Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Pid namespaces
  3 *
  4 * Authors:
  5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7 *     Many thanks to Oleg Nesterov for comments and help
  8 *
  9 */
 10
 11#include <linux/pid.h>
 12#include <linux/pid_namespace.h>
 13#include <linux/user_namespace.h>
 14#include <linux/syscalls.h>
 15#include <linux/err.h>
 16#include <linux/acct.h>
 17#include <linux/slab.h>
 18#include <linux/proc_ns.h>
 19#include <linux/reboot.h>
 20#include <linux/export.h>
 
 21
 22struct pid_cache {
 23	int nr_ids;
 24	char name[16];
 25	struct kmem_cache *cachep;
 26	struct list_head list;
 27};
 28
 29static LIST_HEAD(pid_caches_lh);
 30static DEFINE_MUTEX(pid_caches_mutex);
 31static struct kmem_cache *pid_ns_cachep;
 32
 33/*
 34 * creates the kmem cache to allocate pids from.
 35 * @nr_ids: the number of numerical ids this pid will have to carry
 36 */
 37
 38static struct kmem_cache *create_pid_cachep(int nr_ids)
 39{
 40	struct pid_cache *pcache;
 41	struct kmem_cache *cachep;
 42
 43	mutex_lock(&pid_caches_mutex);
 44	list_for_each_entry(pcache, &pid_caches_lh, list)
 45		if (pcache->nr_ids == nr_ids)
 46			goto out;
 47
 48	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
 49	if (pcache == NULL)
 50		goto err_alloc;
 51
 52	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
 53	cachep = kmem_cache_create(pcache->name,
 54			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
 55			0, SLAB_HWCACHE_ALIGN, NULL);
 56	if (cachep == NULL)
 57		goto err_cachep;
 58
 59	pcache->nr_ids = nr_ids;
 60	pcache->cachep = cachep;
 61	list_add(&pcache->list, &pid_caches_lh);
 62out:
 63	mutex_unlock(&pid_caches_mutex);
 64	return pcache->cachep;
 65
 66err_cachep:
 67	kfree(pcache);
 68err_alloc:
 69	mutex_unlock(&pid_caches_mutex);
 70	return NULL;
 71}
 72
 73static void proc_cleanup_work(struct work_struct *work)
 74{
 75	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
 76	pid_ns_release_proc(ns);
 77}
 78
 79/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
 80#define MAX_PID_NS_LEVEL 32
 81
 82static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 83	struct pid_namespace *parent_pid_ns)
 84{
 85	struct pid_namespace *ns;
 86	unsigned int level = parent_pid_ns->level + 1;
 87	int i;
 88	int err;
 89
 90	if (level > MAX_PID_NS_LEVEL) {
 91		err = -EINVAL;
 92		goto out;
 93	}
 94
 95	err = -ENOMEM;
 96	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 97	if (ns == NULL)
 98		goto out;
 99
100	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
101	if (!ns->pidmap[0].page)
102		goto out_free;
103
104	ns->pid_cachep = create_pid_cachep(level + 1);
105	if (ns->pid_cachep == NULL)
106		goto out_free_map;
107
108	err = proc_alloc_inum(&ns->proc_inum);
109	if (err)
110		goto out_free_map;
111
112	kref_init(&ns->kref);
113	ns->level = level;
114	ns->parent = get_pid_ns(parent_pid_ns);
115	ns->user_ns = get_user_ns(user_ns);
116	ns->nr_hashed = PIDNS_HASH_ADDING;
117	INIT_WORK(&ns->proc_work, proc_cleanup_work);
118
119	set_bit(0, ns->pidmap[0].page);
120	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
121
122	for (i = 1; i < PIDMAP_ENTRIES; i++)
123		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
124
 
 
 
 
125	return ns;
126
 
 
127out_free_map:
128	kfree(ns->pidmap[0].page);
129out_free:
130	kmem_cache_free(pid_ns_cachep, ns);
131out:
132	return ERR_PTR(err);
133}
134
135static void delayed_free_pidns(struct rcu_head *p)
136{
137	kmem_cache_free(pid_ns_cachep,
138			container_of(p, struct pid_namespace, rcu));
139}
140
141static void destroy_pid_namespace(struct pid_namespace *ns)
142{
143	int i;
144
145	proc_free_inum(ns->proc_inum);
146	for (i = 0; i < PIDMAP_ENTRIES; i++)
147		kfree(ns->pidmap[i].page);
148	put_user_ns(ns->user_ns);
149	call_rcu(&ns->rcu, delayed_free_pidns);
150}
151
152struct pid_namespace *copy_pid_ns(unsigned long flags,
153	struct user_namespace *user_ns, struct pid_namespace *old_ns)
154{
155	if (!(flags & CLONE_NEWPID))
156		return get_pid_ns(old_ns);
157	if (task_active_pid_ns(current) != old_ns)
158		return ERR_PTR(-EINVAL);
159	return create_pid_namespace(user_ns, old_ns);
160}
161
162static void free_pid_ns(struct kref *kref)
163{
164	struct pid_namespace *ns;
165
166	ns = container_of(kref, struct pid_namespace, kref);
167	destroy_pid_namespace(ns);
168}
169
170void put_pid_ns(struct pid_namespace *ns)
171{
172	struct pid_namespace *parent;
173
174	while (ns != &init_pid_ns) {
175		parent = ns->parent;
176		if (!kref_put(&ns->kref, free_pid_ns))
177			break;
178		ns = parent;
179	}
180}
181EXPORT_SYMBOL_GPL(put_pid_ns);
182
183void zap_pid_ns_processes(struct pid_namespace *pid_ns)
184{
185	int nr;
186	int rc;
187	struct task_struct *task, *me = current;
188	int init_pids = thread_group_leader(me) ? 1 : 2;
189
190	/* Don't allow any more processes into the pid namespace */
191	disable_pid_allocation(pid_ns);
192
193	/* Ignore SIGCHLD causing any terminated children to autoreap */
194	spin_lock_irq(&me->sighand->siglock);
195	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
196	spin_unlock_irq(&me->sighand->siglock);
197
198	/*
199	 * The last thread in the cgroup-init thread group is terminating.
200	 * Find remaining pid_ts in the namespace, signal and wait for them
201	 * to exit.
202	 *
203	 * Note:  This signals each threads in the namespace - even those that
204	 * 	  belong to the same thread group, To avoid this, we would have
205	 * 	  to walk the entire tasklist looking a processes in this
206	 * 	  namespace, but that could be unnecessarily expensive if the
207	 * 	  pid namespace has just a few processes. Or we need to
208	 * 	  maintain a tasklist for each pid namespace.
209	 *
210	 */
211	read_lock(&tasklist_lock);
212	nr = next_pidmap(pid_ns, 1);
213	while (nr > 0) {
214		rcu_read_lock();
215
216		task = pid_task(find_vpid(nr), PIDTYPE_PID);
217		if (task && !__fatal_signal_pending(task))
218			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
219
220		rcu_read_unlock();
221
222		nr = next_pidmap(pid_ns, nr);
223	}
224	read_unlock(&tasklist_lock);
225
226	/* Firstly reap the EXIT_ZOMBIE children we may have. */
227	do {
228		clear_thread_flag(TIF_SIGPENDING);
229		rc = sys_wait4(-1, NULL, __WALL, NULL);
230	} while (rc != -ECHILD);
231
232	/*
233	 * sys_wait4() above can't reap the TASK_DEAD children.
234	 * Make sure they all go away, see free_pid().
235	 */
236	for (;;) {
237		set_current_state(TASK_UNINTERRUPTIBLE);
238		if (pid_ns->nr_hashed == init_pids)
 
 
 
 
 
 
 
 
239			break;
240		schedule();
241	}
242	__set_current_state(TASK_RUNNING);
243
244	if (pid_ns->reboot)
245		current->signal->group_exit_code = pid_ns->reboot;
246
247	acct_exit_ns(pid_ns);
248	return;
249}
250
251#ifdef CONFIG_CHECKPOINT_RESTORE
252static int pid_ns_ctl_handler(struct ctl_table *table, int write,
253		void __user *buffer, size_t *lenp, loff_t *ppos)
254{
255	struct pid_namespace *pid_ns = task_active_pid_ns(current);
256	struct ctl_table tmp = *table;
257
258	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
259		return -EPERM;
260
261	/*
262	 * Writing directly to ns' last_pid field is OK, since this field
263	 * is volatile in a living namespace anyway and a code writing to
264	 * it should synchronize its usage with external means.
265	 */
266
267	tmp.data = &pid_ns->last_pid;
268	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
269}
270
271extern int pid_max;
272static int zero = 0;
273static struct ctl_table pid_ns_ctl_table[] = {
274	{
275		.procname = "ns_last_pid",
276		.maxlen = sizeof(int),
277		.mode = 0666, /* permissions are checked in the handler */
278		.proc_handler = pid_ns_ctl_handler,
279		.extra1 = &zero,
280		.extra2 = &pid_max,
281	},
282	{ }
283};
284static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
285#endif	/* CONFIG_CHECKPOINT_RESTORE */
286
287int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
288{
289	if (pid_ns == &init_pid_ns)
290		return 0;
291
292	switch (cmd) {
293	case LINUX_REBOOT_CMD_RESTART2:
294	case LINUX_REBOOT_CMD_RESTART:
295		pid_ns->reboot = SIGHUP;
296		break;
297
298	case LINUX_REBOOT_CMD_POWER_OFF:
299	case LINUX_REBOOT_CMD_HALT:
300		pid_ns->reboot = SIGINT;
301		break;
302	default:
303		return -EINVAL;
304	}
305
306	read_lock(&tasklist_lock);
307	force_sig(SIGKILL, pid_ns->child_reaper);
308	read_unlock(&tasklist_lock);
309
310	do_exit(0);
311
312	/* Not reached */
313	return 0;
314}
315
316static void *pidns_get(struct task_struct *task)
317{
318	struct pid_namespace *ns;
319
320	rcu_read_lock();
321	ns = task_active_pid_ns(task);
322	if (ns)
323		get_pid_ns(ns);
324	rcu_read_unlock();
325
326	return ns;
327}
328
329static void pidns_put(void *ns)
330{
331	put_pid_ns(ns);
332}
333
334static int pidns_install(struct nsproxy *nsproxy, void *ns)
335{
336	struct pid_namespace *active = task_active_pid_ns(current);
337	struct pid_namespace *ancestor, *new = ns;
338
339	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
340	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
341		return -EPERM;
342
343	/*
344	 * Only allow entering the current active pid namespace
345	 * or a child of the current active pid namespace.
346	 *
347	 * This is required for fork to return a usable pid value and
348	 * this maintains the property that processes and their
349	 * children can not escape their current pid namespace.
350	 */
351	if (new->level < active->level)
352		return -EINVAL;
353
354	ancestor = new;
355	while (ancestor->level > active->level)
356		ancestor = ancestor->parent;
357	if (ancestor != active)
358		return -EINVAL;
359
360	put_pid_ns(nsproxy->pid_ns_for_children);
361	nsproxy->pid_ns_for_children = get_pid_ns(new);
362	return 0;
363}
364
365static unsigned int pidns_inum(void *ns)
366{
367	struct pid_namespace *pid_ns = ns;
368	return pid_ns->proc_inum;
369}
370
371const struct proc_ns_operations pidns_operations = {
372	.name		= "pid",
373	.type		= CLONE_NEWPID,
374	.get		= pidns_get,
375	.put		= pidns_put,
376	.install	= pidns_install,
377	.inum		= pidns_inum,
378};
379
380static __init int pid_namespaces_init(void)
381{
382	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
383
384#ifdef CONFIG_CHECKPOINT_RESTORE
385	register_sysctl_paths(kern_path, pid_ns_ctl_table);
386#endif
387	return 0;
388}
389
390__initcall(pid_namespaces_init);
v3.5.6
  1/*
  2 * Pid namespaces
  3 *
  4 * Authors:
  5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7 *     Many thanks to Oleg Nesterov for comments and help
  8 *
  9 */
 10
 11#include <linux/pid.h>
 12#include <linux/pid_namespace.h>
 
 13#include <linux/syscalls.h>
 14#include <linux/err.h>
 15#include <linux/acct.h>
 16#include <linux/slab.h>
 17#include <linux/proc_fs.h>
 18#include <linux/reboot.h>
 19
 20#define BITS_PER_PAGE		(PAGE_SIZE*8)
 21
 22struct pid_cache {
 23	int nr_ids;
 24	char name[16];
 25	struct kmem_cache *cachep;
 26	struct list_head list;
 27};
 28
 29static LIST_HEAD(pid_caches_lh);
 30static DEFINE_MUTEX(pid_caches_mutex);
 31static struct kmem_cache *pid_ns_cachep;
 32
 33/*
 34 * creates the kmem cache to allocate pids from.
 35 * @nr_ids: the number of numerical ids this pid will have to carry
 36 */
 37
 38static struct kmem_cache *create_pid_cachep(int nr_ids)
 39{
 40	struct pid_cache *pcache;
 41	struct kmem_cache *cachep;
 42
 43	mutex_lock(&pid_caches_mutex);
 44	list_for_each_entry(pcache, &pid_caches_lh, list)
 45		if (pcache->nr_ids == nr_ids)
 46			goto out;
 47
 48	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
 49	if (pcache == NULL)
 50		goto err_alloc;
 51
 52	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
 53	cachep = kmem_cache_create(pcache->name,
 54			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
 55			0, SLAB_HWCACHE_ALIGN, NULL);
 56	if (cachep == NULL)
 57		goto err_cachep;
 58
 59	pcache->nr_ids = nr_ids;
 60	pcache->cachep = cachep;
 61	list_add(&pcache->list, &pid_caches_lh);
 62out:
 63	mutex_unlock(&pid_caches_mutex);
 64	return pcache->cachep;
 65
 66err_cachep:
 67	kfree(pcache);
 68err_alloc:
 69	mutex_unlock(&pid_caches_mutex);
 70	return NULL;
 71}
 72
 73static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns)
 
 
 
 
 
 
 
 
 
 
 74{
 75	struct pid_namespace *ns;
 76	unsigned int level = parent_pid_ns->level + 1;
 77	int i, err = -ENOMEM;
 
 78
 
 
 
 
 
 
 79	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 80	if (ns == NULL)
 81		goto out;
 82
 83	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 84	if (!ns->pidmap[0].page)
 85		goto out_free;
 86
 87	ns->pid_cachep = create_pid_cachep(level + 1);
 88	if (ns->pid_cachep == NULL)
 89		goto out_free_map;
 90
 
 
 
 
 91	kref_init(&ns->kref);
 92	ns->level = level;
 93	ns->parent = get_pid_ns(parent_pid_ns);
 
 
 
 94
 95	set_bit(0, ns->pidmap[0].page);
 96	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
 97
 98	for (i = 1; i < PIDMAP_ENTRIES; i++)
 99		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
100
101	err = pid_ns_prepare_proc(ns);
102	if (err)
103		goto out_put_parent_pid_ns;
104
105	return ns;
106
107out_put_parent_pid_ns:
108	put_pid_ns(parent_pid_ns);
109out_free_map:
110	kfree(ns->pidmap[0].page);
111out_free:
112	kmem_cache_free(pid_ns_cachep, ns);
113out:
114	return ERR_PTR(err);
115}
116
 
 
 
 
 
 
117static void destroy_pid_namespace(struct pid_namespace *ns)
118{
119	int i;
120
 
121	for (i = 0; i < PIDMAP_ENTRIES; i++)
122		kfree(ns->pidmap[i].page);
123	kmem_cache_free(pid_ns_cachep, ns);
 
124}
125
126struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
 
127{
128	if (!(flags & CLONE_NEWPID))
129		return get_pid_ns(old_ns);
130	if (flags & (CLONE_THREAD|CLONE_PARENT))
131		return ERR_PTR(-EINVAL);
132	return create_pid_namespace(old_ns);
133}
134
135void free_pid_ns(struct kref *kref)
136{
137	struct pid_namespace *ns, *parent;
138
139	ns = container_of(kref, struct pid_namespace, kref);
 
 
140
141	parent = ns->parent;
142	destroy_pid_namespace(ns);
 
143
144	if (parent != NULL)
145		put_pid_ns(parent);
 
 
 
 
146}
 
147
148void zap_pid_ns_processes(struct pid_namespace *pid_ns)
149{
150	int nr;
151	int rc;
152	struct task_struct *task, *me = current;
 
 
 
 
153
154	/* Ignore SIGCHLD causing any terminated children to autoreap */
155	spin_lock_irq(&me->sighand->siglock);
156	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
157	spin_unlock_irq(&me->sighand->siglock);
158
159	/*
160	 * The last thread in the cgroup-init thread group is terminating.
161	 * Find remaining pid_ts in the namespace, signal and wait for them
162	 * to exit.
163	 *
164	 * Note:  This signals each threads in the namespace - even those that
165	 * 	  belong to the same thread group, To avoid this, we would have
166	 * 	  to walk the entire tasklist looking a processes in this
167	 * 	  namespace, but that could be unnecessarily expensive if the
168	 * 	  pid namespace has just a few processes. Or we need to
169	 * 	  maintain a tasklist for each pid namespace.
170	 *
171	 */
172	read_lock(&tasklist_lock);
173	nr = next_pidmap(pid_ns, 1);
174	while (nr > 0) {
175		rcu_read_lock();
176
177		task = pid_task(find_vpid(nr), PIDTYPE_PID);
178		if (task && !__fatal_signal_pending(task))
179			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
180
181		rcu_read_unlock();
182
183		nr = next_pidmap(pid_ns, nr);
184	}
185	read_unlock(&tasklist_lock);
186
187	/* Firstly reap the EXIT_ZOMBIE children we may have. */
188	do {
189		clear_thread_flag(TIF_SIGPENDING);
190		rc = sys_wait4(-1, NULL, __WALL, NULL);
191	} while (rc != -ECHILD);
192
193	/*
194	 * sys_wait4() above can't reap the TASK_DEAD children.
195	 * Make sure they all go away, see __unhash_process().
196	 */
197	for (;;) {
198		bool need_wait = false;
199
200		read_lock(&tasklist_lock);
201		if (!list_empty(&current->children)) {
202			__set_current_state(TASK_UNINTERRUPTIBLE);
203			need_wait = true;
204		}
205		read_unlock(&tasklist_lock);
206
207		if (!need_wait)
208			break;
209		schedule();
210	}
 
211
212	if (pid_ns->reboot)
213		current->signal->group_exit_code = pid_ns->reboot;
214
215	acct_exit_ns(pid_ns);
216	return;
217}
218
219#ifdef CONFIG_CHECKPOINT_RESTORE
220static int pid_ns_ctl_handler(struct ctl_table *table, int write,
221		void __user *buffer, size_t *lenp, loff_t *ppos)
222{
 
223	struct ctl_table tmp = *table;
224
225	if (write && !capable(CAP_SYS_ADMIN))
226		return -EPERM;
227
228	/*
229	 * Writing directly to ns' last_pid field is OK, since this field
230	 * is volatile in a living namespace anyway and a code writing to
231	 * it should synchronize its usage with external means.
232	 */
233
234	tmp.data = &current->nsproxy->pid_ns->last_pid;
235	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
236}
237
 
 
238static struct ctl_table pid_ns_ctl_table[] = {
239	{
240		.procname = "ns_last_pid",
241		.maxlen = sizeof(int),
242		.mode = 0666, /* permissions are checked in the handler */
243		.proc_handler = pid_ns_ctl_handler,
 
 
244	},
245	{ }
246};
247static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
248#endif	/* CONFIG_CHECKPOINT_RESTORE */
249
250int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
251{
252	if (pid_ns == &init_pid_ns)
253		return 0;
254
255	switch (cmd) {
256	case LINUX_REBOOT_CMD_RESTART2:
257	case LINUX_REBOOT_CMD_RESTART:
258		pid_ns->reboot = SIGHUP;
259		break;
260
261	case LINUX_REBOOT_CMD_POWER_OFF:
262	case LINUX_REBOOT_CMD_HALT:
263		pid_ns->reboot = SIGINT;
264		break;
265	default:
266		return -EINVAL;
267	}
268
269	read_lock(&tasklist_lock);
270	force_sig(SIGKILL, pid_ns->child_reaper);
271	read_unlock(&tasklist_lock);
272
273	do_exit(0);
274
275	/* Not reached */
276	return 0;
277}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
279static __init int pid_namespaces_init(void)
280{
281	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
282
283#ifdef CONFIG_CHECKPOINT_RESTORE
284	register_sysctl_paths(kern_path, pid_ns_ctl_table);
285#endif
286	return 0;
287}
288
289__initcall(pid_namespaces_init);