Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
  1/*    Kernel dynamically loadable module help for PARISC.
  2 *
  3 *    The best reference for this stuff is probably the Processor-
  4 *    Specific ELF Supplement for PA-RISC:
  5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
  6 *
  7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
  8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
  9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 10 *
 11 *
 12 *    This program is free software; you can redistribute it and/or modify
 13 *    it under the terms of the GNU General Public License as published by
 14 *    the Free Software Foundation; either version 2 of the License, or
 15 *    (at your option) any later version.
 16 *
 17 *    This program is distributed in the hope that it will be useful,
 18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20 *    GNU General Public License for more details.
 21 *
 22 *    You should have received a copy of the GNU General Public License
 23 *    along with this program; if not, write to the Free Software
 24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25 *
 26 *
 27 *    Notes:
 28 *    - PLT stub handling
 29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 31 *      fail to reach their PLT stub if we only create one big stub array for
 32 *      all sections at the beginning of the core or init section.
 33 *      Instead we now insert individual PLT stub entries directly in front of
 34 *      of the code sections where the stubs are actually called.
 35 *      This reduces the distance between the PCREL location and the stub entry
 36 *      so that the relocations can be fulfilled.
 37 *      While calculating the final layout of the kernel module in memory, the
 38 *      kernel module loader calls arch_mod_section_prepend() to request the
 39 *      to be reserved amount of memory in front of each individual section.
 40 *
 41 *    - SEGREL32 handling
 42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 43 *      should do a value offset, like this:
 44 *			if (in_init(me, (void *)val))
 45 *				val -= (uint32_t)me->module_init;
 46 *			else
 47 *				val -= (uint32_t)me->module_core;
 48 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 49 *	those entries to have an absolute address, and not just an offset.
 50 *
 51 *	The unwind table mechanism has the ability to specify an offset for 
 52 *	the unwind table; however, because we split off the init functions into
 53 *	a different piece of memory, it is not possible to do this using a 
 54 *	single offset. Instead, we use the above hack for now.
 55 */
 56
 57#include <linux/moduleloader.h>
 58#include <linux/elf.h>
 59#include <linux/vmalloc.h>
 60#include <linux/fs.h>
 61#include <linux/string.h>
 62#include <linux/kernel.h>
 63#include <linux/bug.h>
 64#include <linux/mm.h>
 65#include <linux/slab.h>
 66
 67#include <asm/pgtable.h>
 68#include <asm/unwind.h>
 69
 70#if 0
 71#define DEBUGP printk
 72#else
 73#define DEBUGP(fmt...)
 74#endif
 75
 76#define RELOC_REACHABLE(val, bits) \
 77	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
 78	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 79	0 : 1)
 80
 81#define CHECK_RELOC(val, bits) \
 82	if (!RELOC_REACHABLE(val, bits)) { \
 83		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 84		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 85		return -ENOEXEC;			\
 86	}
 87
 88/* Maximum number of GOT entries. We use a long displacement ldd from
 89 * the bottom of the table, which has a maximum signed displacement of
 90 * 0x3fff; however, since we're only going forward, this becomes
 91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 92 * at most 1023 entries.
 93 * To overcome this 14bit displacement with some kernel modules, we'll
 94 * use instead the unusal 16bit displacement method (see reassemble_16a)
 95 * which gives us a maximum positive displacement of 0x7fff, and as such
 96 * allows us to allocate up to 4095 GOT entries. */
 97#define MAX_GOTS	4095
 98
 99/* three functions to determine where in the module core
100 * or init pieces the location is */
101static inline int in_init(struct module *me, void *loc)
102{
103	return (loc >= me->module_init &&
104		loc <= (me->module_init + me->init_size));
105}
106
107static inline int in_core(struct module *me, void *loc)
108{
109	return (loc >= me->module_core &&
110		loc <= (me->module_core + me->core_size));
111}
112
113static inline int in_local(struct module *me, void *loc)
114{
115	return in_init(me, loc) || in_core(me, loc);
116}
117
118#ifndef CONFIG_64BIT
119struct got_entry {
120	Elf32_Addr addr;
121};
122
123struct stub_entry {
124	Elf32_Word insns[2]; /* each stub entry has two insns */
125};
126#else
127struct got_entry {
128	Elf64_Addr addr;
129};
130
131struct stub_entry {
132	Elf64_Word insns[4]; /* each stub entry has four insns */
133};
134#endif
135
136/* Field selection types defined by hppa */
137#define rnd(x)			(((x)+0x1000)&~0x1fff)
138/* fsel: full 32 bits */
139#define fsel(v,a)		((v)+(a))
140/* lsel: select left 21 bits */
141#define lsel(v,a)		(((v)+(a))>>11)
142/* rsel: select right 11 bits */
143#define rsel(v,a)		(((v)+(a))&0x7ff)
144/* lrsel with rounding of addend to nearest 8k */
145#define lrsel(v,a)		(((v)+rnd(a))>>11)
146/* rrsel with rounding of addend to nearest 8k */
147#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149#define mask(x,sz)		((x) & ~((1<<(sz))-1))
150
151
152/* The reassemble_* functions prepare an immediate value for
153   insertion into an opcode. pa-risc uses all sorts of weird bitfields
154   in the instruction to hold the value.  */
155static inline int sign_unext(int x, int len)
156{
157	int len_ones;
158
159	len_ones = (1 << len) - 1;
160	return x & len_ones;
161}
162
163static inline int low_sign_unext(int x, int len)
164{
165	int sign, temp;
166
167	sign = (x >> (len-1)) & 1;
168	temp = sign_unext(x, len-1);
169	return (temp << 1) | sign;
170}
171
172static inline int reassemble_14(int as14)
173{
174	return (((as14 & 0x1fff) << 1) |
175		((as14 & 0x2000) >> 13));
176}
177
178static inline int reassemble_16a(int as16)
179{
180	int s, t;
181
182	/* Unusual 16-bit encoding, for wide mode only.  */
183	t = (as16 << 1) & 0xffff;
184	s = (as16 & 0x8000);
185	return (t ^ s ^ (s >> 1)) | (s >> 15);
186}
187
188
189static inline int reassemble_17(int as17)
190{
191	return (((as17 & 0x10000) >> 16) |
192		((as17 & 0x0f800) << 5) |
193		((as17 & 0x00400) >> 8) |
194		((as17 & 0x003ff) << 3));
195}
196
197static inline int reassemble_21(int as21)
198{
199	return (((as21 & 0x100000) >> 20) |
200		((as21 & 0x0ffe00) >> 8) |
201		((as21 & 0x000180) << 7) |
202		((as21 & 0x00007c) << 14) |
203		((as21 & 0x000003) << 12));
204}
205
206static inline int reassemble_22(int as22)
207{
208	return (((as22 & 0x200000) >> 21) |
209		((as22 & 0x1f0000) << 5) |
210		((as22 & 0x00f800) << 5) |
211		((as22 & 0x000400) >> 8) |
212		((as22 & 0x0003ff) << 3));
213}
214
215void *module_alloc(unsigned long size)
216{
 
 
217	/* using RWX means less protection for modules, but it's
218	 * easier than trying to map the text, data, init_text and
219	 * init_data correctly */
220	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
221				    GFP_KERNEL | __GFP_HIGHMEM,
222				    PAGE_KERNEL_RWX, NUMA_NO_NODE,
223				    __builtin_return_address(0));
224}
225
226#ifndef CONFIG_64BIT
227static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
228{
229	return 0;
230}
231
232static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
233{
234	return 0;
235}
236
237static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
238{
239	unsigned long cnt = 0;
240
241	for (; n > 0; n--, rela++)
242	{
243		switch (ELF32_R_TYPE(rela->r_info)) {
244			case R_PARISC_PCREL17F:
245			case R_PARISC_PCREL22F:
246				cnt++;
247		}
248	}
249
250	return cnt;
251}
252#else
253static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
254{
255	unsigned long cnt = 0;
256
257	for (; n > 0; n--, rela++)
258	{
259		switch (ELF64_R_TYPE(rela->r_info)) {
260			case R_PARISC_LTOFF21L:
261			case R_PARISC_LTOFF14R:
262			case R_PARISC_PCREL22F:
263				cnt++;
264		}
265	}
266
267	return cnt;
268}
269
270static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
271{
272	unsigned long cnt = 0;
273
274	for (; n > 0; n--, rela++)
275	{
276		switch (ELF64_R_TYPE(rela->r_info)) {
277			case R_PARISC_FPTR64:
278				cnt++;
279		}
280	}
281
282	return cnt;
283}
284
285static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
286{
287	unsigned long cnt = 0;
288
289	for (; n > 0; n--, rela++)
290	{
291		switch (ELF64_R_TYPE(rela->r_info)) {
292			case R_PARISC_PCREL22F:
293				cnt++;
294		}
295	}
296
297	return cnt;
298}
299#endif
300
301
302/* Free memory returned from module_alloc */
303void module_free(struct module *mod, void *module_region)
304{
305	kfree(mod->arch.section);
306	mod->arch.section = NULL;
307
308	vfree(module_region);
309}
310
311/* Additional bytes needed in front of individual sections */
312unsigned int arch_mod_section_prepend(struct module *mod,
313				      unsigned int section)
314{
315	/* size needed for all stubs of this section (including
316	 * one additional for correct alignment of the stubs) */
317	return (mod->arch.section[section].stub_entries + 1)
318		* sizeof(struct stub_entry);
319}
320
321#define CONST 
322int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
323			      CONST Elf_Shdr *sechdrs,
324			      CONST char *secstrings,
325			      struct module *me)
326{
327	unsigned long gots = 0, fdescs = 0, len;
328	unsigned int i;
329
330	len = hdr->e_shnum * sizeof(me->arch.section[0]);
331	me->arch.section = kzalloc(len, GFP_KERNEL);
332	if (!me->arch.section)
333		return -ENOMEM;
334
335	for (i = 1; i < hdr->e_shnum; i++) {
336		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
337		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
338		unsigned int count, s;
339
340		if (strncmp(secstrings + sechdrs[i].sh_name,
341			    ".PARISC.unwind", 14) == 0)
342			me->arch.unwind_section = i;
343
344		if (sechdrs[i].sh_type != SHT_RELA)
345			continue;
346
347		/* some of these are not relevant for 32-bit/64-bit
348		 * we leave them here to make the code common. the
349		 * compiler will do its thing and optimize out the
350		 * stuff we don't need
351		 */
352		gots += count_gots(rels, nrels);
353		fdescs += count_fdescs(rels, nrels);
354
355		/* XXX: By sorting the relocs and finding duplicate entries
356		 *  we could reduce the number of necessary stubs and save
357		 *  some memory. */
358		count = count_stubs(rels, nrels);
359		if (!count)
360			continue;
361
362		/* so we need relocation stubs. reserve necessary memory. */
363		/* sh_info gives the section for which we need to add stubs. */
364		s = sechdrs[i].sh_info;
365
366		/* each code section should only have one relocation section */
367		WARN_ON(me->arch.section[s].stub_entries);
368
369		/* store number of stubs we need for this section */
370		me->arch.section[s].stub_entries += count;
371	}
372
373	/* align things a bit */
374	me->core_size = ALIGN(me->core_size, 16);
375	me->arch.got_offset = me->core_size;
376	me->core_size += gots * sizeof(struct got_entry);
377
378	me->core_size = ALIGN(me->core_size, 16);
379	me->arch.fdesc_offset = me->core_size;
380	me->core_size += fdescs * sizeof(Elf_Fdesc);
381
382	me->arch.got_max = gots;
383	me->arch.fdesc_max = fdescs;
384
385	return 0;
386}
387
388#ifdef CONFIG_64BIT
389static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
390{
391	unsigned int i;
392	struct got_entry *got;
393
394	value += addend;
395
396	BUG_ON(value == 0);
397
398	got = me->module_core + me->arch.got_offset;
399	for (i = 0; got[i].addr; i++)
400		if (got[i].addr == value)
401			goto out;
402
403	BUG_ON(++me->arch.got_count > me->arch.got_max);
404
405	got[i].addr = value;
406 out:
407	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
408	       value);
409	return i * sizeof(struct got_entry);
410}
411#endif /* CONFIG_64BIT */
412
413#ifdef CONFIG_64BIT
414static Elf_Addr get_fdesc(struct module *me, unsigned long value)
415{
416	Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
417
418	if (!value) {
419		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
420		return 0;
421	}
422
423	/* Look for existing fdesc entry. */
424	while (fdesc->addr) {
425		if (fdesc->addr == value)
426			return (Elf_Addr)fdesc;
427		fdesc++;
428	}
429
430	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
431
432	/* Create new one */
433	fdesc->addr = value;
434	fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
435	return (Elf_Addr)fdesc;
436}
437#endif /* CONFIG_64BIT */
438
439enum elf_stub_type {
440	ELF_STUB_GOT,
441	ELF_STUB_MILLI,
442	ELF_STUB_DIRECT,
443};
444
445static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
446	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
447{
448	struct stub_entry *stub;
449	int __maybe_unused d;
450
451	/* initialize stub_offset to point in front of the section */
452	if (!me->arch.section[targetsec].stub_offset) {
453		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
454				sizeof(struct stub_entry);
455		/* get correct alignment for the stubs */
456		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
457		me->arch.section[targetsec].stub_offset = loc0;
458	}
459
460	/* get address of stub entry */
461	stub = (void *) me->arch.section[targetsec].stub_offset;
462	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
463
464	/* do not write outside available stub area */
465	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
466
467
468#ifndef CONFIG_64BIT
469/* for 32-bit the stub looks like this:
470 * 	ldil L'XXX,%r1
471 * 	be,n R'XXX(%sr4,%r1)
472 */
473	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
474
475	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
476	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
477
478	stub->insns[0] |= reassemble_21(lrsel(value, addend));
479	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
480
481#else
482/* for 64-bit we have three kinds of stubs:
483 * for normal function calls:
484 * 	ldd 0(%dp),%dp
485 * 	ldd 10(%dp), %r1
486 * 	bve (%r1)
487 * 	ldd 18(%dp), %dp
488 *
489 * for millicode:
490 * 	ldil 0, %r1
491 * 	ldo 0(%r1), %r1
492 * 	ldd 10(%r1), %r1
493 * 	bve,n (%r1)
494 *
495 * for direct branches (jumps between different section of the
496 * same module):
497 *	ldil 0, %r1
498 *	ldo 0(%r1), %r1
499 *	bve,n (%r1)
500 */
501	switch (stub_type) {
502	case ELF_STUB_GOT:
503		d = get_got(me, value, addend);
504		if (d <= 15) {
505			/* Format 5 */
506			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
507			stub->insns[0] |= low_sign_unext(d, 5) << 16;
508		} else {
509			/* Format 3 */
510			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
511			stub->insns[0] |= reassemble_16a(d);
512		}
513		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
514		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
515		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
516		break;
517	case ELF_STUB_MILLI:
518		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
519		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
520		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
521		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
522
523		stub->insns[0] |= reassemble_21(lrsel(value, addend));
524		stub->insns[1] |= reassemble_14(rrsel(value, addend));
525		break;
526	case ELF_STUB_DIRECT:
527		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
528		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
529		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
530
531		stub->insns[0] |= reassemble_21(lrsel(value, addend));
532		stub->insns[1] |= reassemble_14(rrsel(value, addend));
533		break;
534	}
535
536#endif
537
538	return (Elf_Addr)stub;
539}
540
541#ifndef CONFIG_64BIT
542int apply_relocate_add(Elf_Shdr *sechdrs,
543		       const char *strtab,
544		       unsigned int symindex,
545		       unsigned int relsec,
546		       struct module *me)
547{
548	int i;
549	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
550	Elf32_Sym *sym;
551	Elf32_Word *loc;
552	Elf32_Addr val;
553	Elf32_Sword addend;
554	Elf32_Addr dot;
555	Elf_Addr loc0;
556	unsigned int targetsec = sechdrs[relsec].sh_info;
557	//unsigned long dp = (unsigned long)$global$;
558	register unsigned long dp asm ("r27");
559
560	DEBUGP("Applying relocate section %u to %u\n", relsec,
561	       targetsec);
562	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
563		/* This is where to make the change */
564		loc = (void *)sechdrs[targetsec].sh_addr
565		      + rel[i].r_offset;
566		/* This is the start of the target section */
567		loc0 = sechdrs[targetsec].sh_addr;
568		/* This is the symbol it is referring to */
569		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
570			+ ELF32_R_SYM(rel[i].r_info);
571		if (!sym->st_value) {
572			printk(KERN_WARNING "%s: Unknown symbol %s\n",
573			       me->name, strtab + sym->st_name);
574			return -ENOENT;
575		}
576		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
577		dot =  (Elf32_Addr)loc & ~0x03;
578
579		val = sym->st_value;
580		addend = rel[i].r_addend;
581
582#if 0
583#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
584		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
585			strtab + sym->st_name,
586			(uint32_t)loc, val, addend,
587			r(R_PARISC_PLABEL32)
588			r(R_PARISC_DIR32)
589			r(R_PARISC_DIR21L)
590			r(R_PARISC_DIR14R)
591			r(R_PARISC_SEGREL32)
592			r(R_PARISC_DPREL21L)
593			r(R_PARISC_DPREL14R)
594			r(R_PARISC_PCREL17F)
595			r(R_PARISC_PCREL22F)
596			"UNKNOWN");
597#undef r
598#endif
599
600		switch (ELF32_R_TYPE(rel[i].r_info)) {
601		case R_PARISC_PLABEL32:
602			/* 32-bit function address */
603			/* no function descriptors... */
604			*loc = fsel(val, addend);
605			break;
606		case R_PARISC_DIR32:
607			/* direct 32-bit ref */
608			*loc = fsel(val, addend);
609			break;
610		case R_PARISC_DIR21L:
611			/* left 21 bits of effective address */
612			val = lrsel(val, addend);
613			*loc = mask(*loc, 21) | reassemble_21(val);
614			break;
615		case R_PARISC_DIR14R:
616			/* right 14 bits of effective address */
617			val = rrsel(val, addend);
618			*loc = mask(*loc, 14) | reassemble_14(val);
619			break;
620		case R_PARISC_SEGREL32:
621			/* 32-bit segment relative address */
622			/* See note about special handling of SEGREL32 at
623			 * the beginning of this file.
624			 */
625			*loc = fsel(val, addend); 
626			break;
627		case R_PARISC_DPREL21L:
628			/* left 21 bit of relative address */
629			val = lrsel(val - dp, addend);
630			*loc = mask(*loc, 21) | reassemble_21(val);
631			break;
632		case R_PARISC_DPREL14R:
633			/* right 14 bit of relative address */
634			val = rrsel(val - dp, addend);
635			*loc = mask(*loc, 14) | reassemble_14(val);
636			break;
637		case R_PARISC_PCREL17F:
638			/* 17-bit PC relative address */
639			/* calculate direct call offset */
640			val += addend;
641			val = (val - dot - 8)/4;
642			if (!RELOC_REACHABLE(val, 17)) {
643				/* direct distance too far, create
644				 * stub entry instead */
645				val = get_stub(me, sym->st_value, addend,
646					ELF_STUB_DIRECT, loc0, targetsec);
647				val = (val - dot - 8)/4;
648				CHECK_RELOC(val, 17);
649			}
650			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
651			break;
652		case R_PARISC_PCREL22F:
653			/* 22-bit PC relative address; only defined for pa20 */
654			/* calculate direct call offset */
655			val += addend;
656			val = (val - dot - 8)/4;
657			if (!RELOC_REACHABLE(val, 22)) {
658				/* direct distance too far, create
659				 * stub entry instead */
660				val = get_stub(me, sym->st_value, addend,
661					ELF_STUB_DIRECT, loc0, targetsec);
662				val = (val - dot - 8)/4;
663				CHECK_RELOC(val, 22);
664			}
665			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
666			break;
667
668		default:
669			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
670			       me->name, ELF32_R_TYPE(rel[i].r_info));
671			return -ENOEXEC;
672		}
673	}
674
675	return 0;
676}
677
678#else
679int apply_relocate_add(Elf_Shdr *sechdrs,
680		       const char *strtab,
681		       unsigned int symindex,
682		       unsigned int relsec,
683		       struct module *me)
684{
685	int i;
686	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
687	Elf64_Sym *sym;
688	Elf64_Word *loc;
689	Elf64_Xword *loc64;
690	Elf64_Addr val;
691	Elf64_Sxword addend;
692	Elf64_Addr dot;
693	Elf_Addr loc0;
694	unsigned int targetsec = sechdrs[relsec].sh_info;
695
696	DEBUGP("Applying relocate section %u to %u\n", relsec,
697	       targetsec);
698	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
699		/* This is where to make the change */
700		loc = (void *)sechdrs[targetsec].sh_addr
701		      + rel[i].r_offset;
702		/* This is the start of the target section */
703		loc0 = sechdrs[targetsec].sh_addr;
704		/* This is the symbol it is referring to */
705		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
706			+ ELF64_R_SYM(rel[i].r_info);
707		if (!sym->st_value) {
708			printk(KERN_WARNING "%s: Unknown symbol %s\n",
709			       me->name, strtab + sym->st_name);
710			return -ENOENT;
711		}
712		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
713		dot = (Elf64_Addr)loc & ~0x03;
714		loc64 = (Elf64_Xword *)loc;
715
716		val = sym->st_value;
717		addend = rel[i].r_addend;
718
719#if 0
720#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
721		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
722			strtab + sym->st_name,
723			loc, val, addend,
724			r(R_PARISC_LTOFF14R)
725			r(R_PARISC_LTOFF21L)
726			r(R_PARISC_PCREL22F)
727			r(R_PARISC_DIR64)
728			r(R_PARISC_SEGREL32)
729			r(R_PARISC_FPTR64)
730			"UNKNOWN");
731#undef r
732#endif
733
734		switch (ELF64_R_TYPE(rel[i].r_info)) {
735		case R_PARISC_LTOFF21L:
736			/* LT-relative; left 21 bits */
737			val = get_got(me, val, addend);
738			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
739			       strtab + sym->st_name,
740			       loc, val);
741			val = lrsel(val, 0);
742			*loc = mask(*loc, 21) | reassemble_21(val);
743			break;
744		case R_PARISC_LTOFF14R:
745			/* L(ltoff(val+addend)) */
746			/* LT-relative; right 14 bits */
747			val = get_got(me, val, addend);
748			val = rrsel(val, 0);
749			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
750			       strtab + sym->st_name,
751			       loc, val);
752			*loc = mask(*loc, 14) | reassemble_14(val);
753			break;
754		case R_PARISC_PCREL22F:
755			/* PC-relative; 22 bits */
756			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
757			       strtab + sym->st_name,
758			       loc, val);
759			val += addend;
760			/* can we reach it locally? */
761			if (in_local(me, (void *)val)) {
762				/* this is the case where the symbol is local
763				 * to the module, but in a different section,
764				 * so stub the jump in case it's more than 22
765				 * bits away */
766				val = (val - dot - 8)/4;
767				if (!RELOC_REACHABLE(val, 22)) {
768					/* direct distance too far, create
769					 * stub entry instead */
770					val = get_stub(me, sym->st_value,
771						addend, ELF_STUB_DIRECT,
772						loc0, targetsec);
773				} else {
774					/* Ok, we can reach it directly. */
775					val = sym->st_value;
776					val += addend;
777				}
778			} else {
779				val = sym->st_value;
780				if (strncmp(strtab + sym->st_name, "$$", 2)
781				    == 0)
782					val = get_stub(me, val, addend, ELF_STUB_MILLI,
783						       loc0, targetsec);
784				else
785					val = get_stub(me, val, addend, ELF_STUB_GOT,
786						       loc0, targetsec);
787			}
788			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
789			       strtab + sym->st_name, loc, sym->st_value,
790			       addend, val);
791			val = (val - dot - 8)/4;
792			CHECK_RELOC(val, 22);
793			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
794			break;
795		case R_PARISC_DIR64:
796			/* 64-bit effective address */
797			*loc64 = val + addend;
798			break;
799		case R_PARISC_SEGREL32:
800			/* 32-bit segment relative address */
801			/* See note about special handling of SEGREL32 at
802			 * the beginning of this file.
803			 */
804			*loc = fsel(val, addend); 
805			break;
806		case R_PARISC_FPTR64:
807			/* 64-bit function address */
808			if(in_local(me, (void *)(val + addend))) {
809				*loc64 = get_fdesc(me, val+addend);
810				DEBUGP("FDESC for %s at %p points to %lx\n",
811				       strtab + sym->st_name, *loc64,
812				       ((Elf_Fdesc *)*loc64)->addr);
813			} else {
814				/* if the symbol is not local to this
815				 * module then val+addend is a pointer
816				 * to the function descriptor */
817				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
818				       strtab + sym->st_name,
819				       loc, val);
820				*loc64 = val + addend;
821			}
822			break;
823
824		default:
825			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
826			       me->name, ELF64_R_TYPE(rel[i].r_info));
827			return -ENOEXEC;
828		}
829	}
830	return 0;
831}
832#endif
833
834static void
835register_unwind_table(struct module *me,
836		      const Elf_Shdr *sechdrs)
837{
838	unsigned char *table, *end;
839	unsigned long gp;
840
841	if (!me->arch.unwind_section)
842		return;
843
844	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
845	end = table + sechdrs[me->arch.unwind_section].sh_size;
846	gp = (Elf_Addr)me->module_core + me->arch.got_offset;
847
848	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
849	       me->arch.unwind_section, table, end, gp);
850	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
851}
852
853static void
854deregister_unwind_table(struct module *me)
855{
856	if (me->arch.unwind)
857		unwind_table_remove(me->arch.unwind);
858}
859
860int module_finalize(const Elf_Ehdr *hdr,
861		    const Elf_Shdr *sechdrs,
862		    struct module *me)
863{
864	int i;
865	unsigned long nsyms;
866	const char *strtab = NULL;
867	Elf_Sym *newptr, *oldptr;
868	Elf_Shdr *symhdr = NULL;
869#ifdef DEBUG
870	Elf_Fdesc *entry;
871	u32 *addr;
872
873	entry = (Elf_Fdesc *)me->init;
874	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
875	       entry->gp, entry->addr);
876	addr = (u32 *)entry->addr;
877	printk("INSNS: %x %x %x %x\n",
878	       addr[0], addr[1], addr[2], addr[3]);
879	printk("got entries used %ld, gots max %ld\n"
880	       "fdescs used %ld, fdescs max %ld\n",
881	       me->arch.got_count, me->arch.got_max,
882	       me->arch.fdesc_count, me->arch.fdesc_max);
883#endif
884
885	register_unwind_table(me, sechdrs);
886
887	/* haven't filled in me->symtab yet, so have to find it
888	 * ourselves */
889	for (i = 1; i < hdr->e_shnum; i++) {
890		if(sechdrs[i].sh_type == SHT_SYMTAB
891		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
892			int strindex = sechdrs[i].sh_link;
893			/* FIXME: AWFUL HACK
894			 * The cast is to drop the const from
895			 * the sechdrs pointer */
896			symhdr = (Elf_Shdr *)&sechdrs[i];
897			strtab = (char *)sechdrs[strindex].sh_addr;
898			break;
899		}
900	}
901
902	DEBUGP("module %s: strtab %p, symhdr %p\n",
903	       me->name, strtab, symhdr);
904
905	if(me->arch.got_count > MAX_GOTS) {
906		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
907				me->name, me->arch.got_count, MAX_GOTS);
908		return -EINVAL;
909	}
910
911	kfree(me->arch.section);
912	me->arch.section = NULL;
913
914	/* no symbol table */
915	if(symhdr == NULL)
916		return 0;
917
918	oldptr = (void *)symhdr->sh_addr;
919	newptr = oldptr + 1;	/* we start counting at 1 */
920	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
921	DEBUGP("OLD num_symtab %lu\n", nsyms);
922
923	for (i = 1; i < nsyms; i++) {
924		oldptr++;	/* note, count starts at 1 so preincrement */
925		if(strncmp(strtab + oldptr->st_name,
926			      ".L", 2) == 0)
927			continue;
928
929		if(newptr != oldptr)
930			*newptr++ = *oldptr;
931		else
932			newptr++;
933
934	}
935	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
936	DEBUGP("NEW num_symtab %lu\n", nsyms);
937	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
938	return 0;
939}
940
941void module_arch_cleanup(struct module *mod)
942{
943	deregister_unwind_table(mod);
944}
  1/*    Kernel dynamically loadable module help for PARISC.
  2 *
  3 *    The best reference for this stuff is probably the Processor-
  4 *    Specific ELF Supplement for PA-RISC:
  5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
  6 *
  7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
  8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
  9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 10 *
 11 *
 12 *    This program is free software; you can redistribute it and/or modify
 13 *    it under the terms of the GNU General Public License as published by
 14 *    the Free Software Foundation; either version 2 of the License, or
 15 *    (at your option) any later version.
 16 *
 17 *    This program is distributed in the hope that it will be useful,
 18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20 *    GNU General Public License for more details.
 21 *
 22 *    You should have received a copy of the GNU General Public License
 23 *    along with this program; if not, write to the Free Software
 24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25 *
 26 *
 27 *    Notes:
 28 *    - PLT stub handling
 29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 31 *      fail to reach their PLT stub if we only create one big stub array for
 32 *      all sections at the beginning of the core or init section.
 33 *      Instead we now insert individual PLT stub entries directly in front of
 34 *      of the code sections where the stubs are actually called.
 35 *      This reduces the distance between the PCREL location and the stub entry
 36 *      so that the relocations can be fulfilled.
 37 *      While calculating the final layout of the kernel module in memory, the
 38 *      kernel module loader calls arch_mod_section_prepend() to request the
 39 *      to be reserved amount of memory in front of each individual section.
 40 *
 41 *    - SEGREL32 handling
 42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 43 *      should do a value offset, like this:
 44 *			if (in_init(me, (void *)val))
 45 *				val -= (uint32_t)me->module_init;
 46 *			else
 47 *				val -= (uint32_t)me->module_core;
 48 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 49 *	those entries to have an absolute address, and not just an offset.
 50 *
 51 *	The unwind table mechanism has the ability to specify an offset for 
 52 *	the unwind table; however, because we split off the init functions into
 53 *	a different piece of memory, it is not possible to do this using a 
 54 *	single offset. Instead, we use the above hack for now.
 55 */
 56
 57#include <linux/moduleloader.h>
 58#include <linux/elf.h>
 59#include <linux/vmalloc.h>
 60#include <linux/fs.h>
 61#include <linux/string.h>
 62#include <linux/kernel.h>
 63#include <linux/bug.h>
 64#include <linux/mm.h>
 65#include <linux/slab.h>
 66
 67#include <asm/pgtable.h>
 68#include <asm/unwind.h>
 69
 70#if 0
 71#define DEBUGP printk
 72#else
 73#define DEBUGP(fmt...)
 74#endif
 75
 76#define RELOC_REACHABLE(val, bits) \
 77	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
 78	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 79	0 : 1)
 80
 81#define CHECK_RELOC(val, bits) \
 82	if (!RELOC_REACHABLE(val, bits)) { \
 83		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 84		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 85		return -ENOEXEC;			\
 86	}
 87
 88/* Maximum number of GOT entries. We use a long displacement ldd from
 89 * the bottom of the table, which has a maximum signed displacement of
 90 * 0x3fff; however, since we're only going forward, this becomes
 91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 92 * at most 1023 entries.
 93 * To overcome this 14bit displacement with some kernel modules, we'll
 94 * use instead the unusal 16bit displacement method (see reassemble_16a)
 95 * which gives us a maximum positive displacement of 0x7fff, and as such
 96 * allows us to allocate up to 4095 GOT entries. */
 97#define MAX_GOTS	4095
 98
 99/* three functions to determine where in the module core
100 * or init pieces the location is */
101static inline int in_init(struct module *me, void *loc)
102{
103	return (loc >= me->module_init &&
104		loc <= (me->module_init + me->init_size));
105}
106
107static inline int in_core(struct module *me, void *loc)
108{
109	return (loc >= me->module_core &&
110		loc <= (me->module_core + me->core_size));
111}
112
113static inline int in_local(struct module *me, void *loc)
114{
115	return in_init(me, loc) || in_core(me, loc);
116}
117
118#ifndef CONFIG_64BIT
119struct got_entry {
120	Elf32_Addr addr;
121};
122
123struct stub_entry {
124	Elf32_Word insns[2]; /* each stub entry has two insns */
125};
126#else
127struct got_entry {
128	Elf64_Addr addr;
129};
130
131struct stub_entry {
132	Elf64_Word insns[4]; /* each stub entry has four insns */
133};
134#endif
135
136/* Field selection types defined by hppa */
137#define rnd(x)			(((x)+0x1000)&~0x1fff)
138/* fsel: full 32 bits */
139#define fsel(v,a)		((v)+(a))
140/* lsel: select left 21 bits */
141#define lsel(v,a)		(((v)+(a))>>11)
142/* rsel: select right 11 bits */
143#define rsel(v,a)		(((v)+(a))&0x7ff)
144/* lrsel with rounding of addend to nearest 8k */
145#define lrsel(v,a)		(((v)+rnd(a))>>11)
146/* rrsel with rounding of addend to nearest 8k */
147#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149#define mask(x,sz)		((x) & ~((1<<(sz))-1))
150
151
152/* The reassemble_* functions prepare an immediate value for
153   insertion into an opcode. pa-risc uses all sorts of weird bitfields
154   in the instruction to hold the value.  */
155static inline int sign_unext(int x, int len)
156{
157	int len_ones;
158
159	len_ones = (1 << len) - 1;
160	return x & len_ones;
161}
162
163static inline int low_sign_unext(int x, int len)
164{
165	int sign, temp;
166
167	sign = (x >> (len-1)) & 1;
168	temp = sign_unext(x, len-1);
169	return (temp << 1) | sign;
170}
171
172static inline int reassemble_14(int as14)
173{
174	return (((as14 & 0x1fff) << 1) |
175		((as14 & 0x2000) >> 13));
176}
177
178static inline int reassemble_16a(int as16)
179{
180	int s, t;
181
182	/* Unusual 16-bit encoding, for wide mode only.  */
183	t = (as16 << 1) & 0xffff;
184	s = (as16 & 0x8000);
185	return (t ^ s ^ (s >> 1)) | (s >> 15);
186}
187
188
189static inline int reassemble_17(int as17)
190{
191	return (((as17 & 0x10000) >> 16) |
192		((as17 & 0x0f800) << 5) |
193		((as17 & 0x00400) >> 8) |
194		((as17 & 0x003ff) << 3));
195}
196
197static inline int reassemble_21(int as21)
198{
199	return (((as21 & 0x100000) >> 20) |
200		((as21 & 0x0ffe00) >> 8) |
201		((as21 & 0x000180) << 7) |
202		((as21 & 0x00007c) << 14) |
203		((as21 & 0x000003) << 12));
204}
205
206static inline int reassemble_22(int as22)
207{
208	return (((as22 & 0x200000) >> 21) |
209		((as22 & 0x1f0000) << 5) |
210		((as22 & 0x00f800) << 5) |
211		((as22 & 0x000400) >> 8) |
212		((as22 & 0x0003ff) << 3));
213}
214
215void *module_alloc(unsigned long size)
216{
217	if (size == 0)
218		return NULL;
219	/* using RWX means less protection for modules, but it's
220	 * easier than trying to map the text, data, init_text and
221	 * init_data correctly */
222	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
223				    GFP_KERNEL | __GFP_HIGHMEM,
224				    PAGE_KERNEL_RWX, -1,
225				    __builtin_return_address(0));
226}
227
228#ifndef CONFIG_64BIT
229static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
230{
231	return 0;
232}
233
234static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
235{
236	return 0;
237}
238
239static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
240{
241	unsigned long cnt = 0;
242
243	for (; n > 0; n--, rela++)
244	{
245		switch (ELF32_R_TYPE(rela->r_info)) {
246			case R_PARISC_PCREL17F:
247			case R_PARISC_PCREL22F:
248				cnt++;
249		}
250	}
251
252	return cnt;
253}
254#else
255static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
256{
257	unsigned long cnt = 0;
258
259	for (; n > 0; n--, rela++)
260	{
261		switch (ELF64_R_TYPE(rela->r_info)) {
262			case R_PARISC_LTOFF21L:
263			case R_PARISC_LTOFF14R:
264			case R_PARISC_PCREL22F:
265				cnt++;
266		}
267	}
268
269	return cnt;
270}
271
272static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
273{
274	unsigned long cnt = 0;
275
276	for (; n > 0; n--, rela++)
277	{
278		switch (ELF64_R_TYPE(rela->r_info)) {
279			case R_PARISC_FPTR64:
280				cnt++;
281		}
282	}
283
284	return cnt;
285}
286
287static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
288{
289	unsigned long cnt = 0;
290
291	for (; n > 0; n--, rela++)
292	{
293		switch (ELF64_R_TYPE(rela->r_info)) {
294			case R_PARISC_PCREL22F:
295				cnt++;
296		}
297	}
298
299	return cnt;
300}
301#endif
302
303
304/* Free memory returned from module_alloc */
305void module_free(struct module *mod, void *module_region)
306{
307	kfree(mod->arch.section);
308	mod->arch.section = NULL;
309
310	vfree(module_region);
311}
312
313/* Additional bytes needed in front of individual sections */
314unsigned int arch_mod_section_prepend(struct module *mod,
315				      unsigned int section)
316{
317	/* size needed for all stubs of this section (including
318	 * one additional for correct alignment of the stubs) */
319	return (mod->arch.section[section].stub_entries + 1)
320		* sizeof(struct stub_entry);
321}
322
323#define CONST 
324int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
325			      CONST Elf_Shdr *sechdrs,
326			      CONST char *secstrings,
327			      struct module *me)
328{
329	unsigned long gots = 0, fdescs = 0, len;
330	unsigned int i;
331
332	len = hdr->e_shnum * sizeof(me->arch.section[0]);
333	me->arch.section = kzalloc(len, GFP_KERNEL);
334	if (!me->arch.section)
335		return -ENOMEM;
336
337	for (i = 1; i < hdr->e_shnum; i++) {
338		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
339		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
340		unsigned int count, s;
341
342		if (strncmp(secstrings + sechdrs[i].sh_name,
343			    ".PARISC.unwind", 14) == 0)
344			me->arch.unwind_section = i;
345
346		if (sechdrs[i].sh_type != SHT_RELA)
347			continue;
348
349		/* some of these are not relevant for 32-bit/64-bit
350		 * we leave them here to make the code common. the
351		 * compiler will do its thing and optimize out the
352		 * stuff we don't need
353		 */
354		gots += count_gots(rels, nrels);
355		fdescs += count_fdescs(rels, nrels);
356
357		/* XXX: By sorting the relocs and finding duplicate entries
358		 *  we could reduce the number of necessary stubs and save
359		 *  some memory. */
360		count = count_stubs(rels, nrels);
361		if (!count)
362			continue;
363
364		/* so we need relocation stubs. reserve necessary memory. */
365		/* sh_info gives the section for which we need to add stubs. */
366		s = sechdrs[i].sh_info;
367
368		/* each code section should only have one relocation section */
369		WARN_ON(me->arch.section[s].stub_entries);
370
371		/* store number of stubs we need for this section */
372		me->arch.section[s].stub_entries += count;
373	}
374
375	/* align things a bit */
376	me->core_size = ALIGN(me->core_size, 16);
377	me->arch.got_offset = me->core_size;
378	me->core_size += gots * sizeof(struct got_entry);
379
380	me->core_size = ALIGN(me->core_size, 16);
381	me->arch.fdesc_offset = me->core_size;
382	me->core_size += fdescs * sizeof(Elf_Fdesc);
383
384	me->arch.got_max = gots;
385	me->arch.fdesc_max = fdescs;
386
387	return 0;
388}
389
390#ifdef CONFIG_64BIT
391static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
392{
393	unsigned int i;
394	struct got_entry *got;
395
396	value += addend;
397
398	BUG_ON(value == 0);
399
400	got = me->module_core + me->arch.got_offset;
401	for (i = 0; got[i].addr; i++)
402		if (got[i].addr == value)
403			goto out;
404
405	BUG_ON(++me->arch.got_count > me->arch.got_max);
406
407	got[i].addr = value;
408 out:
409	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
410	       value);
411	return i * sizeof(struct got_entry);
412}
413#endif /* CONFIG_64BIT */
414
415#ifdef CONFIG_64BIT
416static Elf_Addr get_fdesc(struct module *me, unsigned long value)
417{
418	Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
419
420	if (!value) {
421		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
422		return 0;
423	}
424
425	/* Look for existing fdesc entry. */
426	while (fdesc->addr) {
427		if (fdesc->addr == value)
428			return (Elf_Addr)fdesc;
429		fdesc++;
430	}
431
432	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
433
434	/* Create new one */
435	fdesc->addr = value;
436	fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
437	return (Elf_Addr)fdesc;
438}
439#endif /* CONFIG_64BIT */
440
441enum elf_stub_type {
442	ELF_STUB_GOT,
443	ELF_STUB_MILLI,
444	ELF_STUB_DIRECT,
445};
446
447static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
448	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
449{
450	struct stub_entry *stub;
451	int __maybe_unused d;
452
453	/* initialize stub_offset to point in front of the section */
454	if (!me->arch.section[targetsec].stub_offset) {
455		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
456				sizeof(struct stub_entry);
457		/* get correct alignment for the stubs */
458		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
459		me->arch.section[targetsec].stub_offset = loc0;
460	}
461
462	/* get address of stub entry */
463	stub = (void *) me->arch.section[targetsec].stub_offset;
464	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
465
466	/* do not write outside available stub area */
467	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
468
469
470#ifndef CONFIG_64BIT
471/* for 32-bit the stub looks like this:
472 * 	ldil L'XXX,%r1
473 * 	be,n R'XXX(%sr4,%r1)
474 */
475	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
476
477	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
478	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
479
480	stub->insns[0] |= reassemble_21(lrsel(value, addend));
481	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
482
483#else
484/* for 64-bit we have three kinds of stubs:
485 * for normal function calls:
486 * 	ldd 0(%dp),%dp
487 * 	ldd 10(%dp), %r1
488 * 	bve (%r1)
489 * 	ldd 18(%dp), %dp
490 *
491 * for millicode:
492 * 	ldil 0, %r1
493 * 	ldo 0(%r1), %r1
494 * 	ldd 10(%r1), %r1
495 * 	bve,n (%r1)
496 *
497 * for direct branches (jumps between different section of the
498 * same module):
499 *	ldil 0, %r1
500 *	ldo 0(%r1), %r1
501 *	bve,n (%r1)
502 */
503	switch (stub_type) {
504	case ELF_STUB_GOT:
505		d = get_got(me, value, addend);
506		if (d <= 15) {
507			/* Format 5 */
508			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
509			stub->insns[0] |= low_sign_unext(d, 5) << 16;
510		} else {
511			/* Format 3 */
512			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
513			stub->insns[0] |= reassemble_16a(d);
514		}
515		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
516		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
517		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
518		break;
519	case ELF_STUB_MILLI:
520		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
521		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
522		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
523		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
524
525		stub->insns[0] |= reassemble_21(lrsel(value, addend));
526		stub->insns[1] |= reassemble_14(rrsel(value, addend));
527		break;
528	case ELF_STUB_DIRECT:
529		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
530		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
531		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
532
533		stub->insns[0] |= reassemble_21(lrsel(value, addend));
534		stub->insns[1] |= reassemble_14(rrsel(value, addend));
535		break;
536	}
537
538#endif
539
540	return (Elf_Addr)stub;
541}
542
543#ifndef CONFIG_64BIT
544int apply_relocate_add(Elf_Shdr *sechdrs,
545		       const char *strtab,
546		       unsigned int symindex,
547		       unsigned int relsec,
548		       struct module *me)
549{
550	int i;
551	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
552	Elf32_Sym *sym;
553	Elf32_Word *loc;
554	Elf32_Addr val;
555	Elf32_Sword addend;
556	Elf32_Addr dot;
557	Elf_Addr loc0;
558	unsigned int targetsec = sechdrs[relsec].sh_info;
559	//unsigned long dp = (unsigned long)$global$;
560	register unsigned long dp asm ("r27");
561
562	DEBUGP("Applying relocate section %u to %u\n", relsec,
563	       targetsec);
564	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
565		/* This is where to make the change */
566		loc = (void *)sechdrs[targetsec].sh_addr
567		      + rel[i].r_offset;
568		/* This is the start of the target section */
569		loc0 = sechdrs[targetsec].sh_addr;
570		/* This is the symbol it is referring to */
571		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
572			+ ELF32_R_SYM(rel[i].r_info);
573		if (!sym->st_value) {
574			printk(KERN_WARNING "%s: Unknown symbol %s\n",
575			       me->name, strtab + sym->st_name);
576			return -ENOENT;
577		}
578		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
579		dot =  (Elf32_Addr)loc & ~0x03;
580
581		val = sym->st_value;
582		addend = rel[i].r_addend;
583
584#if 0
585#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
586		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
587			strtab + sym->st_name,
588			(uint32_t)loc, val, addend,
589			r(R_PARISC_PLABEL32)
590			r(R_PARISC_DIR32)
591			r(R_PARISC_DIR21L)
592			r(R_PARISC_DIR14R)
593			r(R_PARISC_SEGREL32)
594			r(R_PARISC_DPREL21L)
595			r(R_PARISC_DPREL14R)
596			r(R_PARISC_PCREL17F)
597			r(R_PARISC_PCREL22F)
598			"UNKNOWN");
599#undef r
600#endif
601
602		switch (ELF32_R_TYPE(rel[i].r_info)) {
603		case R_PARISC_PLABEL32:
604			/* 32-bit function address */
605			/* no function descriptors... */
606			*loc = fsel(val, addend);
607			break;
608		case R_PARISC_DIR32:
609			/* direct 32-bit ref */
610			*loc = fsel(val, addend);
611			break;
612		case R_PARISC_DIR21L:
613			/* left 21 bits of effective address */
614			val = lrsel(val, addend);
615			*loc = mask(*loc, 21) | reassemble_21(val);
616			break;
617		case R_PARISC_DIR14R:
618			/* right 14 bits of effective address */
619			val = rrsel(val, addend);
620			*loc = mask(*loc, 14) | reassemble_14(val);
621			break;
622		case R_PARISC_SEGREL32:
623			/* 32-bit segment relative address */
624			/* See note about special handling of SEGREL32 at
625			 * the beginning of this file.
626			 */
627			*loc = fsel(val, addend); 
628			break;
629		case R_PARISC_DPREL21L:
630			/* left 21 bit of relative address */
631			val = lrsel(val - dp, addend);
632			*loc = mask(*loc, 21) | reassemble_21(val);
633			break;
634		case R_PARISC_DPREL14R:
635			/* right 14 bit of relative address */
636			val = rrsel(val - dp, addend);
637			*loc = mask(*loc, 14) | reassemble_14(val);
638			break;
639		case R_PARISC_PCREL17F:
640			/* 17-bit PC relative address */
641			/* calculate direct call offset */
642			val += addend;
643			val = (val - dot - 8)/4;
644			if (!RELOC_REACHABLE(val, 17)) {
645				/* direct distance too far, create
646				 * stub entry instead */
647				val = get_stub(me, sym->st_value, addend,
648					ELF_STUB_DIRECT, loc0, targetsec);
649				val = (val - dot - 8)/4;
650				CHECK_RELOC(val, 17);
651			}
652			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
653			break;
654		case R_PARISC_PCREL22F:
655			/* 22-bit PC relative address; only defined for pa20 */
656			/* calculate direct call offset */
657			val += addend;
658			val = (val - dot - 8)/4;
659			if (!RELOC_REACHABLE(val, 22)) {
660				/* direct distance too far, create
661				 * stub entry instead */
662				val = get_stub(me, sym->st_value, addend,
663					ELF_STUB_DIRECT, loc0, targetsec);
664				val = (val - dot - 8)/4;
665				CHECK_RELOC(val, 22);
666			}
667			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
668			break;
669
670		default:
671			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
672			       me->name, ELF32_R_TYPE(rel[i].r_info));
673			return -ENOEXEC;
674		}
675	}
676
677	return 0;
678}
679
680#else
681int apply_relocate_add(Elf_Shdr *sechdrs,
682		       const char *strtab,
683		       unsigned int symindex,
684		       unsigned int relsec,
685		       struct module *me)
686{
687	int i;
688	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
689	Elf64_Sym *sym;
690	Elf64_Word *loc;
691	Elf64_Xword *loc64;
692	Elf64_Addr val;
693	Elf64_Sxword addend;
694	Elf64_Addr dot;
695	Elf_Addr loc0;
696	unsigned int targetsec = sechdrs[relsec].sh_info;
697
698	DEBUGP("Applying relocate section %u to %u\n", relsec,
699	       targetsec);
700	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
701		/* This is where to make the change */
702		loc = (void *)sechdrs[targetsec].sh_addr
703		      + rel[i].r_offset;
704		/* This is the start of the target section */
705		loc0 = sechdrs[targetsec].sh_addr;
706		/* This is the symbol it is referring to */
707		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
708			+ ELF64_R_SYM(rel[i].r_info);
709		if (!sym->st_value) {
710			printk(KERN_WARNING "%s: Unknown symbol %s\n",
711			       me->name, strtab + sym->st_name);
712			return -ENOENT;
713		}
714		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
715		dot = (Elf64_Addr)loc & ~0x03;
716		loc64 = (Elf64_Xword *)loc;
717
718		val = sym->st_value;
719		addend = rel[i].r_addend;
720
721#if 0
722#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
723		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
724			strtab + sym->st_name,
725			loc, val, addend,
726			r(R_PARISC_LTOFF14R)
727			r(R_PARISC_LTOFF21L)
728			r(R_PARISC_PCREL22F)
729			r(R_PARISC_DIR64)
730			r(R_PARISC_SEGREL32)
731			r(R_PARISC_FPTR64)
732			"UNKNOWN");
733#undef r
734#endif
735
736		switch (ELF64_R_TYPE(rel[i].r_info)) {
737		case R_PARISC_LTOFF21L:
738			/* LT-relative; left 21 bits */
739			val = get_got(me, val, addend);
740			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
741			       strtab + sym->st_name,
742			       loc, val);
743			val = lrsel(val, 0);
744			*loc = mask(*loc, 21) | reassemble_21(val);
745			break;
746		case R_PARISC_LTOFF14R:
747			/* L(ltoff(val+addend)) */
748			/* LT-relative; right 14 bits */
749			val = get_got(me, val, addend);
750			val = rrsel(val, 0);
751			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
752			       strtab + sym->st_name,
753			       loc, val);
754			*loc = mask(*loc, 14) | reassemble_14(val);
755			break;
756		case R_PARISC_PCREL22F:
757			/* PC-relative; 22 bits */
758			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
759			       strtab + sym->st_name,
760			       loc, val);
761			val += addend;
762			/* can we reach it locally? */
763			if (in_local(me, (void *)val)) {
764				/* this is the case where the symbol is local
765				 * to the module, but in a different section,
766				 * so stub the jump in case it's more than 22
767				 * bits away */
768				val = (val - dot - 8)/4;
769				if (!RELOC_REACHABLE(val, 22)) {
770					/* direct distance too far, create
771					 * stub entry instead */
772					val = get_stub(me, sym->st_value,
773						addend, ELF_STUB_DIRECT,
774						loc0, targetsec);
775				} else {
776					/* Ok, we can reach it directly. */
777					val = sym->st_value;
778					val += addend;
779				}
780			} else {
781				val = sym->st_value;
782				if (strncmp(strtab + sym->st_name, "$$", 2)
783				    == 0)
784					val = get_stub(me, val, addend, ELF_STUB_MILLI,
785						       loc0, targetsec);
786				else
787					val = get_stub(me, val, addend, ELF_STUB_GOT,
788						       loc0, targetsec);
789			}
790			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
791			       strtab + sym->st_name, loc, sym->st_value,
792			       addend, val);
793			val = (val - dot - 8)/4;
794			CHECK_RELOC(val, 22);
795			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
796			break;
797		case R_PARISC_DIR64:
798			/* 64-bit effective address */
799			*loc64 = val + addend;
800			break;
801		case R_PARISC_SEGREL32:
802			/* 32-bit segment relative address */
803			/* See note about special handling of SEGREL32 at
804			 * the beginning of this file.
805			 */
806			*loc = fsel(val, addend); 
807			break;
808		case R_PARISC_FPTR64:
809			/* 64-bit function address */
810			if(in_local(me, (void *)(val + addend))) {
811				*loc64 = get_fdesc(me, val+addend);
812				DEBUGP("FDESC for %s at %p points to %lx\n",
813				       strtab + sym->st_name, *loc64,
814				       ((Elf_Fdesc *)*loc64)->addr);
815			} else {
816				/* if the symbol is not local to this
817				 * module then val+addend is a pointer
818				 * to the function descriptor */
819				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
820				       strtab + sym->st_name,
821				       loc, val);
822				*loc64 = val + addend;
823			}
824			break;
825
826		default:
827			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
828			       me->name, ELF64_R_TYPE(rel[i].r_info));
829			return -ENOEXEC;
830		}
831	}
832	return 0;
833}
834#endif
835
836static void
837register_unwind_table(struct module *me,
838		      const Elf_Shdr *sechdrs)
839{
840	unsigned char *table, *end;
841	unsigned long gp;
842
843	if (!me->arch.unwind_section)
844		return;
845
846	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
847	end = table + sechdrs[me->arch.unwind_section].sh_size;
848	gp = (Elf_Addr)me->module_core + me->arch.got_offset;
849
850	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
851	       me->arch.unwind_section, table, end, gp);
852	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
853}
854
855static void
856deregister_unwind_table(struct module *me)
857{
858	if (me->arch.unwind)
859		unwind_table_remove(me->arch.unwind);
860}
861
862int module_finalize(const Elf_Ehdr *hdr,
863		    const Elf_Shdr *sechdrs,
864		    struct module *me)
865{
866	int i;
867	unsigned long nsyms;
868	const char *strtab = NULL;
869	Elf_Sym *newptr, *oldptr;
870	Elf_Shdr *symhdr = NULL;
871#ifdef DEBUG
872	Elf_Fdesc *entry;
873	u32 *addr;
874
875	entry = (Elf_Fdesc *)me->init;
876	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
877	       entry->gp, entry->addr);
878	addr = (u32 *)entry->addr;
879	printk("INSNS: %x %x %x %x\n",
880	       addr[0], addr[1], addr[2], addr[3]);
881	printk("got entries used %ld, gots max %ld\n"
882	       "fdescs used %ld, fdescs max %ld\n",
883	       me->arch.got_count, me->arch.got_max,
884	       me->arch.fdesc_count, me->arch.fdesc_max);
885#endif
886
887	register_unwind_table(me, sechdrs);
888
889	/* haven't filled in me->symtab yet, so have to find it
890	 * ourselves */
891	for (i = 1; i < hdr->e_shnum; i++) {
892		if(sechdrs[i].sh_type == SHT_SYMTAB
893		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
894			int strindex = sechdrs[i].sh_link;
895			/* FIXME: AWFUL HACK
896			 * The cast is to drop the const from
897			 * the sechdrs pointer */
898			symhdr = (Elf_Shdr *)&sechdrs[i];
899			strtab = (char *)sechdrs[strindex].sh_addr;
900			break;
901		}
902	}
903
904	DEBUGP("module %s: strtab %p, symhdr %p\n",
905	       me->name, strtab, symhdr);
906
907	if(me->arch.got_count > MAX_GOTS) {
908		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
909				me->name, me->arch.got_count, MAX_GOTS);
910		return -EINVAL;
911	}
912
913	kfree(me->arch.section);
914	me->arch.section = NULL;
915
916	/* no symbol table */
917	if(symhdr == NULL)
918		return 0;
919
920	oldptr = (void *)symhdr->sh_addr;
921	newptr = oldptr + 1;	/* we start counting at 1 */
922	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
923	DEBUGP("OLD num_symtab %lu\n", nsyms);
924
925	for (i = 1; i < nsyms; i++) {
926		oldptr++;	/* note, count starts at 1 so preincrement */
927		if(strncmp(strtab + oldptr->st_name,
928			      ".L", 2) == 0)
929			continue;
930
931		if(newptr != oldptr)
932			*newptr++ = *oldptr;
933		else
934			newptr++;
935
936	}
937	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
938	DEBUGP("NEW num_symtab %lu\n", nsyms);
939	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
940	return 0;
941}
942
943void module_arch_cleanup(struct module *mod)
944{
945	deregister_unwind_table(mod);
946}