Linux Audio

Check our new training course

Loading...
v3.15
   1
   2#include <linux/sched.h>
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/sched/deadline.h>
   6#include <linux/mutex.h>
   7#include <linux/spinlock.h>
   8#include <linux/stop_machine.h>
   9#include <linux/tick.h>
  10#include <linux/slab.h>
  11
  12#include "cpupri.h"
  13#include "cpudeadline.h"
  14#include "cpuacct.h"
  15
  16struct rq;
  17
  18extern __read_mostly int scheduler_running;
  19
  20extern unsigned long calc_load_update;
  21extern atomic_long_t calc_load_tasks;
  22
  23extern long calc_load_fold_active(struct rq *this_rq);
  24extern void update_cpu_load_active(struct rq *this_rq);
 
 
 
 
 
 
 
 
 
 
 
 
  25
  26/*
  27 * Helpers for converting nanosecond timing to jiffy resolution
  28 */
  29#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  30
  31/*
  32 * Increase resolution of nice-level calculations for 64-bit architectures.
  33 * The extra resolution improves shares distribution and load balancing of
  34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  35 * hierarchies, especially on larger systems. This is not a user-visible change
  36 * and does not change the user-interface for setting shares/weights.
  37 *
  38 * We increase resolution only if we have enough bits to allow this increased
  39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  41 * increased costs.
  42 */
  43#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
  44# define SCHED_LOAD_RESOLUTION	10
  45# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
  46# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
  47#else
  48# define SCHED_LOAD_RESOLUTION	0
  49# define scale_load(w)		(w)
  50# define scale_load_down(w)	(w)
  51#endif
  52
  53#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
  54#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
  55
  56#define NICE_0_LOAD		SCHED_LOAD_SCALE
  57#define NICE_0_SHIFT		SCHED_LOAD_SHIFT
  58
  59/*
  60 * Single value that decides SCHED_DEADLINE internal math precision.
  61 * 10 -> just above 1us
  62 * 9  -> just above 0.5us
  63 */
  64#define DL_SCALE (10)
  65
  66/*
  67 * These are the 'tuning knobs' of the scheduler:
  68 */
  69
  70/*
  71 * single value that denotes runtime == period, ie unlimited time.
  72 */
  73#define RUNTIME_INF	((u64)~0ULL)
  74
  75static inline int fair_policy(int policy)
  76{
  77	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  78}
  79
  80static inline int rt_policy(int policy)
  81{
  82	return policy == SCHED_FIFO || policy == SCHED_RR;
  83}
  84
  85static inline int dl_policy(int policy)
  86{
  87	return policy == SCHED_DEADLINE;
  88}
  89
  90static inline int task_has_rt_policy(struct task_struct *p)
  91{
  92	return rt_policy(p->policy);
  93}
  94
  95static inline int task_has_dl_policy(struct task_struct *p)
  96{
  97	return dl_policy(p->policy);
  98}
  99
 100static inline bool dl_time_before(u64 a, u64 b)
 101{
 102	return (s64)(a - b) < 0;
 103}
 104
 105/*
 106 * Tells if entity @a should preempt entity @b.
 107 */
 108static inline bool
 109dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 110{
 111	return dl_time_before(a->deadline, b->deadline);
 112}
 113
 114/*
 115 * This is the priority-queue data structure of the RT scheduling class:
 116 */
 117struct rt_prio_array {
 118	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 119	struct list_head queue[MAX_RT_PRIO];
 120};
 121
 122struct rt_bandwidth {
 123	/* nests inside the rq lock: */
 124	raw_spinlock_t		rt_runtime_lock;
 125	ktime_t			rt_period;
 126	u64			rt_runtime;
 127	struct hrtimer		rt_period_timer;
 128};
 129/*
 130 * To keep the bandwidth of -deadline tasks and groups under control
 131 * we need some place where:
 132 *  - store the maximum -deadline bandwidth of the system (the group);
 133 *  - cache the fraction of that bandwidth that is currently allocated.
 134 *
 135 * This is all done in the data structure below. It is similar to the
 136 * one used for RT-throttling (rt_bandwidth), with the main difference
 137 * that, since here we are only interested in admission control, we
 138 * do not decrease any runtime while the group "executes", neither we
 139 * need a timer to replenish it.
 140 *
 141 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 142 * meaning that:
 143 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 144 *  - dl_total_bw array contains, in the i-eth element, the currently
 145 *    allocated bandwidth on the i-eth CPU.
 146 * Moreover, groups consume bandwidth on each CPU, while tasks only
 147 * consume bandwidth on the CPU they're running on.
 148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 149 * that will be shown the next time the proc or cgroup controls will
 150 * be red. It on its turn can be changed by writing on its own
 151 * control.
 152 */
 153struct dl_bandwidth {
 154	raw_spinlock_t dl_runtime_lock;
 155	u64 dl_runtime;
 156	u64 dl_period;
 157};
 158
 159static inline int dl_bandwidth_enabled(void)
 160{
 161	return sysctl_sched_rt_runtime >= 0;
 162}
 163
 164extern struct dl_bw *dl_bw_of(int i);
 165
 166struct dl_bw {
 167	raw_spinlock_t lock;
 168	u64 bw, total_bw;
 169};
 170
 171extern struct mutex sched_domains_mutex;
 172
 173#ifdef CONFIG_CGROUP_SCHED
 174
 175#include <linux/cgroup.h>
 176
 177struct cfs_rq;
 178struct rt_rq;
 179
 180extern struct list_head task_groups;
 181
 182struct cfs_bandwidth {
 183#ifdef CONFIG_CFS_BANDWIDTH
 184	raw_spinlock_t lock;
 185	ktime_t period;
 186	u64 quota, runtime;
 187	s64 hierarchal_quota;
 188	u64 runtime_expires;
 189
 190	int idle, timer_active;
 191	struct hrtimer period_timer, slack_timer;
 192	struct list_head throttled_cfs_rq;
 193
 194	/* statistics */
 195	int nr_periods, nr_throttled;
 196	u64 throttled_time;
 197#endif
 198};
 199
 200/* task group related information */
 201struct task_group {
 202	struct cgroup_subsys_state css;
 203
 204#ifdef CONFIG_FAIR_GROUP_SCHED
 205	/* schedulable entities of this group on each cpu */
 206	struct sched_entity **se;
 207	/* runqueue "owned" by this group on each cpu */
 208	struct cfs_rq **cfs_rq;
 209	unsigned long shares;
 210
 211#ifdef	CONFIG_SMP
 212	atomic_long_t load_avg;
 213	atomic_t runnable_avg;
 214#endif
 215#endif
 216
 217#ifdef CONFIG_RT_GROUP_SCHED
 218	struct sched_rt_entity **rt_se;
 219	struct rt_rq **rt_rq;
 220
 221	struct rt_bandwidth rt_bandwidth;
 222#endif
 223
 224	struct rcu_head rcu;
 225	struct list_head list;
 226
 227	struct task_group *parent;
 228	struct list_head siblings;
 229	struct list_head children;
 230
 231#ifdef CONFIG_SCHED_AUTOGROUP
 232	struct autogroup *autogroup;
 233#endif
 234
 235	struct cfs_bandwidth cfs_bandwidth;
 236};
 237
 238#ifdef CONFIG_FAIR_GROUP_SCHED
 239#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 240
 241/*
 242 * A weight of 0 or 1 can cause arithmetics problems.
 243 * A weight of a cfs_rq is the sum of weights of which entities
 244 * are queued on this cfs_rq, so a weight of a entity should not be
 245 * too large, so as the shares value of a task group.
 246 * (The default weight is 1024 - so there's no practical
 247 *  limitation from this.)
 248 */
 249#define MIN_SHARES	(1UL <<  1)
 250#define MAX_SHARES	(1UL << 18)
 251#endif
 252
 
 
 
 
 
 253typedef int (*tg_visitor)(struct task_group *, void *);
 254
 255extern int walk_tg_tree_from(struct task_group *from,
 256			     tg_visitor down, tg_visitor up, void *data);
 257
 258/*
 259 * Iterate the full tree, calling @down when first entering a node and @up when
 260 * leaving it for the final time.
 261 *
 262 * Caller must hold rcu_lock or sufficient equivalent.
 263 */
 264static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 265{
 266	return walk_tg_tree_from(&root_task_group, down, up, data);
 267}
 268
 269extern int tg_nop(struct task_group *tg, void *data);
 270
 271extern void free_fair_sched_group(struct task_group *tg);
 272extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 273extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
 274extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 275			struct sched_entity *se, int cpu,
 276			struct sched_entity *parent);
 277extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 278extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 279
 280extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 281extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
 282extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 283
 284extern void free_rt_sched_group(struct task_group *tg);
 285extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 286extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 287		struct sched_rt_entity *rt_se, int cpu,
 288		struct sched_rt_entity *parent);
 289
 290extern struct task_group *sched_create_group(struct task_group *parent);
 291extern void sched_online_group(struct task_group *tg,
 292			       struct task_group *parent);
 293extern void sched_destroy_group(struct task_group *tg);
 294extern void sched_offline_group(struct task_group *tg);
 295
 296extern void sched_move_task(struct task_struct *tsk);
 297
 298#ifdef CONFIG_FAIR_GROUP_SCHED
 299extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 300#endif
 301
 302#else /* CONFIG_CGROUP_SCHED */
 303
 304struct cfs_bandwidth { };
 305
 306#endif	/* CONFIG_CGROUP_SCHED */
 307
 308/* CFS-related fields in a runqueue */
 309struct cfs_rq {
 310	struct load_weight load;
 311	unsigned int nr_running, h_nr_running;
 312
 313	u64 exec_clock;
 314	u64 min_vruntime;
 315#ifndef CONFIG_64BIT
 316	u64 min_vruntime_copy;
 317#endif
 318
 319	struct rb_root tasks_timeline;
 320	struct rb_node *rb_leftmost;
 321
 322	/*
 323	 * 'curr' points to currently running entity on this cfs_rq.
 324	 * It is set to NULL otherwise (i.e when none are currently running).
 325	 */
 326	struct sched_entity *curr, *next, *last, *skip;
 327
 328#ifdef	CONFIG_SCHED_DEBUG
 329	unsigned int nr_spread_over;
 330#endif
 331
 332#ifdef CONFIG_SMP
 333	/*
 334	 * CFS Load tracking
 335	 * Under CFS, load is tracked on a per-entity basis and aggregated up.
 336	 * This allows for the description of both thread and group usage (in
 337	 * the FAIR_GROUP_SCHED case).
 338	 */
 339	unsigned long runnable_load_avg, blocked_load_avg;
 340	atomic64_t decay_counter;
 341	u64 last_decay;
 342	atomic_long_t removed_load;
 343
 344#ifdef CONFIG_FAIR_GROUP_SCHED
 345	/* Required to track per-cpu representation of a task_group */
 346	u32 tg_runnable_contrib;
 347	unsigned long tg_load_contrib;
 348
 349	/*
 350	 *   h_load = weight * f(tg)
 351	 *
 352	 * Where f(tg) is the recursive weight fraction assigned to
 353	 * this group.
 354	 */
 355	unsigned long h_load;
 356	u64 last_h_load_update;
 357	struct sched_entity *h_load_next;
 358#endif /* CONFIG_FAIR_GROUP_SCHED */
 359#endif /* CONFIG_SMP */
 360
 361#ifdef CONFIG_FAIR_GROUP_SCHED
 362	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 363
 364	/*
 365	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 366	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 367	 * (like users, containers etc.)
 368	 *
 369	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 370	 * list is used during load balance.
 371	 */
 372	int on_list;
 373	struct list_head leaf_cfs_rq_list;
 374	struct task_group *tg;	/* group that "owns" this runqueue */
 375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376#ifdef CONFIG_CFS_BANDWIDTH
 377	int runtime_enabled;
 378	u64 runtime_expires;
 379	s64 runtime_remaining;
 380
 381	u64 throttled_clock, throttled_clock_task;
 382	u64 throttled_clock_task_time;
 383	int throttled, throttle_count;
 384	struct list_head throttled_list;
 385#endif /* CONFIG_CFS_BANDWIDTH */
 386#endif /* CONFIG_FAIR_GROUP_SCHED */
 387};
 388
 389static inline int rt_bandwidth_enabled(void)
 390{
 391	return sysctl_sched_rt_runtime >= 0;
 392}
 393
 394/* Real-Time classes' related field in a runqueue: */
 395struct rt_rq {
 396	struct rt_prio_array active;
 397	unsigned int rt_nr_running;
 398#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 399	struct {
 400		int curr; /* highest queued rt task prio */
 401#ifdef CONFIG_SMP
 402		int next; /* next highest */
 403#endif
 404	} highest_prio;
 405#endif
 406#ifdef CONFIG_SMP
 407	unsigned long rt_nr_migratory;
 408	unsigned long rt_nr_total;
 409	int overloaded;
 410	struct plist_head pushable_tasks;
 411#endif
 412	int rt_throttled;
 413	u64 rt_time;
 414	u64 rt_runtime;
 415	/* Nests inside the rq lock: */
 416	raw_spinlock_t rt_runtime_lock;
 417
 418#ifdef CONFIG_RT_GROUP_SCHED
 419	unsigned long rt_nr_boosted;
 420
 421	struct rq *rq;
 
 422	struct task_group *tg;
 423#endif
 424};
 425
 426#ifdef CONFIG_RT_GROUP_SCHED
 427static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 428{
 429	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 430}
 431#else
 432static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 433{
 434	return rt_rq->rt_throttled;
 435}
 436#endif
 437
 438/* Deadline class' related fields in a runqueue */
 439struct dl_rq {
 440	/* runqueue is an rbtree, ordered by deadline */
 441	struct rb_root rb_root;
 442	struct rb_node *rb_leftmost;
 443
 444	unsigned long dl_nr_running;
 445
 446#ifdef CONFIG_SMP
 447	/*
 448	 * Deadline values of the currently executing and the
 449	 * earliest ready task on this rq. Caching these facilitates
 450	 * the decision wether or not a ready but not running task
 451	 * should migrate somewhere else.
 452	 */
 453	struct {
 454		u64 curr;
 455		u64 next;
 456	} earliest_dl;
 457
 458	unsigned long dl_nr_migratory;
 459	int overloaded;
 460
 461	/*
 462	 * Tasks on this rq that can be pushed away. They are kept in
 463	 * an rb-tree, ordered by tasks' deadlines, with caching
 464	 * of the leftmost (earliest deadline) element.
 465	 */
 466	struct rb_root pushable_dl_tasks_root;
 467	struct rb_node *pushable_dl_tasks_leftmost;
 468#else
 469	struct dl_bw dl_bw;
 470#endif
 471};
 472
 473#ifdef CONFIG_SMP
 474
 475/*
 476 * We add the notion of a root-domain which will be used to define per-domain
 477 * variables. Each exclusive cpuset essentially defines an island domain by
 478 * fully partitioning the member cpus from any other cpuset. Whenever a new
 479 * exclusive cpuset is created, we also create and attach a new root-domain
 480 * object.
 481 *
 482 */
 483struct root_domain {
 484	atomic_t refcount;
 485	atomic_t rto_count;
 486	struct rcu_head rcu;
 487	cpumask_var_t span;
 488	cpumask_var_t online;
 489
 490	/*
 491	 * The bit corresponding to a CPU gets set here if such CPU has more
 492	 * than one runnable -deadline task (as it is below for RT tasks).
 493	 */
 494	cpumask_var_t dlo_mask;
 495	atomic_t dlo_count;
 496	struct dl_bw dl_bw;
 497	struct cpudl cpudl;
 498
 499	/*
 500	 * The "RT overload" flag: it gets set if a CPU has more than
 501	 * one runnable RT task.
 502	 */
 503	cpumask_var_t rto_mask;
 504	struct cpupri cpupri;
 505};
 506
 507extern struct root_domain def_root_domain;
 508
 509#endif /* CONFIG_SMP */
 510
 511/*
 512 * This is the main, per-CPU runqueue data structure.
 513 *
 514 * Locking rule: those places that want to lock multiple runqueues
 515 * (such as the load balancing or the thread migration code), lock
 516 * acquire operations must be ordered by ascending &runqueue.
 517 */
 518struct rq {
 519	/* runqueue lock: */
 520	raw_spinlock_t lock;
 521
 522	/*
 523	 * nr_running and cpu_load should be in the same cacheline because
 524	 * remote CPUs use both these fields when doing load calculation.
 525	 */
 526	unsigned int nr_running;
 527#ifdef CONFIG_NUMA_BALANCING
 528	unsigned int nr_numa_running;
 529	unsigned int nr_preferred_running;
 530#endif
 531	#define CPU_LOAD_IDX_MAX 5
 532	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 533	unsigned long last_load_update_tick;
 534#ifdef CONFIG_NO_HZ_COMMON
 535	u64 nohz_stamp;
 536	unsigned long nohz_flags;
 537#endif
 538#ifdef CONFIG_NO_HZ_FULL
 539	unsigned long last_sched_tick;
 540#endif
 541	int skip_clock_update;
 542
 543	/* capture load from *all* tasks on this cpu: */
 544	struct load_weight load;
 545	unsigned long nr_load_updates;
 546	u64 nr_switches;
 547
 548	struct cfs_rq cfs;
 549	struct rt_rq rt;
 550	struct dl_rq dl;
 551
 552#ifdef CONFIG_FAIR_GROUP_SCHED
 553	/* list of leaf cfs_rq on this cpu: */
 554	struct list_head leaf_cfs_rq_list;
 555
 556	struct sched_avg avg;
 557#endif /* CONFIG_FAIR_GROUP_SCHED */
 
 558
 559	/*
 560	 * This is part of a global counter where only the total sum
 561	 * over all CPUs matters. A task can increase this counter on
 562	 * one CPU and if it got migrated afterwards it may decrease
 563	 * it on another CPU. Always updated under the runqueue lock:
 564	 */
 565	unsigned long nr_uninterruptible;
 566
 567	struct task_struct *curr, *idle, *stop;
 568	unsigned long next_balance;
 569	struct mm_struct *prev_mm;
 570
 571	u64 clock;
 572	u64 clock_task;
 573
 574	atomic_t nr_iowait;
 575
 576#ifdef CONFIG_SMP
 577	struct root_domain *rd;
 578	struct sched_domain *sd;
 579
 580	unsigned long cpu_power;
 581
 582	unsigned char idle_balance;
 583	/* For active balancing */
 584	int post_schedule;
 585	int active_balance;
 586	int push_cpu;
 587	struct cpu_stop_work active_balance_work;
 588	/* cpu of this runqueue: */
 589	int cpu;
 590	int online;
 591
 592	struct list_head cfs_tasks;
 593
 594	u64 rt_avg;
 595	u64 age_stamp;
 596	u64 idle_stamp;
 597	u64 avg_idle;
 598
 599	/* This is used to determine avg_idle's max value */
 600	u64 max_idle_balance_cost;
 601#endif
 602
 603#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 604	u64 prev_irq_time;
 605#endif
 606#ifdef CONFIG_PARAVIRT
 607	u64 prev_steal_time;
 608#endif
 609#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 610	u64 prev_steal_time_rq;
 611#endif
 612
 613	/* calc_load related fields */
 614	unsigned long calc_load_update;
 615	long calc_load_active;
 616
 617#ifdef CONFIG_SCHED_HRTICK
 618#ifdef CONFIG_SMP
 619	int hrtick_csd_pending;
 620	struct call_single_data hrtick_csd;
 621#endif
 622	struct hrtimer hrtick_timer;
 623#endif
 624
 625#ifdef CONFIG_SCHEDSTATS
 626	/* latency stats */
 627	struct sched_info rq_sched_info;
 628	unsigned long long rq_cpu_time;
 629	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 630
 631	/* sys_sched_yield() stats */
 632	unsigned int yld_count;
 633
 634	/* schedule() stats */
 635	unsigned int sched_count;
 636	unsigned int sched_goidle;
 637
 638	/* try_to_wake_up() stats */
 639	unsigned int ttwu_count;
 640	unsigned int ttwu_local;
 641#endif
 642
 643#ifdef CONFIG_SMP
 644	struct llist_head wake_list;
 645#endif
 646};
 647
 648static inline int cpu_of(struct rq *rq)
 649{
 650#ifdef CONFIG_SMP
 651	return rq->cpu;
 652#else
 653	return 0;
 654#endif
 655}
 656
 657DECLARE_PER_CPU(struct rq, runqueues);
 658
 659#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 660#define this_rq()		(&__get_cpu_var(runqueues))
 661#define task_rq(p)		cpu_rq(task_cpu(p))
 662#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 663#define raw_rq()		(&__raw_get_cpu_var(runqueues))
 664
 665static inline u64 rq_clock(struct rq *rq)
 666{
 667	return rq->clock;
 668}
 669
 670static inline u64 rq_clock_task(struct rq *rq)
 671{
 672	return rq->clock_task;
 673}
 674
 675#ifdef CONFIG_NUMA_BALANCING
 676extern void sched_setnuma(struct task_struct *p, int node);
 677extern int migrate_task_to(struct task_struct *p, int cpu);
 678extern int migrate_swap(struct task_struct *, struct task_struct *);
 679#endif /* CONFIG_NUMA_BALANCING */
 680
 681#ifdef CONFIG_SMP
 682
 683#define rcu_dereference_check_sched_domain(p) \
 684	rcu_dereference_check((p), \
 685			      lockdep_is_held(&sched_domains_mutex))
 686
 687/*
 688 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 689 * See detach_destroy_domains: synchronize_sched for details.
 690 *
 691 * The domain tree of any CPU may only be accessed from within
 692 * preempt-disabled sections.
 693 */
 694#define for_each_domain(cpu, __sd) \
 695	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 696			__sd; __sd = __sd->parent)
 697
 698#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 699
 700/**
 701 * highest_flag_domain - Return highest sched_domain containing flag.
 702 * @cpu:	The cpu whose highest level of sched domain is to
 703 *		be returned.
 704 * @flag:	The flag to check for the highest sched_domain
 705 *		for the given cpu.
 706 *
 707 * Returns the highest sched_domain of a cpu which contains the given flag.
 708 */
 709static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 710{
 711	struct sched_domain *sd, *hsd = NULL;
 712
 713	for_each_domain(cpu, sd) {
 714		if (!(sd->flags & flag))
 715			break;
 716		hsd = sd;
 717	}
 718
 719	return hsd;
 720}
 721
 722static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 723{
 724	struct sched_domain *sd;
 725
 726	for_each_domain(cpu, sd) {
 727		if (sd->flags & flag)
 728			break;
 729	}
 730
 731	return sd;
 732}
 733
 734DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 735DECLARE_PER_CPU(int, sd_llc_size);
 736DECLARE_PER_CPU(int, sd_llc_id);
 737DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 738DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 739DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 740
 741struct sched_group_power {
 742	atomic_t ref;
 743	/*
 744	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 745	 * single CPU.
 746	 */
 747	unsigned int power, power_orig;
 748	unsigned long next_update;
 749	int imbalance; /* XXX unrelated to power but shared group state */
 750	/*
 751	 * Number of busy cpus in this group.
 752	 */
 753	atomic_t nr_busy_cpus;
 754
 755	unsigned long cpumask[0]; /* iteration mask */
 756};
 757
 758struct sched_group {
 759	struct sched_group *next;	/* Must be a circular list */
 760	atomic_t ref;
 761
 762	unsigned int group_weight;
 763	struct sched_group_power *sgp;
 764
 765	/*
 766	 * The CPUs this group covers.
 767	 *
 768	 * NOTE: this field is variable length. (Allocated dynamically
 769	 * by attaching extra space to the end of the structure,
 770	 * depending on how many CPUs the kernel has booted up with)
 771	 */
 772	unsigned long cpumask[0];
 773};
 774
 775static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 776{
 777	return to_cpumask(sg->cpumask);
 778}
 779
 780/*
 781 * cpumask masking which cpus in the group are allowed to iterate up the domain
 782 * tree.
 783 */
 784static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 785{
 786	return to_cpumask(sg->sgp->cpumask);
 787}
 788
 789/**
 790 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 791 * @group: The group whose first cpu is to be returned.
 792 */
 793static inline unsigned int group_first_cpu(struct sched_group *group)
 794{
 795	return cpumask_first(sched_group_cpus(group));
 796}
 797
 798extern int group_balance_cpu(struct sched_group *sg);
 799
 800#endif /* CONFIG_SMP */
 801
 802#include "stats.h"
 803#include "auto_group.h"
 804
 805#ifdef CONFIG_CGROUP_SCHED
 806
 807/*
 808 * Return the group to which this tasks belongs.
 809 *
 810 * We cannot use task_css() and friends because the cgroup subsystem
 811 * changes that value before the cgroup_subsys::attach() method is called,
 812 * therefore we cannot pin it and might observe the wrong value.
 813 *
 814 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 815 * core changes this before calling sched_move_task().
 816 *
 817 * Instead we use a 'copy' which is updated from sched_move_task() while
 818 * holding both task_struct::pi_lock and rq::lock.
 819 */
 820static inline struct task_group *task_group(struct task_struct *p)
 821{
 822	return p->sched_task_group;
 823}
 824
 825/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 826static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 827{
 828#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 829	struct task_group *tg = task_group(p);
 830#endif
 831
 832#ifdef CONFIG_FAIR_GROUP_SCHED
 833	p->se.cfs_rq = tg->cfs_rq[cpu];
 834	p->se.parent = tg->se[cpu];
 835#endif
 836
 837#ifdef CONFIG_RT_GROUP_SCHED
 838	p->rt.rt_rq  = tg->rt_rq[cpu];
 839	p->rt.parent = tg->rt_se[cpu];
 840#endif
 841}
 842
 843#else /* CONFIG_CGROUP_SCHED */
 844
 845static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 846static inline struct task_group *task_group(struct task_struct *p)
 847{
 848	return NULL;
 849}
 850
 851#endif /* CONFIG_CGROUP_SCHED */
 852
 853static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 854{
 855	set_task_rq(p, cpu);
 856#ifdef CONFIG_SMP
 857	/*
 858	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 859	 * successfuly executed on another CPU. We must ensure that updates of
 860	 * per-task data have been completed by this moment.
 861	 */
 862	smp_wmb();
 863	task_thread_info(p)->cpu = cpu;
 864	p->wake_cpu = cpu;
 865#endif
 866}
 867
 868/*
 869 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 870 */
 871#ifdef CONFIG_SCHED_DEBUG
 872# include <linux/static_key.h>
 873# define const_debug __read_mostly
 874#else
 875# define const_debug const
 876#endif
 877
 878extern const_debug unsigned int sysctl_sched_features;
 879
 880#define SCHED_FEAT(name, enabled)	\
 881	__SCHED_FEAT_##name ,
 882
 883enum {
 884#include "features.h"
 885	__SCHED_FEAT_NR,
 886};
 887
 888#undef SCHED_FEAT
 889
 890#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 891static __always_inline bool static_branch__true(struct static_key *key)
 892{
 893	return static_key_true(key); /* Not out of line branch. */
 894}
 895
 896static __always_inline bool static_branch__false(struct static_key *key)
 897{
 898	return static_key_false(key); /* Out of line branch. */
 899}
 900
 901#define SCHED_FEAT(name, enabled)					\
 902static __always_inline bool static_branch_##name(struct static_key *key) \
 903{									\
 904	return static_branch__##enabled(key);				\
 905}
 906
 907#include "features.h"
 908
 909#undef SCHED_FEAT
 910
 911extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
 912#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
 913#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 914#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 915#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 916
 917#ifdef CONFIG_NUMA_BALANCING
 918#define sched_feat_numa(x) sched_feat(x)
 919#ifdef CONFIG_SCHED_DEBUG
 920#define numabalancing_enabled sched_feat_numa(NUMA)
 921#else
 922extern bool numabalancing_enabled;
 923#endif /* CONFIG_SCHED_DEBUG */
 924#else
 925#define sched_feat_numa(x) (0)
 926#define numabalancing_enabled (0)
 927#endif /* CONFIG_NUMA_BALANCING */
 928
 929static inline u64 global_rt_period(void)
 930{
 931	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 932}
 933
 934static inline u64 global_rt_runtime(void)
 935{
 936	if (sysctl_sched_rt_runtime < 0)
 937		return RUNTIME_INF;
 938
 939	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 940}
 941
 
 
 942static inline int task_current(struct rq *rq, struct task_struct *p)
 943{
 944	return rq->curr == p;
 945}
 946
 947static inline int task_running(struct rq *rq, struct task_struct *p)
 948{
 949#ifdef CONFIG_SMP
 950	return p->on_cpu;
 951#else
 952	return task_current(rq, p);
 953#endif
 954}
 955
 956
 957#ifndef prepare_arch_switch
 958# define prepare_arch_switch(next)	do { } while (0)
 959#endif
 960#ifndef finish_arch_switch
 961# define finish_arch_switch(prev)	do { } while (0)
 962#endif
 963#ifndef finish_arch_post_lock_switch
 964# define finish_arch_post_lock_switch()	do { } while (0)
 965#endif
 966
 967#ifndef __ARCH_WANT_UNLOCKED_CTXSW
 968static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 969{
 970#ifdef CONFIG_SMP
 971	/*
 972	 * We can optimise this out completely for !SMP, because the
 973	 * SMP rebalancing from interrupt is the only thing that cares
 974	 * here.
 975	 */
 976	next->on_cpu = 1;
 977#endif
 978}
 979
 980static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 981{
 982#ifdef CONFIG_SMP
 983	/*
 984	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
 985	 * We must ensure this doesn't happen until the switch is completely
 986	 * finished.
 987	 */
 988	smp_wmb();
 989	prev->on_cpu = 0;
 990#endif
 991#ifdef CONFIG_DEBUG_SPINLOCK
 992	/* this is a valid case when another task releases the spinlock */
 993	rq->lock.owner = current;
 994#endif
 995	/*
 996	 * If we are tracking spinlock dependencies then we have to
 997	 * fix up the runqueue lock - which gets 'carried over' from
 998	 * prev into current:
 999	 */
1000	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1001
1002	raw_spin_unlock_irq(&rq->lock);
1003}
1004
1005#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1006static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1007{
1008#ifdef CONFIG_SMP
1009	/*
1010	 * We can optimise this out completely for !SMP, because the
1011	 * SMP rebalancing from interrupt is the only thing that cares
1012	 * here.
1013	 */
1014	next->on_cpu = 1;
1015#endif
 
 
 
1016	raw_spin_unlock(&rq->lock);
 
1017}
1018
1019static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1020{
1021#ifdef CONFIG_SMP
1022	/*
1023	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1024	 * We must ensure this doesn't happen until the switch is completely
1025	 * finished.
1026	 */
1027	smp_wmb();
1028	prev->on_cpu = 0;
1029#endif
 
1030	local_irq_enable();
 
1031}
1032#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1033
1034/*
1035 * wake flags
1036 */
1037#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1038#define WF_FORK		0x02		/* child wakeup after fork */
1039#define WF_MIGRATED	0x4		/* internal use, task got migrated */
 
 
 
 
 
 
 
 
 
 
 
 
1040
1041/*
1042 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1043 * of tasks with abnormal "nice" values across CPUs the contribution that
1044 * each task makes to its run queue's load is weighted according to its
1045 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1046 * scaled version of the new time slice allocation that they receive on time
1047 * slice expiry etc.
1048 */
1049
1050#define WEIGHT_IDLEPRIO                3
1051#define WMULT_IDLEPRIO         1431655765
1052
1053/*
1054 * Nice levels are multiplicative, with a gentle 10% change for every
1055 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1056 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1057 * that remained on nice 0.
1058 *
1059 * The "10% effect" is relative and cumulative: from _any_ nice level,
1060 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1061 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1062 * If a task goes up by ~10% and another task goes down by ~10% then
1063 * the relative distance between them is ~25%.)
1064 */
1065static const int prio_to_weight[40] = {
1066 /* -20 */     88761,     71755,     56483,     46273,     36291,
1067 /* -15 */     29154,     23254,     18705,     14949,     11916,
1068 /* -10 */      9548,      7620,      6100,      4904,      3906,
1069 /*  -5 */      3121,      2501,      1991,      1586,      1277,
1070 /*   0 */      1024,       820,       655,       526,       423,
1071 /*   5 */       335,       272,       215,       172,       137,
1072 /*  10 */       110,        87,        70,        56,        45,
1073 /*  15 */        36,        29,        23,        18,        15,
1074};
1075
1076/*
1077 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1078 *
1079 * In cases where the weight does not change often, we can use the
1080 * precalculated inverse to speed up arithmetics by turning divisions
1081 * into multiplications:
1082 */
1083static const u32 prio_to_wmult[40] = {
1084 /* -20 */     48388,     59856,     76040,     92818,    118348,
1085 /* -15 */    147320,    184698,    229616,    287308,    360437,
1086 /* -10 */    449829,    563644,    704093,    875809,   1099582,
1087 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1088 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1089 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1090 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1091 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1092};
1093
1094#define ENQUEUE_WAKEUP		1
1095#define ENQUEUE_HEAD		2
1096#ifdef CONFIG_SMP
1097#define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1098#else
1099#define ENQUEUE_WAKING		0
1100#endif
1101#define ENQUEUE_REPLENISH	8
1102
1103#define DEQUEUE_SLEEP		1
1104
1105#define RETRY_TASK		((void *)-1UL)
1106
1107struct sched_class {
1108	const struct sched_class *next;
1109
1110	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1111	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1112	void (*yield_task) (struct rq *rq);
1113	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1114
1115	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1116
1117	/*
1118	 * It is the responsibility of the pick_next_task() method that will
1119	 * return the next task to call put_prev_task() on the @prev task or
1120	 * something equivalent.
1121	 *
1122	 * May return RETRY_TASK when it finds a higher prio class has runnable
1123	 * tasks.
1124	 */
1125	struct task_struct * (*pick_next_task) (struct rq *rq,
1126						struct task_struct *prev);
1127	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1128
1129#ifdef CONFIG_SMP
1130	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1131	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1132
1133	void (*post_schedule) (struct rq *this_rq);
1134	void (*task_waking) (struct task_struct *task);
1135	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1136
1137	void (*set_cpus_allowed)(struct task_struct *p,
1138				 const struct cpumask *newmask);
1139
1140	void (*rq_online)(struct rq *rq);
1141	void (*rq_offline)(struct rq *rq);
1142#endif
1143
1144	void (*set_curr_task) (struct rq *rq);
1145	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1146	void (*task_fork) (struct task_struct *p);
1147	void (*task_dead) (struct task_struct *p);
1148
1149	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1150	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1151	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1152			     int oldprio);
1153
1154	unsigned int (*get_rr_interval) (struct rq *rq,
1155					 struct task_struct *task);
1156
1157#ifdef CONFIG_FAIR_GROUP_SCHED
1158	void (*task_move_group) (struct task_struct *p, int on_rq);
1159#endif
1160};
1161
1162static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1163{
1164	prev->sched_class->put_prev_task(rq, prev);
1165}
1166
1167#define sched_class_highest (&stop_sched_class)
1168#define for_each_class(class) \
1169   for (class = sched_class_highest; class; class = class->next)
1170
1171extern const struct sched_class stop_sched_class;
1172extern const struct sched_class dl_sched_class;
1173extern const struct sched_class rt_sched_class;
1174extern const struct sched_class fair_sched_class;
1175extern const struct sched_class idle_sched_class;
1176
1177
1178#ifdef CONFIG_SMP
1179
1180extern void update_group_power(struct sched_domain *sd, int cpu);
1181
1182extern void trigger_load_balance(struct rq *rq);
1183
1184extern void idle_enter_fair(struct rq *this_rq);
1185extern void idle_exit_fair(struct rq *this_rq);
1186
1187#else
1188
1189static inline void idle_enter_fair(struct rq *rq) { }
1190static inline void idle_exit_fair(struct rq *rq) { }
1191
1192#endif
1193
1194extern void sysrq_sched_debug_show(void);
1195extern void sched_init_granularity(void);
1196extern void update_max_interval(void);
1197
1198extern void init_sched_dl_class(void);
1199extern void init_sched_rt_class(void);
1200extern void init_sched_fair_class(void);
1201extern void init_sched_dl_class(void);
1202
1203extern void resched_task(struct task_struct *p);
1204extern void resched_cpu(int cpu);
1205
1206extern struct rt_bandwidth def_rt_bandwidth;
1207extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1208
1209extern struct dl_bandwidth def_dl_bandwidth;
1210extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1211extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1212
1213unsigned long to_ratio(u64 period, u64 runtime);
 
 
 
 
 
 
 
 
1214
1215extern void update_idle_cpu_load(struct rq *this_rq);
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217extern void init_task_runnable_average(struct task_struct *p);
 
 
 
 
 
 
 
 
 
 
1218
1219static inline void inc_nr_running(struct rq *rq)
1220{
1221	rq->nr_running++;
1222
1223#ifdef CONFIG_NO_HZ_FULL
1224	if (rq->nr_running == 2) {
1225		if (tick_nohz_full_cpu(rq->cpu)) {
1226			/* Order rq->nr_running write against the IPI */
1227			smp_wmb();
1228			smp_send_reschedule(rq->cpu);
1229		}
1230       }
1231#endif
1232}
1233
1234static inline void dec_nr_running(struct rq *rq)
1235{
1236	rq->nr_running--;
1237}
1238
1239static inline void rq_last_tick_reset(struct rq *rq)
1240{
1241#ifdef CONFIG_NO_HZ_FULL
1242	rq->last_sched_tick = jiffies;
1243#endif
1244}
1245
1246extern void update_rq_clock(struct rq *rq);
1247
1248extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1249extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1250
1251extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1252
1253extern const_debug unsigned int sysctl_sched_time_avg;
1254extern const_debug unsigned int sysctl_sched_nr_migrate;
1255extern const_debug unsigned int sysctl_sched_migration_cost;
1256
1257static inline u64 sched_avg_period(void)
1258{
1259	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262#ifdef CONFIG_SCHED_HRTICK
1263
1264/*
1265 * Use hrtick when:
1266 *  - enabled by features
1267 *  - hrtimer is actually high res
1268 */
1269static inline int hrtick_enabled(struct rq *rq)
1270{
1271	if (!sched_feat(HRTICK))
1272		return 0;
1273	if (!cpu_active(cpu_of(rq)))
1274		return 0;
1275	return hrtimer_is_hres_active(&rq->hrtick_timer);
1276}
1277
1278void hrtick_start(struct rq *rq, u64 delay);
1279
1280#else
1281
1282static inline int hrtick_enabled(struct rq *rq)
1283{
1284	return 0;
1285}
1286
1287#endif /* CONFIG_SCHED_HRTICK */
1288
1289#ifdef CONFIG_SMP
1290extern void sched_avg_update(struct rq *rq);
1291static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293	rq->rt_avg += rt_delta;
1294	sched_avg_update(rq);
1295}
1296#else
1297static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1298static inline void sched_avg_update(struct rq *rq) { }
1299#endif
1300
1301extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1302
1303#ifdef CONFIG_SMP
1304#ifdef CONFIG_PREEMPT
1305
1306static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1307
1308/*
1309 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1310 * way at the expense of forcing extra atomic operations in all
1311 * invocations.  This assures that the double_lock is acquired using the
1312 * same underlying policy as the spinlock_t on this architecture, which
1313 * reduces latency compared to the unfair variant below.  However, it
1314 * also adds more overhead and therefore may reduce throughput.
1315 */
1316static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1317	__releases(this_rq->lock)
1318	__acquires(busiest->lock)
1319	__acquires(this_rq->lock)
1320{
1321	raw_spin_unlock(&this_rq->lock);
1322	double_rq_lock(this_rq, busiest);
1323
1324	return 1;
1325}
1326
1327#else
1328/*
1329 * Unfair double_lock_balance: Optimizes throughput at the expense of
1330 * latency by eliminating extra atomic operations when the locks are
1331 * already in proper order on entry.  This favors lower cpu-ids and will
1332 * grant the double lock to lower cpus over higher ids under contention,
1333 * regardless of entry order into the function.
1334 */
1335static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1336	__releases(this_rq->lock)
1337	__acquires(busiest->lock)
1338	__acquires(this_rq->lock)
1339{
1340	int ret = 0;
1341
1342	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1343		if (busiest < this_rq) {
1344			raw_spin_unlock(&this_rq->lock);
1345			raw_spin_lock(&busiest->lock);
1346			raw_spin_lock_nested(&this_rq->lock,
1347					      SINGLE_DEPTH_NESTING);
1348			ret = 1;
1349		} else
1350			raw_spin_lock_nested(&busiest->lock,
1351					      SINGLE_DEPTH_NESTING);
1352	}
1353	return ret;
1354}
1355
1356#endif /* CONFIG_PREEMPT */
1357
1358/*
1359 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1360 */
1361static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1362{
1363	if (unlikely(!irqs_disabled())) {
1364		/* printk() doesn't work good under rq->lock */
1365		raw_spin_unlock(&this_rq->lock);
1366		BUG_ON(1);
1367	}
1368
1369	return _double_lock_balance(this_rq, busiest);
1370}
1371
1372static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1373	__releases(busiest->lock)
1374{
1375	raw_spin_unlock(&busiest->lock);
1376	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1377}
1378
1379static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1380{
1381	if (l1 > l2)
1382		swap(l1, l2);
1383
1384	spin_lock(l1);
1385	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1386}
1387
1388static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1389{
1390	if (l1 > l2)
1391		swap(l1, l2);
1392
1393	spin_lock_irq(l1);
1394	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1395}
1396
1397static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1398{
1399	if (l1 > l2)
1400		swap(l1, l2);
1401
1402	raw_spin_lock(l1);
1403	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1404}
1405
1406/*
1407 * double_rq_lock - safely lock two runqueues
1408 *
1409 * Note this does not disable interrupts like task_rq_lock,
1410 * you need to do so manually before calling.
1411 */
1412static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1413	__acquires(rq1->lock)
1414	__acquires(rq2->lock)
1415{
1416	BUG_ON(!irqs_disabled());
1417	if (rq1 == rq2) {
1418		raw_spin_lock(&rq1->lock);
1419		__acquire(rq2->lock);	/* Fake it out ;) */
1420	} else {
1421		if (rq1 < rq2) {
1422			raw_spin_lock(&rq1->lock);
1423			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1424		} else {
1425			raw_spin_lock(&rq2->lock);
1426			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1427		}
1428	}
1429}
1430
1431/*
1432 * double_rq_unlock - safely unlock two runqueues
1433 *
1434 * Note this does not restore interrupts like task_rq_unlock,
1435 * you need to do so manually after calling.
1436 */
1437static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1438	__releases(rq1->lock)
1439	__releases(rq2->lock)
1440{
1441	raw_spin_unlock(&rq1->lock);
1442	if (rq1 != rq2)
1443		raw_spin_unlock(&rq2->lock);
1444	else
1445		__release(rq2->lock);
1446}
1447
1448#else /* CONFIG_SMP */
1449
1450/*
1451 * double_rq_lock - safely lock two runqueues
1452 *
1453 * Note this does not disable interrupts like task_rq_lock,
1454 * you need to do so manually before calling.
1455 */
1456static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1457	__acquires(rq1->lock)
1458	__acquires(rq2->lock)
1459{
1460	BUG_ON(!irqs_disabled());
1461	BUG_ON(rq1 != rq2);
1462	raw_spin_lock(&rq1->lock);
1463	__acquire(rq2->lock);	/* Fake it out ;) */
1464}
1465
1466/*
1467 * double_rq_unlock - safely unlock two runqueues
1468 *
1469 * Note this does not restore interrupts like task_rq_unlock,
1470 * you need to do so manually after calling.
1471 */
1472static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1473	__releases(rq1->lock)
1474	__releases(rq2->lock)
1475{
1476	BUG_ON(rq1 != rq2);
1477	raw_spin_unlock(&rq1->lock);
1478	__release(rq2->lock);
1479}
1480
1481#endif
1482
1483extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1484extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1485extern void print_cfs_stats(struct seq_file *m, int cpu);
1486extern void print_rt_stats(struct seq_file *m, int cpu);
1487
1488extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1489extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1490extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1491
1492extern void cfs_bandwidth_usage_inc(void);
1493extern void cfs_bandwidth_usage_dec(void);
1494
1495#ifdef CONFIG_NO_HZ_COMMON
1496enum rq_nohz_flag_bits {
1497	NOHZ_TICK_STOPPED,
1498	NOHZ_BALANCE_KICK,
 
1499};
1500
1501#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1502#endif
1503
1504#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1505
1506DECLARE_PER_CPU(u64, cpu_hardirq_time);
1507DECLARE_PER_CPU(u64, cpu_softirq_time);
1508
1509#ifndef CONFIG_64BIT
1510DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1511
1512static inline void irq_time_write_begin(void)
1513{
1514	__this_cpu_inc(irq_time_seq.sequence);
1515	smp_wmb();
1516}
1517
1518static inline void irq_time_write_end(void)
1519{
1520	smp_wmb();
1521	__this_cpu_inc(irq_time_seq.sequence);
1522}
1523
1524static inline u64 irq_time_read(int cpu)
1525{
1526	u64 irq_time;
1527	unsigned seq;
1528
1529	do {
1530		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1531		irq_time = per_cpu(cpu_softirq_time, cpu) +
1532			   per_cpu(cpu_hardirq_time, cpu);
1533	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1534
1535	return irq_time;
1536}
1537#else /* CONFIG_64BIT */
1538static inline void irq_time_write_begin(void)
1539{
1540}
1541
1542static inline void irq_time_write_end(void)
1543{
1544}
1545
1546static inline u64 irq_time_read(int cpu)
1547{
1548	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1549}
1550#endif /* CONFIG_64BIT */
1551#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
v3.5.6
   1
   2#include <linux/sched.h>
 
 
 
   3#include <linux/mutex.h>
   4#include <linux/spinlock.h>
   5#include <linux/stop_machine.h>
 
 
   6
   7#include "cpupri.h"
 
 
 
 
   8
   9extern __read_mostly int scheduler_running;
  10
  11/*
  12 * Convert user-nice values [ -20 ... 0 ... 19 ]
  13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  14 * and back.
  15 */
  16#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
  17#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
  18#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
  19
  20/*
  21 * 'User priority' is the nice value converted to something we
  22 * can work with better when scaling various scheduler parameters,
  23 * it's a [ 0 ... 39 ] range.
  24 */
  25#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
  26#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
  27#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
  28
  29/*
  30 * Helpers for converting nanosecond timing to jiffy resolution
  31 */
  32#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34#define NICE_0_LOAD		SCHED_LOAD_SCALE
  35#define NICE_0_SHIFT		SCHED_LOAD_SHIFT
  36
  37/*
 
 
 
 
 
 
 
  38 * These are the 'tuning knobs' of the scheduler:
  39 */
  40
  41/*
  42 * single value that denotes runtime == period, ie unlimited time.
  43 */
  44#define RUNTIME_INF	((u64)~0ULL)
  45
 
 
 
 
 
  46static inline int rt_policy(int policy)
  47{
  48	if (policy == SCHED_FIFO || policy == SCHED_RR)
  49		return 1;
  50	return 0;
 
 
 
  51}
  52
  53static inline int task_has_rt_policy(struct task_struct *p)
  54{
  55	return rt_policy(p->policy);
  56}
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58/*
  59 * This is the priority-queue data structure of the RT scheduling class:
  60 */
  61struct rt_prio_array {
  62	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  63	struct list_head queue[MAX_RT_PRIO];
  64};
  65
  66struct rt_bandwidth {
  67	/* nests inside the rq lock: */
  68	raw_spinlock_t		rt_runtime_lock;
  69	ktime_t			rt_period;
  70	u64			rt_runtime;
  71	struct hrtimer		rt_period_timer;
  72};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74extern struct mutex sched_domains_mutex;
  75
  76#ifdef CONFIG_CGROUP_SCHED
  77
  78#include <linux/cgroup.h>
  79
  80struct cfs_rq;
  81struct rt_rq;
  82
  83extern struct list_head task_groups;
  84
  85struct cfs_bandwidth {
  86#ifdef CONFIG_CFS_BANDWIDTH
  87	raw_spinlock_t lock;
  88	ktime_t period;
  89	u64 quota, runtime;
  90	s64 hierarchal_quota;
  91	u64 runtime_expires;
  92
  93	int idle, timer_active;
  94	struct hrtimer period_timer, slack_timer;
  95	struct list_head throttled_cfs_rq;
  96
  97	/* statistics */
  98	int nr_periods, nr_throttled;
  99	u64 throttled_time;
 100#endif
 101};
 102
 103/* task group related information */
 104struct task_group {
 105	struct cgroup_subsys_state css;
 106
 107#ifdef CONFIG_FAIR_GROUP_SCHED
 108	/* schedulable entities of this group on each cpu */
 109	struct sched_entity **se;
 110	/* runqueue "owned" by this group on each cpu */
 111	struct cfs_rq **cfs_rq;
 112	unsigned long shares;
 113
 114	atomic_t load_weight;
 
 
 
 115#endif
 116
 117#ifdef CONFIG_RT_GROUP_SCHED
 118	struct sched_rt_entity **rt_se;
 119	struct rt_rq **rt_rq;
 120
 121	struct rt_bandwidth rt_bandwidth;
 122#endif
 123
 124	struct rcu_head rcu;
 125	struct list_head list;
 126
 127	struct task_group *parent;
 128	struct list_head siblings;
 129	struct list_head children;
 130
 131#ifdef CONFIG_SCHED_AUTOGROUP
 132	struct autogroup *autogroup;
 133#endif
 134
 135	struct cfs_bandwidth cfs_bandwidth;
 136};
 137
 138#ifdef CONFIG_FAIR_GROUP_SCHED
 139#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 140
 141/*
 142 * A weight of 0 or 1 can cause arithmetics problems.
 143 * A weight of a cfs_rq is the sum of weights of which entities
 144 * are queued on this cfs_rq, so a weight of a entity should not be
 145 * too large, so as the shares value of a task group.
 146 * (The default weight is 1024 - so there's no practical
 147 *  limitation from this.)
 148 */
 149#define MIN_SHARES	(1UL <<  1)
 150#define MAX_SHARES	(1UL << 18)
 151#endif
 152
 153/* Default task group.
 154 *	Every task in system belong to this group at bootup.
 155 */
 156extern struct task_group root_task_group;
 157
 158typedef int (*tg_visitor)(struct task_group *, void *);
 159
 160extern int walk_tg_tree_from(struct task_group *from,
 161			     tg_visitor down, tg_visitor up, void *data);
 162
 163/*
 164 * Iterate the full tree, calling @down when first entering a node and @up when
 165 * leaving it for the final time.
 166 *
 167 * Caller must hold rcu_lock or sufficient equivalent.
 168 */
 169static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 170{
 171	return walk_tg_tree_from(&root_task_group, down, up, data);
 172}
 173
 174extern int tg_nop(struct task_group *tg, void *data);
 175
 176extern void free_fair_sched_group(struct task_group *tg);
 177extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 178extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
 179extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 180			struct sched_entity *se, int cpu,
 181			struct sched_entity *parent);
 182extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 183extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 184
 185extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 186extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 187extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 188
 189extern void free_rt_sched_group(struct task_group *tg);
 190extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 191extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 192		struct sched_rt_entity *rt_se, int cpu,
 193		struct sched_rt_entity *parent);
 194
 
 
 
 
 
 
 
 
 
 
 
 
 195#else /* CONFIG_CGROUP_SCHED */
 196
 197struct cfs_bandwidth { };
 198
 199#endif	/* CONFIG_CGROUP_SCHED */
 200
 201/* CFS-related fields in a runqueue */
 202struct cfs_rq {
 203	struct load_weight load;
 204	unsigned int nr_running, h_nr_running;
 205
 206	u64 exec_clock;
 207	u64 min_vruntime;
 208#ifndef CONFIG_64BIT
 209	u64 min_vruntime_copy;
 210#endif
 211
 212	struct rb_root tasks_timeline;
 213	struct rb_node *rb_leftmost;
 214
 215	/*
 216	 * 'curr' points to currently running entity on this cfs_rq.
 217	 * It is set to NULL otherwise (i.e when none are currently running).
 218	 */
 219	struct sched_entity *curr, *next, *last, *skip;
 220
 221#ifdef	CONFIG_SCHED_DEBUG
 222	unsigned int nr_spread_over;
 223#endif
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225#ifdef CONFIG_FAIR_GROUP_SCHED
 226	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 227
 228	/*
 229	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 230	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 231	 * (like users, containers etc.)
 232	 *
 233	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 234	 * list is used during load balance.
 235	 */
 236	int on_list;
 237	struct list_head leaf_cfs_rq_list;
 238	struct task_group *tg;	/* group that "owns" this runqueue */
 239
 240#ifdef CONFIG_SMP
 241	/*
 242	 *   h_load = weight * f(tg)
 243	 *
 244	 * Where f(tg) is the recursive weight fraction assigned to
 245	 * this group.
 246	 */
 247	unsigned long h_load;
 248
 249	/*
 250	 * Maintaining per-cpu shares distribution for group scheduling
 251	 *
 252	 * load_stamp is the last time we updated the load average
 253	 * load_last is the last time we updated the load average and saw load
 254	 * load_unacc_exec_time is currently unaccounted execution time
 255	 */
 256	u64 load_avg;
 257	u64 load_period;
 258	u64 load_stamp, load_last, load_unacc_exec_time;
 259
 260	unsigned long load_contribution;
 261#endif /* CONFIG_SMP */
 262#ifdef CONFIG_CFS_BANDWIDTH
 263	int runtime_enabled;
 264	u64 runtime_expires;
 265	s64 runtime_remaining;
 266
 267	u64 throttled_timestamp;
 
 268	int throttled, throttle_count;
 269	struct list_head throttled_list;
 270#endif /* CONFIG_CFS_BANDWIDTH */
 271#endif /* CONFIG_FAIR_GROUP_SCHED */
 272};
 273
 274static inline int rt_bandwidth_enabled(void)
 275{
 276	return sysctl_sched_rt_runtime >= 0;
 277}
 278
 279/* Real-Time classes' related field in a runqueue: */
 280struct rt_rq {
 281	struct rt_prio_array active;
 282	unsigned int rt_nr_running;
 283#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 284	struct {
 285		int curr; /* highest queued rt task prio */
 286#ifdef CONFIG_SMP
 287		int next; /* next highest */
 288#endif
 289	} highest_prio;
 290#endif
 291#ifdef CONFIG_SMP
 292	unsigned long rt_nr_migratory;
 293	unsigned long rt_nr_total;
 294	int overloaded;
 295	struct plist_head pushable_tasks;
 296#endif
 297	int rt_throttled;
 298	u64 rt_time;
 299	u64 rt_runtime;
 300	/* Nests inside the rq lock: */
 301	raw_spinlock_t rt_runtime_lock;
 302
 303#ifdef CONFIG_RT_GROUP_SCHED
 304	unsigned long rt_nr_boosted;
 305
 306	struct rq *rq;
 307	struct list_head leaf_rt_rq_list;
 308	struct task_group *tg;
 309#endif
 310};
 311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312#ifdef CONFIG_SMP
 313
 314/*
 315 * We add the notion of a root-domain which will be used to define per-domain
 316 * variables. Each exclusive cpuset essentially defines an island domain by
 317 * fully partitioning the member cpus from any other cpuset. Whenever a new
 318 * exclusive cpuset is created, we also create and attach a new root-domain
 319 * object.
 320 *
 321 */
 322struct root_domain {
 323	atomic_t refcount;
 324	atomic_t rto_count;
 325	struct rcu_head rcu;
 326	cpumask_var_t span;
 327	cpumask_var_t online;
 328
 329	/*
 
 
 
 
 
 
 
 
 
 330	 * The "RT overload" flag: it gets set if a CPU has more than
 331	 * one runnable RT task.
 332	 */
 333	cpumask_var_t rto_mask;
 334	struct cpupri cpupri;
 335};
 336
 337extern struct root_domain def_root_domain;
 338
 339#endif /* CONFIG_SMP */
 340
 341/*
 342 * This is the main, per-CPU runqueue data structure.
 343 *
 344 * Locking rule: those places that want to lock multiple runqueues
 345 * (such as the load balancing or the thread migration code), lock
 346 * acquire operations must be ordered by ascending &runqueue.
 347 */
 348struct rq {
 349	/* runqueue lock: */
 350	raw_spinlock_t lock;
 351
 352	/*
 353	 * nr_running and cpu_load should be in the same cacheline because
 354	 * remote CPUs use both these fields when doing load calculation.
 355	 */
 356	unsigned int nr_running;
 
 
 
 
 357	#define CPU_LOAD_IDX_MAX 5
 358	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 359	unsigned long last_load_update_tick;
 360#ifdef CONFIG_NO_HZ
 361	u64 nohz_stamp;
 362	unsigned long nohz_flags;
 363#endif
 
 
 
 364	int skip_clock_update;
 365
 366	/* capture load from *all* tasks on this cpu: */
 367	struct load_weight load;
 368	unsigned long nr_load_updates;
 369	u64 nr_switches;
 370
 371	struct cfs_rq cfs;
 372	struct rt_rq rt;
 
 373
 374#ifdef CONFIG_FAIR_GROUP_SCHED
 375	/* list of leaf cfs_rq on this cpu: */
 376	struct list_head leaf_cfs_rq_list;
 377#endif
 378#ifdef CONFIG_RT_GROUP_SCHED
 379	struct list_head leaf_rt_rq_list;
 380#endif
 381
 382	/*
 383	 * This is part of a global counter where only the total sum
 384	 * over all CPUs matters. A task can increase this counter on
 385	 * one CPU and if it got migrated afterwards it may decrease
 386	 * it on another CPU. Always updated under the runqueue lock:
 387	 */
 388	unsigned long nr_uninterruptible;
 389
 390	struct task_struct *curr, *idle, *stop;
 391	unsigned long next_balance;
 392	struct mm_struct *prev_mm;
 393
 394	u64 clock;
 395	u64 clock_task;
 396
 397	atomic_t nr_iowait;
 398
 399#ifdef CONFIG_SMP
 400	struct root_domain *rd;
 401	struct sched_domain *sd;
 402
 403	unsigned long cpu_power;
 404
 405	unsigned char idle_balance;
 406	/* For active balancing */
 407	int post_schedule;
 408	int active_balance;
 409	int push_cpu;
 410	struct cpu_stop_work active_balance_work;
 411	/* cpu of this runqueue: */
 412	int cpu;
 413	int online;
 414
 415	struct list_head cfs_tasks;
 416
 417	u64 rt_avg;
 418	u64 age_stamp;
 419	u64 idle_stamp;
 420	u64 avg_idle;
 
 
 
 421#endif
 422
 423#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 424	u64 prev_irq_time;
 425#endif
 426#ifdef CONFIG_PARAVIRT
 427	u64 prev_steal_time;
 428#endif
 429#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 430	u64 prev_steal_time_rq;
 431#endif
 432
 433	/* calc_load related fields */
 434	unsigned long calc_load_update;
 435	long calc_load_active;
 436
 437#ifdef CONFIG_SCHED_HRTICK
 438#ifdef CONFIG_SMP
 439	int hrtick_csd_pending;
 440	struct call_single_data hrtick_csd;
 441#endif
 442	struct hrtimer hrtick_timer;
 443#endif
 444
 445#ifdef CONFIG_SCHEDSTATS
 446	/* latency stats */
 447	struct sched_info rq_sched_info;
 448	unsigned long long rq_cpu_time;
 449	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 450
 451	/* sys_sched_yield() stats */
 452	unsigned int yld_count;
 453
 454	/* schedule() stats */
 455	unsigned int sched_count;
 456	unsigned int sched_goidle;
 457
 458	/* try_to_wake_up() stats */
 459	unsigned int ttwu_count;
 460	unsigned int ttwu_local;
 461#endif
 462
 463#ifdef CONFIG_SMP
 464	struct llist_head wake_list;
 465#endif
 466};
 467
 468static inline int cpu_of(struct rq *rq)
 469{
 470#ifdef CONFIG_SMP
 471	return rq->cpu;
 472#else
 473	return 0;
 474#endif
 475}
 476
 477DECLARE_PER_CPU(struct rq, runqueues);
 478
 479#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 480#define this_rq()		(&__get_cpu_var(runqueues))
 481#define task_rq(p)		cpu_rq(task_cpu(p))
 482#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 483#define raw_rq()		(&__raw_get_cpu_var(runqueues))
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485#ifdef CONFIG_SMP
 486
 487#define rcu_dereference_check_sched_domain(p) \
 488	rcu_dereference_check((p), \
 489			      lockdep_is_held(&sched_domains_mutex))
 490
 491/*
 492 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 493 * See detach_destroy_domains: synchronize_sched for details.
 494 *
 495 * The domain tree of any CPU may only be accessed from within
 496 * preempt-disabled sections.
 497 */
 498#define for_each_domain(cpu, __sd) \
 499	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 500			__sd; __sd = __sd->parent)
 501
 502#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 503
 504/**
 505 * highest_flag_domain - Return highest sched_domain containing flag.
 506 * @cpu:	The cpu whose highest level of sched domain is to
 507 *		be returned.
 508 * @flag:	The flag to check for the highest sched_domain
 509 *		for the given cpu.
 510 *
 511 * Returns the highest sched_domain of a cpu which contains the given flag.
 512 */
 513static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 514{
 515	struct sched_domain *sd, *hsd = NULL;
 516
 517	for_each_domain(cpu, sd) {
 518		if (!(sd->flags & flag))
 519			break;
 520		hsd = sd;
 521	}
 522
 523	return hsd;
 524}
 525
 
 
 
 
 
 
 
 
 
 
 
 
 526DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 
 527DECLARE_PER_CPU(int, sd_llc_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529extern int group_balance_cpu(struct sched_group *sg);
 530
 531#endif /* CONFIG_SMP */
 532
 533#include "stats.h"
 534#include "auto_group.h"
 535
 536#ifdef CONFIG_CGROUP_SCHED
 537
 538/*
 539 * Return the group to which this tasks belongs.
 540 *
 541 * We cannot use task_subsys_state() and friends because the cgroup
 542 * subsystem changes that value before the cgroup_subsys::attach() method
 543 * is called, therefore we cannot pin it and might observe the wrong value.
 544 *
 545 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 546 * core changes this before calling sched_move_task().
 547 *
 548 * Instead we use a 'copy' which is updated from sched_move_task() while
 549 * holding both task_struct::pi_lock and rq::lock.
 550 */
 551static inline struct task_group *task_group(struct task_struct *p)
 552{
 553	return p->sched_task_group;
 554}
 555
 556/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 557static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 558{
 559#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 560	struct task_group *tg = task_group(p);
 561#endif
 562
 563#ifdef CONFIG_FAIR_GROUP_SCHED
 564	p->se.cfs_rq = tg->cfs_rq[cpu];
 565	p->se.parent = tg->se[cpu];
 566#endif
 567
 568#ifdef CONFIG_RT_GROUP_SCHED
 569	p->rt.rt_rq  = tg->rt_rq[cpu];
 570	p->rt.parent = tg->rt_se[cpu];
 571#endif
 572}
 573
 574#else /* CONFIG_CGROUP_SCHED */
 575
 576static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 577static inline struct task_group *task_group(struct task_struct *p)
 578{
 579	return NULL;
 580}
 581
 582#endif /* CONFIG_CGROUP_SCHED */
 583
 584static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 585{
 586	set_task_rq(p, cpu);
 587#ifdef CONFIG_SMP
 588	/*
 589	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 590	 * successfuly executed on another CPU. We must ensure that updates of
 591	 * per-task data have been completed by this moment.
 592	 */
 593	smp_wmb();
 594	task_thread_info(p)->cpu = cpu;
 
 595#endif
 596}
 597
 598/*
 599 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 600 */
 601#ifdef CONFIG_SCHED_DEBUG
 602# include <linux/static_key.h>
 603# define const_debug __read_mostly
 604#else
 605# define const_debug const
 606#endif
 607
 608extern const_debug unsigned int sysctl_sched_features;
 609
 610#define SCHED_FEAT(name, enabled)	\
 611	__SCHED_FEAT_##name ,
 612
 613enum {
 614#include "features.h"
 615	__SCHED_FEAT_NR,
 616};
 617
 618#undef SCHED_FEAT
 619
 620#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 621static __always_inline bool static_branch__true(struct static_key *key)
 622{
 623	return static_key_true(key); /* Not out of line branch. */
 624}
 625
 626static __always_inline bool static_branch__false(struct static_key *key)
 627{
 628	return static_key_false(key); /* Out of line branch. */
 629}
 630
 631#define SCHED_FEAT(name, enabled)					\
 632static __always_inline bool static_branch_##name(struct static_key *key) \
 633{									\
 634	return static_branch__##enabled(key);				\
 635}
 636
 637#include "features.h"
 638
 639#undef SCHED_FEAT
 640
 641extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
 642#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
 643#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 644#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 645#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 646
 
 
 
 
 
 
 
 
 
 
 
 
 647static inline u64 global_rt_period(void)
 648{
 649	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 650}
 651
 652static inline u64 global_rt_runtime(void)
 653{
 654	if (sysctl_sched_rt_runtime < 0)
 655		return RUNTIME_INF;
 656
 657	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 658}
 659
 660
 661
 662static inline int task_current(struct rq *rq, struct task_struct *p)
 663{
 664	return rq->curr == p;
 665}
 666
 667static inline int task_running(struct rq *rq, struct task_struct *p)
 668{
 669#ifdef CONFIG_SMP
 670	return p->on_cpu;
 671#else
 672	return task_current(rq, p);
 673#endif
 674}
 675
 676
 677#ifndef prepare_arch_switch
 678# define prepare_arch_switch(next)	do { } while (0)
 679#endif
 680#ifndef finish_arch_switch
 681# define finish_arch_switch(prev)	do { } while (0)
 682#endif
 683#ifndef finish_arch_post_lock_switch
 684# define finish_arch_post_lock_switch()	do { } while (0)
 685#endif
 686
 687#ifndef __ARCH_WANT_UNLOCKED_CTXSW
 688static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 689{
 690#ifdef CONFIG_SMP
 691	/*
 692	 * We can optimise this out completely for !SMP, because the
 693	 * SMP rebalancing from interrupt is the only thing that cares
 694	 * here.
 695	 */
 696	next->on_cpu = 1;
 697#endif
 698}
 699
 700static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 701{
 702#ifdef CONFIG_SMP
 703	/*
 704	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
 705	 * We must ensure this doesn't happen until the switch is completely
 706	 * finished.
 707	 */
 708	smp_wmb();
 709	prev->on_cpu = 0;
 710#endif
 711#ifdef CONFIG_DEBUG_SPINLOCK
 712	/* this is a valid case when another task releases the spinlock */
 713	rq->lock.owner = current;
 714#endif
 715	/*
 716	 * If we are tracking spinlock dependencies then we have to
 717	 * fix up the runqueue lock - which gets 'carried over' from
 718	 * prev into current:
 719	 */
 720	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 721
 722	raw_spin_unlock_irq(&rq->lock);
 723}
 724
 725#else /* __ARCH_WANT_UNLOCKED_CTXSW */
 726static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 727{
 728#ifdef CONFIG_SMP
 729	/*
 730	 * We can optimise this out completely for !SMP, because the
 731	 * SMP rebalancing from interrupt is the only thing that cares
 732	 * here.
 733	 */
 734	next->on_cpu = 1;
 735#endif
 736#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 737	raw_spin_unlock_irq(&rq->lock);
 738#else
 739	raw_spin_unlock(&rq->lock);
 740#endif
 741}
 742
 743static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 744{
 745#ifdef CONFIG_SMP
 746	/*
 747	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
 748	 * We must ensure this doesn't happen until the switch is completely
 749	 * finished.
 750	 */
 751	smp_wmb();
 752	prev->on_cpu = 0;
 753#endif
 754#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 755	local_irq_enable();
 756#endif
 757}
 758#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 759
 760
 761static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 762{
 763	lw->weight += inc;
 764	lw->inv_weight = 0;
 765}
 766
 767static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 768{
 769	lw->weight -= dec;
 770	lw->inv_weight = 0;
 771}
 772
 773static inline void update_load_set(struct load_weight *lw, unsigned long w)
 774{
 775	lw->weight = w;
 776	lw->inv_weight = 0;
 777}
 778
 779/*
 780 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 781 * of tasks with abnormal "nice" values across CPUs the contribution that
 782 * each task makes to its run queue's load is weighted according to its
 783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 784 * scaled version of the new time slice allocation that they receive on time
 785 * slice expiry etc.
 786 */
 787
 788#define WEIGHT_IDLEPRIO                3
 789#define WMULT_IDLEPRIO         1431655765
 790
 791/*
 792 * Nice levels are multiplicative, with a gentle 10% change for every
 793 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 794 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 795 * that remained on nice 0.
 796 *
 797 * The "10% effect" is relative and cumulative: from _any_ nice level,
 798 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 799 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 800 * If a task goes up by ~10% and another task goes down by ~10% then
 801 * the relative distance between them is ~25%.)
 802 */
 803static const int prio_to_weight[40] = {
 804 /* -20 */     88761,     71755,     56483,     46273,     36291,
 805 /* -15 */     29154,     23254,     18705,     14949,     11916,
 806 /* -10 */      9548,      7620,      6100,      4904,      3906,
 807 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 808 /*   0 */      1024,       820,       655,       526,       423,
 809 /*   5 */       335,       272,       215,       172,       137,
 810 /*  10 */       110,        87,        70,        56,        45,
 811 /*  15 */        36,        29,        23,        18,        15,
 812};
 813
 814/*
 815 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 816 *
 817 * In cases where the weight does not change often, we can use the
 818 * precalculated inverse to speed up arithmetics by turning divisions
 819 * into multiplications:
 820 */
 821static const u32 prio_to_wmult[40] = {
 822 /* -20 */     48388,     59856,     76040,     92818,    118348,
 823 /* -15 */    147320,    184698,    229616,    287308,    360437,
 824 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 825 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 826 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 827 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 828 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 829 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
 830};
 831
 832/* Time spent by the tasks of the cpu accounting group executing in ... */
 833enum cpuacct_stat_index {
 834	CPUACCT_STAT_USER,	/* ... user mode */
 835	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836
 837	CPUACCT_STAT_NSTATS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838};
 839
 
 
 
 
 840
 841#define sched_class_highest (&stop_sched_class)
 842#define for_each_class(class) \
 843   for (class = sched_class_highest; class; class = class->next)
 844
 845extern const struct sched_class stop_sched_class;
 
 846extern const struct sched_class rt_sched_class;
 847extern const struct sched_class fair_sched_class;
 848extern const struct sched_class idle_sched_class;
 849
 850
 851#ifdef CONFIG_SMP
 852
 853extern void trigger_load_balance(struct rq *rq, int cpu);
 854extern void idle_balance(int this_cpu, struct rq *this_rq);
 
 855
 856#else	/* CONFIG_SMP */
 
 857
 858static inline void idle_balance(int cpu, struct rq *rq)
 859{
 860}
 
 861
 862#endif
 863
 864extern void sysrq_sched_debug_show(void);
 865extern void sched_init_granularity(void);
 866extern void update_max_interval(void);
 867extern void update_group_power(struct sched_domain *sd, int cpu);
 868extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
 869extern void init_sched_rt_class(void);
 870extern void init_sched_fair_class(void);
 
 871
 872extern void resched_task(struct task_struct *p);
 873extern void resched_cpu(int cpu);
 874
 875extern struct rt_bandwidth def_rt_bandwidth;
 876extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
 877
 878extern void update_idle_cpu_load(struct rq *this_rq);
 
 
 879
 880#ifdef CONFIG_CGROUP_CPUACCT
 881#include <linux/cgroup.h>
 882/* track cpu usage of a group of tasks and its child groups */
 883struct cpuacct {
 884	struct cgroup_subsys_state css;
 885	/* cpuusage holds pointer to a u64-type object on every cpu */
 886	u64 __percpu *cpuusage;
 887	struct kernel_cpustat __percpu *cpustat;
 888};
 889
 890/* return cpu accounting group corresponding to this container */
 891static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
 892{
 893	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
 894			    struct cpuacct, css);
 895}
 896
 897/* return cpu accounting group to which this task belongs */
 898static inline struct cpuacct *task_ca(struct task_struct *tsk)
 899{
 900	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
 901			    struct cpuacct, css);
 902}
 903
 904static inline struct cpuacct *parent_ca(struct cpuacct *ca)
 905{
 906	if (!ca || !ca->css.cgroup->parent)
 907		return NULL;
 908	return cgroup_ca(ca->css.cgroup->parent);
 909}
 910
 911extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
 912#else
 913static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
 914#endif
 915
 916static inline void inc_nr_running(struct rq *rq)
 917{
 918	rq->nr_running++;
 
 
 
 
 
 
 
 
 
 
 919}
 920
 921static inline void dec_nr_running(struct rq *rq)
 922{
 923	rq->nr_running--;
 924}
 925
 
 
 
 
 
 
 
 926extern void update_rq_clock(struct rq *rq);
 927
 928extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
 929extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
 930
 931extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
 932
 933extern const_debug unsigned int sysctl_sched_time_avg;
 934extern const_debug unsigned int sysctl_sched_nr_migrate;
 935extern const_debug unsigned int sysctl_sched_migration_cost;
 936
 937static inline u64 sched_avg_period(void)
 938{
 939	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
 940}
 941
 942#ifdef CONFIG_SCHED_HRTICK
 943
 944/*
 945 * Use hrtick when:
 946 *  - enabled by features
 947 *  - hrtimer is actually high res
 948 */
 949static inline int hrtick_enabled(struct rq *rq)
 950{
 951	if (!sched_feat(HRTICK))
 952		return 0;
 953	if (!cpu_active(cpu_of(rq)))
 954		return 0;
 955	return hrtimer_is_hres_active(&rq->hrtick_timer);
 956}
 957
 958void hrtick_start(struct rq *rq, u64 delay);
 959
 960#else
 961
 962static inline int hrtick_enabled(struct rq *rq)
 963{
 964	return 0;
 965}
 966
 967#endif /* CONFIG_SCHED_HRTICK */
 968
 969#ifdef CONFIG_SMP
 970extern void sched_avg_update(struct rq *rq);
 971static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
 972{
 973	rq->rt_avg += rt_delta;
 974	sched_avg_update(rq);
 975}
 976#else
 977static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
 978static inline void sched_avg_update(struct rq *rq) { }
 979#endif
 980
 981extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
 982
 983#ifdef CONFIG_SMP
 984#ifdef CONFIG_PREEMPT
 985
 986static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
 987
 988/*
 989 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 990 * way at the expense of forcing extra atomic operations in all
 991 * invocations.  This assures that the double_lock is acquired using the
 992 * same underlying policy as the spinlock_t on this architecture, which
 993 * reduces latency compared to the unfair variant below.  However, it
 994 * also adds more overhead and therefore may reduce throughput.
 995 */
 996static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 997	__releases(this_rq->lock)
 998	__acquires(busiest->lock)
 999	__acquires(this_rq->lock)
1000{
1001	raw_spin_unlock(&this_rq->lock);
1002	double_rq_lock(this_rq, busiest);
1003
1004	return 1;
1005}
1006
1007#else
1008/*
1009 * Unfair double_lock_balance: Optimizes throughput at the expense of
1010 * latency by eliminating extra atomic operations when the locks are
1011 * already in proper order on entry.  This favors lower cpu-ids and will
1012 * grant the double lock to lower cpus over higher ids under contention,
1013 * regardless of entry order into the function.
1014 */
1015static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1016	__releases(this_rq->lock)
1017	__acquires(busiest->lock)
1018	__acquires(this_rq->lock)
1019{
1020	int ret = 0;
1021
1022	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1023		if (busiest < this_rq) {
1024			raw_spin_unlock(&this_rq->lock);
1025			raw_spin_lock(&busiest->lock);
1026			raw_spin_lock_nested(&this_rq->lock,
1027					      SINGLE_DEPTH_NESTING);
1028			ret = 1;
1029		} else
1030			raw_spin_lock_nested(&busiest->lock,
1031					      SINGLE_DEPTH_NESTING);
1032	}
1033	return ret;
1034}
1035
1036#endif /* CONFIG_PREEMPT */
1037
1038/*
1039 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1040 */
1041static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1042{
1043	if (unlikely(!irqs_disabled())) {
1044		/* printk() doesn't work good under rq->lock */
1045		raw_spin_unlock(&this_rq->lock);
1046		BUG_ON(1);
1047	}
1048
1049	return _double_lock_balance(this_rq, busiest);
1050}
1051
1052static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1053	__releases(busiest->lock)
1054{
1055	raw_spin_unlock(&busiest->lock);
1056	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1057}
1058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059/*
1060 * double_rq_lock - safely lock two runqueues
1061 *
1062 * Note this does not disable interrupts like task_rq_lock,
1063 * you need to do so manually before calling.
1064 */
1065static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1066	__acquires(rq1->lock)
1067	__acquires(rq2->lock)
1068{
1069	BUG_ON(!irqs_disabled());
1070	if (rq1 == rq2) {
1071		raw_spin_lock(&rq1->lock);
1072		__acquire(rq2->lock);	/* Fake it out ;) */
1073	} else {
1074		if (rq1 < rq2) {
1075			raw_spin_lock(&rq1->lock);
1076			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1077		} else {
1078			raw_spin_lock(&rq2->lock);
1079			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1080		}
1081	}
1082}
1083
1084/*
1085 * double_rq_unlock - safely unlock two runqueues
1086 *
1087 * Note this does not restore interrupts like task_rq_unlock,
1088 * you need to do so manually after calling.
1089 */
1090static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1091	__releases(rq1->lock)
1092	__releases(rq2->lock)
1093{
1094	raw_spin_unlock(&rq1->lock);
1095	if (rq1 != rq2)
1096		raw_spin_unlock(&rq2->lock);
1097	else
1098		__release(rq2->lock);
1099}
1100
1101#else /* CONFIG_SMP */
1102
1103/*
1104 * double_rq_lock - safely lock two runqueues
1105 *
1106 * Note this does not disable interrupts like task_rq_lock,
1107 * you need to do so manually before calling.
1108 */
1109static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1110	__acquires(rq1->lock)
1111	__acquires(rq2->lock)
1112{
1113	BUG_ON(!irqs_disabled());
1114	BUG_ON(rq1 != rq2);
1115	raw_spin_lock(&rq1->lock);
1116	__acquire(rq2->lock);	/* Fake it out ;) */
1117}
1118
1119/*
1120 * double_rq_unlock - safely unlock two runqueues
1121 *
1122 * Note this does not restore interrupts like task_rq_unlock,
1123 * you need to do so manually after calling.
1124 */
1125static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1126	__releases(rq1->lock)
1127	__releases(rq2->lock)
1128{
1129	BUG_ON(rq1 != rq2);
1130	raw_spin_unlock(&rq1->lock);
1131	__release(rq2->lock);
1132}
1133
1134#endif
1135
1136extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1137extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1138extern void print_cfs_stats(struct seq_file *m, int cpu);
1139extern void print_rt_stats(struct seq_file *m, int cpu);
1140
1141extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1142extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1143extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1144
1145extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
 
1146
1147#ifdef CONFIG_NO_HZ
1148enum rq_nohz_flag_bits {
1149	NOHZ_TICK_STOPPED,
1150	NOHZ_BALANCE_KICK,
1151	NOHZ_IDLE,
1152};
1153
1154#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1155#endif