);
1112
1113 if (start > mapping->bits) {
1114 spin_unlock_irqrestore(&mapping->lock, flags);
1115 return DMA_ERROR_CODE;
1116 }
1117
1118 bitmap_set(mapping->bitmaps[i], start, count);
1119 }
1120 spin_unlock_irqrestore(&mapping->lock, flags);
1121
1122 iova = mapping->base + (mapping->size * i);
1123 iova += start << PAGE_SHIFT;
1124
1125 return iova;
1126}
1127
1128static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129 dma_addr_t addr, size_t size)
1130{
1131 unsigned int start, count;
1132 unsigned long flags;
1133 dma_addr_t bitmap_base;
1134 u32 bitmap_index;
1135
1136 if (!size)
1137 return;
1138
1139 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141
1142 bitmap_base = mapping->base + mapping->size * bitmap_index;
1143
1144 start = (addr - bitmap_base) >> PAGE_SHIFT;
1145
1146 if (addr + size > bitmap_base + mapping->size) {
1147 /*
1148 * The address range to be freed reaches into the iova
1149 * range of the next bitmap. This should not happen as
1150 * we don't allow this in __alloc_iova (at the
1151 * moment).
1152 */
1153 BUG();
1154 } else
1155 count = size >> PAGE_SHIFT;
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
1158 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159 spin_unlock_irqrestore(&mapping->lock, flags);
1160}
1161
1162static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163 gfp_t gfp, struct dma_attrs *attrs)
1164{
1165 struct page **pages;
1166 int count = size >> PAGE_SHIFT;
1167 int array_size = count * sizeof(struct page *);
1168 int i = 0;
1169
1170 if (array_size <= PAGE_SIZE)
1171 pages = kzalloc(array_size, gfp);
1172 else
1173 pages = vzalloc(array_size);
1174 if (!pages)
1175 return NULL;
1176
1177 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178 {
1179 unsigned long order = get_order(size);
1180 struct page *page;
1181
1182 page = dma_alloc_from_contiguous(dev, count, order);
1183 if (!page)
1184 goto error;
1185
1186 __dma_clear_buffer(page, size);
1187
1188 for (i = 0; i < count; i++)
1189 pages[i] = page + i;
1190
1191 return pages;
1192 }
1193
1194 /*
1195 * IOMMU can map any pages, so himem can also be used here
1196 */
1197 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198
1199 while (count) {
1200 int j, order = __fls(count);
1201
1202 pages[i] = alloc_pages(gfp, order);
1203 while (!pages[i] && order)
1204 pages[i] = alloc_pages(gfp, --order);
1205 if (!pages[i])
1206 goto error;
1207
1208 if (order) {
1209 split_page(pages[i], order);
1210 j = 1 << order;
1211 while (--j)
1212 pages[i + j] = pages[i] + j;
1213 }
1214
1215 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216 i += 1 << order;
1217 count -= 1 << order;
1218 }
1219
1220 return pages;
1221error:
1222 while (i--)
1223 if (pages[i])
1224 __free_pages(pages[i], 0);
1225 if (array_size <= PAGE_SIZE)
1226 kfree(pages);
1227 else
1228 vfree(pages);
1229 return NULL;
1230}
1231
1232static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233 size_t size, struct dma_attrs *attrs)
1234{
1235 int count = size >> PAGE_SHIFT;
1236 int array_size = count * sizeof(struct page *);
1237 int i;
1238
1239 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240 dma_release_from_contiguous(dev, pages[0], count);
1241 } else {
1242 for (i = 0; i < count; i++)
1243 if (pages[i])
1244 __free_pages(pages[i], 0);
1245 }
1246
1247 if (array_size <= PAGE_SIZE)
1248 kfree(pages);
1249 else
1250 vfree(pages);
1251 return 0;
1252}
1253
1254/*
1255 * Create a CPU mapping for a specified pages
1256 */
1257static void *
1258__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259 const void *caller)
1260{
1261 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262 struct vm_struct *area;
1263 unsigned long p;
1264
1265 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266 caller);
1267 if (!area)
1268 return NULL;
1269
1270 area->pages = pages;
1271 area->nr_pages = nr_pages;
1272 p = (unsigned long)area->addr;
1273
1274 for (i = 0; i < nr_pages; i++) {
1275 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277 goto err;
1278 p += PAGE_SIZE;
1279 }
1280 return area->addr;
1281err:
1282 unmap_kernel_range((unsigned long)area->addr, size);
1283 vunmap(area->addr);
1284 return NULL;
1285}
1286
1287/*
1288 * Create a mapping in device IO address space for specified pages
1289 */
1290static dma_addr_t
1291__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1292{
1293 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295 dma_addr_t dma_addr, iova;
1296 int i, ret = DMA_ERROR_CODE;
1297
1298 dma_addr = __alloc_iova(mapping, size);
1299 if (dma_addr == DMA_ERROR_CODE)
1300 return dma_addr;
1301
1302 iova = dma_addr;
1303 for (i = 0; i < count; ) {
1304 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305 phys_addr_t phys = page_to_phys(pages[i]);
1306 unsigned int len, j;
1307
1308 for (j = i + 1; j < count; j++, next_pfn++)
1309 if (page_to_pfn(pages[j]) != next_pfn)
1310 break;
1311
1312 len = (j - i) << PAGE_SHIFT;
1313 ret = iommu_map(mapping->domain, iova, phys, len,
1314 IOMMU_READ|IOMMU_WRITE);
1315 if (ret < 0)
1316 goto fail;
1317 iova += len;
1318 i = j;
1319 }
1320 return dma_addr;
1321fail:
1322 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323 __free_iova(mapping, dma_addr, size);
1324 return DMA_ERROR_CODE;
1325}
1326
1327static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328{
1329 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330
1331 /*
1332 * add optional in-page offset from iova to size and align
1333 * result to page size
1334 */
1335 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336 iova &= PAGE_MASK;
1337
1338 iommu_unmap(mapping->domain, iova, size);
1339 __free_iova(mapping, iova, size);
1340 return 0;
1341}
1342
1343static struct page **__atomic_get_pages(void *addr)
1344{
1345 struct dma_pool *pool = &atomic_pool;
1346 struct page **pages = pool->pages;
1347 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1348
1349 return pages + offs;
1350}
1351
1352static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353{
1354 struct vm_struct *area;
1355
1356 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357 return __atomic_get_pages(cpu_addr);
1358
1359 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360 return cpu_addr;
1361
1362 area = find_vm_area(cpu_addr);
1363 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364 return area->pages;
1365 return NULL;
1366}
1367
1368static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369 dma_addr_t *handle)
1370{
1371 struct page *page;
1372 void *addr;
1373
1374 addr = __alloc_from_pool(size, &page);
1375 if (!addr)
1376 return NULL;
1377
1378 *handle = __iommu_create_mapping(dev, &page, size);
1379 if (*handle == DMA_ERROR_CODE)
1380 goto err_mapping;
1381
1382 return addr;
1383
1384err_mapping:
1385 __free_from_pool(addr, size);
1386 return NULL;
1387}
1388
1389static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390 dma_addr_t handle, size_t size)
1391{
1392 __iommu_remove_mapping(dev, handle, size);
1393 __free_from_pool(cpu_addr, size);
1394}
1395
1396static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1398{
1399 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400 struct page **pages;
1401 void *addr = NULL;
1402
1403 *handle = DMA_ERROR_CODE;
1404 size = PAGE_ALIGN(size);
1405
1406 if (!(gfp & __GFP_WAIT))
1407 return __iommu_alloc_atomic(dev, size, handle);
1408
1409 /*
1410 * Following is a work-around (a.k.a. hack) to prevent pages
1411 * with __GFP_COMP being passed to split_page() which cannot
1412 * handle them. The real problem is that this flag probably
1413 * should be 0 on ARM as it is not supported on this
1414 * platform; see CONFIG_HUGETLBFS.
1415 */
1416 gfp &= ~(__GFP_COMP);
1417
1418 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419 if (!pages)
1420 return NULL;
1421
1422 *handle = __iommu_create_mapping(dev, pages, size);
1423 if (*handle == DMA_ERROR_CODE)
1424 goto err_buffer;
1425
1426 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427 return pages;
1428
1429 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430 __builtin_return_address(0));
1431 if (!addr)
1432 goto err_mapping;
1433
1434 return addr;
1435
1436err_mapping:
1437 __iommu_remove_mapping(dev, *handle, size);
1438err_buffer:
1439 __iommu_free_buffer(dev, pages, size, attrs);
1440 return NULL;
1441}
1442
1443static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1444 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445 struct dma_attrs *attrs)
1446{
1447 unsigned long uaddr = vma->vm_start;
1448 unsigned long usize = vma->vm_end - vma->vm_start;
1449 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1450
1451 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1452
1453 if (!pages)
1454 return -ENXIO;
1455
1456 do {
1457 int ret = vm_insert_page(vma, uaddr, *pages++);
1458 if (ret) {
1459 pr_err("Remapping memory failed: %d\n", ret);
1460 return ret;
1461 }
1462 uaddr += PAGE_SIZE;
1463 usize -= PAGE_SIZE;
1464 } while (usize > 0);
1465
1466 return 0;
1467}
1468
1469/*
1470 * free a page as defined by the above mapping.
1471 * Must not be called with IRQs disabled.
1472 */
1473void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474 dma_addr_t handle, struct dma_attrs *attrs)
1475{
1476 struct page **pages;
1477 size = PAGE_ALIGN(size);
1478
1479 if (__in_atomic_pool(cpu_addr, size)) {
1480 __iommu_free_atomic(dev, cpu_addr, handle, size);
1481 return;
1482 }
1483
1484 pages = __iommu_get_pages(cpu_addr, attrs);
1485 if (!pages) {
1486 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487 return;
1488 }
1489
1490 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491 unmap_kernel_range((unsigned long)cpu_addr, size);
1492 vunmap(cpu_addr);
1493 }
1494
1495 __iommu_remove_mapping(dev, handle, size);
1496 __iommu_free_buffer(dev, pages, size, attrs);
1497}
1498
1499static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500 void *cpu_addr, dma_addr_t dma_addr,
1501 size_t size, struct dma_attrs *attrs)
1502{
1503 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505
1506 if (!pages)
1507 return -ENXIO;
1508
1509 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510 GFP_KERNEL);
1511}
1512
1513static int __dma_direction_to_prot(enum dma_data_direction dir)
1514{
1515 int prot;
1516
1517 switch (dir) {
1518 case DMA_BIDIRECTIONAL:
1519 prot = IOMMU_READ | IOMMU_WRITE;
1520 break;
1521 case DMA_TO_DEVICE:
1522 prot = IOMMU_READ;
1523 break;
1524 case DMA_FROM_DEVICE:
1525 prot = IOMMU_WRITE;
1526 break;
1527 default:
1528 prot = 0;
1529 }
1530
1531 return prot;
1532}
1533
1534/*
1535 * Map a part of the scatter-gather list into contiguous io address space
1536 */
1537static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538 size_t size, dma_addr_t *handle,
1539 enum dma_data_direction dir, struct dma_attrs *attrs,
1540 bool is_coherent)
1541{
1542 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543 dma_addr_t iova, iova_base;
1544 int ret = 0;
1545 unsigned int count;
1546 struct scatterlist *s;
1547 int prot;
1548
1549 size = PAGE_ALIGN(size);
1550 *handle = DMA_ERROR_CODE;
1551
1552 iova_base = iova = __alloc_iova(mapping, size);
1553 if (iova == DMA_ERROR_CODE)
1554 return -ENOMEM;
1555
1556 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557 phys_addr_t phys = page_to_phys(sg_page(s));
1558 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559
1560 if (!is_coherent &&
1561 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563
1564 prot = __dma_direction_to_prot(dir);
1565
1566 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1567 if (ret < 0)
1568 goto fail;
1569 count += len >> PAGE_SHIFT;
1570 iova += len;
1571 }
1572 *handle = iova_base;
1573
1574 return 0;
1575fail:
1576 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577 __free_iova(mapping, iova_base, size);
1578 return ret;
1579}
1580
1581static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582 enum dma_data_direction dir, struct dma_attrs *attrs,
1583 bool is_coherent)
1584{
1585 struct scatterlist *s = sg, *dma = sg, *start = sg;
1586 int i, count = 0;
1587 unsigned int offset = s->offset;
1588 unsigned int size = s->offset + s->length;
1589 unsigned int max = dma_get_max_seg_size(dev);
1590
1591 for (i = 1; i < nents; i++) {
1592 s = sg_next(s);
1593
1594 s->dma_address = DMA_ERROR_CODE;
1595 s->dma_length = 0;
1596
1597 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1599 dir, attrs, is_coherent) < 0)
1600 goto bad_mapping;
1601
1602 dma->dma_address += offset;
1603 dma->dma_length = size - offset;
1604
1605 size = offset = s->offset;
1606 start = s;
1607 dma = sg_next(dma);
1608 count += 1;
1609 }
1610 size += s->length;
1611 }
1612 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613 is_coherent) < 0)
1614 goto bad_mapping;
1615
1616 dma->dma_address += offset;
1617 dma->dma_length = size - offset;
1618
1619 return count+1;
1620
1621bad_mapping:
1622 for_each_sg(sg, s, count, i)
1623 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624 return 0;
1625}
1626
1627/**
1628 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629 * @dev: valid struct device pointer
1630 * @sg: list of buffers
1631 * @nents: number of buffers to map
1632 * @dir: DMA transfer direction
1633 *
1634 * Map a set of i/o coherent buffers described by scatterlist in streaming
1635 * mode for DMA. The scatter gather list elements are merged together (if
1636 * possible) and tagged with the appropriate dma address and length. They are
1637 * obtained via sg_dma_{address,length}.
1638 */
1639int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641{
1642 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643}
1644
1645/**
1646 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647 * @dev: valid struct device pointer
1648 * @sg: list of buffers
1649 * @nents: number of buffers to map
1650 * @dir: DMA transfer direction
1651 *
1652 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653 * The scatter gather list elements are merged together (if possible) and
1654 * tagged with the appropriate dma address and length. They are obtained via
1655 * sg_dma_{address,length}.
1656 */
1657int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661}
1662
1663static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665 bool is_coherent)
1666{
1667 struct scatterlist *s;
1668 int i;
1669
1670 for_each_sg(sg, s, nents, i) {
1671 if (sg_dma_len(s))
1672 __iommu_remove_mapping(dev, sg_dma_address(s),
1673 sg_dma_len(s));
1674 if (!is_coherent &&
1675 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1677 s->length, dir);
1678 }
1679}
1680
1681/**
1682 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683 * @dev: valid struct device pointer
1684 * @sg: list of buffers
1685 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687 *
1688 * Unmap a set of streaming mode DMA translations. Again, CPU access
1689 * rules concerning calls here are the same as for dma_unmap_single().
1690 */
1691void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1693{
1694 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695}
1696
1697/**
1698 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 *
1704 * Unmap a set of streaming mode DMA translations. Again, CPU access
1705 * rules concerning calls here are the same as for dma_unmap_single().
1706 */
1707void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708 enum dma_data_direction dir, struct dma_attrs *attrs)
1709{
1710 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711}
1712
1713/**
1714 * arm_iommu_sync_sg_for_cpu
1715 * @dev: valid struct device pointer
1716 * @sg: list of buffers
1717 * @nents: number of buffers to map (returned from dma_map_sg)
1718 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719 */
1720void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1721 int nents, enum dma_data_direction dir)
1722{
1723 struct scatterlist *s;
1724 int i;
1725
1726 for_each_sg(sg, s, nents, i)
1727 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728
1729}
1730
1731/**
1732 * arm_iommu_sync_sg_for_device
1733 * @dev: valid struct device pointer
1734 * @sg: list of buffers
1735 * @nents: number of buffers to map (returned from dma_map_sg)
1736 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737 */
1738void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1739 int nents, enum dma_data_direction dir)
1740{
1741 struct scatterlist *s;
1742 int i;
1743
1744 for_each_sg(sg, s, nents, i)
1745 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746}
1747
1748
1749/**
1750 * arm_coherent_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
1757 * Coherent IOMMU aware version of arm_dma_map_page()
1758 */
1759static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760 unsigned long offset, size_t size, enum dma_data_direction dir,
1761 struct dma_attrs *attrs)
1762{
1763 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764 dma_addr_t dma_addr;
1765 int ret, prot, len = PAGE_ALIGN(size + offset);
1766
1767 dma_addr = __alloc_iova(mapping, len);
1768 if (dma_addr == DMA_ERROR_CODE)
1769 return dma_addr;
1770
1771 prot = __dma_direction_to_prot(dir);
1772
1773 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1774 if (ret < 0)
1775 goto fail;
1776
1777 return dma_addr + offset;
1778fail:
1779 __free_iova(mapping, dma_addr, len);
1780 return DMA_ERROR_CODE;
1781}
1782
1783/**
1784 * arm_iommu_map_page
1785 * @dev: valid struct device pointer
1786 * @page: page that buffer resides in
1787 * @offset: offset into page for start of buffer
1788 * @size: size of buffer to map
1789 * @dir: DMA transfer direction
1790 *
1791 * IOMMU aware version of arm_dma_map_page()
1792 */
1793static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794 unsigned long offset, size_t size, enum dma_data_direction dir,
1795 struct dma_attrs *attrs)
1796{
1797 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798 __dma_page_cpu_to_dev(page, offset, size, dir);
1799
1800 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801}
1802
1803/**
1804 * arm_coherent_iommu_unmap_page
1805 * @dev: valid struct device pointer
1806 * @handle: DMA address of buffer
1807 * @size: size of buffer (same as passed to dma_map_page)
1808 * @dir: DMA transfer direction (same as passed to dma_map_page)
1809 *
1810 * Coherent IOMMU aware version of arm_dma_unmap_page()
1811 */
1812static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813 size_t size, enum dma_data_direction dir,
1814 struct dma_attrs *attrs)
1815{
1816 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817 dma_addr_t iova = handle & PAGE_MASK;
1818 int offset = handle & ~PAGE_MASK;
1819 int len = PAGE_ALIGN(size + offset);
1820
1821 if (!iova)
1822 return;
1823
1824 iommu_unmap(mapping->domain, iova, len);
1825 __free_iova(mapping, iova, len);
1826}
1827
1828/**
1829 * arm_iommu_unmap_page
1830 * @dev: valid struct device pointer
1831 * @handle: DMA address of buffer
1832 * @size: size of buffer (same as passed to dma_map_page)
1833 * @dir: DMA transfer direction (same as passed to dma_map_page)
1834 *
1835 * IOMMU aware version of arm_dma_unmap_page()
1836 */
1837static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838 size_t size, enum dma_data_direction dir,
1839 struct dma_attrs *attrs)
1840{
1841 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842 dma_addr_t iova = handle & PAGE_MASK;
1843 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844 int offset = handle & ~PAGE_MASK;
1845 int len = PAGE_ALIGN(size + offset);
1846
1847 if (!iova)
1848 return;
1849
1850 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851 __dma_page_dev_to_cpu(page, offset, size, dir);
1852
1853 iommu_unmap(mapping->domain, iova, len);
1854 __free_iova(mapping, iova, len);
1855}
1856
1857static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859{
1860 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861 dma_addr_t iova = handle & PAGE_MASK;
1862 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863 unsigned int offset = handle & ~PAGE_MASK;
1864
1865 if (!iova)
1866 return;
1867
1868 __dma_page_dev_to_cpu(page, offset, size, dir);
1869}
1870
1871static void arm_iommu_sync_single_for_device(struct device *dev,
1872 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873{
1874 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875 dma_addr_t iova = handle & PAGE_MASK;
1876 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877 unsigned int offset = handle & ~PAGE_MASK;
1878
1879 if (!iova)
1880 return;
1881
1882 __dma_page_cpu_to_dev(page, offset, size, dir);
1883}
1884
1885struct dma_map_ops iommu_ops = {
1886 .alloc = arm_iommu_alloc_attrs,
1887 .free = arm_iommu_free_attrs,
1888 .mmap = arm_iommu_mmap_attrs,
1889 .get_sgtable = arm_iommu_get_sgtable,
1890
1891 .map_page = arm_iommu_map_page,
1892 .unmap_page = arm_iommu_unmap_page,
1893 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1894 .sync_single_for_device = arm_iommu_sync_single_for_device,
1895
1896 .map_sg = arm_iommu_map_sg,
1897 .unmap_sg = arm_iommu_unmap_sg,
1898 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1899 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1900
1901 .set_dma_mask = arm_dma_set_mask,
1902};
1903
1904struct dma_map_ops iommu_coherent_ops = {
1905 .alloc = arm_iommu_alloc_attrs,
1906 .free = arm_iommu_free_attrs,
1907 .mmap = arm_iommu_mmap_attrs,
1908 .get_sgtable = arm_iommu_get_sgtable,
1909
1910 .map_page = arm_coherent_iommu_map_page,
1911 .unmap_page = arm_coherent_iommu_unmap_page,
1912
1913 .map_sg = arm_coherent_iommu_map_sg,
1914 .unmap_sg = arm_coherent_iommu_unmap_sg,
1915
1916 .set_dma_mask = arm_dma_set_mask,
1917};
1918
1919/**
1920 * arm_iommu_create_mapping
1921 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922 * @base: start address of the valid IO address space
1923 * @size: maximum size of the valid IO address space
1924 *
1925 * Creates a mapping structure which holds information about used/unused
1926 * IO address ranges, which is required to perform memory allocation and
1927 * mapping with IOMMU aware functions.
1928 *
1929 * The client device need to be attached to the mapping with
1930 * arm_iommu_attach_device function.
1931 */
1932struct dma_iommu_mapping *
1933arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934{
1935 unsigned int bits = size >> PAGE_SHIFT;
1936 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937 struct dma_iommu_mapping *mapping;
1938 int extensions = 1;
1939 int err = -ENOMEM;
1940
1941 if (!bitmap_size)
1942 return ERR_PTR(-EINVAL);
1943
1944 if (bitmap_size > PAGE_SIZE) {
1945 extensions = bitmap_size / PAGE_SIZE;
1946 bitmap_size = PAGE_SIZE;
1947 }
1948
1949 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950 if (!mapping)
1951 goto err;
1952
1953 mapping->bitmap_size = bitmap_size;
1954 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955 GFP_KERNEL);
1956 if (!mapping->bitmaps)
1957 goto err2;
1958
1959 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960 if (!mapping->bitmaps[0])
1961 goto err3;
1962
1963 mapping->nr_bitmaps = 1;
1964 mapping->extensions = extensions;
1965 mapping->base = base;
1966 mapping->bits = BITS_PER_BYTE * bitmap_size;
1967 mapping->size = mapping->bits << PAGE_SHIFT;
1968
1969 spin_lock_init(&mapping->lock);
1970
1971 mapping->domain = iommu_domain_alloc(bus);
1972 if (!mapping->domain)
1973 goto err4;
1974
1975 kref_init(&mapping->kref);
1976 return mapping;
1977err4:
1978 kfree(mapping->bitmaps[0]);
1979err3:
1980 kfree(mapping->bitmaps);
1981err2:
1982 kfree(mapping);
1983err:
1984 return ERR_PTR(err);
1985}
1986EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987
1988static void release_iommu_mapping(struct kref *kref)
1989{
1990 int i;
1991 struct dma_iommu_mapping *mapping =
1992 container_of(kref, struct dma_iommu_mapping, kref);
1993
1994 iommu_domain_free(mapping->domain);
1995 for (i = 0; i < mapping->nr_bitmaps; i++)
1996 kfree(mapping->bitmaps[i]);
1997 kfree(mapping->bitmaps);
1998 kfree(mapping);
1999}
2000
2001static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002{
2003 int next_bitmap;
2004
2005 if (mapping->nr_bitmaps > mapping->extensions)
2006 return -EINVAL;
2007
2008 next_bitmap = mapping->nr_bitmaps;
2009 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010 GFP_ATOMIC);
2011 if (!mapping->bitmaps[next_bitmap])
2012 return -ENOMEM;
2013
2014 mapping->nr_bitmaps++;
2015
2016 return 0;
2017}
2018
2019void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020{
2021 if (mapping)
2022 kref_put(&mapping->kref, release_iommu_mapping);
2023}
2024EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025
2026/**
2027 * arm_iommu_attach_device
2028 * @dev: valid struct device pointer
2029 * @mapping: io address space mapping structure (returned from
2030 * arm_iommu_create_mapping)
2031 *
2032 * Attaches specified io address space mapping to the provided device,
2033 * this replaces the dma operations (dma_map_ops pointer) with the
2034 * IOMMU aware version. More than one client might be attached to
2035 * the same io address space mapping.
2036 */
2037int arm_iommu_attach_device(struct device *dev,
2038 struct dma_iommu_mapping *mapping)
2039{
2040 int err;
2041
2042 err = iommu_attach_device(mapping->domain, dev);
2043 if (err)
2044 return err;
2045
2046 kref_get(&mapping->kref);
2047 dev->archdata.mapping = mapping;
2048 set_dma_ops(dev, &iommu_ops);
2049
2050 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051 return 0;
2052}
2053EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054
2055/**
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2058 *
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2061 */
2062void arm_iommu_detach_device(struct device *dev)
2063{
2064 struct dma_iommu_mapping *mapping;
2065
2066 mapping = to_dma_iommu_mapping(dev);
2067 if (!mapping) {
2068 dev_warn(dev, "Not attached\n");
2069 return;
2070 }
2071
2072 iommu_detach_device(mapping->domain, dev);
2073 kref_put(&mapping->kref, release_iommu_mapping);
2074 dev->archdata.mapping = NULL;
2075 set_dma_ops(dev, NULL);
2076
2077 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078}
2079EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080
2081#endif
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/gfp.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20#include <linux/dma-contiguous.h>
21#include <linux/highmem.h>
22#include <linux/memblock.h>
23#include <linux/slab.h>
24#include <linux/iommu.h>
25#include <linux/vmalloc.h>
26
27#include <asm/memory.h>
28#include <asm/highmem.h>
29#include <asm/cacheflush.h>
30#include <asm/tlbflush.h>
31#include <asm/sizes.h>
32#include <asm/mach/arch.h>
33#include <asm/dma-iommu.h>
34#include <asm/mach/map.h>
35#include <asm/system_info.h>
36#include <asm/dma-contiguous.h>
37
38#include "mm.h"
39
40/*
41 * The DMA API is built upon the notion of "buffer ownership". A buffer
42 * is either exclusively owned by the CPU (and therefore may be accessed
43 * by it) or exclusively owned by the DMA device. These helper functions
44 * represent the transitions between these two ownership states.
45 *
46 * Note, however, that on later ARMs, this notion does not work due to
47 * speculative prefetches. We model our approach on the assumption that
48 * the CPU does do speculative prefetches, which means we clean caches
49 * before transfers and delay cache invalidation until transfer completion.
50 *
51 */
52static void __dma_page_cpu_to_dev(struct page *, unsigned long,
53 size_t, enum dma_data_direction);
54static void __dma_page_dev_to_cpu(struct page *, unsigned long,
55 size_t, enum dma_data_direction);
56
57/**
58 * arm_dma_map_page - map a portion of a page for streaming DMA
59 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
60 * @page: page that buffer resides in
61 * @offset: offset into page for start of buffer
62 * @size: size of buffer to map
63 * @dir: DMA transfer direction
64 *
65 * Ensure that any data held in the cache is appropriately discarded
66 * or written back.
67 *
68 * The device owns this memory once this call has completed. The CPU
69 * can regain ownership by calling dma_unmap_page().
70 */
71static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
72 unsigned long offset, size_t size, enum dma_data_direction dir,
73 struct dma_attrs *attrs)
74{
75 if (!arch_is_coherent())
76 __dma_page_cpu_to_dev(page, offset, size, dir);
77 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
78}
79
80/**
81 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
82 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
83 * @handle: DMA address of buffer
84 * @size: size of buffer (same as passed to dma_map_page)
85 * @dir: DMA transfer direction (same as passed to dma_map_page)
86 *
87 * Unmap a page streaming mode DMA translation. The handle and size
88 * must match what was provided in the previous dma_map_page() call.
89 * All other usages are undefined.
90 *
91 * After this call, reads by the CPU to the buffer are guaranteed to see
92 * whatever the device wrote there.
93 */
94static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
95 size_t size, enum dma_data_direction dir,
96 struct dma_attrs *attrs)
97{
98 if (!arch_is_coherent())
99 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
100 handle & ~PAGE_MASK, size, dir);
101}
102
103static void arm_dma_sync_single_for_cpu(struct device *dev,
104 dma_addr_t handle, size_t size, enum dma_data_direction dir)
105{
106 unsigned int offset = handle & (PAGE_SIZE - 1);
107 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
108 if (!arch_is_coherent())
109 __dma_page_dev_to_cpu(page, offset, size, dir);
110}
111
112static void arm_dma_sync_single_for_device(struct device *dev,
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114{
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 if (!arch_is_coherent())
118 __dma_page_cpu_to_dev(page, offset, size, dir);
119}
120
121static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
122
123struct dma_map_ops arm_dma_ops = {
124 .alloc = arm_dma_alloc,
125 .free = arm_dma_free,
126 .mmap = arm_dma_mmap,
127 .map_page = arm_dma_map_page,
128 .unmap_page = arm_dma_unmap_page,
129 .map_sg = arm_dma_map_sg,
130 .unmap_sg = arm_dma_unmap_sg,
131 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
132 .sync_single_for_device = arm_dma_sync_single_for_device,
133 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
134 .sync_sg_for_device = arm_dma_sync_sg_for_device,
135 .set_dma_mask = arm_dma_set_mask,
136};
137EXPORT_SYMBOL(arm_dma_ops);
138
139static u64 get_coherent_dma_mask(struct device *dev)
140{
141 u64 mask = (u64)arm_dma_limit;
142
143 if (dev) {
144 mask = dev->coherent_dma_mask;
145
146 /*
147 * Sanity check the DMA mask - it must be non-zero, and
148 * must be able to be satisfied by a DMA allocation.
149 */
150 if (mask == 0) {
151 dev_warn(dev, "coherent DMA mask is unset\n");
152 return 0;
153 }
154
155 if ((~mask) & (u64)arm_dma_limit) {
156 dev_warn(dev, "coherent DMA mask %#llx is smaller "
157 "than system GFP_DMA mask %#llx\n",
158 mask, (u64)arm_dma_limit);
159 return 0;
160 }
161 }
162
163 return mask;
164}
165
166static void __dma_clear_buffer(struct page *page, size_t size)
167{
168 void *ptr;
169 /*
170 * Ensure that the allocated pages are zeroed, and that any data
171 * lurking in the kernel direct-mapped region is invalidated.
172 */
173 ptr = page_address(page);
174 if (ptr) {
175 memset(ptr, 0, size);
176 dmac_flush_range(ptr, ptr + size);
177 outer_flush_range(__pa(ptr), __pa(ptr) + size);
178 }
179}
180
181/*
182 * Allocate a DMA buffer for 'dev' of size 'size' using the
183 * specified gfp mask. Note that 'size' must be page aligned.
184 */
185static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
186{
187 unsigned long order = get_order(size);
188 struct page *page, *p, *e;
189
190 page = alloc_pages(gfp, order);
191 if (!page)
192 return NULL;
193
194 /*
195 * Now split the huge page and free the excess pages
196 */
197 split_page(page, order);
198 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
199 __free_page(p);
200
201 __dma_clear_buffer(page, size);
202
203 return page;
204}
205
206/*
207 * Free a DMA buffer. 'size' must be page aligned.
208 */
209static void __dma_free_buffer(struct page *page, size_t size)
210{
211 struct page *e = page + (size >> PAGE_SHIFT);
212
213 while (page < e) {
214 __free_page(page);
215 page++;
216 }
217}
218
219#ifdef CONFIG_MMU
220
221#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
222#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
223
224/*
225 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
226 */
227static pte_t **consistent_pte;
228
229#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
230
231static unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
232
233void __init init_consistent_dma_size(unsigned long size)
234{
235 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
236
237 BUG_ON(consistent_pte); /* Check we're called before DMA region init */
238 BUG_ON(base < VMALLOC_END);
239
240 /* Grow region to accommodate specified size */
241 if (base < consistent_base)
242 consistent_base = base;
243}
244
245#include "vmregion.h"
246
247static struct arm_vmregion_head consistent_head = {
248 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
249 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
250 .vm_end = CONSISTENT_END,
251};
252
253#ifdef CONFIG_HUGETLB_PAGE
254#error ARM Coherent DMA allocator does not (yet) support huge TLB
255#endif
256
257/*
258 * Initialise the consistent memory allocation.
259 */
260static int __init consistent_init(void)
261{
262 int ret = 0;
263 pgd_t *pgd;
264 pud_t *pud;
265 pmd_t *pmd;
266 pte_t *pte;
267 int i = 0;
268 unsigned long base = consistent_base;
269 unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
270
271 if (IS_ENABLED(CONFIG_CMA) && !IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))
272 return 0;
273
274 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
275 if (!consistent_pte) {
276 pr_err("%s: no memory\n", __func__);
277 return -ENOMEM;
278 }
279
280 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
281 consistent_head.vm_start = base;
282
283 do {
284 pgd = pgd_offset(&init_mm, base);
285
286 pud = pud_alloc(&init_mm, pgd, base);
287 if (!pud) {
288 pr_err("%s: no pud tables\n", __func__);
289 ret = -ENOMEM;
290 break;
291 }
292
293 pmd = pmd_alloc(&init_mm, pud, base);
294 if (!pmd) {
295 pr_err("%s: no pmd tables\n", __func__);
296 ret = -ENOMEM;
297 break;
298 }
299 WARN_ON(!pmd_none(*pmd));
300
301 pte = pte_alloc_kernel(pmd, base);
302 if (!pte) {
303 pr_err("%s: no pte tables\n", __func__);
304 ret = -ENOMEM;
305 break;
306 }
307
308 consistent_pte[i++] = pte;
309 base += PMD_SIZE;
310 } while (base < CONSISTENT_END);
311
312 return ret;
313}
314core_initcall(consistent_init);
315
316static void *__alloc_from_contiguous(struct device *dev, size_t size,
317 pgprot_t prot, struct page **ret_page);
318
319static struct arm_vmregion_head coherent_head = {
320 .vm_lock = __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock),
321 .vm_list = LIST_HEAD_INIT(coherent_head.vm_list),
322};
323
324static size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8;
325
326static int __init early_coherent_pool(char *p)
327{
328 coherent_pool_size = memparse(p, &p);
329 return 0;
330}
331early_param("coherent_pool", early_coherent_pool);
332
333/*
334 * Initialise the coherent pool for atomic allocations.
335 */
336static int __init coherent_init(void)
337{
338 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
339 size_t size = coherent_pool_size;
340 struct page *page;
341 void *ptr;
342
343 if (!IS_ENABLED(CONFIG_CMA))
344 return 0;
345
346 ptr = __alloc_from_contiguous(NULL, size, prot, &page);
347 if (ptr) {
348 coherent_head.vm_start = (unsigned long) ptr;
349 coherent_head.vm_end = (unsigned long) ptr + size;
350 printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n",
351 (unsigned)size / 1024);
352 return 0;
353 }
354 printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
355 (unsigned)size / 1024);
356 return -ENOMEM;
357}
358/*
359 * CMA is activated by core_initcall, so we must be called after it.
360 */
361postcore_initcall(coherent_init);
362
363struct dma_contig_early_reserve {
364 phys_addr_t base;
365 unsigned long size;
366};
367
368static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
369
370static int dma_mmu_remap_num __initdata;
371
372void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
373{
374 dma_mmu_remap[dma_mmu_remap_num].base = base;
375 dma_mmu_remap[dma_mmu_remap_num].size = size;
376 dma_mmu_remap_num++;
377}
378
379void __init dma_contiguous_remap(void)
380{
381 int i;
382 for (i = 0; i < dma_mmu_remap_num; i++) {
383 phys_addr_t start = dma_mmu_remap[i].base;
384 phys_addr_t end = start + dma_mmu_remap[i].size;
385 struct map_desc map;
386 unsigned long addr;
387
388 if (end > arm_lowmem_limit)
389 end = arm_lowmem_limit;
390 if (start >= end)
391 return;
392
393 map.pfn = __phys_to_pfn(start);
394 map.virtual = __phys_to_virt(start);
395 map.length = end - start;
396 map.type = MT_MEMORY_DMA_READY;
397
398 /*
399 * Clear previous low-memory mapping
400 */
401 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
402 addr += PMD_SIZE)
403 pmd_clear(pmd_off_k(addr));
404
405 iotable_init(&map, 1);
406 }
407}
408
409static void *
410__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
411 const void *caller)
412{
413 struct arm_vmregion *c;
414 size_t align;
415 int bit;
416
417 if (!consistent_pte) {
418 pr_err("%s: not initialised\n", __func__);
419 dump_stack();
420 return NULL;
421 }
422
423 /*
424 * Align the virtual region allocation - maximum alignment is
425 * a section size, minimum is a page size. This helps reduce
426 * fragmentation of the DMA space, and also prevents allocations
427 * smaller than a section from crossing a section boundary.
428 */
429 bit = fls(size - 1);
430 if (bit > SECTION_SHIFT)
431 bit = SECTION_SHIFT;
432 align = 1 << bit;
433
434 /*
435 * Allocate a virtual address in the consistent mapping region.
436 */
437 c = arm_vmregion_alloc(&consistent_head, align, size,
438 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
439 if (c) {
440 pte_t *pte;
441 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
442 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
443
444 pte = consistent_pte[idx] + off;
445 c->priv = page;
446
447 do {
448 BUG_ON(!pte_none(*pte));
449
450 set_pte_ext(pte, mk_pte(page, prot), 0);
451 page++;
452 pte++;
453 off++;
454 if (off >= PTRS_PER_PTE) {
455 off = 0;
456 pte = consistent_pte[++idx];
457 }
458 } while (size -= PAGE_SIZE);
459
460 dsb();
461
462 return (void *)c->vm_start;
463 }
464 return NULL;
465}
466
467static void __dma_free_remap(void *cpu_addr, size_t size)
468{
469 struct arm_vmregion *c;
470 unsigned long addr;
471 pte_t *ptep;
472 int idx;
473 u32 off;
474
475 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
476 if (!c) {
477 pr_err("%s: trying to free invalid coherent area: %p\n",
478 __func__, cpu_addr);
479 dump_stack();
480 return;
481 }
482
483 if ((c->vm_end - c->vm_start) != size) {
484 pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
485 __func__, c->vm_end - c->vm_start, size);
486 dump_stack();
487 size = c->vm_end - c->vm_start;
488 }
489
490 idx = CONSISTENT_PTE_INDEX(c->vm_start);
491 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
492 ptep = consistent_pte[idx] + off;
493 addr = c->vm_start;
494 do {
495 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
496
497 ptep++;
498 addr += PAGE_SIZE;
499 off++;
500 if (off >= PTRS_PER_PTE) {
501 off = 0;
502 ptep = consistent_pte[++idx];
503 }
504
505 if (pte_none(pte) || !pte_present(pte))
506 pr_crit("%s: bad page in kernel page table\n",
507 __func__);
508 } while (size -= PAGE_SIZE);
509
510 flush_tlb_kernel_range(c->vm_start, c->vm_end);
511
512 arm_vmregion_free(&consistent_head, c);
513}
514
515static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
516 void *data)
517{
518 struct page *page = virt_to_page(addr);
519 pgprot_t prot = *(pgprot_t *)data;
520
521 set_pte_ext(pte, mk_pte(page, prot), 0);
522 return 0;
523}
524
525static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
526{
527 unsigned long start = (unsigned long) page_address(page);
528 unsigned end = start + size;
529
530 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
531 dsb();
532 flush_tlb_kernel_range(start, end);
533}
534
535static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
536 pgprot_t prot, struct page **ret_page,
537 const void *caller)
538{
539 struct page *page;
540 void *ptr;
541 page = __dma_alloc_buffer(dev, size, gfp);
542 if (!page)
543 return NULL;
544
545 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
546 if (!ptr) {
547 __dma_free_buffer(page, size);
548 return NULL;
549 }
550
551 *ret_page = page;
552 return ptr;
553}
554
555static void *__alloc_from_pool(struct device *dev, size_t size,
556 struct page **ret_page, const void *caller)
557{
558 struct arm_vmregion *c;
559 size_t align;
560
561 if (!coherent_head.vm_start) {
562 printk(KERN_ERR "%s: coherent pool not initialised!\n",
563 __func__);
564 dump_stack();
565 return NULL;
566 }
567
568 /*
569 * Align the region allocation - allocations from pool are rather
570 * small, so align them to their order in pages, minimum is a page
571 * size. This helps reduce fragmentation of the DMA space.
572 */
573 align = PAGE_SIZE << get_order(size);
574 c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller);
575 if (c) {
576 void *ptr = (void *)c->vm_start;
577 struct page *page = virt_to_page(ptr);
578 *ret_page = page;
579 return ptr;
580 }
581 return NULL;
582}
583
584static int __free_from_pool(void *cpu_addr, size_t size)
585{
586 unsigned long start = (unsigned long)cpu_addr;
587 unsigned long end = start + size;
588 struct arm_vmregion *c;
589
590 if (start < coherent_head.vm_start || end > coherent_head.vm_end)
591 return 0;
592
593 c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start);
594
595 if ((c->vm_end - c->vm_start) != size) {
596 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
597 __func__, c->vm_end - c->vm_start, size);
598 dump_stack();
599 size = c->vm_end - c->vm_start;
600 }
601
602 arm_vmregion_free(&coherent_head, c);
603 return 1;
604}
605
606static void *__alloc_from_contiguous(struct device *dev, size_t size,
607 pgprot_t prot, struct page **ret_page)
608{
609 unsigned long order = get_order(size);
610 size_t count = size >> PAGE_SHIFT;
611 struct page *page;
612
613 page = dma_alloc_from_contiguous(dev, count, order);
614 if (!page)
615 return NULL;
616
617 __dma_clear_buffer(page, size);
618 __dma_remap(page, size, prot);
619
620 *ret_page = page;
621 return page_address(page);
622}
623
624static void __free_from_contiguous(struct device *dev, struct page *page,
625 size_t size)
626{
627 __dma_remap(page, size, pgprot_kernel);
628 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
629}
630
631static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
632{
633 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
634 pgprot_writecombine(prot) :
635 pgprot_dmacoherent(prot);
636 return prot;
637}
638
639#define nommu() 0
640
641#else /* !CONFIG_MMU */
642
643#define nommu() 1
644
645#define __get_dma_pgprot(attrs, prot) __pgprot(0)
646#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
647#define __alloc_from_pool(dev, size, ret_page, c) NULL
648#define __alloc_from_contiguous(dev, size, prot, ret) NULL
649#define __free_from_pool(cpu_addr, size) 0
650#define __free_from_contiguous(dev, page, size) do { } while (0)
651#define __dma_free_remap(cpu_addr, size) do { } while (0)
652
653#endif /* CONFIG_MMU */
654
655static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
656 struct page **ret_page)
657{
658 struct page *page;
659 page = __dma_alloc_buffer(dev, size, gfp);
660 if (!page)
661 return NULL;
662
663 *ret_page = page;
664 return page_address(page);
665}
666
667
668
669static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
670 gfp_t gfp, pgprot_t prot, const void *caller)
671{
672 u64 mask = get_coherent_dma_mask(dev);
673 struct page *page;
674 void *addr;
675
676#ifdef CONFIG_DMA_API_DEBUG
677 u64 limit = (mask + 1) & ~mask;
678 if (limit && size >= limit) {
679 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
680 size, mask);
681 return NULL;
682 }
683#endif
684
685 if (!mask)
686 return NULL;
687
688 if (mask < 0xffffffffULL)
689 gfp |= GFP_DMA;
690
691 /*
692 * Following is a work-around (a.k.a. hack) to prevent pages
693 * with __GFP_COMP being passed to split_page() which cannot
694 * handle them. The real problem is that this flag probably
695 * should be 0 on ARM as it is not supported on this
696 * platform; see CONFIG_HUGETLBFS.
697 */
698 gfp &= ~(__GFP_COMP);
699
700 *handle = DMA_ERROR_CODE;
701 size = PAGE_ALIGN(size);
702
703 if (arch_is_coherent() || nommu())
704 addr = __alloc_simple_buffer(dev, size, gfp, &page);
705 else if (!IS_ENABLED(CONFIG_CMA))
706 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
707 else if (gfp & GFP_ATOMIC)
708 addr = __alloc_from_pool(dev, size, &page, caller);
709 else
710 addr = __alloc_from_contiguous(dev, size, prot, &page);
711
712 if (addr)
713 *handle = pfn_to_dma(dev, page_to_pfn(page));
714
715 return addr;
716}
717
718/*
719 * Allocate DMA-coherent memory space and return both the kernel remapped
720 * virtual and bus address for that space.
721 */
722void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
723 gfp_t gfp, struct dma_attrs *attrs)
724{
725 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
726 void *memory;
727
728 if (dma_alloc_from_coherent(dev, size, handle, &memory))
729 return memory;
730
731 return __dma_alloc(dev, size, handle, gfp, prot,
732 __builtin_return_address(0));
733}
734
735/*
736 * Create userspace mapping for the DMA-coherent memory.
737 */
738int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
739 void *cpu_addr, dma_addr_t dma_addr, size_t size,
740 struct dma_attrs *attrs)
741{
742 int ret = -ENXIO;
743#ifdef CONFIG_MMU
744 unsigned long pfn = dma_to_pfn(dev, dma_addr);
745 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
746
747 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
748 return ret;
749
750 ret = remap_pfn_range(vma, vma->vm_start,
751 pfn + vma->vm_pgoff,
752 vma->vm_end - vma->vm_start,
753 vma->vm_page_prot);
754#endif /* CONFIG_MMU */
755
756 return ret;
757}
758
759/*
760 * Free a buffer as defined by the above mapping.
761 */
762void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
763 dma_addr_t handle, struct dma_attrs *attrs)
764{
765 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
766
767 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
768 return;
769
770 size = PAGE_ALIGN(size);
771
772 if (arch_is_coherent() || nommu()) {
773 __dma_free_buffer(page, size);
774 } else if (!IS_ENABLED(CONFIG_CMA)) {
775 __dma_free_remap(cpu_addr, size);
776 __dma_free_buffer(page, size);
777 } else {
778 if (__free_from_pool(cpu_addr, size))
779 return;
780 /*
781 * Non-atomic allocations cannot be freed with IRQs disabled
782 */
783 WARN_ON(irqs_disabled());
784 __free_from_contiguous(dev, page, size);
785 }
786}
787
788static void dma_cache_maint_page(struct page *page, unsigned long offset,
789 size_t size, enum dma_data_direction dir,
790 void (*op)(const void *, size_t, int))
791{
792 /*
793 * A single sg entry may refer to multiple physically contiguous
794 * pages. But we still need to process highmem pages individually.
795 * If highmem is not configured then the bulk of this loop gets
796 * optimized out.
797 */
798 size_t left = size;
799 do {
800 size_t len = left;
801 void *vaddr;
802
803 if (PageHighMem(page)) {
804 if (len + offset > PAGE_SIZE) {
805 if (offset >= PAGE_SIZE) {
806 page += offset / PAGE_SIZE;
807 offset %= PAGE_SIZE;
808 }
809 len = PAGE_SIZE - offset;
810 }
811 vaddr = kmap_high_get(page);
812 if (vaddr) {
813 vaddr += offset;
814 op(vaddr, len, dir);
815 kunmap_high(page);
816 } else if (cache_is_vipt()) {
817 /* unmapped pages might still be cached */
818 vaddr = kmap_atomic(page);
819 op(vaddr + offset, len, dir);
820 kunmap_atomic(vaddr);
821 }
822 } else {
823 vaddr = page_address(page) + offset;
824 op(vaddr, len, dir);
825 }
826 offset = 0;
827 page++;
828 left -= len;
829 } while (left);
830}
831
832/*
833 * Make an area consistent for devices.
834 * Note: Drivers should NOT use this function directly, as it will break
835 * platforms with CONFIG_DMABOUNCE.
836 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
837 */
838static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
839 size_t size, enum dma_data_direction dir)
840{
841 unsigned long paddr;
842
843 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
844
845 paddr = page_to_phys(page) + off;
846 if (dir == DMA_FROM_DEVICE) {
847 outer_inv_range(paddr, paddr + size);
848 } else {
849 outer_clean_range(paddr, paddr + size);
850 }
851 /* FIXME: non-speculating: flush on bidirectional mappings? */
852}
853
854static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
855 size_t size, enum dma_data_direction dir)
856{
857 unsigned long paddr = page_to_phys(page) + off;
858
859 /* FIXME: non-speculating: not required */
860 /* don't bother invalidating if DMA to device */
861 if (dir != DMA_TO_DEVICE)
862 outer_inv_range(paddr, paddr + size);
863
864 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
865
866 /*
867 * Mark the D-cache clean for this page to avoid extra flushing.
868 */
869 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
870 set_bit(PG_dcache_clean, &page->flags);
871}
872
873/**
874 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
875 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
876 * @sg: list of buffers
877 * @nents: number of buffers to map
878 * @dir: DMA transfer direction
879 *
880 * Map a set of buffers described by scatterlist in streaming mode for DMA.
881 * This is the scatter-gather version of the dma_map_single interface.
882 * Here the scatter gather list elements are each tagged with the
883 * appropriate dma address and length. They are obtained via
884 * sg_dma_{address,length}.
885 *
886 * Device ownership issues as mentioned for dma_map_single are the same
887 * here.
888 */
889int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
890 enum dma_data_direction dir, struct dma_attrs *attrs)
891{
892 struct dma_map_ops *ops = get_dma_ops(dev);
893 struct scatterlist *s;
894 int i, j;
895
896 for_each_sg(sg, s, nents, i) {
897#ifdef CONFIG_NEED_SG_DMA_LENGTH
898 s->dma_length = s->length;
899#endif
900 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
901 s->length, dir, attrs);
902 if (dma_mapping_error(dev, s->dma_address))
903 goto bad_mapping;
904 }
905 return nents;
906
907 bad_mapping:
908 for_each_sg(sg, s, i, j)
909 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
910 return 0;
911}
912
913/**
914 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
915 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
916 * @sg: list of buffers
917 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
918 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
919 *
920 * Unmap a set of streaming mode DMA translations. Again, CPU access
921 * rules concerning calls here are the same as for dma_unmap_single().
922 */
923void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
924 enum dma_data_direction dir, struct dma_attrs *attrs)
925{
926 struct dma_map_ops *ops = get_dma_ops(dev);
927 struct scatterlist *s;
928
929 int i;
930
931 for_each_sg(sg, s, nents, i)
932 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
933}
934
935/**
936 * arm_dma_sync_sg_for_cpu
937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
938 * @sg: list of buffers
939 * @nents: number of buffers to map (returned from dma_map_sg)
940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
941 */
942void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
943 int nents, enum dma_data_direction dir)
944{
945 struct dma_map_ops *ops = get_dma_ops(dev);
946 struct scatterlist *s;
947 int i;
948
949 for_each_sg(sg, s, nents, i)
950 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
951 dir);
952}
953
954/**
955 * arm_dma_sync_sg_for_device
956 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
957 * @sg: list of buffers
958 * @nents: number of buffers to map (returned from dma_map_sg)
959 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
960 */
961void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
962 int nents, enum dma_data_direction dir)
963{
964 struct dma_map_ops *ops = get_dma_ops(dev);
965 struct scatterlist *s;
966 int i;
967
968 for_each_sg(sg, s, nents, i)
969 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
970 dir);
971}
972
973/*
974 * Return whether the given device DMA address mask can be supported
975 * properly. For example, if your device can only drive the low 24-bits
976 * during bus mastering, then you would pass 0x00ffffff as the mask
977 * to this function.
978 */
979int dma_supported(struct device *dev, u64 mask)
980{
981 if (mask < (u64)arm_dma_limit)
982 return 0;
983 return 1;
984}
985EXPORT_SYMBOL(dma_supported);
986
987static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
988{
989 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
990 return -EIO;
991
992 *dev->dma_mask = dma_mask;
993
994 return 0;
995}
996
997#define PREALLOC_DMA_DEBUG_ENTRIES 4096
998
999static int __init dma_debug_do_init(void)
1000{
1001#ifdef CONFIG_MMU
1002 arm_vmregion_create_proc("dma-mappings", &consistent_head);
1003#endif
1004 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1005 return 0;
1006}
1007fs_initcall(dma_debug_do_init);
1008
1009#ifdef CONFIG_ARM_DMA_USE_IOMMU
1010
1011/* IOMMU */
1012
1013static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1014 size_t size)
1015{
1016 unsigned int order = get_order(size);
1017 unsigned int align = 0;
1018 unsigned int count, start;
1019 unsigned long flags;
1020
1021 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1022 (1 << mapping->order) - 1) >> mapping->order;
1023
1024 if (order > mapping->order)
1025 align = (1 << (order - mapping->order)) - 1;
1026
1027 spin_lock_irqsave(&mapping->lock, flags);
1028 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1029 count, align);
1030 if (start > mapping->bits) {
1031 spin_unlock_irqrestore(&mapping->lock, flags);
1032 return DMA_ERROR_CODE;
1033 }
1034
1035 bitmap_set(mapping->bitmap, start, count);
1036 spin_unlock_irqrestore(&mapping->lock, flags);
1037
1038 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1039}
1040
1041static inline void __free_iova(struct dma_iommu_mapping *mapping,
1042 dma_addr_t addr, size_t size)
1043{
1044 unsigned int start = (addr - mapping->base) >>
1045 (mapping->order + PAGE_SHIFT);
1046 unsigned int count = ((size >> PAGE_SHIFT) +
1047 (1 << mapping->order) - 1) >> mapping->order;
1048 unsigned long flags;
1049
1050 spin_lock_irqsave(&mapping->lock, flags);
1051 bitmap_clear(mapping->bitmap, start, count);
1052 spin_unlock_irqrestore(&mapping->lock, flags);
1053}
1054
1055static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
1056{
1057 struct page **pages;
1058 int count = size >> PAGE_SHIFT;
1059 int array_size = count * sizeof(struct page *);
1060 int i = 0;
1061
1062 if (array_size <= PAGE_SIZE)
1063 pages = kzalloc(array_size, gfp);
1064 else
1065 pages = vzalloc(array_size);
1066 if (!pages)
1067 return NULL;
1068
1069 while (count) {
1070 int j, order = __fls(count);
1071
1072 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1073 while (!pages[i] && order)
1074 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1075 if (!pages[i])
1076 goto error;
1077
1078 if (order)
1079 split_page(pages[i], order);
1080 j = 1 << order;
1081 while (--j)
1082 pages[i + j] = pages[i] + j;
1083
1084 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1085 i += 1 << order;
1086 count -= 1 << order;
1087 }
1088
1089 return pages;
1090error:
1091 while (--i)
1092 if (pages[i])
1093 __free_pages(pages[i], 0);
1094 if (array_size <= PAGE_SIZE)
1095 kfree(pages);
1096 else
1097 vfree(pages);
1098 return NULL;
1099}
1100
1101static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1102{
1103 int count = size >> PAGE_SHIFT;
1104 int array_size = count * sizeof(struct page *);
1105 int i;
1106 for (i = 0; i < count; i++)
1107 if (pages[i])
1108 __free_pages(pages[i], 0);
1109 if (array_size <= PAGE_SIZE)
1110 kfree(pages);
1111 else
1112 vfree(pages);
1113 return 0;
1114}
1115
1116/*
1117 * Create a CPU mapping for a specified pages
1118 */
1119static void *
1120__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot)
1121{
1122 struct arm_vmregion *c;
1123 size_t align;
1124 size_t count = size >> PAGE_SHIFT;
1125 int bit;
1126
1127 if (!consistent_pte[0]) {
1128 pr_err("%s: not initialised\n", __func__);
1129 dump_stack();
1130 return NULL;
1131 }
1132
1133 /*
1134 * Align the virtual region allocation - maximum alignment is
1135 * a section size, minimum is a page size. This helps reduce
1136 * fragmentation of the DMA space, and also prevents allocations
1137 * smaller than a section from crossing a section boundary.
1138 */
1139 bit = fls(size - 1);
1140 if (bit > SECTION_SHIFT)
1141 bit = SECTION_SHIFT;
1142 align = 1 << bit;
1143
1144 /*
1145 * Allocate a virtual address in the consistent mapping region.
1146 */
1147 c = arm_vmregion_alloc(&consistent_head, align, size,
1148 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL);
1149 if (c) {
1150 pte_t *pte;
1151 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
1152 int i = 0;
1153 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1154
1155 pte = consistent_pte[idx] + off;
1156 c->priv = pages;
1157
1158 do {
1159 BUG_ON(!pte_none(*pte));
1160
1161 set_pte_ext(pte, mk_pte(pages[i], prot), 0);
1162 pte++;
1163 off++;
1164 i++;
1165 if (off >= PTRS_PER_PTE) {
1166 off = 0;
1167 pte = consistent_pte[++idx];
1168 }
1169 } while (i < count);
1170
1171 dsb();
1172
1173 return (void *)c->vm_start;
1174 }
1175 return NULL;
1176}
1177
1178/*
1179 * Create a mapping in device IO address space for specified pages
1180 */
1181static dma_addr_t
1182__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1183{
1184 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1185 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186 dma_addr_t dma_addr, iova;
1187 int i, ret = DMA_ERROR_CODE;
1188
1189 dma_addr = __alloc_iova(mapping, size);
1190 if (dma_addr == DMA_ERROR_CODE)
1191 return dma_addr;
1192
1193 iova = dma_addr;
1194 for (i = 0; i < count; ) {
1195 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1196 phys_addr_t phys = page_to_phys(pages[i]);
1197 unsigned int len, j;
1198
1199 for (j = i + 1; j < count; j++, next_pfn++)
1200 if (page_to_pfn(pages[j]) != next_pfn)
1201 break;
1202
1203 len = (j - i) << PAGE_SHIFT;
1204 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1205 if (ret < 0)
1206 goto fail;
1207 iova += len;
1208 i = j;
1209 }
1210 return dma_addr;
1211fail:
1212 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1213 __free_iova(mapping, dma_addr, size);
1214 return DMA_ERROR_CODE;
1215}
1216
1217static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1218{
1219 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1220
1221 /*
1222 * add optional in-page offset from iova to size and align
1223 * result to page size
1224 */
1225 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1226 iova &= PAGE_MASK;
1227
1228 iommu_unmap(mapping->domain, iova, size);
1229 __free_iova(mapping, iova, size);
1230 return 0;
1231}
1232
1233static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1234 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1235{
1236 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1237 struct page **pages;
1238 void *addr = NULL;
1239
1240 *handle = DMA_ERROR_CODE;
1241 size = PAGE_ALIGN(size);
1242
1243 pages = __iommu_alloc_buffer(dev, size, gfp);
1244 if (!pages)
1245 return NULL;
1246
1247 *handle = __iommu_create_mapping(dev, pages, size);
1248 if (*handle == DMA_ERROR_CODE)
1249 goto err_buffer;
1250
1251 addr = __iommu_alloc_remap(pages, size, gfp, prot);
1252 if (!addr)
1253 goto err_mapping;
1254
1255 return addr;
1256
1257err_mapping:
1258 __iommu_remove_mapping(dev, *handle, size);
1259err_buffer:
1260 __iommu_free_buffer(dev, pages, size);
1261 return NULL;
1262}
1263
1264static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1265 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1266 struct dma_attrs *attrs)
1267{
1268 struct arm_vmregion *c;
1269
1270 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1271 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1272
1273 if (c) {
1274 struct page **pages = c->priv;
1275
1276 unsigned long uaddr = vma->vm_start;
1277 unsigned long usize = vma->vm_end - vma->vm_start;
1278 int i = 0;
1279
1280 do {
1281 int ret;
1282
1283 ret = vm_insert_page(vma, uaddr, pages[i++]);
1284 if (ret) {
1285 pr_err("Remapping memory, error: %d\n", ret);
1286 return ret;
1287 }
1288
1289 uaddr += PAGE_SIZE;
1290 usize -= PAGE_SIZE;
1291 } while (usize > 0);
1292 }
1293 return 0;
1294}
1295
1296/*
1297 * free a page as defined by the above mapping.
1298 * Must not be called with IRQs disabled.
1299 */
1300void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1301 dma_addr_t handle, struct dma_attrs *attrs)
1302{
1303 struct arm_vmregion *c;
1304 size = PAGE_ALIGN(size);
1305
1306 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1307 if (c) {
1308 struct page **pages = c->priv;
1309 __dma_free_remap(cpu_addr, size);
1310 __iommu_remove_mapping(dev, handle, size);
1311 __iommu_free_buffer(dev, pages, size);
1312 }
1313}
1314
1315/*
1316 * Map a part of the scatter-gather list into contiguous io address space
1317 */
1318static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1319 size_t size, dma_addr_t *handle,
1320 enum dma_data_direction dir)
1321{
1322 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1323 dma_addr_t iova, iova_base;
1324 int ret = 0;
1325 unsigned int count;
1326 struct scatterlist *s;
1327
1328 size = PAGE_ALIGN(size);
1329 *handle = DMA_ERROR_CODE;
1330
1331 iova_base = iova = __alloc_iova(mapping, size);
1332 if (iova == DMA_ERROR_CODE)
1333 return -ENOMEM;
1334
1335 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1336 phys_addr_t phys = page_to_phys(sg_page(s));
1337 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1338
1339 if (!arch_is_coherent())
1340 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1341
1342 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1343 if (ret < 0)
1344 goto fail;
1345 count += len >> PAGE_SHIFT;
1346 iova += len;
1347 }
1348 *handle = iova_base;
1349
1350 return 0;
1351fail:
1352 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1353 __free_iova(mapping, iova_base, size);
1354 return ret;
1355}
1356
1357/**
1358 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1359 * @dev: valid struct device pointer
1360 * @sg: list of buffers
1361 * @nents: number of buffers to map
1362 * @dir: DMA transfer direction
1363 *
1364 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1365 * The scatter gather list elements are merged together (if possible) and
1366 * tagged with the appropriate dma address and length. They are obtained via
1367 * sg_dma_{address,length}.
1368 */
1369int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1370 enum dma_data_direction dir, struct dma_attrs *attrs)
1371{
1372 struct scatterlist *s = sg, *dma = sg, *start = sg;
1373 int i, count = 0;
1374 unsigned int offset = s->offset;
1375 unsigned int size = s->offset + s->length;
1376 unsigned int max = dma_get_max_seg_size(dev);
1377
1378 for (i = 1; i < nents; i++) {
1379 s = sg_next(s);
1380
1381 s->dma_address = DMA_ERROR_CODE;
1382 s->dma_length = 0;
1383
1384 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1385 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1386 dir) < 0)
1387 goto bad_mapping;
1388
1389 dma->dma_address += offset;
1390 dma->dma_length = size - offset;
1391
1392 size = offset = s->offset;
1393 start = s;
1394 dma = sg_next(dma);
1395 count += 1;
1396 }
1397 size += s->length;
1398 }
1399 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
1400 goto bad_mapping;
1401
1402 dma->dma_address += offset;
1403 dma->dma_length = size - offset;
1404
1405 return count+1;
1406
1407bad_mapping:
1408 for_each_sg(sg, s, count, i)
1409 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1410 return 0;
1411}
1412
1413/**
1414 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1415 * @dev: valid struct device pointer
1416 * @sg: list of buffers
1417 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1418 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1419 *
1420 * Unmap a set of streaming mode DMA translations. Again, CPU access
1421 * rules concerning calls here are the same as for dma_unmap_single().
1422 */
1423void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1424 enum dma_data_direction dir, struct dma_attrs *attrs)
1425{
1426 struct scatterlist *s;
1427 int i;
1428
1429 for_each_sg(sg, s, nents, i) {
1430 if (sg_dma_len(s))
1431 __iommu_remove_mapping(dev, sg_dma_address(s),
1432 sg_dma_len(s));
1433 if (!arch_is_coherent())
1434 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1435 s->length, dir);
1436 }
1437}
1438
1439/**
1440 * arm_iommu_sync_sg_for_cpu
1441 * @dev: valid struct device pointer
1442 * @sg: list of buffers
1443 * @nents: number of buffers to map (returned from dma_map_sg)
1444 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1445 */
1446void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1447 int nents, enum dma_data_direction dir)
1448{
1449 struct scatterlist *s;
1450 int i;
1451
1452 for_each_sg(sg, s, nents, i)
1453 if (!arch_is_coherent())
1454 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1455
1456}
1457
1458/**
1459 * arm_iommu_sync_sg_for_device
1460 * @dev: valid struct device pointer
1461 * @sg: list of buffers
1462 * @nents: number of buffers to map (returned from dma_map_sg)
1463 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1464 */
1465void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1466 int nents, enum dma_data_direction dir)
1467{
1468 struct scatterlist *s;
1469 int i;
1470
1471 for_each_sg(sg, s, nents, i)
1472 if (!arch_is_coherent())
1473 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1474}
1475
1476
1477/**
1478 * arm_iommu_map_page
1479 * @dev: valid struct device pointer
1480 * @page: page that buffer resides in
1481 * @offset: offset into page for start of buffer
1482 * @size: size of buffer to map
1483 * @dir: DMA transfer direction
1484 *
1485 * IOMMU aware version of arm_dma_map_page()
1486 */
1487static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1488 unsigned long offset, size_t size, enum dma_data_direction dir,
1489 struct dma_attrs *attrs)
1490{
1491 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1492 dma_addr_t dma_addr;
1493 int ret, len = PAGE_ALIGN(size + offset);
1494
1495 if (!arch_is_coherent())
1496 __dma_page_cpu_to_dev(page, offset, size, dir);
1497
1498 dma_addr = __alloc_iova(mapping, len);
1499 if (dma_addr == DMA_ERROR_CODE)
1500 return dma_addr;
1501
1502 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1503 if (ret < 0)
1504 goto fail;
1505
1506 return dma_addr + offset;
1507fail:
1508 __free_iova(mapping, dma_addr, len);
1509 return DMA_ERROR_CODE;
1510}
1511
1512/**
1513 * arm_iommu_unmap_page
1514 * @dev: valid struct device pointer
1515 * @handle: DMA address of buffer
1516 * @size: size of buffer (same as passed to dma_map_page)
1517 * @dir: DMA transfer direction (same as passed to dma_map_page)
1518 *
1519 * IOMMU aware version of arm_dma_unmap_page()
1520 */
1521static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1522 size_t size, enum dma_data_direction dir,
1523 struct dma_attrs *attrs)
1524{
1525 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1526 dma_addr_t iova = handle & PAGE_MASK;
1527 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1528 int offset = handle & ~PAGE_MASK;
1529 int len = PAGE_ALIGN(size + offset);
1530
1531 if (!iova)
1532 return;
1533
1534 if (!arch_is_coherent())
1535 __dma_page_dev_to_cpu(page, offset, size, dir);
1536
1537 iommu_unmap(mapping->domain, iova, len);
1538 __free_iova(mapping, iova, len);
1539}
1540
1541static void arm_iommu_sync_single_for_cpu(struct device *dev,
1542 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1543{
1544 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1545 dma_addr_t iova = handle & PAGE_MASK;
1546 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1547 unsigned int offset = handle & ~PAGE_MASK;
1548
1549 if (!iova)
1550 return;
1551
1552 if (!arch_is_coherent())
1553 __dma_page_dev_to_cpu(page, offset, size, dir);
1554}
1555
1556static void arm_iommu_sync_single_for_device(struct device *dev,
1557 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1558{
1559 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1560 dma_addr_t iova = handle & PAGE_MASK;
1561 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1562 unsigned int offset = handle & ~PAGE_MASK;
1563
1564 if (!iova)
1565 return;
1566
1567 __dma_page_cpu_to_dev(page, offset, size, dir);
1568}
1569
1570struct dma_map_ops iommu_ops = {
1571 .alloc = arm_iommu_alloc_attrs,
1572 .free = arm_iommu_free_attrs,
1573 .mmap = arm_iommu_mmap_attrs,
1574
1575 .map_page = arm_iommu_map_page,
1576 .unmap_page = arm_iommu_unmap_page,
1577 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1578 .sync_single_for_device = arm_iommu_sync_single_for_device,
1579
1580 .map_sg = arm_iommu_map_sg,
1581 .unmap_sg = arm_iommu_unmap_sg,
1582 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1583 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1584};
1585
1586/**
1587 * arm_iommu_create_mapping
1588 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1589 * @base: start address of the valid IO address space
1590 * @size: size of the valid IO address space
1591 * @order: accuracy of the IO addresses allocations
1592 *
1593 * Creates a mapping structure which holds information about used/unused
1594 * IO address ranges, which is required to perform memory allocation and
1595 * mapping with IOMMU aware functions.
1596 *
1597 * The client device need to be attached to the mapping with
1598 * arm_iommu_attach_device function.
1599 */
1600struct dma_iommu_mapping *
1601arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1602 int order)
1603{
1604 unsigned int count = size >> (PAGE_SHIFT + order);
1605 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1606 struct dma_iommu_mapping *mapping;
1607 int err = -ENOMEM;
1608
1609 if (!count)
1610 return ERR_PTR(-EINVAL);
1611
1612 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1613 if (!mapping)
1614 goto err;
1615
1616 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1617 if (!mapping->bitmap)
1618 goto err2;
1619
1620 mapping->base = base;
1621 mapping->bits = BITS_PER_BYTE * bitmap_size;
1622 mapping->order = order;
1623 spin_lock_init(&mapping->lock);
1624
1625 mapping->domain = iommu_domain_alloc(bus);
1626 if (!mapping->domain)
1627 goto err3;
1628
1629 kref_init(&mapping->kref);
1630 return mapping;
1631err3:
1632 kfree(mapping->bitmap);
1633err2:
1634 kfree(mapping);
1635err:
1636 return ERR_PTR(err);
1637}
1638
1639static void release_iommu_mapping(struct kref *kref)
1640{
1641 struct dma_iommu_mapping *mapping =
1642 container_of(kref, struct dma_iommu_mapping, kref);
1643
1644 iommu_domain_free(mapping->domain);
1645 kfree(mapping->bitmap);
1646 kfree(mapping);
1647}
1648
1649void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1650{
1651 if (mapping)
1652 kref_put(&mapping->kref, release_iommu_mapping);
1653}
1654
1655/**
1656 * arm_iommu_attach_device
1657 * @dev: valid struct device pointer
1658 * @mapping: io address space mapping structure (returned from
1659 * arm_iommu_create_mapping)
1660 *
1661 * Attaches specified io address space mapping to the provided device,
1662 * this replaces the dma operations (dma_map_ops pointer) with the
1663 * IOMMU aware version. More than one client might be attached to
1664 * the same io address space mapping.
1665 */
1666int arm_iommu_attach_device(struct device *dev,
1667 struct dma_iommu_mapping *mapping)
1668{
1669 int err;
1670
1671 err = iommu_attach_device(mapping->domain, dev);
1672 if (err)
1673 return err;
1674
1675 kref_get(&mapping->kref);
1676 dev->archdata.mapping = mapping;
1677 set_dma_ops(dev, &iommu_ops);
1678
1679 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1680 return 0;
1681}
1682
1683#endif