Linux Audio

Check our new training course

Loading...
v3.15
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This abstraction carries sctp events to the ULP (sockets).
  10 *
  11 * This SCTP implementation is free software;
  12 * you can redistribute it and/or modify it under the terms of
  13 * the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2, or (at your option)
  15 * any later version.
  16 *
  17 * This SCTP implementation is distributed in the hope that it
  18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  19 *                 ************************
  20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  21 * See the GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with GNU CC; see the file COPYING.  If not, see
  25 * <http://www.gnu.org/licenses/>.
 
  26 *
  27 * Please send any bug reports or fixes you make to the
  28 * email address(es):
  29 *    lksctp developers <linux-sctp@vger.kernel.org>
 
 
 
  30 *
  31 * Written or modified by:
  32 *    Jon Grimm             <jgrimm@us.ibm.com>
  33 *    La Monte H.P. Yarroll <piggy@acm.org>
  34 *    Sridhar Samudrala     <sri@us.ibm.com>
 
 
 
  35 */
  36
  37#include <linux/slab.h>
  38#include <linux/types.h>
  39#include <linux/skbuff.h>
  40#include <net/sock.h>
  41#include <net/sctp/structs.h>
  42#include <net/sctp/sctp.h>
  43#include <net/sctp/sm.h>
  44
  45/* Forward declarations for internal helpers.  */
  46static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
  47					      struct sctp_ulpevent *);
  48static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
  49					      struct sctp_ulpevent *);
  50static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
  51
  52/* 1st Level Abstractions */
  53
  54/* Initialize a ULP queue from a block of memory.  */
  55struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
  56				 struct sctp_association *asoc)
  57{
  58	memset(ulpq, 0, sizeof(struct sctp_ulpq));
  59
  60	ulpq->asoc = asoc;
  61	skb_queue_head_init(&ulpq->reasm);
  62	skb_queue_head_init(&ulpq->lobby);
  63	ulpq->pd_mode  = 0;
 
  64
  65	return ulpq;
  66}
  67
  68
  69/* Flush the reassembly and ordering queues.  */
  70void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
  71{
  72	struct sk_buff *skb;
  73	struct sctp_ulpevent *event;
  74
  75	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
  76		event = sctp_skb2event(skb);
  77		sctp_ulpevent_free(event);
  78	}
  79
  80	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
  81		event = sctp_skb2event(skb);
  82		sctp_ulpevent_free(event);
  83	}
  84
  85}
  86
  87/* Dispose of a ulpqueue.  */
  88void sctp_ulpq_free(struct sctp_ulpq *ulpq)
  89{
  90	sctp_ulpq_flush(ulpq);
 
 
  91}
  92
  93/* Process an incoming DATA chunk.  */
  94int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
  95			gfp_t gfp)
  96{
  97	struct sk_buff_head temp;
  98	struct sctp_ulpevent *event;
  99	int event_eor = 0;
 100
 101	/* Create an event from the incoming chunk. */
 102	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
 103	if (!event)
 104		return -ENOMEM;
 105
 106	/* Do reassembly if needed.  */
 107	event = sctp_ulpq_reasm(ulpq, event);
 108
 109	/* Do ordering if needed.  */
 110	if ((event) && (event->msg_flags & MSG_EOR)) {
 111		/* Create a temporary list to collect chunks on.  */
 112		skb_queue_head_init(&temp);
 113		__skb_queue_tail(&temp, sctp_event2skb(event));
 114
 115		event = sctp_ulpq_order(ulpq, event);
 116	}
 117
 118	/* Send event to the ULP.  'event' is the sctp_ulpevent for
 119	 * very first SKB on the 'temp' list.
 120	 */
 121	if (event) {
 122		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
 123		sctp_ulpq_tail_event(ulpq, event);
 124	}
 125
 126	return event_eor;
 127}
 128
 129/* Add a new event for propagation to the ULP.  */
 130/* Clear the partial delivery mode for this socket.   Note: This
 131 * assumes that no association is currently in partial delivery mode.
 132 */
 133int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
 134{
 135	struct sctp_sock *sp = sctp_sk(sk);
 136
 137	if (atomic_dec_and_test(&sp->pd_mode)) {
 138		/* This means there are no other associations in PD, so
 139		 * we can go ahead and clear out the lobby in one shot
 140		 */
 141		if (!skb_queue_empty(&sp->pd_lobby)) {
 142			struct list_head *list;
 143			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
 144			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
 145			INIT_LIST_HEAD(list);
 146			return 1;
 147		}
 148	} else {
 149		/* There are other associations in PD, so we only need to
 150		 * pull stuff out of the lobby that belongs to the
 151		 * associations that is exiting PD (all of its notifications
 152		 * are posted here).
 153		 */
 154		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
 155			struct sk_buff *skb, *tmp;
 156			struct sctp_ulpevent *event;
 157
 158			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
 159				event = sctp_skb2event(skb);
 160				if (event->asoc == asoc) {
 161					__skb_unlink(skb, &sp->pd_lobby);
 162					__skb_queue_tail(&sk->sk_receive_queue,
 163							 skb);
 164				}
 165			}
 166		}
 167	}
 168
 169	return 0;
 170}
 171
 172/* Set the pd_mode on the socket and ulpq */
 173static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
 174{
 175	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
 176
 177	atomic_inc(&sp->pd_mode);
 178	ulpq->pd_mode = 1;
 179}
 180
 181/* Clear the pd_mode and restart any pending messages waiting for delivery. */
 182static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
 183{
 184	ulpq->pd_mode = 0;
 185	sctp_ulpq_reasm_drain(ulpq);
 186	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
 187}
 188
 189/* If the SKB of 'event' is on a list, it is the first such member
 190 * of that list.
 191 */
 192int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
 193{
 194	struct sock *sk = ulpq->asoc->base.sk;
 195	struct sk_buff_head *queue, *skb_list;
 196	struct sk_buff *skb = sctp_event2skb(event);
 197	int clear_pd = 0;
 198
 199	skb_list = (struct sk_buff_head *) skb->prev;
 200
 201	/* If the socket is just going to throw this away, do not
 202	 * even try to deliver it.
 203	 */
 204	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
 205		goto out_free;
 206
 207	/* Check if the user wishes to receive this event.  */
 208	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
 209		goto out_free;
 210
 211	/* If we are in partial delivery mode, post to the lobby until
 212	 * partial delivery is cleared, unless, of course _this_ is
 213	 * the association the cause of the partial delivery.
 214	 */
 215
 216	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
 217		queue = &sk->sk_receive_queue;
 218	} else {
 219		if (ulpq->pd_mode) {
 220			/* If the association is in partial delivery, we
 221			 * need to finish delivering the partially processed
 222			 * packet before passing any other data.  This is
 223			 * because we don't truly support stream interleaving.
 224			 */
 225			if ((event->msg_flags & MSG_NOTIFICATION) ||
 226			    (SCTP_DATA_NOT_FRAG ==
 227				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
 228				queue = &sctp_sk(sk)->pd_lobby;
 229			else {
 230				clear_pd = event->msg_flags & MSG_EOR;
 231				queue = &sk->sk_receive_queue;
 232			}
 233		} else {
 234			/*
 235			 * If fragment interleave is enabled, we
 236			 * can queue this to the receive queue instead
 237			 * of the lobby.
 238			 */
 239			if (sctp_sk(sk)->frag_interleave)
 240				queue = &sk->sk_receive_queue;
 241			else
 242				queue = &sctp_sk(sk)->pd_lobby;
 243		}
 244	}
 245
 246	/* If we are harvesting multiple skbs they will be
 247	 * collected on a list.
 248	 */
 249	if (skb_list)
 250		sctp_skb_list_tail(skb_list, queue);
 251	else
 252		__skb_queue_tail(queue, skb);
 253
 254	/* Did we just complete partial delivery and need to get
 255	 * rolling again?  Move pending data to the receive
 256	 * queue.
 257	 */
 258	if (clear_pd)
 259		sctp_ulpq_clear_pd(ulpq);
 260
 261	if (queue == &sk->sk_receive_queue)
 262		sk->sk_data_ready(sk);
 263	return 1;
 264
 265out_free:
 266	if (skb_list)
 267		sctp_queue_purge_ulpevents(skb_list);
 268	else
 269		sctp_ulpevent_free(event);
 270
 271	return 0;
 272}
 273
 274/* 2nd Level Abstractions */
 275
 276/* Helper function to store chunks that need to be reassembled.  */
 277static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
 278					 struct sctp_ulpevent *event)
 279{
 280	struct sk_buff *pos;
 281	struct sctp_ulpevent *cevent;
 282	__u32 tsn, ctsn;
 283
 284	tsn = event->tsn;
 285
 286	/* See if it belongs at the end. */
 287	pos = skb_peek_tail(&ulpq->reasm);
 288	if (!pos) {
 289		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
 290		return;
 291	}
 292
 293	/* Short circuit just dropping it at the end. */
 294	cevent = sctp_skb2event(pos);
 295	ctsn = cevent->tsn;
 296	if (TSN_lt(ctsn, tsn)) {
 297		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
 298		return;
 299	}
 300
 301	/* Find the right place in this list. We store them by TSN.  */
 302	skb_queue_walk(&ulpq->reasm, pos) {
 303		cevent = sctp_skb2event(pos);
 304		ctsn = cevent->tsn;
 305
 306		if (TSN_lt(tsn, ctsn))
 307			break;
 308	}
 309
 310	/* Insert before pos. */
 311	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
 312
 313}
 314
 315/* Helper function to return an event corresponding to the reassembled
 316 * datagram.
 317 * This routine creates a re-assembled skb given the first and last skb's
 318 * as stored in the reassembly queue. The skb's may be non-linear if the sctp
 319 * payload was fragmented on the way and ip had to reassemble them.
 320 * We add the rest of skb's to the first skb's fraglist.
 321 */
 322static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
 323	struct sk_buff_head *queue, struct sk_buff *f_frag,
 324	struct sk_buff *l_frag)
 325{
 326	struct sk_buff *pos;
 327	struct sk_buff *new = NULL;
 328	struct sctp_ulpevent *event;
 329	struct sk_buff *pnext, *last;
 330	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
 331
 332	/* Store the pointer to the 2nd skb */
 333	if (f_frag == l_frag)
 334		pos = NULL;
 335	else
 336		pos = f_frag->next;
 337
 338	/* Get the last skb in the f_frag's frag_list if present. */
 339	for (last = list; list; last = list, list = list->next)
 340		;
 341
 342	/* Add the list of remaining fragments to the first fragments
 343	 * frag_list.
 344	 */
 345	if (last)
 346		last->next = pos;
 347	else {
 348		if (skb_cloned(f_frag)) {
 349			/* This is a cloned skb, we can't just modify
 350			 * the frag_list.  We need a new skb to do that.
 351			 * Instead of calling skb_unshare(), we'll do it
 352			 * ourselves since we need to delay the free.
 353			 */
 354			new = skb_copy(f_frag, GFP_ATOMIC);
 355			if (!new)
 356				return NULL;	/* try again later */
 357
 358			sctp_skb_set_owner_r(new, f_frag->sk);
 359
 360			skb_shinfo(new)->frag_list = pos;
 361		} else
 362			skb_shinfo(f_frag)->frag_list = pos;
 363	}
 364
 365	/* Remove the first fragment from the reassembly queue.  */
 366	__skb_unlink(f_frag, queue);
 367
 368	/* if we did unshare, then free the old skb and re-assign */
 369	if (new) {
 370		kfree_skb(f_frag);
 371		f_frag = new;
 372	}
 373
 374	while (pos) {
 375
 376		pnext = pos->next;
 377
 378		/* Update the len and data_len fields of the first fragment. */
 379		f_frag->len += pos->len;
 380		f_frag->data_len += pos->len;
 381
 382		/* Remove the fragment from the reassembly queue.  */
 383		__skb_unlink(pos, queue);
 384
 385		/* Break if we have reached the last fragment.  */
 386		if (pos == l_frag)
 387			break;
 388		pos->next = pnext;
 389		pos = pnext;
 390	}
 391
 392	event = sctp_skb2event(f_frag);
 393	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
 394
 395	return event;
 396}
 397
 398
 399/* Helper function to check if an incoming chunk has filled up the last
 400 * missing fragment in a SCTP datagram and return the corresponding event.
 401 */
 402static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
 403{
 404	struct sk_buff *pos;
 405	struct sctp_ulpevent *cevent;
 406	struct sk_buff *first_frag = NULL;
 407	__u32 ctsn, next_tsn;
 408	struct sctp_ulpevent *retval = NULL;
 409	struct sk_buff *pd_first = NULL;
 410	struct sk_buff *pd_last = NULL;
 411	size_t pd_len = 0;
 412	struct sctp_association *asoc;
 413	u32 pd_point;
 414
 415	/* Initialized to 0 just to avoid compiler warning message.  Will
 416	 * never be used with this value. It is referenced only after it
 417	 * is set when we find the first fragment of a message.
 418	 */
 419	next_tsn = 0;
 420
 421	/* The chunks are held in the reasm queue sorted by TSN.
 422	 * Walk through the queue sequentially and look for a sequence of
 423	 * fragmented chunks that complete a datagram.
 424	 * 'first_frag' and next_tsn are reset when we find a chunk which
 425	 * is the first fragment of a datagram. Once these 2 fields are set
 426	 * we expect to find the remaining middle fragments and the last
 427	 * fragment in order. If not, first_frag is reset to NULL and we
 428	 * start the next pass when we find another first fragment.
 429	 *
 430	 * There is a potential to do partial delivery if user sets
 431	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
 432	 * to see if can do PD.
 433	 */
 434	skb_queue_walk(&ulpq->reasm, pos) {
 435		cevent = sctp_skb2event(pos);
 436		ctsn = cevent->tsn;
 437
 438		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 439		case SCTP_DATA_FIRST_FRAG:
 440			/* If this "FIRST_FRAG" is the first
 441			 * element in the queue, then count it towards
 442			 * possible PD.
 443			 */
 444			if (pos == ulpq->reasm.next) {
 445			    pd_first = pos;
 446			    pd_last = pos;
 447			    pd_len = pos->len;
 448			} else {
 449			    pd_first = NULL;
 450			    pd_last = NULL;
 451			    pd_len = 0;
 452			}
 453
 454			first_frag = pos;
 455			next_tsn = ctsn + 1;
 456			break;
 457
 458		case SCTP_DATA_MIDDLE_FRAG:
 459			if ((first_frag) && (ctsn == next_tsn)) {
 460				next_tsn++;
 461				if (pd_first) {
 462				    pd_last = pos;
 463				    pd_len += pos->len;
 464				}
 465			} else
 466				first_frag = NULL;
 467			break;
 468
 469		case SCTP_DATA_LAST_FRAG:
 470			if (first_frag && (ctsn == next_tsn))
 471				goto found;
 472			else
 473				first_frag = NULL;
 474			break;
 475		}
 476	}
 477
 478	asoc = ulpq->asoc;
 479	if (pd_first) {
 480		/* Make sure we can enter partial deliver.
 481		 * We can trigger partial delivery only if framgent
 482		 * interleave is set, or the socket is not already
 483		 * in  partial delivery.
 484		 */
 485		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
 486		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
 487			goto done;
 488
 489		cevent = sctp_skb2event(pd_first);
 490		pd_point = sctp_sk(asoc->base.sk)->pd_point;
 491		if (pd_point && pd_point <= pd_len) {
 492			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
 493							     &ulpq->reasm,
 494							     pd_first,
 495							     pd_last);
 496			if (retval)
 497				sctp_ulpq_set_pd(ulpq);
 498		}
 499	}
 500done:
 501	return retval;
 502found:
 503	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
 504					     &ulpq->reasm, first_frag, pos);
 505	if (retval)
 506		retval->msg_flags |= MSG_EOR;
 507	goto done;
 508}
 509
 510/* Retrieve the next set of fragments of a partial message. */
 511static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
 512{
 513	struct sk_buff *pos, *last_frag, *first_frag;
 514	struct sctp_ulpevent *cevent;
 515	__u32 ctsn, next_tsn;
 516	int is_last;
 517	struct sctp_ulpevent *retval;
 518
 519	/* The chunks are held in the reasm queue sorted by TSN.
 520	 * Walk through the queue sequentially and look for the first
 521	 * sequence of fragmented chunks.
 522	 */
 523
 524	if (skb_queue_empty(&ulpq->reasm))
 525		return NULL;
 526
 527	last_frag = first_frag = NULL;
 528	retval = NULL;
 529	next_tsn = 0;
 530	is_last = 0;
 531
 532	skb_queue_walk(&ulpq->reasm, pos) {
 533		cevent = sctp_skb2event(pos);
 534		ctsn = cevent->tsn;
 535
 536		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 537		case SCTP_DATA_FIRST_FRAG:
 538			if (!first_frag)
 539				return NULL;
 540			goto done;
 541		case SCTP_DATA_MIDDLE_FRAG:
 542			if (!first_frag) {
 543				first_frag = pos;
 544				next_tsn = ctsn + 1;
 545				last_frag = pos;
 546			} else if (next_tsn == ctsn) {
 547				next_tsn++;
 548				last_frag = pos;
 549			} else
 550				goto done;
 551			break;
 552		case SCTP_DATA_LAST_FRAG:
 553			if (!first_frag)
 554				first_frag = pos;
 555			else if (ctsn != next_tsn)
 556				goto done;
 557			last_frag = pos;
 558			is_last = 1;
 559			goto done;
 560		default:
 561			return NULL;
 562		}
 563	}
 564
 565	/* We have the reassembled event. There is no need to look
 566	 * further.
 567	 */
 568done:
 569	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
 570					&ulpq->reasm, first_frag, last_frag);
 571	if (retval && is_last)
 572		retval->msg_flags |= MSG_EOR;
 573
 574	return retval;
 575}
 576
 577
 578/* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
 579 * need reassembling.
 580 */
 581static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
 582						struct sctp_ulpevent *event)
 583{
 584	struct sctp_ulpevent *retval = NULL;
 585
 586	/* Check if this is part of a fragmented message.  */
 587	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
 588		event->msg_flags |= MSG_EOR;
 589		return event;
 590	}
 591
 592	sctp_ulpq_store_reasm(ulpq, event);
 593	if (!ulpq->pd_mode)
 594		retval = sctp_ulpq_retrieve_reassembled(ulpq);
 595	else {
 596		__u32 ctsn, ctsnap;
 597
 598		/* Do not even bother unless this is the next tsn to
 599		 * be delivered.
 600		 */
 601		ctsn = event->tsn;
 602		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
 603		if (TSN_lte(ctsn, ctsnap))
 604			retval = sctp_ulpq_retrieve_partial(ulpq);
 605	}
 606
 607	return retval;
 608}
 609
 610/* Retrieve the first part (sequential fragments) for partial delivery.  */
 611static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
 612{
 613	struct sk_buff *pos, *last_frag, *first_frag;
 614	struct sctp_ulpevent *cevent;
 615	__u32 ctsn, next_tsn;
 616	struct sctp_ulpevent *retval;
 617
 618	/* The chunks are held in the reasm queue sorted by TSN.
 619	 * Walk through the queue sequentially and look for a sequence of
 620	 * fragmented chunks that start a datagram.
 621	 */
 622
 623	if (skb_queue_empty(&ulpq->reasm))
 624		return NULL;
 625
 626	last_frag = first_frag = NULL;
 627	retval = NULL;
 628	next_tsn = 0;
 629
 630	skb_queue_walk(&ulpq->reasm, pos) {
 631		cevent = sctp_skb2event(pos);
 632		ctsn = cevent->tsn;
 633
 634		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 635		case SCTP_DATA_FIRST_FRAG:
 636			if (!first_frag) {
 637				first_frag = pos;
 638				next_tsn = ctsn + 1;
 639				last_frag = pos;
 640			} else
 641				goto done;
 642			break;
 643
 644		case SCTP_DATA_MIDDLE_FRAG:
 645			if (!first_frag)
 646				return NULL;
 647			if (ctsn == next_tsn) {
 648				next_tsn++;
 649				last_frag = pos;
 650			} else
 651				goto done;
 652			break;
 653
 654		case SCTP_DATA_LAST_FRAG:
 655			if (!first_frag)
 656				return NULL;
 657			else
 658				goto done;
 659			break;
 660
 661		default:
 662			return NULL;
 663		}
 664	}
 665
 666	/* We have the reassembled event. There is no need to look
 667	 * further.
 668	 */
 669done:
 670	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
 671					&ulpq->reasm, first_frag, last_frag);
 672	return retval;
 673}
 674
 675/*
 676 * Flush out stale fragments from the reassembly queue when processing
 677 * a Forward TSN.
 678 *
 679 * RFC 3758, Section 3.6
 680 *
 681 * After receiving and processing a FORWARD TSN, the data receiver MUST
 682 * take cautions in updating its re-assembly queue.  The receiver MUST
 683 * remove any partially reassembled message, which is still missing one
 684 * or more TSNs earlier than or equal to the new cumulative TSN point.
 685 * In the event that the receiver has invoked the partial delivery API,
 686 * a notification SHOULD also be generated to inform the upper layer API
 687 * that the message being partially delivered will NOT be completed.
 688 */
 689void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
 690{
 691	struct sk_buff *pos, *tmp;
 692	struct sctp_ulpevent *event;
 693	__u32 tsn;
 694
 695	if (skb_queue_empty(&ulpq->reasm))
 696		return;
 697
 698	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
 699		event = sctp_skb2event(pos);
 700		tsn = event->tsn;
 701
 702		/* Since the entire message must be abandoned by the
 703		 * sender (item A3 in Section 3.5, RFC 3758), we can
 704		 * free all fragments on the list that are less then
 705		 * or equal to ctsn_point
 706		 */
 707		if (TSN_lte(tsn, fwd_tsn)) {
 708			__skb_unlink(pos, &ulpq->reasm);
 709			sctp_ulpevent_free(event);
 710		} else
 711			break;
 712	}
 713}
 714
 715/*
 716 * Drain the reassembly queue.  If we just cleared parted delivery, it
 717 * is possible that the reassembly queue will contain already reassembled
 718 * messages.  Retrieve any such messages and give them to the user.
 719 */
 720static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
 721{
 722	struct sctp_ulpevent *event = NULL;
 723	struct sk_buff_head temp;
 724
 725	if (skb_queue_empty(&ulpq->reasm))
 726		return;
 727
 728	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
 729		/* Do ordering if needed.  */
 730		if ((event) && (event->msg_flags & MSG_EOR)) {
 731			skb_queue_head_init(&temp);
 732			__skb_queue_tail(&temp, sctp_event2skb(event));
 733
 734			event = sctp_ulpq_order(ulpq, event);
 735		}
 736
 737		/* Send event to the ULP.  'event' is the
 738		 * sctp_ulpevent for  very first SKB on the  temp' list.
 739		 */
 740		if (event)
 741			sctp_ulpq_tail_event(ulpq, event);
 742	}
 743}
 744
 745
 746/* Helper function to gather skbs that have possibly become
 747 * ordered by an an incoming chunk.
 748 */
 749static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
 750					      struct sctp_ulpevent *event)
 751{
 752	struct sk_buff_head *event_list;
 753	struct sk_buff *pos, *tmp;
 754	struct sctp_ulpevent *cevent;
 755	struct sctp_stream *in;
 756	__u16 sid, csid, cssn;
 757
 758	sid = event->stream;
 759	in  = &ulpq->asoc->ssnmap->in;
 760
 761	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
 762
 763	/* We are holding the chunks by stream, by SSN.  */
 764	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
 765		cevent = (struct sctp_ulpevent *) pos->cb;
 766		csid = cevent->stream;
 767		cssn = cevent->ssn;
 768
 769		/* Have we gone too far?  */
 770		if (csid > sid)
 771			break;
 772
 773		/* Have we not gone far enough?  */
 774		if (csid < sid)
 775			continue;
 776
 777		if (cssn != sctp_ssn_peek(in, sid))
 778			break;
 779
 780		/* Found it, so mark in the ssnmap. */
 781		sctp_ssn_next(in, sid);
 782
 783		__skb_unlink(pos, &ulpq->lobby);
 784
 785		/* Attach all gathered skbs to the event.  */
 786		__skb_queue_tail(event_list, pos);
 787	}
 788}
 789
 790/* Helper function to store chunks needing ordering.  */
 791static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
 792					   struct sctp_ulpevent *event)
 793{
 794	struct sk_buff *pos;
 795	struct sctp_ulpevent *cevent;
 796	__u16 sid, csid;
 797	__u16 ssn, cssn;
 798
 799	pos = skb_peek_tail(&ulpq->lobby);
 800	if (!pos) {
 801		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 802		return;
 803	}
 804
 805	sid = event->stream;
 806	ssn = event->ssn;
 807
 808	cevent = (struct sctp_ulpevent *) pos->cb;
 809	csid = cevent->stream;
 810	cssn = cevent->ssn;
 811	if (sid > csid) {
 812		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 813		return;
 814	}
 815
 816	if ((sid == csid) && SSN_lt(cssn, ssn)) {
 817		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 818		return;
 819	}
 820
 821	/* Find the right place in this list.  We store them by
 822	 * stream ID and then by SSN.
 823	 */
 824	skb_queue_walk(&ulpq->lobby, pos) {
 825		cevent = (struct sctp_ulpevent *) pos->cb;
 826		csid = cevent->stream;
 827		cssn = cevent->ssn;
 828
 829		if (csid > sid)
 830			break;
 831		if (csid == sid && SSN_lt(ssn, cssn))
 832			break;
 833	}
 834
 835
 836	/* Insert before pos. */
 837	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
 838}
 839
 840static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
 841					     struct sctp_ulpevent *event)
 842{
 843	__u16 sid, ssn;
 844	struct sctp_stream *in;
 845
 846	/* Check if this message needs ordering.  */
 847	if (SCTP_DATA_UNORDERED & event->msg_flags)
 848		return event;
 849
 850	/* Note: The stream ID must be verified before this routine.  */
 851	sid = event->stream;
 852	ssn = event->ssn;
 853	in  = &ulpq->asoc->ssnmap->in;
 854
 855	/* Is this the expected SSN for this stream ID?  */
 856	if (ssn != sctp_ssn_peek(in, sid)) {
 857		/* We've received something out of order, so find where it
 858		 * needs to be placed.  We order by stream and then by SSN.
 859		 */
 860		sctp_ulpq_store_ordered(ulpq, event);
 861		return NULL;
 862	}
 863
 864	/* Mark that the next chunk has been found.  */
 865	sctp_ssn_next(in, sid);
 866
 867	/* Go find any other chunks that were waiting for
 868	 * ordering.
 869	 */
 870	sctp_ulpq_retrieve_ordered(ulpq, event);
 871
 872	return event;
 873}
 874
 875/* Helper function to gather skbs that have possibly become
 876 * ordered by forward tsn skipping their dependencies.
 877 */
 878static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
 879{
 880	struct sk_buff *pos, *tmp;
 881	struct sctp_ulpevent *cevent;
 882	struct sctp_ulpevent *event;
 883	struct sctp_stream *in;
 884	struct sk_buff_head temp;
 885	struct sk_buff_head *lobby = &ulpq->lobby;
 886	__u16 csid, cssn;
 887
 888	in  = &ulpq->asoc->ssnmap->in;
 889
 890	/* We are holding the chunks by stream, by SSN.  */
 891	skb_queue_head_init(&temp);
 892	event = NULL;
 893	sctp_skb_for_each(pos, lobby, tmp) {
 894		cevent = (struct sctp_ulpevent *) pos->cb;
 895		csid = cevent->stream;
 896		cssn = cevent->ssn;
 897
 898		/* Have we gone too far?  */
 899		if (csid > sid)
 900			break;
 901
 902		/* Have we not gone far enough?  */
 903		if (csid < sid)
 904			continue;
 905
 906		/* see if this ssn has been marked by skipping */
 907		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
 908			break;
 909
 910		__skb_unlink(pos, lobby);
 911		if (!event)
 912			/* Create a temporary list to collect chunks on.  */
 913			event = sctp_skb2event(pos);
 914
 915		/* Attach all gathered skbs to the event.  */
 916		__skb_queue_tail(&temp, pos);
 917	}
 918
 919	/* If we didn't reap any data, see if the next expected SSN
 920	 * is next on the queue and if so, use that.
 921	 */
 922	if (event == NULL && pos != (struct sk_buff *)lobby) {
 923		cevent = (struct sctp_ulpevent *) pos->cb;
 924		csid = cevent->stream;
 925		cssn = cevent->ssn;
 926
 927		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
 928			sctp_ssn_next(in, csid);
 929			__skb_unlink(pos, lobby);
 930			__skb_queue_tail(&temp, pos);
 931			event = sctp_skb2event(pos);
 932		}
 933	}
 934
 935	/* Send event to the ULP.  'event' is the sctp_ulpevent for
 936	 * very first SKB on the 'temp' list.
 937	 */
 938	if (event) {
 939		/* see if we have more ordered that we can deliver */
 940		sctp_ulpq_retrieve_ordered(ulpq, event);
 941		sctp_ulpq_tail_event(ulpq, event);
 942	}
 943}
 944
 945/* Skip over an SSN. This is used during the processing of
 946 * Forwared TSN chunk to skip over the abandoned ordered data
 947 */
 948void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
 949{
 950	struct sctp_stream *in;
 951
 952	/* Note: The stream ID must be verified before this routine.  */
 953	in  = &ulpq->asoc->ssnmap->in;
 954
 955	/* Is this an old SSN?  If so ignore. */
 956	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
 957		return;
 958
 959	/* Mark that we are no longer expecting this SSN or lower. */
 960	sctp_ssn_skip(in, sid, ssn);
 961
 962	/* Go find any other chunks that were waiting for
 963	 * ordering and deliver them if needed.
 964	 */
 965	sctp_ulpq_reap_ordered(ulpq, sid);
 966}
 967
 968static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
 969		struct sk_buff_head *list, __u16 needed)
 970{
 971	__u16 freed = 0;
 972	__u32 tsn, last_tsn;
 973	struct sk_buff *skb, *flist, *last;
 974	struct sctp_ulpevent *event;
 975	struct sctp_tsnmap *tsnmap;
 976
 977	tsnmap = &ulpq->asoc->peer.tsn_map;
 978
 979	while ((skb = skb_peek_tail(list)) != NULL) {
 
 980		event = sctp_skb2event(skb);
 981		tsn = event->tsn;
 982
 983		/* Don't renege below the Cumulative TSN ACK Point. */
 984		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
 985			break;
 986
 987		/* Events in ordering queue may have multiple fragments
 988		 * corresponding to additional TSNs.  Sum the total
 989		 * freed space; find the last TSN.
 990		 */
 991		freed += skb_headlen(skb);
 992		flist = skb_shinfo(skb)->frag_list;
 993		for (last = flist; flist; flist = flist->next) {
 994			last = flist;
 995			freed += skb_headlen(last);
 996		}
 997		if (last)
 998			last_tsn = sctp_skb2event(last)->tsn;
 999		else
1000			last_tsn = tsn;
1001
1002		/* Unlink the event, then renege all applicable TSNs. */
1003		__skb_unlink(skb, list);
1004		sctp_ulpevent_free(event);
1005		while (TSN_lte(tsn, last_tsn)) {
1006			sctp_tsnmap_renege(tsnmap, tsn);
1007			tsn++;
1008		}
1009		if (freed >= needed)
1010			return freed;
1011	}
1012
1013	return freed;
1014}
1015
1016/* Renege 'needed' bytes from the ordering queue. */
1017static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1018{
1019	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1020}
1021
1022/* Renege 'needed' bytes from the reassembly queue. */
1023static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1024{
1025	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1026}
1027
1028/* Partial deliver the first message as there is pressure on rwnd. */
1029void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
 
1030				gfp_t gfp)
1031{
1032	struct sctp_ulpevent *event;
1033	struct sctp_association *asoc;
1034	struct sctp_sock *sp;
1035	__u32 ctsn;
1036	struct sk_buff *skb;
1037
1038	asoc = ulpq->asoc;
1039	sp = sctp_sk(asoc->base.sk);
1040
1041	/* If the association is already in Partial Delivery mode
1042	 * we have nothing to do.
1043	 */
1044	if (ulpq->pd_mode)
1045		return;
1046
1047	/* Data must be at or below the Cumulative TSN ACK Point to
1048	 * start partial delivery.
1049	 */
1050	skb = skb_peek(&asoc->ulpq.reasm);
1051	if (skb != NULL) {
1052		ctsn = sctp_skb2event(skb)->tsn;
1053		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1054			return;
1055	}
1056
1057	/* If the user enabled fragment interleave socket option,
1058	 * multiple associations can enter partial delivery.
1059	 * Otherwise, we can only enter partial delivery if the
1060	 * socket is not in partial deliver mode.
1061	 */
1062	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1063		/* Is partial delivery possible?  */
1064		event = sctp_ulpq_retrieve_first(ulpq);
1065		/* Send event to the ULP.   */
1066		if (event) {
1067			sctp_ulpq_tail_event(ulpq, event);
1068			sctp_ulpq_set_pd(ulpq);
1069			return;
1070		}
1071	}
1072}
1073
1074/* Renege some packets to make room for an incoming chunk.  */
1075void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1076		      gfp_t gfp)
1077{
1078	struct sctp_association *asoc;
1079	__u16 needed, freed;
1080
1081	asoc = ulpq->asoc;
1082
1083	if (chunk) {
1084		needed = ntohs(chunk->chunk_hdr->length);
1085		needed -= sizeof(sctp_data_chunk_t);
1086	} else
1087		needed = SCTP_DEFAULT_MAXWINDOW;
1088
1089	freed = 0;
1090
1091	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1092		freed = sctp_ulpq_renege_order(ulpq, needed);
1093		if (freed < needed) {
1094			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1095		}
1096	}
1097	/* If able to free enough room, accept this chunk. */
1098	if (chunk && (freed >= needed)) {
1099		int retval;
1100		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1101		/*
1102		 * Enter partial delivery if chunk has not been
1103		 * delivered; otherwise, drain the reassembly queue.
1104		 */
1105		if (retval <= 0)
1106			sctp_ulpq_partial_delivery(ulpq, gfp);
1107		else if (retval == 1)
1108			sctp_ulpq_reasm_drain(ulpq);
1109	}
1110
1111	sk_mem_reclaim(asoc->base.sk);
1112}
1113
1114
1115
1116/* Notify the application if an association is aborted and in
1117 * partial delivery mode.  Send up any pending received messages.
1118 */
1119void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1120{
1121	struct sctp_ulpevent *ev = NULL;
1122	struct sock *sk;
1123
1124	if (!ulpq->pd_mode)
1125		return;
1126
1127	sk = ulpq->asoc->base.sk;
1128	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1129				       &sctp_sk(sk)->subscribe))
1130		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1131					      SCTP_PARTIAL_DELIVERY_ABORTED,
1132					      gfp);
1133	if (ev)
1134		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1135
1136	/* If there is data waiting, send it up the socket now. */
1137	if (sctp_ulpq_clear_pd(ulpq) || ev)
1138		sk->sk_data_ready(sk);
1139}
v3.1
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This abstraction carries sctp events to the ULP (sockets).
  10 *
  11 * This SCTP implementation is free software;
  12 * you can redistribute it and/or modify it under the terms of
  13 * the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2, or (at your option)
  15 * any later version.
  16 *
  17 * This SCTP implementation is distributed in the hope that it
  18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  19 *                 ************************
  20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  21 * See the GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with GNU CC; see the file COPYING.  If not, write to
  25 * the Free Software Foundation, 59 Temple Place - Suite 330,
  26 * Boston, MA 02111-1307, USA.
  27 *
  28 * Please send any bug reports or fixes you make to the
  29 * email address(es):
  30 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  31 *
  32 * Or submit a bug report through the following website:
  33 *    http://www.sf.net/projects/lksctp
  34 *
  35 * Written or modified by:
  36 *    Jon Grimm             <jgrimm@us.ibm.com>
  37 *    La Monte H.P. Yarroll <piggy@acm.org>
  38 *    Sridhar Samudrala     <sri@us.ibm.com>
  39 *
  40 * Any bugs reported given to us we will try to fix... any fixes shared will
  41 * be incorporated into the next SCTP release.
  42 */
  43
  44#include <linux/slab.h>
  45#include <linux/types.h>
  46#include <linux/skbuff.h>
  47#include <net/sock.h>
  48#include <net/sctp/structs.h>
  49#include <net/sctp/sctp.h>
  50#include <net/sctp/sm.h>
  51
  52/* Forward declarations for internal helpers.  */
  53static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
  54					      struct sctp_ulpevent *);
  55static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
  56					      struct sctp_ulpevent *);
  57static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
  58
  59/* 1st Level Abstractions */
  60
  61/* Initialize a ULP queue from a block of memory.  */
  62struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
  63				 struct sctp_association *asoc)
  64{
  65	memset(ulpq, 0, sizeof(struct sctp_ulpq));
  66
  67	ulpq->asoc = asoc;
  68	skb_queue_head_init(&ulpq->reasm);
  69	skb_queue_head_init(&ulpq->lobby);
  70	ulpq->pd_mode  = 0;
  71	ulpq->malloced = 0;
  72
  73	return ulpq;
  74}
  75
  76
  77/* Flush the reassembly and ordering queues.  */
  78void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
  79{
  80	struct sk_buff *skb;
  81	struct sctp_ulpevent *event;
  82
  83	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
  84		event = sctp_skb2event(skb);
  85		sctp_ulpevent_free(event);
  86	}
  87
  88	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
  89		event = sctp_skb2event(skb);
  90		sctp_ulpevent_free(event);
  91	}
  92
  93}
  94
  95/* Dispose of a ulpqueue.  */
  96void sctp_ulpq_free(struct sctp_ulpq *ulpq)
  97{
  98	sctp_ulpq_flush(ulpq);
  99	if (ulpq->malloced)
 100		kfree(ulpq);
 101}
 102
 103/* Process an incoming DATA chunk.  */
 104int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
 105			gfp_t gfp)
 106{
 107	struct sk_buff_head temp;
 108	struct sctp_ulpevent *event;
 
 109
 110	/* Create an event from the incoming chunk. */
 111	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
 112	if (!event)
 113		return -ENOMEM;
 114
 115	/* Do reassembly if needed.  */
 116	event = sctp_ulpq_reasm(ulpq, event);
 117
 118	/* Do ordering if needed.  */
 119	if ((event) && (event->msg_flags & MSG_EOR)){
 120		/* Create a temporary list to collect chunks on.  */
 121		skb_queue_head_init(&temp);
 122		__skb_queue_tail(&temp, sctp_event2skb(event));
 123
 124		event = sctp_ulpq_order(ulpq, event);
 125	}
 126
 127	/* Send event to the ULP.  'event' is the sctp_ulpevent for
 128	 * very first SKB on the 'temp' list.
 129	 */
 130	if (event)
 
 131		sctp_ulpq_tail_event(ulpq, event);
 
 132
 133	return 0;
 134}
 135
 136/* Add a new event for propagation to the ULP.  */
 137/* Clear the partial delivery mode for this socket.   Note: This
 138 * assumes that no association is currently in partial delivery mode.
 139 */
 140int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
 141{
 142	struct sctp_sock *sp = sctp_sk(sk);
 143
 144	if (atomic_dec_and_test(&sp->pd_mode)) {
 145		/* This means there are no other associations in PD, so
 146		 * we can go ahead and clear out the lobby in one shot
 147		 */
 148		if (!skb_queue_empty(&sp->pd_lobby)) {
 149			struct list_head *list;
 150			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
 151			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
 152			INIT_LIST_HEAD(list);
 153			return 1;
 154		}
 155	} else {
 156		/* There are other associations in PD, so we only need to
 157		 * pull stuff out of the lobby that belongs to the
 158		 * associations that is exiting PD (all of its notifications
 159		 * are posted here).
 160		 */
 161		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
 162			struct sk_buff *skb, *tmp;
 163			struct sctp_ulpevent *event;
 164
 165			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
 166				event = sctp_skb2event(skb);
 167				if (event->asoc == asoc) {
 168					__skb_unlink(skb, &sp->pd_lobby);
 169					__skb_queue_tail(&sk->sk_receive_queue,
 170							 skb);
 171				}
 172			}
 173		}
 174	}
 175
 176	return 0;
 177}
 178
 179/* Set the pd_mode on the socket and ulpq */
 180static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
 181{
 182	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
 183
 184	atomic_inc(&sp->pd_mode);
 185	ulpq->pd_mode = 1;
 186}
 187
 188/* Clear the pd_mode and restart any pending messages waiting for delivery. */
 189static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
 190{
 191	ulpq->pd_mode = 0;
 192	sctp_ulpq_reasm_drain(ulpq);
 193	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
 194}
 195
 196/* If the SKB of 'event' is on a list, it is the first such member
 197 * of that list.
 198 */
 199int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
 200{
 201	struct sock *sk = ulpq->asoc->base.sk;
 202	struct sk_buff_head *queue, *skb_list;
 203	struct sk_buff *skb = sctp_event2skb(event);
 204	int clear_pd = 0;
 205
 206	skb_list = (struct sk_buff_head *) skb->prev;
 207
 208	/* If the socket is just going to throw this away, do not
 209	 * even try to deliver it.
 210	 */
 211	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
 212		goto out_free;
 213
 214	/* Check if the user wishes to receive this event.  */
 215	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
 216		goto out_free;
 217
 218	/* If we are in partial delivery mode, post to the lobby until
 219	 * partial delivery is cleared, unless, of course _this_ is
 220	 * the association the cause of the partial delivery.
 221	 */
 222
 223	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
 224		queue = &sk->sk_receive_queue;
 225	} else {
 226		if (ulpq->pd_mode) {
 227			/* If the association is in partial delivery, we
 228			 * need to finish delivering the partially processed
 229			 * packet before passing any other data.  This is
 230			 * because we don't truly support stream interleaving.
 231			 */
 232			if ((event->msg_flags & MSG_NOTIFICATION) ||
 233			    (SCTP_DATA_NOT_FRAG ==
 234				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
 235				queue = &sctp_sk(sk)->pd_lobby;
 236			else {
 237				clear_pd = event->msg_flags & MSG_EOR;
 238				queue = &sk->sk_receive_queue;
 239			}
 240		} else {
 241			/*
 242			 * If fragment interleave is enabled, we
 243			 * can queue this to the receive queue instead
 244			 * of the lobby.
 245			 */
 246			if (sctp_sk(sk)->frag_interleave)
 247				queue = &sk->sk_receive_queue;
 248			else
 249				queue = &sctp_sk(sk)->pd_lobby;
 250		}
 251	}
 252
 253	/* If we are harvesting multiple skbs they will be
 254	 * collected on a list.
 255	 */
 256	if (skb_list)
 257		sctp_skb_list_tail(skb_list, queue);
 258	else
 259		__skb_queue_tail(queue, skb);
 260
 261	/* Did we just complete partial delivery and need to get
 262	 * rolling again?  Move pending data to the receive
 263	 * queue.
 264	 */
 265	if (clear_pd)
 266		sctp_ulpq_clear_pd(ulpq);
 267
 268	if (queue == &sk->sk_receive_queue)
 269		sk->sk_data_ready(sk, 0);
 270	return 1;
 271
 272out_free:
 273	if (skb_list)
 274		sctp_queue_purge_ulpevents(skb_list);
 275	else
 276		sctp_ulpevent_free(event);
 277
 278	return 0;
 279}
 280
 281/* 2nd Level Abstractions */
 282
 283/* Helper function to store chunks that need to be reassembled.  */
 284static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
 285					 struct sctp_ulpevent *event)
 286{
 287	struct sk_buff *pos;
 288	struct sctp_ulpevent *cevent;
 289	__u32 tsn, ctsn;
 290
 291	tsn = event->tsn;
 292
 293	/* See if it belongs at the end. */
 294	pos = skb_peek_tail(&ulpq->reasm);
 295	if (!pos) {
 296		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
 297		return;
 298	}
 299
 300	/* Short circuit just dropping it at the end. */
 301	cevent = sctp_skb2event(pos);
 302	ctsn = cevent->tsn;
 303	if (TSN_lt(ctsn, tsn)) {
 304		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
 305		return;
 306	}
 307
 308	/* Find the right place in this list. We store them by TSN.  */
 309	skb_queue_walk(&ulpq->reasm, pos) {
 310		cevent = sctp_skb2event(pos);
 311		ctsn = cevent->tsn;
 312
 313		if (TSN_lt(tsn, ctsn))
 314			break;
 315	}
 316
 317	/* Insert before pos. */
 318	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
 319
 320}
 321
 322/* Helper function to return an event corresponding to the reassembled
 323 * datagram.
 324 * This routine creates a re-assembled skb given the first and last skb's
 325 * as stored in the reassembly queue. The skb's may be non-linear if the sctp
 326 * payload was fragmented on the way and ip had to reassemble them.
 327 * We add the rest of skb's to the first skb's fraglist.
 328 */
 329static struct sctp_ulpevent *sctp_make_reassembled_event(struct sk_buff_head *queue, struct sk_buff *f_frag, struct sk_buff *l_frag)
 
 
 330{
 331	struct sk_buff *pos;
 332	struct sk_buff *new = NULL;
 333	struct sctp_ulpevent *event;
 334	struct sk_buff *pnext, *last;
 335	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
 336
 337	/* Store the pointer to the 2nd skb */
 338	if (f_frag == l_frag)
 339		pos = NULL;
 340	else
 341		pos = f_frag->next;
 342
 343	/* Get the last skb in the f_frag's frag_list if present. */
 344	for (last = list; list; last = list, list = list->next);
 
 345
 346	/* Add the list of remaining fragments to the first fragments
 347	 * frag_list.
 348	 */
 349	if (last)
 350		last->next = pos;
 351	else {
 352		if (skb_cloned(f_frag)) {
 353			/* This is a cloned skb, we can't just modify
 354			 * the frag_list.  We need a new skb to do that.
 355			 * Instead of calling skb_unshare(), we'll do it
 356			 * ourselves since we need to delay the free.
 357			 */
 358			new = skb_copy(f_frag, GFP_ATOMIC);
 359			if (!new)
 360				return NULL;	/* try again later */
 361
 362			sctp_skb_set_owner_r(new, f_frag->sk);
 363
 364			skb_shinfo(new)->frag_list = pos;
 365		} else
 366			skb_shinfo(f_frag)->frag_list = pos;
 367	}
 368
 369	/* Remove the first fragment from the reassembly queue.  */
 370	__skb_unlink(f_frag, queue);
 371
 372	/* if we did unshare, then free the old skb and re-assign */
 373	if (new) {
 374		kfree_skb(f_frag);
 375		f_frag = new;
 376	}
 377
 378	while (pos) {
 379
 380		pnext = pos->next;
 381
 382		/* Update the len and data_len fields of the first fragment. */
 383		f_frag->len += pos->len;
 384		f_frag->data_len += pos->len;
 385
 386		/* Remove the fragment from the reassembly queue.  */
 387		__skb_unlink(pos, queue);
 388
 389		/* Break if we have reached the last fragment.  */
 390		if (pos == l_frag)
 391			break;
 392		pos->next = pnext;
 393		pos = pnext;
 394	}
 395
 396	event = sctp_skb2event(f_frag);
 397	SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS);
 398
 399	return event;
 400}
 401
 402
 403/* Helper function to check if an incoming chunk has filled up the last
 404 * missing fragment in a SCTP datagram and return the corresponding event.
 405 */
 406static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
 407{
 408	struct sk_buff *pos;
 409	struct sctp_ulpevent *cevent;
 410	struct sk_buff *first_frag = NULL;
 411	__u32 ctsn, next_tsn;
 412	struct sctp_ulpevent *retval = NULL;
 413	struct sk_buff *pd_first = NULL;
 414	struct sk_buff *pd_last = NULL;
 415	size_t pd_len = 0;
 416	struct sctp_association *asoc;
 417	u32 pd_point;
 418
 419	/* Initialized to 0 just to avoid compiler warning message.  Will
 420	 * never be used with this value. It is referenced only after it
 421	 * is set when we find the first fragment of a message.
 422	 */
 423	next_tsn = 0;
 424
 425	/* The chunks are held in the reasm queue sorted by TSN.
 426	 * Walk through the queue sequentially and look for a sequence of
 427	 * fragmented chunks that complete a datagram.
 428	 * 'first_frag' and next_tsn are reset when we find a chunk which
 429	 * is the first fragment of a datagram. Once these 2 fields are set
 430	 * we expect to find the remaining middle fragments and the last
 431	 * fragment in order. If not, first_frag is reset to NULL and we
 432	 * start the next pass when we find another first fragment.
 433	 *
 434	 * There is a potential to do partial delivery if user sets
 435	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
 436	 * to see if can do PD.
 437	 */
 438	skb_queue_walk(&ulpq->reasm, pos) {
 439		cevent = sctp_skb2event(pos);
 440		ctsn = cevent->tsn;
 441
 442		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 443		case SCTP_DATA_FIRST_FRAG:
 444			/* If this "FIRST_FRAG" is the first
 445			 * element in the queue, then count it towards
 446			 * possible PD.
 447			 */
 448			if (pos == ulpq->reasm.next) {
 449			    pd_first = pos;
 450			    pd_last = pos;
 451			    pd_len = pos->len;
 452			} else {
 453			    pd_first = NULL;
 454			    pd_last = NULL;
 455			    pd_len = 0;
 456			}
 457
 458			first_frag = pos;
 459			next_tsn = ctsn + 1;
 460			break;
 461
 462		case SCTP_DATA_MIDDLE_FRAG:
 463			if ((first_frag) && (ctsn == next_tsn)) {
 464				next_tsn++;
 465				if (pd_first) {
 466				    pd_last = pos;
 467				    pd_len += pos->len;
 468				}
 469			} else
 470				first_frag = NULL;
 471			break;
 472
 473		case SCTP_DATA_LAST_FRAG:
 474			if (first_frag && (ctsn == next_tsn))
 475				goto found;
 476			else
 477				first_frag = NULL;
 478			break;
 479		}
 480	}
 481
 482	asoc = ulpq->asoc;
 483	if (pd_first) {
 484		/* Make sure we can enter partial deliver.
 485		 * We can trigger partial delivery only if framgent
 486		 * interleave is set, or the socket is not already
 487		 * in  partial delivery.
 488		 */
 489		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
 490		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
 491			goto done;
 492
 493		cevent = sctp_skb2event(pd_first);
 494		pd_point = sctp_sk(asoc->base.sk)->pd_point;
 495		if (pd_point && pd_point <= pd_len) {
 496			retval = sctp_make_reassembled_event(&ulpq->reasm,
 
 497							     pd_first,
 498							     pd_last);
 499			if (retval)
 500				sctp_ulpq_set_pd(ulpq);
 501		}
 502	}
 503done:
 504	return retval;
 505found:
 506	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, pos);
 
 507	if (retval)
 508		retval->msg_flags |= MSG_EOR;
 509	goto done;
 510}
 511
 512/* Retrieve the next set of fragments of a partial message. */
 513static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
 514{
 515	struct sk_buff *pos, *last_frag, *first_frag;
 516	struct sctp_ulpevent *cevent;
 517	__u32 ctsn, next_tsn;
 518	int is_last;
 519	struct sctp_ulpevent *retval;
 520
 521	/* The chunks are held in the reasm queue sorted by TSN.
 522	 * Walk through the queue sequentially and look for the first
 523	 * sequence of fragmented chunks.
 524	 */
 525
 526	if (skb_queue_empty(&ulpq->reasm))
 527		return NULL;
 528
 529	last_frag = first_frag = NULL;
 530	retval = NULL;
 531	next_tsn = 0;
 532	is_last = 0;
 533
 534	skb_queue_walk(&ulpq->reasm, pos) {
 535		cevent = sctp_skb2event(pos);
 536		ctsn = cevent->tsn;
 537
 538		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 
 
 
 
 539		case SCTP_DATA_MIDDLE_FRAG:
 540			if (!first_frag) {
 541				first_frag = pos;
 542				next_tsn = ctsn + 1;
 543				last_frag = pos;
 544			} else if (next_tsn == ctsn)
 545				next_tsn++;
 546			else
 
 547				goto done;
 548			break;
 549		case SCTP_DATA_LAST_FRAG:
 550			if (!first_frag)
 551				first_frag = pos;
 552			else if (ctsn != next_tsn)
 553				goto done;
 554			last_frag = pos;
 555			is_last = 1;
 556			goto done;
 557		default:
 558			return NULL;
 559		}
 560	}
 561
 562	/* We have the reassembled event. There is no need to look
 563	 * further.
 564	 */
 565done:
 566	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
 
 567	if (retval && is_last)
 568		retval->msg_flags |= MSG_EOR;
 569
 570	return retval;
 571}
 572
 573
 574/* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
 575 * need reassembling.
 576 */
 577static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
 578						struct sctp_ulpevent *event)
 579{
 580	struct sctp_ulpevent *retval = NULL;
 581
 582	/* Check if this is part of a fragmented message.  */
 583	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
 584		event->msg_flags |= MSG_EOR;
 585		return event;
 586	}
 587
 588	sctp_ulpq_store_reasm(ulpq, event);
 589	if (!ulpq->pd_mode)
 590		retval = sctp_ulpq_retrieve_reassembled(ulpq);
 591	else {
 592		__u32 ctsn, ctsnap;
 593
 594		/* Do not even bother unless this is the next tsn to
 595		 * be delivered.
 596		 */
 597		ctsn = event->tsn;
 598		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
 599		if (TSN_lte(ctsn, ctsnap))
 600			retval = sctp_ulpq_retrieve_partial(ulpq);
 601	}
 602
 603	return retval;
 604}
 605
 606/* Retrieve the first part (sequential fragments) for partial delivery.  */
 607static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
 608{
 609	struct sk_buff *pos, *last_frag, *first_frag;
 610	struct sctp_ulpevent *cevent;
 611	__u32 ctsn, next_tsn;
 612	struct sctp_ulpevent *retval;
 613
 614	/* The chunks are held in the reasm queue sorted by TSN.
 615	 * Walk through the queue sequentially and look for a sequence of
 616	 * fragmented chunks that start a datagram.
 617	 */
 618
 619	if (skb_queue_empty(&ulpq->reasm))
 620		return NULL;
 621
 622	last_frag = first_frag = NULL;
 623	retval = NULL;
 624	next_tsn = 0;
 625
 626	skb_queue_walk(&ulpq->reasm, pos) {
 627		cevent = sctp_skb2event(pos);
 628		ctsn = cevent->tsn;
 629
 630		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 631		case SCTP_DATA_FIRST_FRAG:
 632			if (!first_frag) {
 633				first_frag = pos;
 634				next_tsn = ctsn + 1;
 635				last_frag = pos;
 636			} else
 637				goto done;
 638			break;
 639
 640		case SCTP_DATA_MIDDLE_FRAG:
 641			if (!first_frag)
 642				return NULL;
 643			if (ctsn == next_tsn) {
 644				next_tsn++;
 645				last_frag = pos;
 646			} else
 647				goto done;
 648			break;
 
 
 
 
 
 
 
 
 649		default:
 650			return NULL;
 651		}
 652	}
 653
 654	/* We have the reassembled event. There is no need to look
 655	 * further.
 656	 */
 657done:
 658	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
 
 659	return retval;
 660}
 661
 662/*
 663 * Flush out stale fragments from the reassembly queue when processing
 664 * a Forward TSN.
 665 *
 666 * RFC 3758, Section 3.6
 667 *
 668 * After receiving and processing a FORWARD TSN, the data receiver MUST
 669 * take cautions in updating its re-assembly queue.  The receiver MUST
 670 * remove any partially reassembled message, which is still missing one
 671 * or more TSNs earlier than or equal to the new cumulative TSN point.
 672 * In the event that the receiver has invoked the partial delivery API,
 673 * a notification SHOULD also be generated to inform the upper layer API
 674 * that the message being partially delivered will NOT be completed.
 675 */
 676void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
 677{
 678	struct sk_buff *pos, *tmp;
 679	struct sctp_ulpevent *event;
 680	__u32 tsn;
 681
 682	if (skb_queue_empty(&ulpq->reasm))
 683		return;
 684
 685	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
 686		event = sctp_skb2event(pos);
 687		tsn = event->tsn;
 688
 689		/* Since the entire message must be abandoned by the
 690		 * sender (item A3 in Section 3.5, RFC 3758), we can
 691		 * free all fragments on the list that are less then
 692		 * or equal to ctsn_point
 693		 */
 694		if (TSN_lte(tsn, fwd_tsn)) {
 695			__skb_unlink(pos, &ulpq->reasm);
 696			sctp_ulpevent_free(event);
 697		} else
 698			break;
 699	}
 700}
 701
 702/*
 703 * Drain the reassembly queue.  If we just cleared parted delivery, it
 704 * is possible that the reassembly queue will contain already reassembled
 705 * messages.  Retrieve any such messages and give them to the user.
 706 */
 707static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
 708{
 709	struct sctp_ulpevent *event = NULL;
 710	struct sk_buff_head temp;
 711
 712	if (skb_queue_empty(&ulpq->reasm))
 713		return;
 714
 715	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
 716		/* Do ordering if needed.  */
 717		if ((event) && (event->msg_flags & MSG_EOR)){
 718			skb_queue_head_init(&temp);
 719			__skb_queue_tail(&temp, sctp_event2skb(event));
 720
 721			event = sctp_ulpq_order(ulpq, event);
 722		}
 723
 724		/* Send event to the ULP.  'event' is the
 725		 * sctp_ulpevent for  very first SKB on the  temp' list.
 726		 */
 727		if (event)
 728			sctp_ulpq_tail_event(ulpq, event);
 729	}
 730}
 731
 732
 733/* Helper function to gather skbs that have possibly become
 734 * ordered by an an incoming chunk.
 735 */
 736static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
 737					      struct sctp_ulpevent *event)
 738{
 739	struct sk_buff_head *event_list;
 740	struct sk_buff *pos, *tmp;
 741	struct sctp_ulpevent *cevent;
 742	struct sctp_stream *in;
 743	__u16 sid, csid, cssn;
 744
 745	sid = event->stream;
 746	in  = &ulpq->asoc->ssnmap->in;
 747
 748	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
 749
 750	/* We are holding the chunks by stream, by SSN.  */
 751	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
 752		cevent = (struct sctp_ulpevent *) pos->cb;
 753		csid = cevent->stream;
 754		cssn = cevent->ssn;
 755
 756		/* Have we gone too far?  */
 757		if (csid > sid)
 758			break;
 759
 760		/* Have we not gone far enough?  */
 761		if (csid < sid)
 762			continue;
 763
 764		if (cssn != sctp_ssn_peek(in, sid))
 765			break;
 766
 767		/* Found it, so mark in the ssnmap. */
 768		sctp_ssn_next(in, sid);
 769
 770		__skb_unlink(pos, &ulpq->lobby);
 771
 772		/* Attach all gathered skbs to the event.  */
 773		__skb_queue_tail(event_list, pos);
 774	}
 775}
 776
 777/* Helper function to store chunks needing ordering.  */
 778static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
 779					   struct sctp_ulpevent *event)
 780{
 781	struct sk_buff *pos;
 782	struct sctp_ulpevent *cevent;
 783	__u16 sid, csid;
 784	__u16 ssn, cssn;
 785
 786	pos = skb_peek_tail(&ulpq->lobby);
 787	if (!pos) {
 788		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 789		return;
 790	}
 791
 792	sid = event->stream;
 793	ssn = event->ssn;
 794
 795	cevent = (struct sctp_ulpevent *) pos->cb;
 796	csid = cevent->stream;
 797	cssn = cevent->ssn;
 798	if (sid > csid) {
 799		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 800		return;
 801	}
 802
 803	if ((sid == csid) && SSN_lt(cssn, ssn)) {
 804		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 805		return;
 806	}
 807
 808	/* Find the right place in this list.  We store them by
 809	 * stream ID and then by SSN.
 810	 */
 811	skb_queue_walk(&ulpq->lobby, pos) {
 812		cevent = (struct sctp_ulpevent *) pos->cb;
 813		csid = cevent->stream;
 814		cssn = cevent->ssn;
 815
 816		if (csid > sid)
 817			break;
 818		if (csid == sid && SSN_lt(ssn, cssn))
 819			break;
 820	}
 821
 822
 823	/* Insert before pos. */
 824	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
 825}
 826
 827static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
 828					     struct sctp_ulpevent *event)
 829{
 830	__u16 sid, ssn;
 831	struct sctp_stream *in;
 832
 833	/* Check if this message needs ordering.  */
 834	if (SCTP_DATA_UNORDERED & event->msg_flags)
 835		return event;
 836
 837	/* Note: The stream ID must be verified before this routine.  */
 838	sid = event->stream;
 839	ssn = event->ssn;
 840	in  = &ulpq->asoc->ssnmap->in;
 841
 842	/* Is this the expected SSN for this stream ID?  */
 843	if (ssn != sctp_ssn_peek(in, sid)) {
 844		/* We've received something out of order, so find where it
 845		 * needs to be placed.  We order by stream and then by SSN.
 846		 */
 847		sctp_ulpq_store_ordered(ulpq, event);
 848		return NULL;
 849	}
 850
 851	/* Mark that the next chunk has been found.  */
 852	sctp_ssn_next(in, sid);
 853
 854	/* Go find any other chunks that were waiting for
 855	 * ordering.
 856	 */
 857	sctp_ulpq_retrieve_ordered(ulpq, event);
 858
 859	return event;
 860}
 861
 862/* Helper function to gather skbs that have possibly become
 863 * ordered by forward tsn skipping their dependencies.
 864 */
 865static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
 866{
 867	struct sk_buff *pos, *tmp;
 868	struct sctp_ulpevent *cevent;
 869	struct sctp_ulpevent *event;
 870	struct sctp_stream *in;
 871	struct sk_buff_head temp;
 872	struct sk_buff_head *lobby = &ulpq->lobby;
 873	__u16 csid, cssn;
 874
 875	in  = &ulpq->asoc->ssnmap->in;
 876
 877	/* We are holding the chunks by stream, by SSN.  */
 878	skb_queue_head_init(&temp);
 879	event = NULL;
 880	sctp_skb_for_each(pos, lobby, tmp) {
 881		cevent = (struct sctp_ulpevent *) pos->cb;
 882		csid = cevent->stream;
 883		cssn = cevent->ssn;
 884
 885		/* Have we gone too far?  */
 886		if (csid > sid)
 887			break;
 888
 889		/* Have we not gone far enough?  */
 890		if (csid < sid)
 891			continue;
 892
 893		/* see if this ssn has been marked by skipping */
 894		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
 895			break;
 896
 897		__skb_unlink(pos, lobby);
 898		if (!event)
 899			/* Create a temporary list to collect chunks on.  */
 900			event = sctp_skb2event(pos);
 901
 902		/* Attach all gathered skbs to the event.  */
 903		__skb_queue_tail(&temp, pos);
 904	}
 905
 906	/* If we didn't reap any data, see if the next expected SSN
 907	 * is next on the queue and if so, use that.
 908	 */
 909	if (event == NULL && pos != (struct sk_buff *)lobby) {
 910		cevent = (struct sctp_ulpevent *) pos->cb;
 911		csid = cevent->stream;
 912		cssn = cevent->ssn;
 913
 914		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
 915			sctp_ssn_next(in, csid);
 916			__skb_unlink(pos, lobby);
 917			__skb_queue_tail(&temp, pos);
 918			event = sctp_skb2event(pos);
 919		}
 920	}
 921
 922	/* Send event to the ULP.  'event' is the sctp_ulpevent for
 923	 * very first SKB on the 'temp' list.
 924	 */
 925	if (event) {
 926		/* see if we have more ordered that we can deliver */
 927		sctp_ulpq_retrieve_ordered(ulpq, event);
 928		sctp_ulpq_tail_event(ulpq, event);
 929	}
 930}
 931
 932/* Skip over an SSN. This is used during the processing of
 933 * Forwared TSN chunk to skip over the abandoned ordered data
 934 */
 935void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
 936{
 937	struct sctp_stream *in;
 938
 939	/* Note: The stream ID must be verified before this routine.  */
 940	in  = &ulpq->asoc->ssnmap->in;
 941
 942	/* Is this an old SSN?  If so ignore. */
 943	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
 944		return;
 945
 946	/* Mark that we are no longer expecting this SSN or lower. */
 947	sctp_ssn_skip(in, sid, ssn);
 948
 949	/* Go find any other chunks that were waiting for
 950	 * ordering and deliver them if needed.
 951	 */
 952	sctp_ulpq_reap_ordered(ulpq, sid);
 953}
 954
 955static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
 956		struct sk_buff_head *list, __u16 needed)
 957{
 958	__u16 freed = 0;
 959	__u32 tsn;
 960	struct sk_buff *skb;
 961	struct sctp_ulpevent *event;
 962	struct sctp_tsnmap *tsnmap;
 963
 964	tsnmap = &ulpq->asoc->peer.tsn_map;
 965
 966	while ((skb = __skb_dequeue_tail(list)) != NULL) {
 967		freed += skb_headlen(skb);
 968		event = sctp_skb2event(skb);
 969		tsn = event->tsn;
 970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971		sctp_ulpevent_free(event);
 972		sctp_tsnmap_renege(tsnmap, tsn);
 
 
 
 973		if (freed >= needed)
 974			return freed;
 975	}
 976
 977	return freed;
 978}
 979
 980/* Renege 'needed' bytes from the ordering queue. */
 981static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
 982{
 983	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
 984}
 985
 986/* Renege 'needed' bytes from the reassembly queue. */
 987static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
 988{
 989	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
 990}
 991
 992/* Partial deliver the first message as there is pressure on rwnd. */
 993void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
 994				struct sctp_chunk *chunk,
 995				gfp_t gfp)
 996{
 997	struct sctp_ulpevent *event;
 998	struct sctp_association *asoc;
 999	struct sctp_sock *sp;
 
 
1000
1001	asoc = ulpq->asoc;
1002	sp = sctp_sk(asoc->base.sk);
1003
1004	/* If the association is already in Partial Delivery mode
1005	 * we have noting to do.
1006	 */
1007	if (ulpq->pd_mode)
1008		return;
1009
 
 
 
 
 
 
 
 
 
 
1010	/* If the user enabled fragment interleave socket option,
1011	 * multiple associations can enter partial delivery.
1012	 * Otherwise, we can only enter partial delivery if the
1013	 * socket is not in partial deliver mode.
1014	 */
1015	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1016		/* Is partial delivery possible?  */
1017		event = sctp_ulpq_retrieve_first(ulpq);
1018		/* Send event to the ULP.   */
1019		if (event) {
1020			sctp_ulpq_tail_event(ulpq, event);
1021			sctp_ulpq_set_pd(ulpq);
1022			return;
1023		}
1024	}
1025}
1026
1027/* Renege some packets to make room for an incoming chunk.  */
1028void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1029		      gfp_t gfp)
1030{
1031	struct sctp_association *asoc;
1032	__u16 needed, freed;
1033
1034	asoc = ulpq->asoc;
1035
1036	if (chunk) {
1037		needed = ntohs(chunk->chunk_hdr->length);
1038		needed -= sizeof(sctp_data_chunk_t);
1039	} else
1040		needed = SCTP_DEFAULT_MAXWINDOW;
1041
1042	freed = 0;
1043
1044	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1045		freed = sctp_ulpq_renege_order(ulpq, needed);
1046		if (freed < needed) {
1047			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1048		}
1049	}
1050	/* If able to free enough room, accept this chunk. */
1051	if (chunk && (freed >= needed)) {
1052		__u32 tsn;
1053		tsn = ntohl(chunk->subh.data_hdr->tsn);
1054		sctp_tsnmap_mark(&asoc->peer.tsn_map, tsn);
1055		sctp_ulpq_tail_data(ulpq, chunk, gfp);
1056
1057		sctp_ulpq_partial_delivery(ulpq, chunk, gfp);
 
 
 
 
1058	}
1059
1060	sk_mem_reclaim(asoc->base.sk);
1061}
1062
1063
1064
1065/* Notify the application if an association is aborted and in
1066 * partial delivery mode.  Send up any pending received messages.
1067 */
1068void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1069{
1070	struct sctp_ulpevent *ev = NULL;
1071	struct sock *sk;
1072
1073	if (!ulpq->pd_mode)
1074		return;
1075
1076	sk = ulpq->asoc->base.sk;
1077	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1078				       &sctp_sk(sk)->subscribe))
1079		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1080					      SCTP_PARTIAL_DELIVERY_ABORTED,
1081					      gfp);
1082	if (ev)
1083		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1084
1085	/* If there is data waiting, send it up the socket now. */
1086	if (sctp_ulpq_clear_pd(ulpq) || ev)
1087		sk->sk_data_ready(sk, 0);
1088}