Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.15
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001-2003 Intel Corp.
   6 * Copyright (c) 2001-2002 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions interface with the sockets layer to implement the
  12 * SCTP Extensions for the Sockets API.
  13 *
  14 * Note that the descriptions from the specification are USER level
  15 * functions--this file is the functions which populate the struct proto
  16 * for SCTP which is the BOTTOM of the sockets interface.
  17 *
  18 * This SCTP implementation is free software;
  19 * you can redistribute it and/or modify it under the terms of
  20 * the GNU General Public License as published by
  21 * the Free Software Foundation; either version 2, or (at your option)
  22 * any later version.
  23 *
  24 * This SCTP implementation is distributed in the hope that it
  25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  26 *                 ************************
  27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  28 * See the GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with GNU CC; see the file COPYING.  If not, see
  32 * <http://www.gnu.org/licenses/>.
 
  33 *
  34 * Please send any bug reports or fixes you make to the
  35 * email address(es):
  36 *    lksctp developers <linux-sctp@vger.kernel.org>
 
 
 
  37 *
  38 * Written or modified by:
  39 *    La Monte H.P. Yarroll <piggy@acm.org>
  40 *    Narasimha Budihal     <narsi@refcode.org>
  41 *    Karl Knutson          <karl@athena.chicago.il.us>
  42 *    Jon Grimm             <jgrimm@us.ibm.com>
  43 *    Xingang Guo           <xingang.guo@intel.com>
  44 *    Daisy Chang           <daisyc@us.ibm.com>
  45 *    Sridhar Samudrala     <samudrala@us.ibm.com>
  46 *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
  47 *    Ardelle Fan	    <ardelle.fan@intel.com>
  48 *    Ryan Layer	    <rmlayer@us.ibm.com>
  49 *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
  50 *    Kevin Gao             <kevin.gao@intel.com>
 
 
 
  51 */
  52
  53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  54
  55#include <linux/types.h>
  56#include <linux/kernel.h>
  57#include <linux/wait.h>
  58#include <linux/time.h>
  59#include <linux/ip.h>
  60#include <linux/capability.h>
  61#include <linux/fcntl.h>
  62#include <linux/poll.h>
  63#include <linux/init.h>
  64#include <linux/crypto.h>
  65#include <linux/slab.h>
  66#include <linux/file.h>
  67#include <linux/compat.h>
  68
  69#include <net/ip.h>
  70#include <net/icmp.h>
  71#include <net/route.h>
  72#include <net/ipv6.h>
  73#include <net/inet_common.h>
  74
  75#include <linux/socket.h> /* for sa_family_t */
  76#include <linux/export.h>
  77#include <net/sock.h>
  78#include <net/sctp/sctp.h>
  79#include <net/sctp/sm.h>
  80
 
 
 
 
 
  81/* Forward declarations for internal helper functions. */
  82static int sctp_writeable(struct sock *sk);
  83static void sctp_wfree(struct sk_buff *skb);
  84static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
  85				size_t msg_len);
  86static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
  87static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
  88static int sctp_wait_for_accept(struct sock *sk, long timeo);
  89static void sctp_wait_for_close(struct sock *sk, long timeo);
  90static void sctp_destruct_sock(struct sock *sk);
  91static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
  92					union sctp_addr *addr, int len);
  93static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
  94static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
  95static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
  96static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
  97static int sctp_send_asconf(struct sctp_association *asoc,
  98			    struct sctp_chunk *chunk);
  99static int sctp_do_bind(struct sock *, union sctp_addr *, int);
 100static int sctp_autobind(struct sock *sk);
 101static void sctp_sock_migrate(struct sock *, struct sock *,
 102			      struct sctp_association *, sctp_socket_type_t);
 
 103
 104extern struct kmem_cache *sctp_bucket_cachep;
 105extern long sysctl_sctp_mem[3];
 106extern int sysctl_sctp_rmem[3];
 107extern int sysctl_sctp_wmem[3];
 108
 109static int sctp_memory_pressure;
 110static atomic_long_t sctp_memory_allocated;
 111struct percpu_counter sctp_sockets_allocated;
 112
 113static void sctp_enter_memory_pressure(struct sock *sk)
 114{
 115	sctp_memory_pressure = 1;
 116}
 117
 118
 119/* Get the sndbuf space available at the time on the association.  */
 120static inline int sctp_wspace(struct sctp_association *asoc)
 121{
 122	int amt;
 123
 124	if (asoc->ep->sndbuf_policy)
 125		amt = asoc->sndbuf_used;
 126	else
 127		amt = sk_wmem_alloc_get(asoc->base.sk);
 128
 129	if (amt >= asoc->base.sk->sk_sndbuf) {
 130		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
 131			amt = 0;
 132		else {
 133			amt = sk_stream_wspace(asoc->base.sk);
 134			if (amt < 0)
 135				amt = 0;
 136		}
 137	} else {
 138		amt = asoc->base.sk->sk_sndbuf - amt;
 139	}
 140	return amt;
 141}
 142
 143/* Increment the used sndbuf space count of the corresponding association by
 144 * the size of the outgoing data chunk.
 145 * Also, set the skb destructor for sndbuf accounting later.
 146 *
 147 * Since it is always 1-1 between chunk and skb, and also a new skb is always
 148 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
 149 * destructor in the data chunk skb for the purpose of the sndbuf space
 150 * tracking.
 151 */
 152static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
 153{
 154	struct sctp_association *asoc = chunk->asoc;
 155	struct sock *sk = asoc->base.sk;
 156
 157	/* The sndbuf space is tracked per association.  */
 158	sctp_association_hold(asoc);
 159
 160	skb_set_owner_w(chunk->skb, sk);
 161
 162	chunk->skb->destructor = sctp_wfree;
 163	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
 164	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
 165
 166	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
 167				sizeof(struct sk_buff) +
 168				sizeof(struct sctp_chunk);
 169
 170	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
 171	sk->sk_wmem_queued += chunk->skb->truesize;
 172	sk_mem_charge(sk, chunk->skb->truesize);
 173}
 174
 175/* Verify that this is a valid address. */
 176static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
 177				   int len)
 178{
 179	struct sctp_af *af;
 180
 181	/* Verify basic sockaddr. */
 182	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
 183	if (!af)
 184		return -EINVAL;
 185
 186	/* Is this a valid SCTP address?  */
 187	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
 188		return -EINVAL;
 189
 190	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
 191		return -EINVAL;
 192
 193	return 0;
 194}
 195
 196/* Look up the association by its id.  If this is not a UDP-style
 197 * socket, the ID field is always ignored.
 198 */
 199struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
 200{
 201	struct sctp_association *asoc = NULL;
 202
 203	/* If this is not a UDP-style socket, assoc id should be ignored. */
 204	if (!sctp_style(sk, UDP)) {
 205		/* Return NULL if the socket state is not ESTABLISHED. It
 206		 * could be a TCP-style listening socket or a socket which
 207		 * hasn't yet called connect() to establish an association.
 208		 */
 209		if (!sctp_sstate(sk, ESTABLISHED))
 210			return NULL;
 211
 212		/* Get the first and the only association from the list. */
 213		if (!list_empty(&sctp_sk(sk)->ep->asocs))
 214			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
 215					  struct sctp_association, asocs);
 216		return asoc;
 217	}
 218
 219	/* Otherwise this is a UDP-style socket. */
 220	if (!id || (id == (sctp_assoc_t)-1))
 221		return NULL;
 222
 223	spin_lock_bh(&sctp_assocs_id_lock);
 224	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
 225	spin_unlock_bh(&sctp_assocs_id_lock);
 226
 227	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
 228		return NULL;
 229
 230	return asoc;
 231}
 232
 233/* Look up the transport from an address and an assoc id. If both address and
 234 * id are specified, the associations matching the address and the id should be
 235 * the same.
 236 */
 237static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
 238					      struct sockaddr_storage *addr,
 239					      sctp_assoc_t id)
 240{
 241	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
 242	struct sctp_transport *transport;
 243	union sctp_addr *laddr = (union sctp_addr *)addr;
 244
 245	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
 246					       laddr,
 247					       &transport);
 248
 249	if (!addr_asoc)
 250		return NULL;
 251
 252	id_asoc = sctp_id2assoc(sk, id);
 253	if (id_asoc && (id_asoc != addr_asoc))
 254		return NULL;
 255
 256	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
 257						(union sctp_addr *)addr);
 258
 259	return transport;
 260}
 261
 262/* API 3.1.2 bind() - UDP Style Syntax
 263 * The syntax of bind() is,
 264 *
 265 *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
 266 *
 267 *   sd      - the socket descriptor returned by socket().
 268 *   addr    - the address structure (struct sockaddr_in or struct
 269 *             sockaddr_in6 [RFC 2553]),
 270 *   addr_len - the size of the address structure.
 271 */
 272static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
 273{
 274	int retval = 0;
 275
 276	lock_sock(sk);
 277
 278	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
 279		 addr, addr_len);
 280
 281	/* Disallow binding twice. */
 282	if (!sctp_sk(sk)->ep->base.bind_addr.port)
 283		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
 284				      addr_len);
 285	else
 286		retval = -EINVAL;
 287
 288	release_sock(sk);
 289
 290	return retval;
 291}
 292
 293static long sctp_get_port_local(struct sock *, union sctp_addr *);
 294
 295/* Verify this is a valid sockaddr. */
 296static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
 297					union sctp_addr *addr, int len)
 298{
 299	struct sctp_af *af;
 300
 301	/* Check minimum size.  */
 302	if (len < sizeof (struct sockaddr))
 303		return NULL;
 304
 305	/* V4 mapped address are really of AF_INET family */
 306	if (addr->sa.sa_family == AF_INET6 &&
 307	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
 308		if (!opt->pf->af_supported(AF_INET, opt))
 309			return NULL;
 310	} else {
 311		/* Does this PF support this AF? */
 312		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
 313			return NULL;
 314	}
 315
 316	/* If we get this far, af is valid. */
 317	af = sctp_get_af_specific(addr->sa.sa_family);
 318
 319	if (len < af->sockaddr_len)
 320		return NULL;
 321
 322	return af;
 323}
 324
 325/* Bind a local address either to an endpoint or to an association.  */
 326static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
 327{
 328	struct net *net = sock_net(sk);
 329	struct sctp_sock *sp = sctp_sk(sk);
 330	struct sctp_endpoint *ep = sp->ep;
 331	struct sctp_bind_addr *bp = &ep->base.bind_addr;
 332	struct sctp_af *af;
 333	unsigned short snum;
 334	int ret = 0;
 335
 336	/* Common sockaddr verification. */
 337	af = sctp_sockaddr_af(sp, addr, len);
 338	if (!af) {
 339		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
 340			 __func__, sk, addr, len);
 341		return -EINVAL;
 342	}
 343
 344	snum = ntohs(addr->v4.sin_port);
 345
 346	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
 347		 __func__, sk, &addr->sa, bp->port, snum, len);
 
 
 
 
 348
 349	/* PF specific bind() address verification. */
 350	if (!sp->pf->bind_verify(sp, addr))
 351		return -EADDRNOTAVAIL;
 352
 353	/* We must either be unbound, or bind to the same port.
 354	 * It's OK to allow 0 ports if we are already bound.
 355	 * We'll just inhert an already bound port in this case
 356	 */
 357	if (bp->port) {
 358		if (!snum)
 359			snum = bp->port;
 360		else if (snum != bp->port) {
 361			pr_debug("%s: new port %d doesn't match existing port "
 362				 "%d\n", __func__, snum, bp->port);
 
 363			return -EINVAL;
 364		}
 365	}
 366
 367	if (snum && snum < PROT_SOCK &&
 368	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
 369		return -EACCES;
 370
 371	/* See if the address matches any of the addresses we may have
 372	 * already bound before checking against other endpoints.
 373	 */
 374	if (sctp_bind_addr_match(bp, addr, sp))
 375		return -EINVAL;
 376
 377	/* Make sure we are allowed to bind here.
 378	 * The function sctp_get_port_local() does duplicate address
 379	 * detection.
 380	 */
 381	addr->v4.sin_port = htons(snum);
 382	if ((ret = sctp_get_port_local(sk, addr))) {
 383		return -EADDRINUSE;
 384	}
 385
 386	/* Refresh ephemeral port.  */
 387	if (!bp->port)
 388		bp->port = inet_sk(sk)->inet_num;
 389
 390	/* Add the address to the bind address list.
 391	 * Use GFP_ATOMIC since BHs will be disabled.
 392	 */
 393	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
 394
 395	/* Copy back into socket for getsockname() use. */
 396	if (!ret) {
 397		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
 398		af->to_sk_saddr(addr, sk);
 399	}
 400
 401	return ret;
 402}
 403
 404 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
 405 *
 406 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
 407 * at any one time.  If a sender, after sending an ASCONF chunk, decides
 408 * it needs to transfer another ASCONF Chunk, it MUST wait until the
 409 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
 410 * subsequent ASCONF. Note this restriction binds each side, so at any
 411 * time two ASCONF may be in-transit on any given association (one sent
 412 * from each endpoint).
 413 */
 414static int sctp_send_asconf(struct sctp_association *asoc,
 415			    struct sctp_chunk *chunk)
 416{
 417	struct net 	*net = sock_net(asoc->base.sk);
 418	int		retval = 0;
 419
 420	/* If there is an outstanding ASCONF chunk, queue it for later
 421	 * transmission.
 422	 */
 423	if (asoc->addip_last_asconf) {
 424		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
 425		goto out;
 426	}
 427
 428	/* Hold the chunk until an ASCONF_ACK is received. */
 429	sctp_chunk_hold(chunk);
 430	retval = sctp_primitive_ASCONF(net, asoc, chunk);
 431	if (retval)
 432		sctp_chunk_free(chunk);
 433	else
 434		asoc->addip_last_asconf = chunk;
 435
 436out:
 437	return retval;
 438}
 439
 440/* Add a list of addresses as bind addresses to local endpoint or
 441 * association.
 442 *
 443 * Basically run through each address specified in the addrs/addrcnt
 444 * array/length pair, determine if it is IPv6 or IPv4 and call
 445 * sctp_do_bind() on it.
 446 *
 447 * If any of them fails, then the operation will be reversed and the
 448 * ones that were added will be removed.
 449 *
 450 * Only sctp_setsockopt_bindx() is supposed to call this function.
 451 */
 452static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
 453{
 454	int cnt;
 455	int retval = 0;
 456	void *addr_buf;
 457	struct sockaddr *sa_addr;
 458	struct sctp_af *af;
 459
 460	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
 461		 addrs, addrcnt);
 462
 463	addr_buf = addrs;
 464	for (cnt = 0; cnt < addrcnt; cnt++) {
 465		/* The list may contain either IPv4 or IPv6 address;
 466		 * determine the address length for walking thru the list.
 467		 */
 468		sa_addr = addr_buf;
 469		af = sctp_get_af_specific(sa_addr->sa_family);
 470		if (!af) {
 471			retval = -EINVAL;
 472			goto err_bindx_add;
 473		}
 474
 475		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
 476				      af->sockaddr_len);
 477
 478		addr_buf += af->sockaddr_len;
 479
 480err_bindx_add:
 481		if (retval < 0) {
 482			/* Failed. Cleanup the ones that have been added */
 483			if (cnt > 0)
 484				sctp_bindx_rem(sk, addrs, cnt);
 485			return retval;
 486		}
 487	}
 488
 489	return retval;
 490}
 491
 492/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
 493 * associations that are part of the endpoint indicating that a list of local
 494 * addresses are added to the endpoint.
 495 *
 496 * If any of the addresses is already in the bind address list of the
 497 * association, we do not send the chunk for that association.  But it will not
 498 * affect other associations.
 499 *
 500 * Only sctp_setsockopt_bindx() is supposed to call this function.
 501 */
 502static int sctp_send_asconf_add_ip(struct sock		*sk,
 503				   struct sockaddr	*addrs,
 504				   int 			addrcnt)
 505{
 506	struct net *net = sock_net(sk);
 507	struct sctp_sock		*sp;
 508	struct sctp_endpoint		*ep;
 509	struct sctp_association		*asoc;
 510	struct sctp_bind_addr		*bp;
 511	struct sctp_chunk		*chunk;
 512	struct sctp_sockaddr_entry	*laddr;
 513	union sctp_addr			*addr;
 514	union sctp_addr			saveaddr;
 515	void				*addr_buf;
 516	struct sctp_af			*af;
 517	struct list_head		*p;
 518	int 				i;
 519	int 				retval = 0;
 520
 521	if (!net->sctp.addip_enable)
 522		return retval;
 523
 524	sp = sctp_sk(sk);
 525	ep = sp->ep;
 526
 527	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
 528		 __func__, sk, addrs, addrcnt);
 529
 530	list_for_each_entry(asoc, &ep->asocs, asocs) {
 
 531		if (!asoc->peer.asconf_capable)
 532			continue;
 533
 534		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
 535			continue;
 536
 537		if (!sctp_state(asoc, ESTABLISHED))
 538			continue;
 539
 540		/* Check if any address in the packed array of addresses is
 541		 * in the bind address list of the association. If so,
 542		 * do not send the asconf chunk to its peer, but continue with
 543		 * other associations.
 544		 */
 545		addr_buf = addrs;
 546		for (i = 0; i < addrcnt; i++) {
 547			addr = addr_buf;
 548			af = sctp_get_af_specific(addr->v4.sin_family);
 549			if (!af) {
 550				retval = -EINVAL;
 551				goto out;
 552			}
 553
 554			if (sctp_assoc_lookup_laddr(asoc, addr))
 555				break;
 556
 557			addr_buf += af->sockaddr_len;
 558		}
 559		if (i < addrcnt)
 560			continue;
 561
 562		/* Use the first valid address in bind addr list of
 563		 * association as Address Parameter of ASCONF CHUNK.
 564		 */
 565		bp = &asoc->base.bind_addr;
 566		p = bp->address_list.next;
 567		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
 568		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
 569						   addrcnt, SCTP_PARAM_ADD_IP);
 570		if (!chunk) {
 571			retval = -ENOMEM;
 572			goto out;
 573		}
 574
 575		/* Add the new addresses to the bind address list with
 576		 * use_as_src set to 0.
 577		 */
 578		addr_buf = addrs;
 579		for (i = 0; i < addrcnt; i++) {
 580			addr = addr_buf;
 581			af = sctp_get_af_specific(addr->v4.sin_family);
 582			memcpy(&saveaddr, addr, af->sockaddr_len);
 583			retval = sctp_add_bind_addr(bp, &saveaddr,
 584						    SCTP_ADDR_NEW, GFP_ATOMIC);
 585			addr_buf += af->sockaddr_len;
 586		}
 587		if (asoc->src_out_of_asoc_ok) {
 588			struct sctp_transport *trans;
 589
 590			list_for_each_entry(trans,
 591			    &asoc->peer.transport_addr_list, transports) {
 592				/* Clear the source and route cache */
 593				dst_release(trans->dst);
 594				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
 595				    2*asoc->pathmtu, 4380));
 596				trans->ssthresh = asoc->peer.i.a_rwnd;
 597				trans->rto = asoc->rto_initial;
 598				sctp_max_rto(asoc, trans);
 599				trans->rtt = trans->srtt = trans->rttvar = 0;
 600				sctp_transport_route(trans, NULL,
 601				    sctp_sk(asoc->base.sk));
 602			}
 603		}
 604		retval = sctp_send_asconf(asoc, chunk);
 605	}
 606
 607out:
 608	return retval;
 609}
 610
 611/* Remove a list of addresses from bind addresses list.  Do not remove the
 612 * last address.
 613 *
 614 * Basically run through each address specified in the addrs/addrcnt
 615 * array/length pair, determine if it is IPv6 or IPv4 and call
 616 * sctp_del_bind() on it.
 617 *
 618 * If any of them fails, then the operation will be reversed and the
 619 * ones that were removed will be added back.
 620 *
 621 * At least one address has to be left; if only one address is
 622 * available, the operation will return -EBUSY.
 623 *
 624 * Only sctp_setsockopt_bindx() is supposed to call this function.
 625 */
 626static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
 627{
 628	struct sctp_sock *sp = sctp_sk(sk);
 629	struct sctp_endpoint *ep = sp->ep;
 630	int cnt;
 631	struct sctp_bind_addr *bp = &ep->base.bind_addr;
 632	int retval = 0;
 633	void *addr_buf;
 634	union sctp_addr *sa_addr;
 635	struct sctp_af *af;
 636
 637	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
 638		 __func__, sk, addrs, addrcnt);
 639
 640	addr_buf = addrs;
 641	for (cnt = 0; cnt < addrcnt; cnt++) {
 642		/* If the bind address list is empty or if there is only one
 643		 * bind address, there is nothing more to be removed (we need
 644		 * at least one address here).
 645		 */
 646		if (list_empty(&bp->address_list) ||
 647		    (sctp_list_single_entry(&bp->address_list))) {
 648			retval = -EBUSY;
 649			goto err_bindx_rem;
 650		}
 651
 652		sa_addr = addr_buf;
 653		af = sctp_get_af_specific(sa_addr->sa.sa_family);
 654		if (!af) {
 655			retval = -EINVAL;
 656			goto err_bindx_rem;
 657		}
 658
 659		if (!af->addr_valid(sa_addr, sp, NULL)) {
 660			retval = -EADDRNOTAVAIL;
 661			goto err_bindx_rem;
 662		}
 663
 664		if (sa_addr->v4.sin_port &&
 665		    sa_addr->v4.sin_port != htons(bp->port)) {
 666			retval = -EINVAL;
 667			goto err_bindx_rem;
 668		}
 669
 670		if (!sa_addr->v4.sin_port)
 671			sa_addr->v4.sin_port = htons(bp->port);
 672
 673		/* FIXME - There is probably a need to check if sk->sk_saddr and
 674		 * sk->sk_rcv_addr are currently set to one of the addresses to
 675		 * be removed. This is something which needs to be looked into
 676		 * when we are fixing the outstanding issues with multi-homing
 677		 * socket routing and failover schemes. Refer to comments in
 678		 * sctp_do_bind(). -daisy
 679		 */
 680		retval = sctp_del_bind_addr(bp, sa_addr);
 681
 682		addr_buf += af->sockaddr_len;
 683err_bindx_rem:
 684		if (retval < 0) {
 685			/* Failed. Add the ones that has been removed back */
 686			if (cnt > 0)
 687				sctp_bindx_add(sk, addrs, cnt);
 688			return retval;
 689		}
 690	}
 691
 692	return retval;
 693}
 694
 695/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
 696 * the associations that are part of the endpoint indicating that a list of
 697 * local addresses are removed from the endpoint.
 698 *
 699 * If any of the addresses is already in the bind address list of the
 700 * association, we do not send the chunk for that association.  But it will not
 701 * affect other associations.
 702 *
 703 * Only sctp_setsockopt_bindx() is supposed to call this function.
 704 */
 705static int sctp_send_asconf_del_ip(struct sock		*sk,
 706				   struct sockaddr	*addrs,
 707				   int			addrcnt)
 708{
 709	struct net *net = sock_net(sk);
 710	struct sctp_sock	*sp;
 711	struct sctp_endpoint	*ep;
 712	struct sctp_association	*asoc;
 713	struct sctp_transport	*transport;
 714	struct sctp_bind_addr	*bp;
 715	struct sctp_chunk	*chunk;
 716	union sctp_addr		*laddr;
 717	void			*addr_buf;
 718	struct sctp_af		*af;
 719	struct sctp_sockaddr_entry *saddr;
 720	int 			i;
 721	int 			retval = 0;
 722	int			stored = 0;
 723
 724	chunk = NULL;
 725	if (!net->sctp.addip_enable)
 726		return retval;
 727
 728	sp = sctp_sk(sk);
 729	ep = sp->ep;
 730
 731	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
 732		 __func__, sk, addrs, addrcnt);
 733
 734	list_for_each_entry(asoc, &ep->asocs, asocs) {
 735
 736		if (!asoc->peer.asconf_capable)
 737			continue;
 738
 739		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
 740			continue;
 741
 742		if (!sctp_state(asoc, ESTABLISHED))
 743			continue;
 744
 745		/* Check if any address in the packed array of addresses is
 746		 * not present in the bind address list of the association.
 747		 * If so, do not send the asconf chunk to its peer, but
 748		 * continue with other associations.
 749		 */
 750		addr_buf = addrs;
 751		for (i = 0; i < addrcnt; i++) {
 752			laddr = addr_buf;
 753			af = sctp_get_af_specific(laddr->v4.sin_family);
 754			if (!af) {
 755				retval = -EINVAL;
 756				goto out;
 757			}
 758
 759			if (!sctp_assoc_lookup_laddr(asoc, laddr))
 760				break;
 761
 762			addr_buf += af->sockaddr_len;
 763		}
 764		if (i < addrcnt)
 765			continue;
 766
 767		/* Find one address in the association's bind address list
 768		 * that is not in the packed array of addresses. This is to
 769		 * make sure that we do not delete all the addresses in the
 770		 * association.
 771		 */
 772		bp = &asoc->base.bind_addr;
 773		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
 774					       addrcnt, sp);
 775		if ((laddr == NULL) && (addrcnt == 1)) {
 776			if (asoc->asconf_addr_del_pending)
 777				continue;
 778			asoc->asconf_addr_del_pending =
 779			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
 780			if (asoc->asconf_addr_del_pending == NULL) {
 781				retval = -ENOMEM;
 782				goto out;
 783			}
 784			asoc->asconf_addr_del_pending->sa.sa_family =
 785				    addrs->sa_family;
 786			asoc->asconf_addr_del_pending->v4.sin_port =
 787				    htons(bp->port);
 788			if (addrs->sa_family == AF_INET) {
 789				struct sockaddr_in *sin;
 790
 791				sin = (struct sockaddr_in *)addrs;
 792				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
 793			} else if (addrs->sa_family == AF_INET6) {
 794				struct sockaddr_in6 *sin6;
 795
 796				sin6 = (struct sockaddr_in6 *)addrs;
 797				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
 798			}
 799
 800			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
 801				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
 802				 asoc->asconf_addr_del_pending);
 803
 804			asoc->src_out_of_asoc_ok = 1;
 805			stored = 1;
 806			goto skip_mkasconf;
 807		}
 808
 809		if (laddr == NULL)
 810			return -EINVAL;
 811
 812		/* We do not need RCU protection throughout this loop
 813		 * because this is done under a socket lock from the
 814		 * setsockopt call.
 815		 */
 816		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
 817						   SCTP_PARAM_DEL_IP);
 818		if (!chunk) {
 819			retval = -ENOMEM;
 820			goto out;
 821		}
 822
 823skip_mkasconf:
 824		/* Reset use_as_src flag for the addresses in the bind address
 825		 * list that are to be deleted.
 826		 */
 827		addr_buf = addrs;
 828		for (i = 0; i < addrcnt; i++) {
 829			laddr = addr_buf;
 830			af = sctp_get_af_specific(laddr->v4.sin_family);
 831			list_for_each_entry(saddr, &bp->address_list, list) {
 832				if (sctp_cmp_addr_exact(&saddr->a, laddr))
 833					saddr->state = SCTP_ADDR_DEL;
 834			}
 835			addr_buf += af->sockaddr_len;
 836		}
 837
 838		/* Update the route and saddr entries for all the transports
 839		 * as some of the addresses in the bind address list are
 840		 * about to be deleted and cannot be used as source addresses.
 841		 */
 842		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
 843					transports) {
 844			dst_release(transport->dst);
 845			sctp_transport_route(transport, NULL,
 846					     sctp_sk(asoc->base.sk));
 847		}
 848
 849		if (stored)
 850			/* We don't need to transmit ASCONF */
 851			continue;
 852		retval = sctp_send_asconf(asoc, chunk);
 853	}
 854out:
 855	return retval;
 856}
 857
 858/* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
 859int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
 860{
 861	struct sock *sk = sctp_opt2sk(sp);
 862	union sctp_addr *addr;
 863	struct sctp_af *af;
 864
 865	/* It is safe to write port space in caller. */
 866	addr = &addrw->a;
 867	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
 868	af = sctp_get_af_specific(addr->sa.sa_family);
 869	if (!af)
 870		return -EINVAL;
 871	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
 872		return -EINVAL;
 873
 874	if (addrw->state == SCTP_ADDR_NEW)
 875		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
 876	else
 877		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
 878}
 879
 880/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
 881 *
 882 * API 8.1
 883 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
 884 *                int flags);
 885 *
 886 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
 887 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
 888 * or IPv6 addresses.
 889 *
 890 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
 891 * Section 3.1.2 for this usage.
 892 *
 893 * addrs is a pointer to an array of one or more socket addresses. Each
 894 * address is contained in its appropriate structure (i.e. struct
 895 * sockaddr_in or struct sockaddr_in6) the family of the address type
 896 * must be used to distinguish the address length (note that this
 897 * representation is termed a "packed array" of addresses). The caller
 898 * specifies the number of addresses in the array with addrcnt.
 899 *
 900 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
 901 * -1, and sets errno to the appropriate error code.
 902 *
 903 * For SCTP, the port given in each socket address must be the same, or
 904 * sctp_bindx() will fail, setting errno to EINVAL.
 905 *
 906 * The flags parameter is formed from the bitwise OR of zero or more of
 907 * the following currently defined flags:
 908 *
 909 * SCTP_BINDX_ADD_ADDR
 910 *
 911 * SCTP_BINDX_REM_ADDR
 912 *
 913 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
 914 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
 915 * addresses from the association. The two flags are mutually exclusive;
 916 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
 917 * not remove all addresses from an association; sctp_bindx() will
 918 * reject such an attempt with EINVAL.
 919 *
 920 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
 921 * additional addresses with an endpoint after calling bind().  Or use
 922 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
 923 * socket is associated with so that no new association accepted will be
 924 * associated with those addresses. If the endpoint supports dynamic
 925 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
 926 * endpoint to send the appropriate message to the peer to change the
 927 * peers address lists.
 928 *
 929 * Adding and removing addresses from a connected association is
 930 * optional functionality. Implementations that do not support this
 931 * functionality should return EOPNOTSUPP.
 932 *
 933 * Basically do nothing but copying the addresses from user to kernel
 934 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
 935 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
 936 * from userspace.
 937 *
 938 * We don't use copy_from_user() for optimization: we first do the
 939 * sanity checks (buffer size -fast- and access check-healthy
 940 * pointer); if all of those succeed, then we can alloc the memory
 941 * (expensive operation) needed to copy the data to kernel. Then we do
 942 * the copying without checking the user space area
 943 * (__copy_from_user()).
 944 *
 945 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
 946 * it.
 947 *
 948 * sk        The sk of the socket
 949 * addrs     The pointer to the addresses in user land
 950 * addrssize Size of the addrs buffer
 951 * op        Operation to perform (add or remove, see the flags of
 952 *           sctp_bindx)
 953 *
 954 * Returns 0 if ok, <0 errno code on error.
 955 */
 956static int sctp_setsockopt_bindx(struct sock *sk,
 957				 struct sockaddr __user *addrs,
 958				 int addrs_size, int op)
 959{
 960	struct sockaddr *kaddrs;
 961	int err;
 962	int addrcnt = 0;
 963	int walk_size = 0;
 964	struct sockaddr *sa_addr;
 965	void *addr_buf;
 966	struct sctp_af *af;
 967
 968	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
 969		 __func__, sk, addrs, addrs_size, op);
 970
 971	if (unlikely(addrs_size <= 0))
 972		return -EINVAL;
 973
 974	/* Check the user passed a healthy pointer.  */
 975	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
 976		return -EFAULT;
 977
 978	/* Alloc space for the address array in kernel memory.  */
 979	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
 980	if (unlikely(!kaddrs))
 981		return -ENOMEM;
 982
 983	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
 984		kfree(kaddrs);
 985		return -EFAULT;
 986	}
 987
 988	/* Walk through the addrs buffer and count the number of addresses. */
 989	addr_buf = kaddrs;
 990	while (walk_size < addrs_size) {
 991		if (walk_size + sizeof(sa_family_t) > addrs_size) {
 992			kfree(kaddrs);
 993			return -EINVAL;
 994		}
 995
 996		sa_addr = addr_buf;
 997		af = sctp_get_af_specific(sa_addr->sa_family);
 998
 999		/* If the address family is not supported or if this address
1000		 * causes the address buffer to overflow return EINVAL.
1001		 */
1002		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003			kfree(kaddrs);
1004			return -EINVAL;
1005		}
1006		addrcnt++;
1007		addr_buf += af->sockaddr_len;
1008		walk_size += af->sockaddr_len;
1009	}
1010
1011	/* Do the work. */
1012	switch (op) {
1013	case SCTP_BINDX_ADD_ADDR:
1014		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1015		if (err)
1016			goto out;
1017		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1018		break;
1019
1020	case SCTP_BINDX_REM_ADDR:
1021		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1022		if (err)
1023			goto out;
1024		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1025		break;
1026
1027	default:
1028		err = -EINVAL;
1029		break;
1030	}
1031
1032out:
1033	kfree(kaddrs);
1034
1035	return err;
1036}
1037
1038/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1039 *
1040 * Common routine for handling connect() and sctp_connectx().
1041 * Connect will come in with just a single address.
1042 */
1043static int __sctp_connect(struct sock *sk,
1044			  struct sockaddr *kaddrs,
1045			  int addrs_size,
1046			  sctp_assoc_t *assoc_id)
1047{
1048	struct net *net = sock_net(sk);
1049	struct sctp_sock *sp;
1050	struct sctp_endpoint *ep;
1051	struct sctp_association *asoc = NULL;
1052	struct sctp_association *asoc2;
1053	struct sctp_transport *transport;
1054	union sctp_addr to;
1055	struct sctp_af *af;
1056	sctp_scope_t scope;
1057	long timeo;
1058	int err = 0;
1059	int addrcnt = 0;
1060	int walk_size = 0;
1061	union sctp_addr *sa_addr = NULL;
1062	void *addr_buf;
1063	unsigned short port;
1064	unsigned int f_flags = 0;
1065
1066	sp = sctp_sk(sk);
1067	ep = sp->ep;
1068
1069	/* connect() cannot be done on a socket that is already in ESTABLISHED
1070	 * state - UDP-style peeled off socket or a TCP-style socket that
1071	 * is already connected.
1072	 * It cannot be done even on a TCP-style listening socket.
1073	 */
1074	if (sctp_sstate(sk, ESTABLISHED) ||
1075	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1076		err = -EISCONN;
1077		goto out_free;
1078	}
1079
1080	/* Walk through the addrs buffer and count the number of addresses. */
1081	addr_buf = kaddrs;
1082	while (walk_size < addrs_size) {
1083		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1084			err = -EINVAL;
1085			goto out_free;
1086		}
1087
1088		sa_addr = addr_buf;
1089		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1090
1091		/* If the address family is not supported or if this address
1092		 * causes the address buffer to overflow return EINVAL.
1093		 */
1094		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1095			err = -EINVAL;
1096			goto out_free;
1097		}
1098
1099		port = ntohs(sa_addr->v4.sin_port);
1100
1101		/* Save current address so we can work with it */
1102		memcpy(&to, sa_addr, af->sockaddr_len);
1103
1104		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1105		if (err)
1106			goto out_free;
1107
1108		/* Make sure the destination port is correctly set
1109		 * in all addresses.
1110		 */
1111		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1112			err = -EINVAL;
1113			goto out_free;
1114		}
1115
1116		/* Check if there already is a matching association on the
1117		 * endpoint (other than the one created here).
1118		 */
1119		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1120		if (asoc2 && asoc2 != asoc) {
1121			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1122				err = -EISCONN;
1123			else
1124				err = -EALREADY;
1125			goto out_free;
1126		}
1127
1128		/* If we could not find a matching association on the endpoint,
1129		 * make sure that there is no peeled-off association matching
1130		 * the peer address even on another socket.
1131		 */
1132		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1133			err = -EADDRNOTAVAIL;
1134			goto out_free;
1135		}
1136
1137		if (!asoc) {
1138			/* If a bind() or sctp_bindx() is not called prior to
1139			 * an sctp_connectx() call, the system picks an
1140			 * ephemeral port and will choose an address set
1141			 * equivalent to binding with a wildcard address.
1142			 */
1143			if (!ep->base.bind_addr.port) {
1144				if (sctp_autobind(sk)) {
1145					err = -EAGAIN;
1146					goto out_free;
1147				}
1148			} else {
1149				/*
1150				 * If an unprivileged user inherits a 1-many
1151				 * style socket with open associations on a
1152				 * privileged port, it MAY be permitted to
1153				 * accept new associations, but it SHOULD NOT
1154				 * be permitted to open new associations.
1155				 */
1156				if (ep->base.bind_addr.port < PROT_SOCK &&
1157				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1158					err = -EACCES;
1159					goto out_free;
1160				}
1161			}
1162
1163			scope = sctp_scope(&to);
1164			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1165			if (!asoc) {
1166				err = -ENOMEM;
1167				goto out_free;
1168			}
1169
1170			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1171							      GFP_KERNEL);
1172			if (err < 0) {
1173				goto out_free;
1174			}
1175
1176		}
1177
1178		/* Prime the peer's transport structures.  */
1179		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1180						SCTP_UNKNOWN);
1181		if (!transport) {
1182			err = -ENOMEM;
1183			goto out_free;
1184		}
1185
1186		addrcnt++;
1187		addr_buf += af->sockaddr_len;
1188		walk_size += af->sockaddr_len;
1189	}
1190
1191	/* In case the user of sctp_connectx() wants an association
1192	 * id back, assign one now.
1193	 */
1194	if (assoc_id) {
1195		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1196		if (err < 0)
1197			goto out_free;
1198	}
1199
1200	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1201	if (err < 0) {
1202		goto out_free;
1203	}
1204
1205	/* Initialize sk's dport and daddr for getpeername() */
1206	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1207	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1208	af->to_sk_daddr(sa_addr, sk);
1209	sk->sk_err = 0;
1210
1211	/* in-kernel sockets don't generally have a file allocated to them
1212	 * if all they do is call sock_create_kern().
1213	 */
1214	if (sk->sk_socket->file)
1215		f_flags = sk->sk_socket->file->f_flags;
1216
1217	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1218
1219	err = sctp_wait_for_connect(asoc, &timeo);
1220	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1221		*assoc_id = asoc->assoc_id;
1222
1223	/* Don't free association on exit. */
1224	asoc = NULL;
1225
1226out_free:
1227	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1228		 __func__, asoc, kaddrs, err);
1229
1230	if (asoc) {
1231		/* sctp_primitive_ASSOCIATE may have added this association
1232		 * To the hash table, try to unhash it, just in case, its a noop
1233		 * if it wasn't hashed so we're safe
1234		 */
1235		sctp_unhash_established(asoc);
1236		sctp_association_free(asoc);
1237	}
1238	return err;
1239}
1240
1241/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1242 *
1243 * API 8.9
1244 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1245 * 			sctp_assoc_t *asoc);
1246 *
1247 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1248 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1249 * or IPv6 addresses.
1250 *
1251 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1252 * Section 3.1.2 for this usage.
1253 *
1254 * addrs is a pointer to an array of one or more socket addresses. Each
1255 * address is contained in its appropriate structure (i.e. struct
1256 * sockaddr_in or struct sockaddr_in6) the family of the address type
1257 * must be used to distengish the address length (note that this
1258 * representation is termed a "packed array" of addresses). The caller
1259 * specifies the number of addresses in the array with addrcnt.
1260 *
1261 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1262 * the association id of the new association.  On failure, sctp_connectx()
1263 * returns -1, and sets errno to the appropriate error code.  The assoc_id
1264 * is not touched by the kernel.
1265 *
1266 * For SCTP, the port given in each socket address must be the same, or
1267 * sctp_connectx() will fail, setting errno to EINVAL.
1268 *
1269 * An application can use sctp_connectx to initiate an association with
1270 * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1271 * allows a caller to specify multiple addresses at which a peer can be
1272 * reached.  The way the SCTP stack uses the list of addresses to set up
1273 * the association is implementation dependent.  This function only
1274 * specifies that the stack will try to make use of all the addresses in
1275 * the list when needed.
1276 *
1277 * Note that the list of addresses passed in is only used for setting up
1278 * the association.  It does not necessarily equal the set of addresses
1279 * the peer uses for the resulting association.  If the caller wants to
1280 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1281 * retrieve them after the association has been set up.
1282 *
1283 * Basically do nothing but copying the addresses from user to kernel
1284 * land and invoking either sctp_connectx(). This is used for tunneling
1285 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1286 *
1287 * We don't use copy_from_user() for optimization: we first do the
1288 * sanity checks (buffer size -fast- and access check-healthy
1289 * pointer); if all of those succeed, then we can alloc the memory
1290 * (expensive operation) needed to copy the data to kernel. Then we do
1291 * the copying without checking the user space area
1292 * (__copy_from_user()).
1293 *
1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295 * it.
1296 *
1297 * sk        The sk of the socket
1298 * addrs     The pointer to the addresses in user land
1299 * addrssize Size of the addrs buffer
1300 *
1301 * Returns >=0 if ok, <0 errno code on error.
1302 */
1303static int __sctp_setsockopt_connectx(struct sock *sk,
1304				      struct sockaddr __user *addrs,
1305				      int addrs_size,
1306				      sctp_assoc_t *assoc_id)
1307{
1308	int err = 0;
1309	struct sockaddr *kaddrs;
1310
1311	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1312		 __func__, sk, addrs, addrs_size);
1313
1314	if (unlikely(addrs_size <= 0))
1315		return -EINVAL;
1316
1317	/* Check the user passed a healthy pointer.  */
1318	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1319		return -EFAULT;
1320
1321	/* Alloc space for the address array in kernel memory.  */
1322	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1323	if (unlikely(!kaddrs))
1324		return -ENOMEM;
1325
1326	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327		err = -EFAULT;
1328	} else {
1329		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330	}
1331
1332	kfree(kaddrs);
1333
1334	return err;
1335}
1336
1337/*
1338 * This is an older interface.  It's kept for backward compatibility
1339 * to the option that doesn't provide association id.
1340 */
1341static int sctp_setsockopt_connectx_old(struct sock *sk,
1342					struct sockaddr __user *addrs,
1343					int addrs_size)
1344{
1345	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346}
1347
1348/*
1349 * New interface for the API.  The since the API is done with a socket
1350 * option, to make it simple we feed back the association id is as a return
1351 * indication to the call.  Error is always negative and association id is
1352 * always positive.
1353 */
1354static int sctp_setsockopt_connectx(struct sock *sk,
1355				    struct sockaddr __user *addrs,
1356				    int addrs_size)
1357{
1358	sctp_assoc_t assoc_id = 0;
1359	int err = 0;
1360
1361	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362
1363	if (err)
1364		return err;
1365	else
1366		return assoc_id;
1367}
1368
1369/*
1370 * New (hopefully final) interface for the API.
1371 * We use the sctp_getaddrs_old structure so that use-space library
1372 * can avoid any unnecessary allocations. The only different part
1373 * is that we store the actual length of the address buffer into the
1374 * addrs_num structure member. That way we can re-use the existing
1375 * code.
1376 */
1377#ifdef CONFIG_COMPAT
1378struct compat_sctp_getaddrs_old {
1379	sctp_assoc_t	assoc_id;
1380	s32		addr_num;
1381	compat_uptr_t	addrs;		/* struct sockaddr * */
1382};
1383#endif
1384
1385static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386				     char __user *optval,
1387				     int __user *optlen)
1388{
1389	struct sctp_getaddrs_old param;
1390	sctp_assoc_t assoc_id = 0;
1391	int err = 0;
1392
1393#ifdef CONFIG_COMPAT
1394	if (is_compat_task()) {
1395		struct compat_sctp_getaddrs_old param32;
1396
1397		if (len < sizeof(param32))
1398			return -EINVAL;
1399		if (copy_from_user(&param32, optval, sizeof(param32)))
1400			return -EFAULT;
1401
1402		param.assoc_id = param32.assoc_id;
1403		param.addr_num = param32.addr_num;
1404		param.addrs = compat_ptr(param32.addrs);
1405	} else
1406#endif
1407	{
1408		if (len < sizeof(param))
1409			return -EINVAL;
1410		if (copy_from_user(&param, optval, sizeof(param)))
1411			return -EFAULT;
1412	}
1413
1414	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415					 param.addrs, param.addr_num,
1416					 &assoc_id);
1417	if (err == 0 || err == -EINPROGRESS) {
1418		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419			return -EFAULT;
1420		if (put_user(sizeof(assoc_id), optlen))
1421			return -EFAULT;
1422	}
1423
1424	return err;
1425}
1426
1427/* API 3.1.4 close() - UDP Style Syntax
1428 * Applications use close() to perform graceful shutdown (as described in
1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430 * by a UDP-style socket.
1431 *
1432 * The syntax is
1433 *
1434 *   ret = close(int sd);
1435 *
1436 *   sd      - the socket descriptor of the associations to be closed.
1437 *
1438 * To gracefully shutdown a specific association represented by the
1439 * UDP-style socket, an application should use the sendmsg() call,
1440 * passing no user data, but including the appropriate flag in the
1441 * ancillary data (see Section xxxx).
1442 *
1443 * If sd in the close() call is a branched-off socket representing only
1444 * one association, the shutdown is performed on that association only.
1445 *
1446 * 4.1.6 close() - TCP Style Syntax
1447 *
1448 * Applications use close() to gracefully close down an association.
1449 *
1450 * The syntax is:
1451 *
1452 *    int close(int sd);
1453 *
1454 *      sd      - the socket descriptor of the association to be closed.
1455 *
1456 * After an application calls close() on a socket descriptor, no further
1457 * socket operations will succeed on that descriptor.
1458 *
1459 * API 7.1.4 SO_LINGER
1460 *
1461 * An application using the TCP-style socket can use this option to
1462 * perform the SCTP ABORT primitive.  The linger option structure is:
1463 *
1464 *  struct  linger {
1465 *     int     l_onoff;                // option on/off
1466 *     int     l_linger;               // linger time
1467 * };
1468 *
1469 * To enable the option, set l_onoff to 1.  If the l_linger value is set
1470 * to 0, calling close() is the same as the ABORT primitive.  If the
1471 * value is set to a negative value, the setsockopt() call will return
1472 * an error.  If the value is set to a positive value linger_time, the
1473 * close() can be blocked for at most linger_time ms.  If the graceful
1474 * shutdown phase does not finish during this period, close() will
1475 * return but the graceful shutdown phase continues in the system.
1476 */
1477static void sctp_close(struct sock *sk, long timeout)
1478{
1479	struct net *net = sock_net(sk);
1480	struct sctp_endpoint *ep;
1481	struct sctp_association *asoc;
1482	struct list_head *pos, *temp;
1483	unsigned int data_was_unread;
1484
1485	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486
1487	lock_sock(sk);
1488	sk->sk_shutdown = SHUTDOWN_MASK;
1489	sk->sk_state = SCTP_SS_CLOSING;
1490
1491	ep = sctp_sk(sk)->ep;
1492
1493	/* Clean up any skbs sitting on the receive queue.  */
1494	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496
1497	/* Walk all associations on an endpoint.  */
1498	list_for_each_safe(pos, temp, &ep->asocs) {
1499		asoc = list_entry(pos, struct sctp_association, asocs);
1500
1501		if (sctp_style(sk, TCP)) {
1502			/* A closed association can still be in the list if
1503			 * it belongs to a TCP-style listening socket that is
1504			 * not yet accepted. If so, free it. If not, send an
1505			 * ABORT or SHUTDOWN based on the linger options.
1506			 */
1507			if (sctp_state(asoc, CLOSED)) {
1508				sctp_unhash_established(asoc);
1509				sctp_association_free(asoc);
1510				continue;
1511			}
1512		}
1513
1514		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1515		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1516		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1517			struct sctp_chunk *chunk;
1518
1519			chunk = sctp_make_abort_user(asoc, NULL, 0);
1520			if (chunk)
1521				sctp_primitive_ABORT(net, asoc, chunk);
1522		} else
1523			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1524	}
1525
1526	/* On a TCP-style socket, block for at most linger_time if set. */
1527	if (sctp_style(sk, TCP) && timeout)
1528		sctp_wait_for_close(sk, timeout);
1529
1530	/* This will run the backlog queue.  */
1531	release_sock(sk);
1532
1533	/* Supposedly, no process has access to the socket, but
1534	 * the net layers still may.
1535	 */
1536	local_bh_disable();
1537	bh_lock_sock(sk);
1538
1539	/* Hold the sock, since sk_common_release() will put sock_put()
1540	 * and we have just a little more cleanup.
1541	 */
1542	sock_hold(sk);
1543	sk_common_release(sk);
1544
1545	bh_unlock_sock(sk);
1546	local_bh_enable();
1547
1548	sock_put(sk);
1549
1550	SCTP_DBG_OBJCNT_DEC(sock);
1551}
1552
1553/* Handle EPIPE error. */
1554static int sctp_error(struct sock *sk, int flags, int err)
1555{
1556	if (err == -EPIPE)
1557		err = sock_error(sk) ? : -EPIPE;
1558	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559		send_sig(SIGPIPE, current, 0);
1560	return err;
1561}
1562
1563/* API 3.1.3 sendmsg() - UDP Style Syntax
1564 *
1565 * An application uses sendmsg() and recvmsg() calls to transmit data to
1566 * and receive data from its peer.
1567 *
1568 *  ssize_t sendmsg(int socket, const struct msghdr *message,
1569 *                  int flags);
1570 *
1571 *  socket  - the socket descriptor of the endpoint.
1572 *  message - pointer to the msghdr structure which contains a single
1573 *            user message and possibly some ancillary data.
1574 *
1575 *            See Section 5 for complete description of the data
1576 *            structures.
1577 *
1578 *  flags   - flags sent or received with the user message, see Section
1579 *            5 for complete description of the flags.
1580 *
1581 * Note:  This function could use a rewrite especially when explicit
1582 * connect support comes in.
1583 */
1584/* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1585
1586static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587
1588static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1589			struct msghdr *msg, size_t msg_len)
1590{
1591	struct net *net = sock_net(sk);
1592	struct sctp_sock *sp;
1593	struct sctp_endpoint *ep;
1594	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1595	struct sctp_transport *transport, *chunk_tp;
1596	struct sctp_chunk *chunk;
1597	union sctp_addr to;
1598	struct sockaddr *msg_name = NULL;
1599	struct sctp_sndrcvinfo default_sinfo;
1600	struct sctp_sndrcvinfo *sinfo;
1601	struct sctp_initmsg *sinit;
1602	sctp_assoc_t associd = 0;
1603	sctp_cmsgs_t cmsgs = { NULL };
1604	int err;
1605	sctp_scope_t scope;
1606	long timeo;
1607	__u16 sinfo_flags = 0;
1608	struct sctp_datamsg *datamsg;
1609	int msg_flags = msg->msg_flags;
1610
 
 
 
1611	err = 0;
1612	sp = sctp_sk(sk);
1613	ep = sp->ep;
1614
1615	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616		 msg, msg_len, ep);
1617
1618	/* We cannot send a message over a TCP-style listening socket. */
1619	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620		err = -EPIPE;
1621		goto out_nounlock;
1622	}
1623
1624	/* Parse out the SCTP CMSGs.  */
1625	err = sctp_msghdr_parse(msg, &cmsgs);
 
1626	if (err) {
1627		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628		goto out_nounlock;
1629	}
1630
1631	/* Fetch the destination address for this packet.  This
1632	 * address only selects the association--it is not necessarily
1633	 * the address we will send to.
1634	 * For a peeled-off socket, msg_name is ignored.
1635	 */
1636	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637		int msg_namelen = msg->msg_namelen;
1638
1639		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640				       msg_namelen);
1641		if (err)
1642			return err;
1643
1644		if (msg_namelen > sizeof(to))
1645			msg_namelen = sizeof(to);
1646		memcpy(&to, msg->msg_name, msg_namelen);
1647		msg_name = msg->msg_name;
1648	}
1649
1650	sinfo = cmsgs.info;
1651	sinit = cmsgs.init;
1652
1653	/* Did the user specify SNDRCVINFO?  */
1654	if (sinfo) {
1655		sinfo_flags = sinfo->sinfo_flags;
1656		associd = sinfo->sinfo_assoc_id;
1657	}
1658
1659	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1660		 msg_len, sinfo_flags);
1661
1662	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1663	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1664		err = -EINVAL;
1665		goto out_nounlock;
1666	}
1667
1668	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1669	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1670	 * If SCTP_ABORT is set, the message length could be non zero with
1671	 * the msg_iov set to the user abort reason.
1672	 */
1673	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1674	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1675		err = -EINVAL;
1676		goto out_nounlock;
1677	}
1678
1679	/* If SCTP_ADDR_OVER is set, there must be an address
1680	 * specified in msg_name.
1681	 */
1682	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1683		err = -EINVAL;
1684		goto out_nounlock;
1685	}
1686
1687	transport = NULL;
1688
1689	pr_debug("%s: about to look up association\n", __func__);
1690
1691	lock_sock(sk);
1692
1693	/* If a msg_name has been specified, assume this is to be used.  */
1694	if (msg_name) {
1695		/* Look for a matching association on the endpoint. */
1696		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1697		if (!asoc) {
1698			/* If we could not find a matching association on the
1699			 * endpoint, make sure that it is not a TCP-style
1700			 * socket that already has an association or there is
1701			 * no peeled-off association on another socket.
1702			 */
1703			if ((sctp_style(sk, TCP) &&
1704			     sctp_sstate(sk, ESTABLISHED)) ||
1705			    sctp_endpoint_is_peeled_off(ep, &to)) {
1706				err = -EADDRNOTAVAIL;
1707				goto out_unlock;
1708			}
1709		}
1710	} else {
1711		asoc = sctp_id2assoc(sk, associd);
1712		if (!asoc) {
1713			err = -EPIPE;
1714			goto out_unlock;
1715		}
1716	}
1717
1718	if (asoc) {
1719		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1720
1721		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1722		 * socket that has an association in CLOSED state. This can
1723		 * happen when an accepted socket has an association that is
1724		 * already CLOSED.
1725		 */
1726		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1727			err = -EPIPE;
1728			goto out_unlock;
1729		}
1730
1731		if (sinfo_flags & SCTP_EOF) {
1732			pr_debug("%s: shutting down association:%p\n",
1733				 __func__, asoc);
1734
1735			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1736			err = 0;
1737			goto out_unlock;
1738		}
1739		if (sinfo_flags & SCTP_ABORT) {
1740
1741			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1742			if (!chunk) {
1743				err = -ENOMEM;
1744				goto out_unlock;
1745			}
1746
1747			pr_debug("%s: aborting association:%p\n",
1748				 __func__, asoc);
1749
1750			sctp_primitive_ABORT(net, asoc, chunk);
1751			err = 0;
1752			goto out_unlock;
1753		}
1754	}
1755
1756	/* Do we need to create the association?  */
1757	if (!asoc) {
1758		pr_debug("%s: there is no association yet\n", __func__);
1759
1760		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1761			err = -EINVAL;
1762			goto out_unlock;
1763		}
1764
1765		/* Check for invalid stream against the stream counts,
1766		 * either the default or the user specified stream counts.
1767		 */
1768		if (sinfo) {
1769			if (!sinit || !sinit->sinit_num_ostreams) {
1770				/* Check against the defaults. */
1771				if (sinfo->sinfo_stream >=
1772				    sp->initmsg.sinit_num_ostreams) {
1773					err = -EINVAL;
1774					goto out_unlock;
1775				}
1776			} else {
1777				/* Check against the requested.  */
1778				if (sinfo->sinfo_stream >=
1779				    sinit->sinit_num_ostreams) {
1780					err = -EINVAL;
1781					goto out_unlock;
1782				}
1783			}
1784		}
1785
1786		/*
1787		 * API 3.1.2 bind() - UDP Style Syntax
1788		 * If a bind() or sctp_bindx() is not called prior to a
1789		 * sendmsg() call that initiates a new association, the
1790		 * system picks an ephemeral port and will choose an address
1791		 * set equivalent to binding with a wildcard address.
1792		 */
1793		if (!ep->base.bind_addr.port) {
1794			if (sctp_autobind(sk)) {
1795				err = -EAGAIN;
1796				goto out_unlock;
1797			}
1798		} else {
1799			/*
1800			 * If an unprivileged user inherits a one-to-many
1801			 * style socket with open associations on a privileged
1802			 * port, it MAY be permitted to accept new associations,
1803			 * but it SHOULD NOT be permitted to open new
1804			 * associations.
1805			 */
1806			if (ep->base.bind_addr.port < PROT_SOCK &&
1807			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1808				err = -EACCES;
1809				goto out_unlock;
1810			}
1811		}
1812
1813		scope = sctp_scope(&to);
1814		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1815		if (!new_asoc) {
1816			err = -ENOMEM;
1817			goto out_unlock;
1818		}
1819		asoc = new_asoc;
1820		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1821		if (err < 0) {
1822			err = -ENOMEM;
1823			goto out_free;
1824		}
1825
1826		/* If the SCTP_INIT ancillary data is specified, set all
1827		 * the association init values accordingly.
1828		 */
1829		if (sinit) {
1830			if (sinit->sinit_num_ostreams) {
1831				asoc->c.sinit_num_ostreams =
1832					sinit->sinit_num_ostreams;
1833			}
1834			if (sinit->sinit_max_instreams) {
1835				asoc->c.sinit_max_instreams =
1836					sinit->sinit_max_instreams;
1837			}
1838			if (sinit->sinit_max_attempts) {
1839				asoc->max_init_attempts
1840					= sinit->sinit_max_attempts;
1841			}
1842			if (sinit->sinit_max_init_timeo) {
1843				asoc->max_init_timeo =
1844				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1845			}
1846		}
1847
1848		/* Prime the peer's transport structures.  */
1849		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1850		if (!transport) {
1851			err = -ENOMEM;
1852			goto out_free;
1853		}
1854	}
1855
1856	/* ASSERT: we have a valid association at this point.  */
1857	pr_debug("%s: we have a valid association\n", __func__);
1858
1859	if (!sinfo) {
1860		/* If the user didn't specify SNDRCVINFO, make up one with
1861		 * some defaults.
1862		 */
1863		memset(&default_sinfo, 0, sizeof(default_sinfo));
1864		default_sinfo.sinfo_stream = asoc->default_stream;
1865		default_sinfo.sinfo_flags = asoc->default_flags;
1866		default_sinfo.sinfo_ppid = asoc->default_ppid;
1867		default_sinfo.sinfo_context = asoc->default_context;
1868		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1869		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1870		sinfo = &default_sinfo;
1871	}
1872
1873	/* API 7.1.7, the sndbuf size per association bounds the
1874	 * maximum size of data that can be sent in a single send call.
1875	 */
1876	if (msg_len > sk->sk_sndbuf) {
1877		err = -EMSGSIZE;
1878		goto out_free;
1879	}
1880
1881	if (asoc->pmtu_pending)
1882		sctp_assoc_pending_pmtu(sk, asoc);
1883
1884	/* If fragmentation is disabled and the message length exceeds the
1885	 * association fragmentation point, return EMSGSIZE.  The I-D
1886	 * does not specify what this error is, but this looks like
1887	 * a great fit.
1888	 */
1889	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1890		err = -EMSGSIZE;
1891		goto out_free;
1892	}
1893
1894	/* Check for invalid stream. */
1895	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1896		err = -EINVAL;
1897		goto out_free;
1898	}
1899
1900	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1901	if (!sctp_wspace(asoc)) {
1902		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1903		if (err)
1904			goto out_free;
1905	}
1906
1907	/* If an address is passed with the sendto/sendmsg call, it is used
1908	 * to override the primary destination address in the TCP model, or
1909	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1910	 */
1911	if ((sctp_style(sk, TCP) && msg_name) ||
1912	    (sinfo_flags & SCTP_ADDR_OVER)) {
1913		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1914		if (!chunk_tp) {
1915			err = -EINVAL;
1916			goto out_free;
1917		}
1918	} else
1919		chunk_tp = NULL;
1920
1921	/* Auto-connect, if we aren't connected already. */
1922	if (sctp_state(asoc, CLOSED)) {
1923		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924		if (err < 0)
1925			goto out_free;
1926
1927		pr_debug("%s: we associated primitively\n", __func__);
1928	}
1929
1930	/* Break the message into multiple chunks of maximum size. */
1931	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1932	if (IS_ERR(datamsg)) {
1933		err = PTR_ERR(datamsg);
1934		goto out_free;
1935	}
1936
1937	/* Now send the (possibly) fragmented message. */
1938	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1939		sctp_chunk_hold(chunk);
1940
1941		/* Do accounting for the write space.  */
1942		sctp_set_owner_w(chunk);
1943
1944		chunk->transport = chunk_tp;
1945	}
1946
1947	/* Send it to the lower layers.  Note:  all chunks
1948	 * must either fail or succeed.   The lower layer
1949	 * works that way today.  Keep it that way or this
1950	 * breaks.
1951	 */
1952	err = sctp_primitive_SEND(net, asoc, datamsg);
1953	/* Did the lower layer accept the chunk? */
1954	if (err) {
1955		sctp_datamsg_free(datamsg);
1956		goto out_free;
1957	}
1958
1959	pr_debug("%s: we sent primitively\n", __func__);
1960
1961	sctp_datamsg_put(datamsg);
1962	err = msg_len;
 
 
1963
1964	/* If we are already past ASSOCIATE, the lower
1965	 * layers are responsible for association cleanup.
1966	 */
1967	goto out_unlock;
1968
1969out_free:
1970	if (new_asoc) {
1971		sctp_unhash_established(asoc);
1972		sctp_association_free(asoc);
1973	}
1974out_unlock:
1975	release_sock(sk);
1976
1977out_nounlock:
1978	return sctp_error(sk, msg_flags, err);
1979
1980#if 0
1981do_sock_err:
1982	if (msg_len)
1983		err = msg_len;
1984	else
1985		err = sock_error(sk);
1986	goto out;
1987
1988do_interrupted:
1989	if (msg_len)
1990		err = msg_len;
1991	goto out;
1992#endif /* 0 */
1993}
1994
1995/* This is an extended version of skb_pull() that removes the data from the
1996 * start of a skb even when data is spread across the list of skb's in the
1997 * frag_list. len specifies the total amount of data that needs to be removed.
1998 * when 'len' bytes could be removed from the skb, it returns 0.
1999 * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2000 * could not be removed.
2001 */
2002static int sctp_skb_pull(struct sk_buff *skb, int len)
2003{
2004	struct sk_buff *list;
2005	int skb_len = skb_headlen(skb);
2006	int rlen;
2007
2008	if (len <= skb_len) {
2009		__skb_pull(skb, len);
2010		return 0;
2011	}
2012	len -= skb_len;
2013	__skb_pull(skb, skb_len);
2014
2015	skb_walk_frags(skb, list) {
2016		rlen = sctp_skb_pull(list, len);
2017		skb->len -= (len-rlen);
2018		skb->data_len -= (len-rlen);
2019
2020		if (!rlen)
2021			return 0;
2022
2023		len = rlen;
2024	}
2025
2026	return len;
2027}
2028
2029/* API 3.1.3  recvmsg() - UDP Style Syntax
2030 *
2031 *  ssize_t recvmsg(int socket, struct msghdr *message,
2032 *                    int flags);
2033 *
2034 *  socket  - the socket descriptor of the endpoint.
2035 *  message - pointer to the msghdr structure which contains a single
2036 *            user message and possibly some ancillary data.
2037 *
2038 *            See Section 5 for complete description of the data
2039 *            structures.
2040 *
2041 *  flags   - flags sent or received with the user message, see Section
2042 *            5 for complete description of the flags.
2043 */
2044static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2045
2046static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2047			struct msghdr *msg, size_t len, int noblock,
2048			int flags, int *addr_len)
2049{
2050	struct sctp_ulpevent *event = NULL;
2051	struct sctp_sock *sp = sctp_sk(sk);
2052	struct sk_buff *skb;
2053	int copied;
2054	int err = 0;
2055	int skb_len;
2056
2057	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2058		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2059		 addr_len);
 
2060
2061	lock_sock(sk);
2062
2063	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2064		err = -ENOTCONN;
2065		goto out;
2066	}
2067
2068	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2069	if (!skb)
2070		goto out;
2071
2072	/* Get the total length of the skb including any skb's in the
2073	 * frag_list.
2074	 */
2075	skb_len = skb->len;
2076
2077	copied = skb_len;
2078	if (copied > len)
2079		copied = len;
2080
2081	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2082
2083	event = sctp_skb2event(skb);
2084
2085	if (err)
2086		goto out_free;
2087
2088	sock_recv_ts_and_drops(msg, sk, skb);
2089	if (sctp_ulpevent_is_notification(event)) {
2090		msg->msg_flags |= MSG_NOTIFICATION;
2091		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2092	} else {
2093		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2094	}
2095
2096	/* Check if we allow SCTP_SNDRCVINFO. */
2097	if (sp->subscribe.sctp_data_io_event)
2098		sctp_ulpevent_read_sndrcvinfo(event, msg);
2099#if 0
2100	/* FIXME: we should be calling IP/IPv6 layers.  */
2101	if (sk->sk_protinfo.af_inet.cmsg_flags)
2102		ip_cmsg_recv(msg, skb);
2103#endif
2104
2105	err = copied;
2106
2107	/* If skb's length exceeds the user's buffer, update the skb and
2108	 * push it back to the receive_queue so that the next call to
2109	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2110	 */
2111	if (skb_len > copied) {
2112		msg->msg_flags &= ~MSG_EOR;
2113		if (flags & MSG_PEEK)
2114			goto out_free;
2115		sctp_skb_pull(skb, copied);
2116		skb_queue_head(&sk->sk_receive_queue, skb);
2117
2118		/* When only partial message is copied to the user, increase
2119		 * rwnd by that amount. If all the data in the skb is read,
2120		 * rwnd is updated when the event is freed.
2121		 */
2122		if (!sctp_ulpevent_is_notification(event))
2123			sctp_assoc_rwnd_increase(event->asoc, copied);
2124		goto out;
2125	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2126		   (event->msg_flags & MSG_EOR))
2127		msg->msg_flags |= MSG_EOR;
2128	else
2129		msg->msg_flags &= ~MSG_EOR;
2130
2131out_free:
2132	if (flags & MSG_PEEK) {
2133		/* Release the skb reference acquired after peeking the skb in
2134		 * sctp_skb_recv_datagram().
2135		 */
2136		kfree_skb(skb);
2137	} else {
2138		/* Free the event which includes releasing the reference to
2139		 * the owner of the skb, freeing the skb and updating the
2140		 * rwnd.
2141		 */
2142		sctp_ulpevent_free(event);
2143	}
2144out:
2145	release_sock(sk);
2146	return err;
2147}
2148
2149/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2150 *
2151 * This option is a on/off flag.  If enabled no SCTP message
2152 * fragmentation will be performed.  Instead if a message being sent
2153 * exceeds the current PMTU size, the message will NOT be sent and
2154 * instead a error will be indicated to the user.
2155 */
2156static int sctp_setsockopt_disable_fragments(struct sock *sk,
2157					     char __user *optval,
2158					     unsigned int optlen)
2159{
2160	int val;
2161
2162	if (optlen < sizeof(int))
2163		return -EINVAL;
2164
2165	if (get_user(val, (int __user *)optval))
2166		return -EFAULT;
2167
2168	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2169
2170	return 0;
2171}
2172
2173static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2174				  unsigned int optlen)
2175{
2176	struct sctp_association *asoc;
2177	struct sctp_ulpevent *event;
2178
2179	if (optlen > sizeof(struct sctp_event_subscribe))
2180		return -EINVAL;
2181	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2182		return -EFAULT;
2183
2184	/*
2185	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2186	 * if there is no data to be sent or retransmit, the stack will
2187	 * immediately send up this notification.
2188	 */
2189	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2190				       &sctp_sk(sk)->subscribe)) {
2191		asoc = sctp_id2assoc(sk, 0);
2192
2193		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2194			event = sctp_ulpevent_make_sender_dry_event(asoc,
2195					GFP_ATOMIC);
2196			if (!event)
2197				return -ENOMEM;
2198
2199			sctp_ulpq_tail_event(&asoc->ulpq, event);
2200		}
2201	}
2202
2203	return 0;
2204}
2205
2206/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2207 *
2208 * This socket option is applicable to the UDP-style socket only.  When
2209 * set it will cause associations that are idle for more than the
2210 * specified number of seconds to automatically close.  An association
2211 * being idle is defined an association that has NOT sent or received
2212 * user data.  The special value of '0' indicates that no automatic
2213 * close of any associations should be performed.  The option expects an
2214 * integer defining the number of seconds of idle time before an
2215 * association is closed.
2216 */
2217static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2218				     unsigned int optlen)
2219{
2220	struct sctp_sock *sp = sctp_sk(sk);
2221	struct net *net = sock_net(sk);
2222
2223	/* Applicable to UDP-style socket only */
2224	if (sctp_style(sk, TCP))
2225		return -EOPNOTSUPP;
2226	if (optlen != sizeof(int))
2227		return -EINVAL;
2228	if (copy_from_user(&sp->autoclose, optval, optlen))
2229		return -EFAULT;
2230
2231	if (sp->autoclose > net->sctp.max_autoclose)
2232		sp->autoclose = net->sctp.max_autoclose;
2233
2234	return 0;
2235}
2236
2237/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2238 *
2239 * Applications can enable or disable heartbeats for any peer address of
2240 * an association, modify an address's heartbeat interval, force a
2241 * heartbeat to be sent immediately, and adjust the address's maximum
2242 * number of retransmissions sent before an address is considered
2243 * unreachable.  The following structure is used to access and modify an
2244 * address's parameters:
2245 *
2246 *  struct sctp_paddrparams {
2247 *     sctp_assoc_t            spp_assoc_id;
2248 *     struct sockaddr_storage spp_address;
2249 *     uint32_t                spp_hbinterval;
2250 *     uint16_t                spp_pathmaxrxt;
2251 *     uint32_t                spp_pathmtu;
2252 *     uint32_t                spp_sackdelay;
2253 *     uint32_t                spp_flags;
2254 * };
2255 *
2256 *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2257 *                     application, and identifies the association for
2258 *                     this query.
2259 *   spp_address     - This specifies which address is of interest.
2260 *   spp_hbinterval  - This contains the value of the heartbeat interval,
2261 *                     in milliseconds.  If a  value of zero
2262 *                     is present in this field then no changes are to
2263 *                     be made to this parameter.
2264 *   spp_pathmaxrxt  - This contains the maximum number of
2265 *                     retransmissions before this address shall be
2266 *                     considered unreachable. If a  value of zero
2267 *                     is present in this field then no changes are to
2268 *                     be made to this parameter.
2269 *   spp_pathmtu     - When Path MTU discovery is disabled the value
2270 *                     specified here will be the "fixed" path mtu.
2271 *                     Note that if the spp_address field is empty
2272 *                     then all associations on this address will
2273 *                     have this fixed path mtu set upon them.
2274 *
2275 *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2276 *                     the number of milliseconds that sacks will be delayed
2277 *                     for. This value will apply to all addresses of an
2278 *                     association if the spp_address field is empty. Note
2279 *                     also, that if delayed sack is enabled and this
2280 *                     value is set to 0, no change is made to the last
2281 *                     recorded delayed sack timer value.
2282 *
2283 *   spp_flags       - These flags are used to control various features
2284 *                     on an association. The flag field may contain
2285 *                     zero or more of the following options.
2286 *
2287 *                     SPP_HB_ENABLE  - Enable heartbeats on the
2288 *                     specified address. Note that if the address
2289 *                     field is empty all addresses for the association
2290 *                     have heartbeats enabled upon them.
2291 *
2292 *                     SPP_HB_DISABLE - Disable heartbeats on the
2293 *                     speicifed address. Note that if the address
2294 *                     field is empty all addresses for the association
2295 *                     will have their heartbeats disabled. Note also
2296 *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2297 *                     mutually exclusive, only one of these two should
2298 *                     be specified. Enabling both fields will have
2299 *                     undetermined results.
2300 *
2301 *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2302 *                     to be made immediately.
2303 *
2304 *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2305 *                     heartbeat delayis to be set to the value of 0
2306 *                     milliseconds.
2307 *
2308 *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2309 *                     discovery upon the specified address. Note that
2310 *                     if the address feild is empty then all addresses
2311 *                     on the association are effected.
2312 *
2313 *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2314 *                     discovery upon the specified address. Note that
2315 *                     if the address feild is empty then all addresses
2316 *                     on the association are effected. Not also that
2317 *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2318 *                     exclusive. Enabling both will have undetermined
2319 *                     results.
2320 *
2321 *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2322 *                     on delayed sack. The time specified in spp_sackdelay
2323 *                     is used to specify the sack delay for this address. Note
2324 *                     that if spp_address is empty then all addresses will
2325 *                     enable delayed sack and take on the sack delay
2326 *                     value specified in spp_sackdelay.
2327 *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2328 *                     off delayed sack. If the spp_address field is blank then
2329 *                     delayed sack is disabled for the entire association. Note
2330 *                     also that this field is mutually exclusive to
2331 *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2332 *                     results.
2333 */
2334static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2335				       struct sctp_transport   *trans,
2336				       struct sctp_association *asoc,
2337				       struct sctp_sock        *sp,
2338				       int                      hb_change,
2339				       int                      pmtud_change,
2340				       int                      sackdelay_change)
2341{
2342	int error;
2343
2344	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2345		struct net *net = sock_net(trans->asoc->base.sk);
2346
2347		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2348		if (error)
2349			return error;
2350	}
2351
2352	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2353	 * this field is ignored.  Note also that a value of zero indicates
2354	 * the current setting should be left unchanged.
2355	 */
2356	if (params->spp_flags & SPP_HB_ENABLE) {
2357
2358		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2359		 * set.  This lets us use 0 value when this flag
2360		 * is set.
2361		 */
2362		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2363			params->spp_hbinterval = 0;
2364
2365		if (params->spp_hbinterval ||
2366		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2367			if (trans) {
2368				trans->hbinterval =
2369				    msecs_to_jiffies(params->spp_hbinterval);
2370			} else if (asoc) {
2371				asoc->hbinterval =
2372				    msecs_to_jiffies(params->spp_hbinterval);
2373			} else {
2374				sp->hbinterval = params->spp_hbinterval;
2375			}
2376		}
2377	}
2378
2379	if (hb_change) {
2380		if (trans) {
2381			trans->param_flags =
2382				(trans->param_flags & ~SPP_HB) | hb_change;
2383		} else if (asoc) {
2384			asoc->param_flags =
2385				(asoc->param_flags & ~SPP_HB) | hb_change;
2386		} else {
2387			sp->param_flags =
2388				(sp->param_flags & ~SPP_HB) | hb_change;
2389		}
2390	}
2391
2392	/* When Path MTU discovery is disabled the value specified here will
2393	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2394	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2395	 * effect).
2396	 */
2397	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2398		if (trans) {
2399			trans->pathmtu = params->spp_pathmtu;
2400			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2401		} else if (asoc) {
2402			asoc->pathmtu = params->spp_pathmtu;
2403			sctp_frag_point(asoc, params->spp_pathmtu);
2404		} else {
2405			sp->pathmtu = params->spp_pathmtu;
2406		}
2407	}
2408
2409	if (pmtud_change) {
2410		if (trans) {
2411			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2412				(params->spp_flags & SPP_PMTUD_ENABLE);
2413			trans->param_flags =
2414				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2415			if (update) {
2416				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2417				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2418			}
2419		} else if (asoc) {
2420			asoc->param_flags =
2421				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2422		} else {
2423			sp->param_flags =
2424				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2425		}
2426	}
2427
2428	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2429	 * value of this field is ignored.  Note also that a value of zero
2430	 * indicates the current setting should be left unchanged.
2431	 */
2432	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2433		if (trans) {
2434			trans->sackdelay =
2435				msecs_to_jiffies(params->spp_sackdelay);
2436		} else if (asoc) {
2437			asoc->sackdelay =
2438				msecs_to_jiffies(params->spp_sackdelay);
2439		} else {
2440			sp->sackdelay = params->spp_sackdelay;
2441		}
2442	}
2443
2444	if (sackdelay_change) {
2445		if (trans) {
2446			trans->param_flags =
2447				(trans->param_flags & ~SPP_SACKDELAY) |
2448				sackdelay_change;
2449		} else if (asoc) {
2450			asoc->param_flags =
2451				(asoc->param_flags & ~SPP_SACKDELAY) |
2452				sackdelay_change;
2453		} else {
2454			sp->param_flags =
2455				(sp->param_flags & ~SPP_SACKDELAY) |
2456				sackdelay_change;
2457		}
2458	}
2459
2460	/* Note that a value of zero indicates the current setting should be
2461	   left unchanged.
2462	 */
2463	if (params->spp_pathmaxrxt) {
2464		if (trans) {
2465			trans->pathmaxrxt = params->spp_pathmaxrxt;
2466		} else if (asoc) {
2467			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2468		} else {
2469			sp->pathmaxrxt = params->spp_pathmaxrxt;
2470		}
2471	}
2472
2473	return 0;
2474}
2475
2476static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2477					    char __user *optval,
2478					    unsigned int optlen)
2479{
2480	struct sctp_paddrparams  params;
2481	struct sctp_transport   *trans = NULL;
2482	struct sctp_association *asoc = NULL;
2483	struct sctp_sock        *sp = sctp_sk(sk);
2484	int error;
2485	int hb_change, pmtud_change, sackdelay_change;
2486
2487	if (optlen != sizeof(struct sctp_paddrparams))
2488		return -EINVAL;
2489
2490	if (copy_from_user(&params, optval, optlen))
2491		return -EFAULT;
2492
2493	/* Validate flags and value parameters. */
2494	hb_change        = params.spp_flags & SPP_HB;
2495	pmtud_change     = params.spp_flags & SPP_PMTUD;
2496	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2497
2498	if (hb_change        == SPP_HB ||
2499	    pmtud_change     == SPP_PMTUD ||
2500	    sackdelay_change == SPP_SACKDELAY ||
2501	    params.spp_sackdelay > 500 ||
2502	    (params.spp_pathmtu &&
2503	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2504		return -EINVAL;
2505
2506	/* If an address other than INADDR_ANY is specified, and
2507	 * no transport is found, then the request is invalid.
2508	 */
2509	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2510		trans = sctp_addr_id2transport(sk, &params.spp_address,
2511					       params.spp_assoc_id);
2512		if (!trans)
2513			return -EINVAL;
2514	}
2515
2516	/* Get association, if assoc_id != 0 and the socket is a one
2517	 * to many style socket, and an association was not found, then
2518	 * the id was invalid.
2519	 */
2520	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2521	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2522		return -EINVAL;
2523
2524	/* Heartbeat demand can only be sent on a transport or
2525	 * association, but not a socket.
2526	 */
2527	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2528		return -EINVAL;
2529
2530	/* Process parameters. */
2531	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2532					    hb_change, pmtud_change,
2533					    sackdelay_change);
2534
2535	if (error)
2536		return error;
2537
2538	/* If changes are for association, also apply parameters to each
2539	 * transport.
2540	 */
2541	if (!trans && asoc) {
2542		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2543				transports) {
2544			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2545						    hb_change, pmtud_change,
2546						    sackdelay_change);
2547		}
2548	}
2549
2550	return 0;
2551}
2552
2553static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2554{
2555	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2556}
2557
2558static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2559{
2560	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2561}
2562
2563/*
2564 * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2565 *
2566 * This option will effect the way delayed acks are performed.  This
2567 * option allows you to get or set the delayed ack time, in
2568 * milliseconds.  It also allows changing the delayed ack frequency.
2569 * Changing the frequency to 1 disables the delayed sack algorithm.  If
2570 * the assoc_id is 0, then this sets or gets the endpoints default
2571 * values.  If the assoc_id field is non-zero, then the set or get
2572 * effects the specified association for the one to many model (the
2573 * assoc_id field is ignored by the one to one model).  Note that if
2574 * sack_delay or sack_freq are 0 when setting this option, then the
2575 * current values will remain unchanged.
2576 *
2577 * struct sctp_sack_info {
2578 *     sctp_assoc_t            sack_assoc_id;
2579 *     uint32_t                sack_delay;
2580 *     uint32_t                sack_freq;
2581 * };
2582 *
2583 * sack_assoc_id -  This parameter, indicates which association the user
2584 *    is performing an action upon.  Note that if this field's value is
2585 *    zero then the endpoints default value is changed (effecting future
2586 *    associations only).
2587 *
2588 * sack_delay -  This parameter contains the number of milliseconds that
2589 *    the user is requesting the delayed ACK timer be set to.  Note that
2590 *    this value is defined in the standard to be between 200 and 500
2591 *    milliseconds.
2592 *
2593 * sack_freq -  This parameter contains the number of packets that must
2594 *    be received before a sack is sent without waiting for the delay
2595 *    timer to expire.  The default value for this is 2, setting this
2596 *    value to 1 will disable the delayed sack algorithm.
2597 */
2598
2599static int sctp_setsockopt_delayed_ack(struct sock *sk,
2600				       char __user *optval, unsigned int optlen)
2601{
2602	struct sctp_sack_info    params;
2603	struct sctp_transport   *trans = NULL;
2604	struct sctp_association *asoc = NULL;
2605	struct sctp_sock        *sp = sctp_sk(sk);
2606
2607	if (optlen == sizeof(struct sctp_sack_info)) {
2608		if (copy_from_user(&params, optval, optlen))
2609			return -EFAULT;
2610
2611		if (params.sack_delay == 0 && params.sack_freq == 0)
2612			return 0;
2613	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2614		pr_warn_ratelimited(DEPRECATED
2615				    "%s (pid %d) "
2616				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2617				    "Use struct sctp_sack_info instead\n",
2618				    current->comm, task_pid_nr(current));
2619		if (copy_from_user(&params, optval, optlen))
2620			return -EFAULT;
2621
2622		if (params.sack_delay == 0)
2623			params.sack_freq = 1;
2624		else
2625			params.sack_freq = 0;
2626	} else
2627		return -EINVAL;
2628
2629	/* Validate value parameter. */
2630	if (params.sack_delay > 500)
2631		return -EINVAL;
2632
2633	/* Get association, if sack_assoc_id != 0 and the socket is a one
2634	 * to many style socket, and an association was not found, then
2635	 * the id was invalid.
2636	 */
2637	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2638	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2639		return -EINVAL;
2640
2641	if (params.sack_delay) {
2642		if (asoc) {
2643			asoc->sackdelay =
2644				msecs_to_jiffies(params.sack_delay);
2645			asoc->param_flags =
2646				sctp_spp_sackdelay_enable(asoc->param_flags);
 
2647		} else {
2648			sp->sackdelay = params.sack_delay;
2649			sp->param_flags =
2650				sctp_spp_sackdelay_enable(sp->param_flags);
 
2651		}
2652	}
2653
2654	if (params.sack_freq == 1) {
2655		if (asoc) {
2656			asoc->param_flags =
2657				sctp_spp_sackdelay_disable(asoc->param_flags);
 
2658		} else {
2659			sp->param_flags =
2660				sctp_spp_sackdelay_disable(sp->param_flags);
 
2661		}
2662	} else if (params.sack_freq > 1) {
2663		if (asoc) {
2664			asoc->sackfreq = params.sack_freq;
2665			asoc->param_flags =
2666				sctp_spp_sackdelay_enable(asoc->param_flags);
 
2667		} else {
2668			sp->sackfreq = params.sack_freq;
2669			sp->param_flags =
2670				sctp_spp_sackdelay_enable(sp->param_flags);
 
2671		}
2672	}
2673
2674	/* If change is for association, also apply to each transport. */
2675	if (asoc) {
2676		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2677				transports) {
2678			if (params.sack_delay) {
2679				trans->sackdelay =
2680					msecs_to_jiffies(params.sack_delay);
2681				trans->param_flags =
2682					sctp_spp_sackdelay_enable(trans->param_flags);
 
2683			}
2684			if (params.sack_freq == 1) {
2685				trans->param_flags =
2686					sctp_spp_sackdelay_disable(trans->param_flags);
 
2687			} else if (params.sack_freq > 1) {
2688				trans->sackfreq = params.sack_freq;
2689				trans->param_flags =
2690					sctp_spp_sackdelay_enable(trans->param_flags);
 
2691			}
2692		}
2693	}
2694
2695	return 0;
2696}
2697
2698/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2699 *
2700 * Applications can specify protocol parameters for the default association
2701 * initialization.  The option name argument to setsockopt() and getsockopt()
2702 * is SCTP_INITMSG.
2703 *
2704 * Setting initialization parameters is effective only on an unconnected
2705 * socket (for UDP-style sockets only future associations are effected
2706 * by the change).  With TCP-style sockets, this option is inherited by
2707 * sockets derived from a listener socket.
2708 */
2709static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2710{
2711	struct sctp_initmsg sinit;
2712	struct sctp_sock *sp = sctp_sk(sk);
2713
2714	if (optlen != sizeof(struct sctp_initmsg))
2715		return -EINVAL;
2716	if (copy_from_user(&sinit, optval, optlen))
2717		return -EFAULT;
2718
2719	if (sinit.sinit_num_ostreams)
2720		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2721	if (sinit.sinit_max_instreams)
2722		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2723	if (sinit.sinit_max_attempts)
2724		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2725	if (sinit.sinit_max_init_timeo)
2726		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2727
2728	return 0;
2729}
2730
2731/*
2732 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2733 *
2734 *   Applications that wish to use the sendto() system call may wish to
2735 *   specify a default set of parameters that would normally be supplied
2736 *   through the inclusion of ancillary data.  This socket option allows
2737 *   such an application to set the default sctp_sndrcvinfo structure.
2738 *   The application that wishes to use this socket option simply passes
2739 *   in to this call the sctp_sndrcvinfo structure defined in Section
2740 *   5.2.2) The input parameters accepted by this call include
2741 *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2742 *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2743 *   to this call if the caller is using the UDP model.
2744 */
2745static int sctp_setsockopt_default_send_param(struct sock *sk,
2746					      char __user *optval,
2747					      unsigned int optlen)
2748{
2749	struct sctp_sndrcvinfo info;
2750	struct sctp_association *asoc;
2751	struct sctp_sock *sp = sctp_sk(sk);
2752
2753	if (optlen != sizeof(struct sctp_sndrcvinfo))
2754		return -EINVAL;
2755	if (copy_from_user(&info, optval, optlen))
2756		return -EFAULT;
2757
2758	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2759	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2760		return -EINVAL;
2761
2762	if (asoc) {
2763		asoc->default_stream = info.sinfo_stream;
2764		asoc->default_flags = info.sinfo_flags;
2765		asoc->default_ppid = info.sinfo_ppid;
2766		asoc->default_context = info.sinfo_context;
2767		asoc->default_timetolive = info.sinfo_timetolive;
2768	} else {
2769		sp->default_stream = info.sinfo_stream;
2770		sp->default_flags = info.sinfo_flags;
2771		sp->default_ppid = info.sinfo_ppid;
2772		sp->default_context = info.sinfo_context;
2773		sp->default_timetolive = info.sinfo_timetolive;
2774	}
2775
2776	return 0;
2777}
2778
2779/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2780 *
2781 * Requests that the local SCTP stack use the enclosed peer address as
2782 * the association primary.  The enclosed address must be one of the
2783 * association peer's addresses.
2784 */
2785static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2786					unsigned int optlen)
2787{
2788	struct sctp_prim prim;
2789	struct sctp_transport *trans;
2790
2791	if (optlen != sizeof(struct sctp_prim))
2792		return -EINVAL;
2793
2794	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2795		return -EFAULT;
2796
2797	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2798	if (!trans)
2799		return -EINVAL;
2800
2801	sctp_assoc_set_primary(trans->asoc, trans);
2802
2803	return 0;
2804}
2805
2806/*
2807 * 7.1.5 SCTP_NODELAY
2808 *
2809 * Turn on/off any Nagle-like algorithm.  This means that packets are
2810 * generally sent as soon as possible and no unnecessary delays are
2811 * introduced, at the cost of more packets in the network.  Expects an
2812 *  integer boolean flag.
2813 */
2814static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2815				   unsigned int optlen)
2816{
2817	int val;
2818
2819	if (optlen < sizeof(int))
2820		return -EINVAL;
2821	if (get_user(val, (int __user *)optval))
2822		return -EFAULT;
2823
2824	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2825	return 0;
2826}
2827
2828/*
2829 *
2830 * 7.1.1 SCTP_RTOINFO
2831 *
2832 * The protocol parameters used to initialize and bound retransmission
2833 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2834 * and modify these parameters.
2835 * All parameters are time values, in milliseconds.  A value of 0, when
2836 * modifying the parameters, indicates that the current value should not
2837 * be changed.
2838 *
2839 */
2840static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2841{
2842	struct sctp_rtoinfo rtoinfo;
2843	struct sctp_association *asoc;
2844	unsigned long rto_min, rto_max;
2845	struct sctp_sock *sp = sctp_sk(sk);
2846
2847	if (optlen != sizeof (struct sctp_rtoinfo))
2848		return -EINVAL;
2849
2850	if (copy_from_user(&rtoinfo, optval, optlen))
2851		return -EFAULT;
2852
2853	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2854
2855	/* Set the values to the specific association */
2856	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2857		return -EINVAL;
2858
2859	rto_max = rtoinfo.srto_max;
2860	rto_min = rtoinfo.srto_min;
2861
2862	if (rto_max)
2863		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2864	else
2865		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2866
2867	if (rto_min)
2868		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2869	else
2870		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2871
2872	if (rto_min > rto_max)
2873		return -EINVAL;
2874
2875	if (asoc) {
2876		if (rtoinfo.srto_initial != 0)
2877			asoc->rto_initial =
2878				msecs_to_jiffies(rtoinfo.srto_initial);
2879		asoc->rto_max = rto_max;
2880		asoc->rto_min = rto_min;
 
 
2881	} else {
2882		/* If there is no association or the association-id = 0
2883		 * set the values to the endpoint.
2884		 */
 
 
2885		if (rtoinfo.srto_initial != 0)
2886			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2887		sp->rtoinfo.srto_max = rto_max;
2888		sp->rtoinfo.srto_min = rto_min;
 
 
2889	}
2890
2891	return 0;
2892}
2893
2894/*
2895 *
2896 * 7.1.2 SCTP_ASSOCINFO
2897 *
2898 * This option is used to tune the maximum retransmission attempts
2899 * of the association.
2900 * Returns an error if the new association retransmission value is
2901 * greater than the sum of the retransmission value  of the peer.
2902 * See [SCTP] for more information.
2903 *
2904 */
2905static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2906{
2907
2908	struct sctp_assocparams assocparams;
2909	struct sctp_association *asoc;
2910
2911	if (optlen != sizeof(struct sctp_assocparams))
2912		return -EINVAL;
2913	if (copy_from_user(&assocparams, optval, optlen))
2914		return -EFAULT;
2915
2916	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2917
2918	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2919		return -EINVAL;
2920
2921	/* Set the values to the specific association */
2922	if (asoc) {
2923		if (assocparams.sasoc_asocmaxrxt != 0) {
2924			__u32 path_sum = 0;
2925			int   paths = 0;
2926			struct sctp_transport *peer_addr;
2927
2928			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2929					transports) {
2930				path_sum += peer_addr->pathmaxrxt;
2931				paths++;
2932			}
2933
2934			/* Only validate asocmaxrxt if we have more than
2935			 * one path/transport.  We do this because path
2936			 * retransmissions are only counted when we have more
2937			 * then one path.
2938			 */
2939			if (paths > 1 &&
2940			    assocparams.sasoc_asocmaxrxt > path_sum)
2941				return -EINVAL;
2942
2943			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2944		}
2945
2946		if (assocparams.sasoc_cookie_life != 0)
2947			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
 
 
 
 
 
2948	} else {
2949		/* Set the values to the endpoint */
2950		struct sctp_sock *sp = sctp_sk(sk);
2951
2952		if (assocparams.sasoc_asocmaxrxt != 0)
2953			sp->assocparams.sasoc_asocmaxrxt =
2954						assocparams.sasoc_asocmaxrxt;
2955		if (assocparams.sasoc_cookie_life != 0)
2956			sp->assocparams.sasoc_cookie_life =
2957						assocparams.sasoc_cookie_life;
2958	}
2959	return 0;
2960}
2961
2962/*
2963 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2964 *
2965 * This socket option is a boolean flag which turns on or off mapped V4
2966 * addresses.  If this option is turned on and the socket is type
2967 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2968 * If this option is turned off, then no mapping will be done of V4
2969 * addresses and a user will receive both PF_INET6 and PF_INET type
2970 * addresses on the socket.
2971 */
2972static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2973{
2974	int val;
2975	struct sctp_sock *sp = sctp_sk(sk);
2976
2977	if (optlen < sizeof(int))
2978		return -EINVAL;
2979	if (get_user(val, (int __user *)optval))
2980		return -EFAULT;
2981	if (val)
2982		sp->v4mapped = 1;
2983	else
2984		sp->v4mapped = 0;
2985
2986	return 0;
2987}
2988
2989/*
2990 * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2991 * This option will get or set the maximum size to put in any outgoing
2992 * SCTP DATA chunk.  If a message is larger than this size it will be
2993 * fragmented by SCTP into the specified size.  Note that the underlying
2994 * SCTP implementation may fragment into smaller sized chunks when the
2995 * PMTU of the underlying association is smaller than the value set by
2996 * the user.  The default value for this option is '0' which indicates
2997 * the user is NOT limiting fragmentation and only the PMTU will effect
2998 * SCTP's choice of DATA chunk size.  Note also that values set larger
2999 * than the maximum size of an IP datagram will effectively let SCTP
3000 * control fragmentation (i.e. the same as setting this option to 0).
3001 *
3002 * The following structure is used to access and modify this parameter:
3003 *
3004 * struct sctp_assoc_value {
3005 *   sctp_assoc_t assoc_id;
3006 *   uint32_t assoc_value;
3007 * };
3008 *
3009 * assoc_id:  This parameter is ignored for one-to-one style sockets.
3010 *    For one-to-many style sockets this parameter indicates which
3011 *    association the user is performing an action upon.  Note that if
3012 *    this field's value is zero then the endpoints default value is
3013 *    changed (effecting future associations only).
3014 * assoc_value:  This parameter specifies the maximum size in bytes.
3015 */
3016static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3017{
3018	struct sctp_assoc_value params;
3019	struct sctp_association *asoc;
3020	struct sctp_sock *sp = sctp_sk(sk);
3021	int val;
3022
3023	if (optlen == sizeof(int)) {
3024		pr_warn_ratelimited(DEPRECATED
3025				    "%s (pid %d) "
3026				    "Use of int in maxseg socket option.\n"
3027				    "Use struct sctp_assoc_value instead\n",
3028				    current->comm, task_pid_nr(current));
3029		if (copy_from_user(&val, optval, optlen))
3030			return -EFAULT;
3031		params.assoc_id = 0;
3032	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3033		if (copy_from_user(&params, optval, optlen))
3034			return -EFAULT;
3035		val = params.assoc_value;
3036	} else
3037		return -EINVAL;
3038
3039	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3040		return -EINVAL;
3041
3042	asoc = sctp_id2assoc(sk, params.assoc_id);
3043	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3044		return -EINVAL;
3045
3046	if (asoc) {
3047		if (val == 0) {
3048			val = asoc->pathmtu;
3049			val -= sp->pf->af->net_header_len;
3050			val -= sizeof(struct sctphdr) +
3051					sizeof(struct sctp_data_chunk);
3052		}
3053		asoc->user_frag = val;
3054		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3055	} else {
3056		sp->user_frag = val;
3057	}
3058
3059	return 0;
3060}
3061
3062
3063/*
3064 *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3065 *
3066 *   Requests that the peer mark the enclosed address as the association
3067 *   primary. The enclosed address must be one of the association's
3068 *   locally bound addresses. The following structure is used to make a
3069 *   set primary request:
3070 */
3071static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3072					     unsigned int optlen)
3073{
3074	struct net *net = sock_net(sk);
3075	struct sctp_sock	*sp;
3076	struct sctp_association	*asoc = NULL;
3077	struct sctp_setpeerprim	prim;
3078	struct sctp_chunk	*chunk;
3079	struct sctp_af		*af;
3080	int 			err;
3081
3082	sp = sctp_sk(sk);
3083
3084	if (!net->sctp.addip_enable)
3085		return -EPERM;
3086
3087	if (optlen != sizeof(struct sctp_setpeerprim))
3088		return -EINVAL;
3089
3090	if (copy_from_user(&prim, optval, optlen))
3091		return -EFAULT;
3092
3093	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3094	if (!asoc)
3095		return -EINVAL;
3096
3097	if (!asoc->peer.asconf_capable)
3098		return -EPERM;
3099
3100	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3101		return -EPERM;
3102
3103	if (!sctp_state(asoc, ESTABLISHED))
3104		return -ENOTCONN;
3105
3106	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3107	if (!af)
3108		return -EINVAL;
3109
3110	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3111		return -EADDRNOTAVAIL;
3112
3113	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3114		return -EADDRNOTAVAIL;
3115
3116	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3117	chunk = sctp_make_asconf_set_prim(asoc,
3118					  (union sctp_addr *)&prim.sspp_addr);
3119	if (!chunk)
3120		return -ENOMEM;
3121
3122	err = sctp_send_asconf(asoc, chunk);
3123
3124	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3125
3126	return err;
3127}
3128
3129static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3130					    unsigned int optlen)
3131{
3132	struct sctp_setadaptation adaptation;
3133
3134	if (optlen != sizeof(struct sctp_setadaptation))
3135		return -EINVAL;
3136	if (copy_from_user(&adaptation, optval, optlen))
3137		return -EFAULT;
3138
3139	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3140
3141	return 0;
3142}
3143
3144/*
3145 * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3146 *
3147 * The context field in the sctp_sndrcvinfo structure is normally only
3148 * used when a failed message is retrieved holding the value that was
3149 * sent down on the actual send call.  This option allows the setting of
3150 * a default context on an association basis that will be received on
3151 * reading messages from the peer.  This is especially helpful in the
3152 * one-2-many model for an application to keep some reference to an
3153 * internal state machine that is processing messages on the
3154 * association.  Note that the setting of this value only effects
3155 * received messages from the peer and does not effect the value that is
3156 * saved with outbound messages.
3157 */
3158static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3159				   unsigned int optlen)
3160{
3161	struct sctp_assoc_value params;
3162	struct sctp_sock *sp;
3163	struct sctp_association *asoc;
3164
3165	if (optlen != sizeof(struct sctp_assoc_value))
3166		return -EINVAL;
3167	if (copy_from_user(&params, optval, optlen))
3168		return -EFAULT;
3169
3170	sp = sctp_sk(sk);
3171
3172	if (params.assoc_id != 0) {
3173		asoc = sctp_id2assoc(sk, params.assoc_id);
3174		if (!asoc)
3175			return -EINVAL;
3176		asoc->default_rcv_context = params.assoc_value;
3177	} else {
3178		sp->default_rcv_context = params.assoc_value;
3179	}
3180
3181	return 0;
3182}
3183
3184/*
3185 * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3186 *
3187 * This options will at a minimum specify if the implementation is doing
3188 * fragmented interleave.  Fragmented interleave, for a one to many
3189 * socket, is when subsequent calls to receive a message may return
3190 * parts of messages from different associations.  Some implementations
3191 * may allow you to turn this value on or off.  If so, when turned off,
3192 * no fragment interleave will occur (which will cause a head of line
3193 * blocking amongst multiple associations sharing the same one to many
3194 * socket).  When this option is turned on, then each receive call may
3195 * come from a different association (thus the user must receive data
3196 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3197 * association each receive belongs to.
3198 *
3199 * This option takes a boolean value.  A non-zero value indicates that
3200 * fragmented interleave is on.  A value of zero indicates that
3201 * fragmented interleave is off.
3202 *
3203 * Note that it is important that an implementation that allows this
3204 * option to be turned on, have it off by default.  Otherwise an unaware
3205 * application using the one to many model may become confused and act
3206 * incorrectly.
3207 */
3208static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3209					       char __user *optval,
3210					       unsigned int optlen)
3211{
3212	int val;
3213
3214	if (optlen != sizeof(int))
3215		return -EINVAL;
3216	if (get_user(val, (int __user *)optval))
3217		return -EFAULT;
3218
3219	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3220
3221	return 0;
3222}
3223
3224/*
3225 * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3226 *       (SCTP_PARTIAL_DELIVERY_POINT)
3227 *
3228 * This option will set or get the SCTP partial delivery point.  This
3229 * point is the size of a message where the partial delivery API will be
3230 * invoked to help free up rwnd space for the peer.  Setting this to a
3231 * lower value will cause partial deliveries to happen more often.  The
3232 * calls argument is an integer that sets or gets the partial delivery
3233 * point.  Note also that the call will fail if the user attempts to set
3234 * this value larger than the socket receive buffer size.
3235 *
3236 * Note that any single message having a length smaller than or equal to
3237 * the SCTP partial delivery point will be delivered in one single read
3238 * call as long as the user provided buffer is large enough to hold the
3239 * message.
3240 */
3241static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3242						  char __user *optval,
3243						  unsigned int optlen)
3244{
3245	u32 val;
3246
3247	if (optlen != sizeof(u32))
3248		return -EINVAL;
3249	if (get_user(val, (int __user *)optval))
3250		return -EFAULT;
3251
3252	/* Note: We double the receive buffer from what the user sets
3253	 * it to be, also initial rwnd is based on rcvbuf/2.
3254	 */
3255	if (val > (sk->sk_rcvbuf >> 1))
3256		return -EINVAL;
3257
3258	sctp_sk(sk)->pd_point = val;
3259
3260	return 0; /* is this the right error code? */
3261}
3262
3263/*
3264 * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3265 *
3266 * This option will allow a user to change the maximum burst of packets
3267 * that can be emitted by this association.  Note that the default value
3268 * is 4, and some implementations may restrict this setting so that it
3269 * can only be lowered.
3270 *
3271 * NOTE: This text doesn't seem right.  Do this on a socket basis with
3272 * future associations inheriting the socket value.
3273 */
3274static int sctp_setsockopt_maxburst(struct sock *sk,
3275				    char __user *optval,
3276				    unsigned int optlen)
3277{
3278	struct sctp_assoc_value params;
3279	struct sctp_sock *sp;
3280	struct sctp_association *asoc;
3281	int val;
3282	int assoc_id = 0;
3283
3284	if (optlen == sizeof(int)) {
3285		pr_warn_ratelimited(DEPRECATED
3286				    "%s (pid %d) "
3287				    "Use of int in max_burst socket option deprecated.\n"
3288				    "Use struct sctp_assoc_value instead\n",
3289				    current->comm, task_pid_nr(current));
3290		if (copy_from_user(&val, optval, optlen))
3291			return -EFAULT;
3292	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3293		if (copy_from_user(&params, optval, optlen))
3294			return -EFAULT;
3295		val = params.assoc_value;
3296		assoc_id = params.assoc_id;
3297	} else
3298		return -EINVAL;
3299
3300	sp = sctp_sk(sk);
3301
3302	if (assoc_id != 0) {
3303		asoc = sctp_id2assoc(sk, assoc_id);
3304		if (!asoc)
3305			return -EINVAL;
3306		asoc->max_burst = val;
3307	} else
3308		sp->max_burst = val;
3309
3310	return 0;
3311}
3312
3313/*
3314 * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3315 *
3316 * This set option adds a chunk type that the user is requesting to be
3317 * received only in an authenticated way.  Changes to the list of chunks
3318 * will only effect future associations on the socket.
3319 */
3320static int sctp_setsockopt_auth_chunk(struct sock *sk,
3321				      char __user *optval,
3322				      unsigned int optlen)
3323{
3324	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3325	struct sctp_authchunk val;
3326
3327	if (!ep->auth_enable)
3328		return -EACCES;
3329
3330	if (optlen != sizeof(struct sctp_authchunk))
3331		return -EINVAL;
3332	if (copy_from_user(&val, optval, optlen))
3333		return -EFAULT;
3334
3335	switch (val.sauth_chunk) {
3336	case SCTP_CID_INIT:
3337	case SCTP_CID_INIT_ACK:
3338	case SCTP_CID_SHUTDOWN_COMPLETE:
3339	case SCTP_CID_AUTH:
3340		return -EINVAL;
3341	}
3342
3343	/* add this chunk id to the endpoint */
3344	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3345}
3346
3347/*
3348 * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3349 *
3350 * This option gets or sets the list of HMAC algorithms that the local
3351 * endpoint requires the peer to use.
3352 */
3353static int sctp_setsockopt_hmac_ident(struct sock *sk,
3354				      char __user *optval,
3355				      unsigned int optlen)
3356{
3357	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3358	struct sctp_hmacalgo *hmacs;
3359	u32 idents;
3360	int err;
3361
3362	if (!ep->auth_enable)
3363		return -EACCES;
3364
3365	if (optlen < sizeof(struct sctp_hmacalgo))
3366		return -EINVAL;
3367
3368	hmacs = memdup_user(optval, optlen);
3369	if (IS_ERR(hmacs))
3370		return PTR_ERR(hmacs);
3371
3372	idents = hmacs->shmac_num_idents;
3373	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3374	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3375		err = -EINVAL;
3376		goto out;
3377	}
3378
3379	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3380out:
3381	kfree(hmacs);
3382	return err;
3383}
3384
3385/*
3386 * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3387 *
3388 * This option will set a shared secret key which is used to build an
3389 * association shared key.
3390 */
3391static int sctp_setsockopt_auth_key(struct sock *sk,
3392				    char __user *optval,
3393				    unsigned int optlen)
3394{
3395	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3396	struct sctp_authkey *authkey;
3397	struct sctp_association *asoc;
3398	int ret;
3399
3400	if (!ep->auth_enable)
3401		return -EACCES;
3402
3403	if (optlen <= sizeof(struct sctp_authkey))
3404		return -EINVAL;
3405
3406	authkey = memdup_user(optval, optlen);
3407	if (IS_ERR(authkey))
3408		return PTR_ERR(authkey);
3409
3410	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3411		ret = -EINVAL;
3412		goto out;
3413	}
3414
3415	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3416	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3417		ret = -EINVAL;
3418		goto out;
3419	}
3420
3421	ret = sctp_auth_set_key(ep, asoc, authkey);
3422out:
3423	kzfree(authkey);
3424	return ret;
3425}
3426
3427/*
3428 * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3429 *
3430 * This option will get or set the active shared key to be used to build
3431 * the association shared key.
3432 */
3433static int sctp_setsockopt_active_key(struct sock *sk,
3434				      char __user *optval,
3435				      unsigned int optlen)
3436{
3437	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3438	struct sctp_authkeyid val;
3439	struct sctp_association *asoc;
3440
3441	if (!ep->auth_enable)
3442		return -EACCES;
3443
3444	if (optlen != sizeof(struct sctp_authkeyid))
3445		return -EINVAL;
3446	if (copy_from_user(&val, optval, optlen))
3447		return -EFAULT;
3448
3449	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3450	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3451		return -EINVAL;
3452
3453	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
 
3454}
3455
3456/*
3457 * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3458 *
3459 * This set option will delete a shared secret key from use.
3460 */
3461static int sctp_setsockopt_del_key(struct sock *sk,
3462				   char __user *optval,
3463				   unsigned int optlen)
3464{
3465	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3466	struct sctp_authkeyid val;
3467	struct sctp_association *asoc;
3468
3469	if (!ep->auth_enable)
3470		return -EACCES;
3471
3472	if (optlen != sizeof(struct sctp_authkeyid))
3473		return -EINVAL;
3474	if (copy_from_user(&val, optval, optlen))
3475		return -EFAULT;
3476
3477	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3478	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3479		return -EINVAL;
3480
3481	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
 
3482
3483}
3484
3485/*
3486 * 8.1.23 SCTP_AUTO_ASCONF
3487 *
3488 * This option will enable or disable the use of the automatic generation of
3489 * ASCONF chunks to add and delete addresses to an existing association.  Note
3490 * that this option has two caveats namely: a) it only affects sockets that
3491 * are bound to all addresses available to the SCTP stack, and b) the system
3492 * administrator may have an overriding control that turns the ASCONF feature
3493 * off no matter what setting the socket option may have.
3494 * This option expects an integer boolean flag, where a non-zero value turns on
3495 * the option, and a zero value turns off the option.
3496 * Note. In this implementation, socket operation overrides default parameter
3497 * being set by sysctl as well as FreeBSD implementation
3498 */
3499static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3500					unsigned int optlen)
3501{
3502	int val;
3503	struct sctp_sock *sp = sctp_sk(sk);
3504
3505	if (optlen < sizeof(int))
3506		return -EINVAL;
3507	if (get_user(val, (int __user *)optval))
3508		return -EFAULT;
3509	if (!sctp_is_ep_boundall(sk) && val)
3510		return -EINVAL;
3511	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3512		return 0;
3513
3514	if (val == 0 && sp->do_auto_asconf) {
3515		list_del(&sp->auto_asconf_list);
3516		sp->do_auto_asconf = 0;
3517	} else if (val && !sp->do_auto_asconf) {
3518		list_add_tail(&sp->auto_asconf_list,
3519		    &sock_net(sk)->sctp.auto_asconf_splist);
3520		sp->do_auto_asconf = 1;
3521	}
3522	return 0;
3523}
3524
3525
3526/*
3527 * SCTP_PEER_ADDR_THLDS
3528 *
3529 * This option allows us to alter the partially failed threshold for one or all
3530 * transports in an association.  See Section 6.1 of:
3531 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3532 */
3533static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3534					    char __user *optval,
3535					    unsigned int optlen)
3536{
3537	struct sctp_paddrthlds val;
3538	struct sctp_transport *trans;
3539	struct sctp_association *asoc;
3540
3541	if (optlen < sizeof(struct sctp_paddrthlds))
3542		return -EINVAL;
3543	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3544			   sizeof(struct sctp_paddrthlds)))
3545		return -EFAULT;
3546
3547
3548	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3549		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3550		if (!asoc)
3551			return -ENOENT;
3552		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3553				    transports) {
3554			if (val.spt_pathmaxrxt)
3555				trans->pathmaxrxt = val.spt_pathmaxrxt;
3556			trans->pf_retrans = val.spt_pathpfthld;
3557		}
3558
3559		if (val.spt_pathmaxrxt)
3560			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3561		asoc->pf_retrans = val.spt_pathpfthld;
3562	} else {
3563		trans = sctp_addr_id2transport(sk, &val.spt_address,
3564					       val.spt_assoc_id);
3565		if (!trans)
3566			return -ENOENT;
3567
3568		if (val.spt_pathmaxrxt)
3569			trans->pathmaxrxt = val.spt_pathmaxrxt;
3570		trans->pf_retrans = val.spt_pathpfthld;
3571	}
3572
3573	return 0;
3574}
3575
3576/* API 6.2 setsockopt(), getsockopt()
3577 *
3578 * Applications use setsockopt() and getsockopt() to set or retrieve
3579 * socket options.  Socket options are used to change the default
3580 * behavior of sockets calls.  They are described in Section 7.
3581 *
3582 * The syntax is:
3583 *
3584 *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3585 *                    int __user *optlen);
3586 *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3587 *                    int optlen);
3588 *
3589 *   sd      - the socket descript.
3590 *   level   - set to IPPROTO_SCTP for all SCTP options.
3591 *   optname - the option name.
3592 *   optval  - the buffer to store the value of the option.
3593 *   optlen  - the size of the buffer.
3594 */
3595static int sctp_setsockopt(struct sock *sk, int level, int optname,
3596			   char __user *optval, unsigned int optlen)
3597{
3598	int retval = 0;
3599
3600	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
 
3601
3602	/* I can hardly begin to describe how wrong this is.  This is
3603	 * so broken as to be worse than useless.  The API draft
3604	 * REALLY is NOT helpful here...  I am not convinced that the
3605	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3606	 * are at all well-founded.
3607	 */
3608	if (level != SOL_SCTP) {
3609		struct sctp_af *af = sctp_sk(sk)->pf->af;
3610		retval = af->setsockopt(sk, level, optname, optval, optlen);
3611		goto out_nounlock;
3612	}
3613
3614	lock_sock(sk);
3615
3616	switch (optname) {
3617	case SCTP_SOCKOPT_BINDX_ADD:
3618		/* 'optlen' is the size of the addresses buffer. */
3619		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3620					       optlen, SCTP_BINDX_ADD_ADDR);
3621		break;
3622
3623	case SCTP_SOCKOPT_BINDX_REM:
3624		/* 'optlen' is the size of the addresses buffer. */
3625		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3626					       optlen, SCTP_BINDX_REM_ADDR);
3627		break;
3628
3629	case SCTP_SOCKOPT_CONNECTX_OLD:
3630		/* 'optlen' is the size of the addresses buffer. */
3631		retval = sctp_setsockopt_connectx_old(sk,
3632					    (struct sockaddr __user *)optval,
3633					    optlen);
3634		break;
3635
3636	case SCTP_SOCKOPT_CONNECTX:
3637		/* 'optlen' is the size of the addresses buffer. */
3638		retval = sctp_setsockopt_connectx(sk,
3639					    (struct sockaddr __user *)optval,
3640					    optlen);
3641		break;
3642
3643	case SCTP_DISABLE_FRAGMENTS:
3644		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3645		break;
3646
3647	case SCTP_EVENTS:
3648		retval = sctp_setsockopt_events(sk, optval, optlen);
3649		break;
3650
3651	case SCTP_AUTOCLOSE:
3652		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3653		break;
3654
3655	case SCTP_PEER_ADDR_PARAMS:
3656		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3657		break;
3658
3659	case SCTP_DELAYED_SACK:
3660		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3661		break;
3662	case SCTP_PARTIAL_DELIVERY_POINT:
3663		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3664		break;
3665
3666	case SCTP_INITMSG:
3667		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3668		break;
3669	case SCTP_DEFAULT_SEND_PARAM:
3670		retval = sctp_setsockopt_default_send_param(sk, optval,
3671							    optlen);
3672		break;
3673	case SCTP_PRIMARY_ADDR:
3674		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3675		break;
3676	case SCTP_SET_PEER_PRIMARY_ADDR:
3677		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3678		break;
3679	case SCTP_NODELAY:
3680		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3681		break;
3682	case SCTP_RTOINFO:
3683		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3684		break;
3685	case SCTP_ASSOCINFO:
3686		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3687		break;
3688	case SCTP_I_WANT_MAPPED_V4_ADDR:
3689		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3690		break;
3691	case SCTP_MAXSEG:
3692		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3693		break;
3694	case SCTP_ADAPTATION_LAYER:
3695		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3696		break;
3697	case SCTP_CONTEXT:
3698		retval = sctp_setsockopt_context(sk, optval, optlen);
3699		break;
3700	case SCTP_FRAGMENT_INTERLEAVE:
3701		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3702		break;
3703	case SCTP_MAX_BURST:
3704		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3705		break;
3706	case SCTP_AUTH_CHUNK:
3707		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3708		break;
3709	case SCTP_HMAC_IDENT:
3710		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3711		break;
3712	case SCTP_AUTH_KEY:
3713		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3714		break;
3715	case SCTP_AUTH_ACTIVE_KEY:
3716		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3717		break;
3718	case SCTP_AUTH_DELETE_KEY:
3719		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3720		break;
3721	case SCTP_AUTO_ASCONF:
3722		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3723		break;
3724	case SCTP_PEER_ADDR_THLDS:
3725		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3726		break;
3727	default:
3728		retval = -ENOPROTOOPT;
3729		break;
3730	}
3731
3732	release_sock(sk);
3733
3734out_nounlock:
3735	return retval;
3736}
3737
3738/* API 3.1.6 connect() - UDP Style Syntax
3739 *
3740 * An application may use the connect() call in the UDP model to initiate an
3741 * association without sending data.
3742 *
3743 * The syntax is:
3744 *
3745 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3746 *
3747 * sd: the socket descriptor to have a new association added to.
3748 *
3749 * nam: the address structure (either struct sockaddr_in or struct
3750 *    sockaddr_in6 defined in RFC2553 [7]).
3751 *
3752 * len: the size of the address.
3753 */
3754static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3755			int addr_len)
3756{
3757	int err = 0;
3758	struct sctp_af *af;
3759
3760	lock_sock(sk);
3761
3762	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3763		 addr, addr_len);
3764
3765	/* Validate addr_len before calling common connect/connectx routine. */
3766	af = sctp_get_af_specific(addr->sa_family);
3767	if (!af || addr_len < af->sockaddr_len) {
3768		err = -EINVAL;
3769	} else {
3770		/* Pass correct addr len to common routine (so it knows there
3771		 * is only one address being passed.
3772		 */
3773		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3774	}
3775
3776	release_sock(sk);
3777	return err;
3778}
3779
3780/* FIXME: Write comments. */
3781static int sctp_disconnect(struct sock *sk, int flags)
3782{
3783	return -EOPNOTSUPP; /* STUB */
3784}
3785
3786/* 4.1.4 accept() - TCP Style Syntax
3787 *
3788 * Applications use accept() call to remove an established SCTP
3789 * association from the accept queue of the endpoint.  A new socket
3790 * descriptor will be returned from accept() to represent the newly
3791 * formed association.
3792 */
3793static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3794{
3795	struct sctp_sock *sp;
3796	struct sctp_endpoint *ep;
3797	struct sock *newsk = NULL;
3798	struct sctp_association *asoc;
3799	long timeo;
3800	int error = 0;
3801
3802	lock_sock(sk);
3803
3804	sp = sctp_sk(sk);
3805	ep = sp->ep;
3806
3807	if (!sctp_style(sk, TCP)) {
3808		error = -EOPNOTSUPP;
3809		goto out;
3810	}
3811
3812	if (!sctp_sstate(sk, LISTENING)) {
3813		error = -EINVAL;
3814		goto out;
3815	}
3816
3817	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3818
3819	error = sctp_wait_for_accept(sk, timeo);
3820	if (error)
3821		goto out;
3822
3823	/* We treat the list of associations on the endpoint as the accept
3824	 * queue and pick the first association on the list.
3825	 */
3826	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3827
3828	newsk = sp->pf->create_accept_sk(sk, asoc);
3829	if (!newsk) {
3830		error = -ENOMEM;
3831		goto out;
3832	}
3833
3834	/* Populate the fields of the newsk from the oldsk and migrate the
3835	 * asoc to the newsk.
3836	 */
3837	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3838
3839out:
3840	release_sock(sk);
3841	*err = error;
3842	return newsk;
3843}
3844
3845/* The SCTP ioctl handler. */
3846static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3847{
3848	int rc = -ENOTCONN;
3849
3850	lock_sock(sk);
3851
3852	/*
3853	 * SEQPACKET-style sockets in LISTENING state are valid, for
3854	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3855	 */
3856	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3857		goto out;
3858
3859	switch (cmd) {
3860	case SIOCINQ: {
3861		struct sk_buff *skb;
3862		unsigned int amount = 0;
3863
3864		skb = skb_peek(&sk->sk_receive_queue);
3865		if (skb != NULL) {
3866			/*
3867			 * We will only return the amount of this packet since
3868			 * that is all that will be read.
3869			 */
3870			amount = skb->len;
3871		}
3872		rc = put_user(amount, (int __user *)arg);
3873		break;
3874	}
3875	default:
3876		rc = -ENOIOCTLCMD;
3877		break;
3878	}
3879out:
3880	release_sock(sk);
3881	return rc;
3882}
3883
3884/* This is the function which gets called during socket creation to
3885 * initialized the SCTP-specific portion of the sock.
3886 * The sock structure should already be zero-filled memory.
3887 */
3888static int sctp_init_sock(struct sock *sk)
3889{
3890	struct net *net = sock_net(sk);
3891	struct sctp_sock *sp;
3892
3893	pr_debug("%s: sk:%p\n", __func__, sk);
3894
3895	sp = sctp_sk(sk);
3896
3897	/* Initialize the SCTP per socket area.  */
3898	switch (sk->sk_type) {
3899	case SOCK_SEQPACKET:
3900		sp->type = SCTP_SOCKET_UDP;
3901		break;
3902	case SOCK_STREAM:
3903		sp->type = SCTP_SOCKET_TCP;
3904		break;
3905	default:
3906		return -ESOCKTNOSUPPORT;
3907	}
3908
3909	/* Initialize default send parameters. These parameters can be
3910	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3911	 */
3912	sp->default_stream = 0;
3913	sp->default_ppid = 0;
3914	sp->default_flags = 0;
3915	sp->default_context = 0;
3916	sp->default_timetolive = 0;
3917
3918	sp->default_rcv_context = 0;
3919	sp->max_burst = net->sctp.max_burst;
3920
3921	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3922
3923	/* Initialize default setup parameters. These parameters
3924	 * can be modified with the SCTP_INITMSG socket option or
3925	 * overridden by the SCTP_INIT CMSG.
3926	 */
3927	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3928	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3929	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3930	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3931
3932	/* Initialize default RTO related parameters.  These parameters can
3933	 * be modified for with the SCTP_RTOINFO socket option.
3934	 */
3935	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3936	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3937	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3938
3939	/* Initialize default association related parameters. These parameters
3940	 * can be modified with the SCTP_ASSOCINFO socket option.
3941	 */
3942	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3943	sp->assocparams.sasoc_number_peer_destinations = 0;
3944	sp->assocparams.sasoc_peer_rwnd = 0;
3945	sp->assocparams.sasoc_local_rwnd = 0;
3946	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3947
3948	/* Initialize default event subscriptions. By default, all the
3949	 * options are off.
3950	 */
3951	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3952
3953	/* Default Peer Address Parameters.  These defaults can
3954	 * be modified via SCTP_PEER_ADDR_PARAMS
3955	 */
3956	sp->hbinterval  = net->sctp.hb_interval;
3957	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3958	sp->pathmtu     = 0; /* allow default discovery */
3959	sp->sackdelay   = net->sctp.sack_timeout;
3960	sp->sackfreq	= 2;
3961	sp->param_flags = SPP_HB_ENABLE |
3962			  SPP_PMTUD_ENABLE |
3963			  SPP_SACKDELAY_ENABLE;
3964
3965	/* If enabled no SCTP message fragmentation will be performed.
3966	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3967	 */
3968	sp->disable_fragments = 0;
3969
3970	/* Enable Nagle algorithm by default.  */
3971	sp->nodelay           = 0;
3972
3973	/* Enable by default. */
3974	sp->v4mapped          = 1;
3975
3976	/* Auto-close idle associations after the configured
3977	 * number of seconds.  A value of 0 disables this
3978	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3979	 * for UDP-style sockets only.
3980	 */
3981	sp->autoclose         = 0;
3982
3983	/* User specified fragmentation limit. */
3984	sp->user_frag         = 0;
3985
3986	sp->adaptation_ind = 0;
3987
3988	sp->pf = sctp_get_pf_specific(sk->sk_family);
3989
3990	/* Control variables for partial data delivery. */
3991	atomic_set(&sp->pd_mode, 0);
3992	skb_queue_head_init(&sp->pd_lobby);
3993	sp->frag_interleave = 0;
3994
3995	/* Create a per socket endpoint structure.  Even if we
3996	 * change the data structure relationships, this may still
3997	 * be useful for storing pre-connect address information.
3998	 */
3999	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4000	if (!sp->ep)
4001		return -ENOMEM;
4002
 
4003	sp->hmac = NULL;
4004
4005	sk->sk_destruct = sctp_destruct_sock;
4006
4007	SCTP_DBG_OBJCNT_INC(sock);
4008
4009	local_bh_disable();
4010	percpu_counter_inc(&sctp_sockets_allocated);
4011	sock_prot_inuse_add(net, sk->sk_prot, 1);
4012	if (net->sctp.default_auto_asconf) {
4013		list_add_tail(&sp->auto_asconf_list,
4014		    &net->sctp.auto_asconf_splist);
4015		sp->do_auto_asconf = 1;
4016	} else
4017		sp->do_auto_asconf = 0;
4018	local_bh_enable();
4019
4020	return 0;
4021}
4022
4023/* Cleanup any SCTP per socket resources.  */
4024static void sctp_destroy_sock(struct sock *sk)
4025{
4026	struct sctp_sock *sp;
4027
4028	pr_debug("%s: sk:%p\n", __func__, sk);
4029
4030	/* Release our hold on the endpoint. */
4031	sp = sctp_sk(sk);
4032	/* This could happen during socket init, thus we bail out
4033	 * early, since the rest of the below is not setup either.
4034	 */
4035	if (sp->ep == NULL)
4036		return;
4037
4038	if (sp->do_auto_asconf) {
4039		sp->do_auto_asconf = 0;
4040		list_del(&sp->auto_asconf_list);
4041	}
4042	sctp_endpoint_free(sp->ep);
4043	local_bh_disable();
4044	percpu_counter_dec(&sctp_sockets_allocated);
4045	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4046	local_bh_enable();
4047}
4048
4049/* Triggered when there are no references on the socket anymore */
4050static void sctp_destruct_sock(struct sock *sk)
4051{
4052	struct sctp_sock *sp = sctp_sk(sk);
4053
4054	/* Free up the HMAC transform. */
4055	crypto_free_hash(sp->hmac);
4056
4057	inet_sock_destruct(sk);
4058}
4059
4060/* API 4.1.7 shutdown() - TCP Style Syntax
4061 *     int shutdown(int socket, int how);
4062 *
4063 *     sd      - the socket descriptor of the association to be closed.
4064 *     how     - Specifies the type of shutdown.  The  values  are
4065 *               as follows:
4066 *               SHUT_RD
4067 *                     Disables further receive operations. No SCTP
4068 *                     protocol action is taken.
4069 *               SHUT_WR
4070 *                     Disables further send operations, and initiates
4071 *                     the SCTP shutdown sequence.
4072 *               SHUT_RDWR
4073 *                     Disables further send  and  receive  operations
4074 *                     and initiates the SCTP shutdown sequence.
4075 */
4076static void sctp_shutdown(struct sock *sk, int how)
4077{
4078	struct net *net = sock_net(sk);
4079	struct sctp_endpoint *ep;
4080	struct sctp_association *asoc;
4081
4082	if (!sctp_style(sk, TCP))
4083		return;
4084
4085	if (how & SEND_SHUTDOWN) {
4086		ep = sctp_sk(sk)->ep;
4087		if (!list_empty(&ep->asocs)) {
4088			asoc = list_entry(ep->asocs.next,
4089					  struct sctp_association, asocs);
4090			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4091		}
4092	}
4093}
4094
4095/* 7.2.1 Association Status (SCTP_STATUS)
4096
4097 * Applications can retrieve current status information about an
4098 * association, including association state, peer receiver window size,
4099 * number of unacked data chunks, and number of data chunks pending
4100 * receipt.  This information is read-only.
4101 */
4102static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4103				       char __user *optval,
4104				       int __user *optlen)
4105{
4106	struct sctp_status status;
4107	struct sctp_association *asoc = NULL;
4108	struct sctp_transport *transport;
4109	sctp_assoc_t associd;
4110	int retval = 0;
4111
4112	if (len < sizeof(status)) {
4113		retval = -EINVAL;
4114		goto out;
4115	}
4116
4117	len = sizeof(status);
4118	if (copy_from_user(&status, optval, len)) {
4119		retval = -EFAULT;
4120		goto out;
4121	}
4122
4123	associd = status.sstat_assoc_id;
4124	asoc = sctp_id2assoc(sk, associd);
4125	if (!asoc) {
4126		retval = -EINVAL;
4127		goto out;
4128	}
4129
4130	transport = asoc->peer.primary_path;
4131
4132	status.sstat_assoc_id = sctp_assoc2id(asoc);
4133	status.sstat_state = asoc->state;
4134	status.sstat_rwnd =  asoc->peer.rwnd;
4135	status.sstat_unackdata = asoc->unack_data;
4136
4137	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4138	status.sstat_instrms = asoc->c.sinit_max_instreams;
4139	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4140	status.sstat_fragmentation_point = asoc->frag_point;
4141	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4142	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4143			transport->af_specific->sockaddr_len);
4144	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4145	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4146		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4147	status.sstat_primary.spinfo_state = transport->state;
4148	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4149	status.sstat_primary.spinfo_srtt = transport->srtt;
4150	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4151	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4152
4153	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4154		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4155
4156	if (put_user(len, optlen)) {
4157		retval = -EFAULT;
4158		goto out;
4159	}
4160
4161	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4162		 __func__, len, status.sstat_state, status.sstat_rwnd,
4163		 status.sstat_assoc_id);
4164
4165	if (copy_to_user(optval, &status, len)) {
4166		retval = -EFAULT;
4167		goto out;
4168	}
4169
4170out:
4171	return retval;
4172}
4173
4174
4175/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4176 *
4177 * Applications can retrieve information about a specific peer address
4178 * of an association, including its reachability state, congestion
4179 * window, and retransmission timer values.  This information is
4180 * read-only.
4181 */
4182static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4183					  char __user *optval,
4184					  int __user *optlen)
4185{
4186	struct sctp_paddrinfo pinfo;
4187	struct sctp_transport *transport;
4188	int retval = 0;
4189
4190	if (len < sizeof(pinfo)) {
4191		retval = -EINVAL;
4192		goto out;
4193	}
4194
4195	len = sizeof(pinfo);
4196	if (copy_from_user(&pinfo, optval, len)) {
4197		retval = -EFAULT;
4198		goto out;
4199	}
4200
4201	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4202					   pinfo.spinfo_assoc_id);
4203	if (!transport)
4204		return -EINVAL;
4205
4206	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4207	pinfo.spinfo_state = transport->state;
4208	pinfo.spinfo_cwnd = transport->cwnd;
4209	pinfo.spinfo_srtt = transport->srtt;
4210	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4211	pinfo.spinfo_mtu = transport->pathmtu;
4212
4213	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4214		pinfo.spinfo_state = SCTP_ACTIVE;
4215
4216	if (put_user(len, optlen)) {
4217		retval = -EFAULT;
4218		goto out;
4219	}
4220
4221	if (copy_to_user(optval, &pinfo, len)) {
4222		retval = -EFAULT;
4223		goto out;
4224	}
4225
4226out:
4227	return retval;
4228}
4229
4230/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4231 *
4232 * This option is a on/off flag.  If enabled no SCTP message
4233 * fragmentation will be performed.  Instead if a message being sent
4234 * exceeds the current PMTU size, the message will NOT be sent and
4235 * instead a error will be indicated to the user.
4236 */
4237static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4238					char __user *optval, int __user *optlen)
4239{
4240	int val;
4241
4242	if (len < sizeof(int))
4243		return -EINVAL;
4244
4245	len = sizeof(int);
4246	val = (sctp_sk(sk)->disable_fragments == 1);
4247	if (put_user(len, optlen))
4248		return -EFAULT;
4249	if (copy_to_user(optval, &val, len))
4250		return -EFAULT;
4251	return 0;
4252}
4253
4254/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4255 *
4256 * This socket option is used to specify various notifications and
4257 * ancillary data the user wishes to receive.
4258 */
4259static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4260				  int __user *optlen)
4261{
4262	if (len <= 0)
4263		return -EINVAL;
4264	if (len > sizeof(struct sctp_event_subscribe))
4265		len = sizeof(struct sctp_event_subscribe);
4266	if (put_user(len, optlen))
4267		return -EFAULT;
4268	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4269		return -EFAULT;
4270	return 0;
4271}
4272
4273/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4274 *
4275 * This socket option is applicable to the UDP-style socket only.  When
4276 * set it will cause associations that are idle for more than the
4277 * specified number of seconds to automatically close.  An association
4278 * being idle is defined an association that has NOT sent or received
4279 * user data.  The special value of '0' indicates that no automatic
4280 * close of any associations should be performed.  The option expects an
4281 * integer defining the number of seconds of idle time before an
4282 * association is closed.
4283 */
4284static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4285{
4286	/* Applicable to UDP-style socket only */
4287	if (sctp_style(sk, TCP))
4288		return -EOPNOTSUPP;
4289	if (len < sizeof(int))
4290		return -EINVAL;
4291	len = sizeof(int);
4292	if (put_user(len, optlen))
4293		return -EFAULT;
4294	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4295		return -EFAULT;
4296	return 0;
4297}
4298
4299/* Helper routine to branch off an association to a new socket.  */
4300int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
 
4301{
4302	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4303	struct socket *sock;
4304	struct sctp_af *af;
4305	int err = 0;
4306
4307	if (!asoc)
4308		return -EINVAL;
4309
4310	/* An association cannot be branched off from an already peeled-off
4311	 * socket, nor is this supported for tcp style sockets.
4312	 */
4313	if (!sctp_style(sk, UDP))
4314		return -EINVAL;
4315
4316	/* Create a new socket.  */
4317	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4318	if (err < 0)
4319		return err;
4320
4321	sctp_copy_sock(sock->sk, sk, asoc);
4322
4323	/* Make peeled-off sockets more like 1-1 accepted sockets.
4324	 * Set the daddr and initialize id to something more random
4325	 */
4326	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4327	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4328
4329	/* Populate the fields of the newsk from the oldsk and migrate the
4330	 * asoc to the newsk.
4331	 */
4332	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4333
4334	*sockp = sock;
4335
4336	return err;
4337}
4338EXPORT_SYMBOL(sctp_do_peeloff);
4339
4340static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4341{
4342	sctp_peeloff_arg_t peeloff;
4343	struct socket *newsock;
4344	struct file *newfile;
4345	int retval = 0;
 
4346
4347	if (len < sizeof(sctp_peeloff_arg_t))
4348		return -EINVAL;
4349	len = sizeof(sctp_peeloff_arg_t);
4350	if (copy_from_user(&peeloff, optval, len))
4351		return -EFAULT;
4352
4353	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
 
 
 
 
 
 
 
 
4354	if (retval < 0)
4355		goto out;
4356
4357	/* Map the socket to an unused fd that can be returned to the user.  */
4358	retval = get_unused_fd_flags(0);
4359	if (retval < 0) {
4360		sock_release(newsock);
4361		goto out;
4362	}
4363
4364	newfile = sock_alloc_file(newsock, 0, NULL);
4365	if (unlikely(IS_ERR(newfile))) {
4366		put_unused_fd(retval);
4367		sock_release(newsock);
4368		return PTR_ERR(newfile);
4369	}
4370
4371	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4372		 retval);
4373
4374	/* Return the fd mapped to the new socket.  */
4375	if (put_user(len, optlen)) {
4376		fput(newfile);
4377		put_unused_fd(retval);
4378		return -EFAULT;
4379	}
4380	peeloff.sd = retval;
4381	if (copy_to_user(optval, &peeloff, len)) {
4382		fput(newfile);
4383		put_unused_fd(retval);
4384		return -EFAULT;
4385	}
4386	fd_install(retval, newfile);
 
4387out:
4388	return retval;
4389}
4390
4391/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4392 *
4393 * Applications can enable or disable heartbeats for any peer address of
4394 * an association, modify an address's heartbeat interval, force a
4395 * heartbeat to be sent immediately, and adjust the address's maximum
4396 * number of retransmissions sent before an address is considered
4397 * unreachable.  The following structure is used to access and modify an
4398 * address's parameters:
4399 *
4400 *  struct sctp_paddrparams {
4401 *     sctp_assoc_t            spp_assoc_id;
4402 *     struct sockaddr_storage spp_address;
4403 *     uint32_t                spp_hbinterval;
4404 *     uint16_t                spp_pathmaxrxt;
4405 *     uint32_t                spp_pathmtu;
4406 *     uint32_t                spp_sackdelay;
4407 *     uint32_t                spp_flags;
4408 * };
4409 *
4410 *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4411 *                     application, and identifies the association for
4412 *                     this query.
4413 *   spp_address     - This specifies which address is of interest.
4414 *   spp_hbinterval  - This contains the value of the heartbeat interval,
4415 *                     in milliseconds.  If a  value of zero
4416 *                     is present in this field then no changes are to
4417 *                     be made to this parameter.
4418 *   spp_pathmaxrxt  - This contains the maximum number of
4419 *                     retransmissions before this address shall be
4420 *                     considered unreachable. If a  value of zero
4421 *                     is present in this field then no changes are to
4422 *                     be made to this parameter.
4423 *   spp_pathmtu     - When Path MTU discovery is disabled the value
4424 *                     specified here will be the "fixed" path mtu.
4425 *                     Note that if the spp_address field is empty
4426 *                     then all associations on this address will
4427 *                     have this fixed path mtu set upon them.
4428 *
4429 *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4430 *                     the number of milliseconds that sacks will be delayed
4431 *                     for. This value will apply to all addresses of an
4432 *                     association if the spp_address field is empty. Note
4433 *                     also, that if delayed sack is enabled and this
4434 *                     value is set to 0, no change is made to the last
4435 *                     recorded delayed sack timer value.
4436 *
4437 *   spp_flags       - These flags are used to control various features
4438 *                     on an association. The flag field may contain
4439 *                     zero or more of the following options.
4440 *
4441 *                     SPP_HB_ENABLE  - Enable heartbeats on the
4442 *                     specified address. Note that if the address
4443 *                     field is empty all addresses for the association
4444 *                     have heartbeats enabled upon them.
4445 *
4446 *                     SPP_HB_DISABLE - Disable heartbeats on the
4447 *                     speicifed address. Note that if the address
4448 *                     field is empty all addresses for the association
4449 *                     will have their heartbeats disabled. Note also
4450 *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4451 *                     mutually exclusive, only one of these two should
4452 *                     be specified. Enabling both fields will have
4453 *                     undetermined results.
4454 *
4455 *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4456 *                     to be made immediately.
4457 *
4458 *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4459 *                     discovery upon the specified address. Note that
4460 *                     if the address feild is empty then all addresses
4461 *                     on the association are effected.
4462 *
4463 *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4464 *                     discovery upon the specified address. Note that
4465 *                     if the address feild is empty then all addresses
4466 *                     on the association are effected. Not also that
4467 *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4468 *                     exclusive. Enabling both will have undetermined
4469 *                     results.
4470 *
4471 *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4472 *                     on delayed sack. The time specified in spp_sackdelay
4473 *                     is used to specify the sack delay for this address. Note
4474 *                     that if spp_address is empty then all addresses will
4475 *                     enable delayed sack and take on the sack delay
4476 *                     value specified in spp_sackdelay.
4477 *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4478 *                     off delayed sack. If the spp_address field is blank then
4479 *                     delayed sack is disabled for the entire association. Note
4480 *                     also that this field is mutually exclusive to
4481 *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4482 *                     results.
4483 */
4484static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4485					    char __user *optval, int __user *optlen)
4486{
4487	struct sctp_paddrparams  params;
4488	struct sctp_transport   *trans = NULL;
4489	struct sctp_association *asoc = NULL;
4490	struct sctp_sock        *sp = sctp_sk(sk);
4491
4492	if (len < sizeof(struct sctp_paddrparams))
4493		return -EINVAL;
4494	len = sizeof(struct sctp_paddrparams);
4495	if (copy_from_user(&params, optval, len))
4496		return -EFAULT;
4497
4498	/* If an address other than INADDR_ANY is specified, and
4499	 * no transport is found, then the request is invalid.
4500	 */
4501	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4502		trans = sctp_addr_id2transport(sk, &params.spp_address,
4503					       params.spp_assoc_id);
4504		if (!trans) {
4505			pr_debug("%s: failed no transport\n", __func__);
4506			return -EINVAL;
4507		}
4508	}
4509
4510	/* Get association, if assoc_id != 0 and the socket is a one
4511	 * to many style socket, and an association was not found, then
4512	 * the id was invalid.
4513	 */
4514	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4515	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4516		pr_debug("%s: failed no association\n", __func__);
4517		return -EINVAL;
4518	}
4519
4520	if (trans) {
4521		/* Fetch transport values. */
4522		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4523		params.spp_pathmtu    = trans->pathmtu;
4524		params.spp_pathmaxrxt = trans->pathmaxrxt;
4525		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4526
4527		/*draft-11 doesn't say what to return in spp_flags*/
4528		params.spp_flags      = trans->param_flags;
4529	} else if (asoc) {
4530		/* Fetch association values. */
4531		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4532		params.spp_pathmtu    = asoc->pathmtu;
4533		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4534		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4535
4536		/*draft-11 doesn't say what to return in spp_flags*/
4537		params.spp_flags      = asoc->param_flags;
4538	} else {
4539		/* Fetch socket values. */
4540		params.spp_hbinterval = sp->hbinterval;
4541		params.spp_pathmtu    = sp->pathmtu;
4542		params.spp_sackdelay  = sp->sackdelay;
4543		params.spp_pathmaxrxt = sp->pathmaxrxt;
4544
4545		/*draft-11 doesn't say what to return in spp_flags*/
4546		params.spp_flags      = sp->param_flags;
4547	}
4548
4549	if (copy_to_user(optval, &params, len))
4550		return -EFAULT;
4551
4552	if (put_user(len, optlen))
4553		return -EFAULT;
4554
4555	return 0;
4556}
4557
4558/*
4559 * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4560 *
4561 * This option will effect the way delayed acks are performed.  This
4562 * option allows you to get or set the delayed ack time, in
4563 * milliseconds.  It also allows changing the delayed ack frequency.
4564 * Changing the frequency to 1 disables the delayed sack algorithm.  If
4565 * the assoc_id is 0, then this sets or gets the endpoints default
4566 * values.  If the assoc_id field is non-zero, then the set or get
4567 * effects the specified association for the one to many model (the
4568 * assoc_id field is ignored by the one to one model).  Note that if
4569 * sack_delay or sack_freq are 0 when setting this option, then the
4570 * current values will remain unchanged.
4571 *
4572 * struct sctp_sack_info {
4573 *     sctp_assoc_t            sack_assoc_id;
4574 *     uint32_t                sack_delay;
4575 *     uint32_t                sack_freq;
4576 * };
4577 *
4578 * sack_assoc_id -  This parameter, indicates which association the user
4579 *    is performing an action upon.  Note that if this field's value is
4580 *    zero then the endpoints default value is changed (effecting future
4581 *    associations only).
4582 *
4583 * sack_delay -  This parameter contains the number of milliseconds that
4584 *    the user is requesting the delayed ACK timer be set to.  Note that
4585 *    this value is defined in the standard to be between 200 and 500
4586 *    milliseconds.
4587 *
4588 * sack_freq -  This parameter contains the number of packets that must
4589 *    be received before a sack is sent without waiting for the delay
4590 *    timer to expire.  The default value for this is 2, setting this
4591 *    value to 1 will disable the delayed sack algorithm.
4592 */
4593static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4594					    char __user *optval,
4595					    int __user *optlen)
4596{
4597	struct sctp_sack_info    params;
4598	struct sctp_association *asoc = NULL;
4599	struct sctp_sock        *sp = sctp_sk(sk);
4600
4601	if (len >= sizeof(struct sctp_sack_info)) {
4602		len = sizeof(struct sctp_sack_info);
4603
4604		if (copy_from_user(&params, optval, len))
4605			return -EFAULT;
4606	} else if (len == sizeof(struct sctp_assoc_value)) {
4607		pr_warn_ratelimited(DEPRECATED
4608				    "%s (pid %d) "
4609				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4610				    "Use struct sctp_sack_info instead\n",
4611				    current->comm, task_pid_nr(current));
4612		if (copy_from_user(&params, optval, len))
4613			return -EFAULT;
4614	} else
4615		return -EINVAL;
4616
4617	/* Get association, if sack_assoc_id != 0 and the socket is a one
4618	 * to many style socket, and an association was not found, then
4619	 * the id was invalid.
4620	 */
4621	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4622	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4623		return -EINVAL;
4624
4625	if (asoc) {
4626		/* Fetch association values. */
4627		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4628			params.sack_delay = jiffies_to_msecs(
4629				asoc->sackdelay);
4630			params.sack_freq = asoc->sackfreq;
4631
4632		} else {
4633			params.sack_delay = 0;
4634			params.sack_freq = 1;
4635		}
4636	} else {
4637		/* Fetch socket values. */
4638		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4639			params.sack_delay  = sp->sackdelay;
4640			params.sack_freq = sp->sackfreq;
4641		} else {
4642			params.sack_delay  = 0;
4643			params.sack_freq = 1;
4644		}
4645	}
4646
4647	if (copy_to_user(optval, &params, len))
4648		return -EFAULT;
4649
4650	if (put_user(len, optlen))
4651		return -EFAULT;
4652
4653	return 0;
4654}
4655
4656/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4657 *
4658 * Applications can specify protocol parameters for the default association
4659 * initialization.  The option name argument to setsockopt() and getsockopt()
4660 * is SCTP_INITMSG.
4661 *
4662 * Setting initialization parameters is effective only on an unconnected
4663 * socket (for UDP-style sockets only future associations are effected
4664 * by the change).  With TCP-style sockets, this option is inherited by
4665 * sockets derived from a listener socket.
4666 */
4667static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4668{
4669	if (len < sizeof(struct sctp_initmsg))
4670		return -EINVAL;
4671	len = sizeof(struct sctp_initmsg);
4672	if (put_user(len, optlen))
4673		return -EFAULT;
4674	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4675		return -EFAULT;
4676	return 0;
4677}
4678
4679
4680static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4681				      char __user *optval, int __user *optlen)
4682{
4683	struct sctp_association *asoc;
4684	int cnt = 0;
4685	struct sctp_getaddrs getaddrs;
4686	struct sctp_transport *from;
4687	void __user *to;
4688	union sctp_addr temp;
4689	struct sctp_sock *sp = sctp_sk(sk);
4690	int addrlen;
4691	size_t space_left;
4692	int bytes_copied;
4693
4694	if (len < sizeof(struct sctp_getaddrs))
4695		return -EINVAL;
4696
4697	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4698		return -EFAULT;
4699
4700	/* For UDP-style sockets, id specifies the association to query.  */
4701	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4702	if (!asoc)
4703		return -EINVAL;
4704
4705	to = optval + offsetof(struct sctp_getaddrs, addrs);
4706	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4707
4708	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4709				transports) {
4710		memcpy(&temp, &from->ipaddr, sizeof(temp));
4711		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4712		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4713		if (space_left < addrlen)
4714			return -ENOMEM;
4715		if (copy_to_user(to, &temp, addrlen))
4716			return -EFAULT;
4717		to += addrlen;
4718		cnt++;
4719		space_left -= addrlen;
4720	}
4721
4722	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4723		return -EFAULT;
4724	bytes_copied = ((char __user *)to) - optval;
4725	if (put_user(bytes_copied, optlen))
4726		return -EFAULT;
4727
4728	return 0;
4729}
4730
4731static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4732			    size_t space_left, int *bytes_copied)
4733{
4734	struct sctp_sockaddr_entry *addr;
4735	union sctp_addr temp;
4736	int cnt = 0;
4737	int addrlen;
4738	struct net *net = sock_net(sk);
4739
4740	rcu_read_lock();
4741	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4742		if (!addr->valid)
4743			continue;
4744
4745		if ((PF_INET == sk->sk_family) &&
4746		    (AF_INET6 == addr->a.sa.sa_family))
4747			continue;
4748		if ((PF_INET6 == sk->sk_family) &&
4749		    inet_v6_ipv6only(sk) &&
4750		    (AF_INET == addr->a.sa.sa_family))
4751			continue;
4752		memcpy(&temp, &addr->a, sizeof(temp));
4753		if (!temp.v4.sin_port)
4754			temp.v4.sin_port = htons(port);
4755
4756		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4757								&temp);
4758		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4759		if (space_left < addrlen) {
4760			cnt =  -ENOMEM;
4761			break;
4762		}
4763		memcpy(to, &temp, addrlen);
4764
4765		to += addrlen;
4766		cnt++;
4767		space_left -= addrlen;
4768		*bytes_copied += addrlen;
4769	}
4770	rcu_read_unlock();
4771
4772	return cnt;
4773}
4774
4775
4776static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4777				       char __user *optval, int __user *optlen)
4778{
4779	struct sctp_bind_addr *bp;
4780	struct sctp_association *asoc;
4781	int cnt = 0;
4782	struct sctp_getaddrs getaddrs;
4783	struct sctp_sockaddr_entry *addr;
4784	void __user *to;
4785	union sctp_addr temp;
4786	struct sctp_sock *sp = sctp_sk(sk);
4787	int addrlen;
4788	int err = 0;
4789	size_t space_left;
4790	int bytes_copied = 0;
4791	void *addrs;
4792	void *buf;
4793
4794	if (len < sizeof(struct sctp_getaddrs))
4795		return -EINVAL;
4796
4797	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4798		return -EFAULT;
4799
4800	/*
4801	 *  For UDP-style sockets, id specifies the association to query.
4802	 *  If the id field is set to the value '0' then the locally bound
4803	 *  addresses are returned without regard to any particular
4804	 *  association.
4805	 */
4806	if (0 == getaddrs.assoc_id) {
4807		bp = &sctp_sk(sk)->ep->base.bind_addr;
4808	} else {
4809		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4810		if (!asoc)
4811			return -EINVAL;
4812		bp = &asoc->base.bind_addr;
4813	}
4814
4815	to = optval + offsetof(struct sctp_getaddrs, addrs);
4816	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4817
4818	addrs = kmalloc(space_left, GFP_KERNEL);
4819	if (!addrs)
4820		return -ENOMEM;
4821
4822	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4823	 * addresses from the global local address list.
4824	 */
4825	if (sctp_list_single_entry(&bp->address_list)) {
4826		addr = list_entry(bp->address_list.next,
4827				  struct sctp_sockaddr_entry, list);
4828		if (sctp_is_any(sk, &addr->a)) {
4829			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4830						space_left, &bytes_copied);
4831			if (cnt < 0) {
4832				err = cnt;
4833				goto out;
4834			}
4835			goto copy_getaddrs;
4836		}
4837	}
4838
4839	buf = addrs;
4840	/* Protection on the bound address list is not needed since
4841	 * in the socket option context we hold a socket lock and
4842	 * thus the bound address list can't change.
4843	 */
4844	list_for_each_entry(addr, &bp->address_list, list) {
4845		memcpy(&temp, &addr->a, sizeof(temp));
4846		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4847		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4848		if (space_left < addrlen) {
4849			err =  -ENOMEM; /*fixme: right error?*/
4850			goto out;
4851		}
4852		memcpy(buf, &temp, addrlen);
4853		buf += addrlen;
4854		bytes_copied += addrlen;
4855		cnt++;
4856		space_left -= addrlen;
4857	}
4858
4859copy_getaddrs:
4860	if (copy_to_user(to, addrs, bytes_copied)) {
4861		err = -EFAULT;
4862		goto out;
4863	}
4864	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4865		err = -EFAULT;
4866		goto out;
4867	}
4868	if (put_user(bytes_copied, optlen))
4869		err = -EFAULT;
4870out:
4871	kfree(addrs);
4872	return err;
4873}
4874
4875/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4876 *
4877 * Requests that the local SCTP stack use the enclosed peer address as
4878 * the association primary.  The enclosed address must be one of the
4879 * association peer's addresses.
4880 */
4881static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4882					char __user *optval, int __user *optlen)
4883{
4884	struct sctp_prim prim;
4885	struct sctp_association *asoc;
4886	struct sctp_sock *sp = sctp_sk(sk);
4887
4888	if (len < sizeof(struct sctp_prim))
4889		return -EINVAL;
4890
4891	len = sizeof(struct sctp_prim);
4892
4893	if (copy_from_user(&prim, optval, len))
4894		return -EFAULT;
4895
4896	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4897	if (!asoc)
4898		return -EINVAL;
4899
4900	if (!asoc->peer.primary_path)
4901		return -ENOTCONN;
4902
4903	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4904		asoc->peer.primary_path->af_specific->sockaddr_len);
4905
4906	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4907			(union sctp_addr *)&prim.ssp_addr);
4908
4909	if (put_user(len, optlen))
4910		return -EFAULT;
4911	if (copy_to_user(optval, &prim, len))
4912		return -EFAULT;
4913
4914	return 0;
4915}
4916
4917/*
4918 * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4919 *
4920 * Requests that the local endpoint set the specified Adaptation Layer
4921 * Indication parameter for all future INIT and INIT-ACK exchanges.
4922 */
4923static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4924				  char __user *optval, int __user *optlen)
4925{
4926	struct sctp_setadaptation adaptation;
4927
4928	if (len < sizeof(struct sctp_setadaptation))
4929		return -EINVAL;
4930
4931	len = sizeof(struct sctp_setadaptation);
4932
4933	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4934
4935	if (put_user(len, optlen))
4936		return -EFAULT;
4937	if (copy_to_user(optval, &adaptation, len))
4938		return -EFAULT;
4939
4940	return 0;
4941}
4942
4943/*
4944 *
4945 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4946 *
4947 *   Applications that wish to use the sendto() system call may wish to
4948 *   specify a default set of parameters that would normally be supplied
4949 *   through the inclusion of ancillary data.  This socket option allows
4950 *   such an application to set the default sctp_sndrcvinfo structure.
4951
4952
4953 *   The application that wishes to use this socket option simply passes
4954 *   in to this call the sctp_sndrcvinfo structure defined in Section
4955 *   5.2.2) The input parameters accepted by this call include
4956 *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4957 *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4958 *   to this call if the caller is using the UDP model.
4959 *
4960 *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4961 */
4962static int sctp_getsockopt_default_send_param(struct sock *sk,
4963					int len, char __user *optval,
4964					int __user *optlen)
4965{
4966	struct sctp_sndrcvinfo info;
4967	struct sctp_association *asoc;
4968	struct sctp_sock *sp = sctp_sk(sk);
4969
4970	if (len < sizeof(struct sctp_sndrcvinfo))
4971		return -EINVAL;
4972
4973	len = sizeof(struct sctp_sndrcvinfo);
4974
4975	if (copy_from_user(&info, optval, len))
4976		return -EFAULT;
4977
4978	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4979	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4980		return -EINVAL;
4981
4982	if (asoc) {
4983		info.sinfo_stream = asoc->default_stream;
4984		info.sinfo_flags = asoc->default_flags;
4985		info.sinfo_ppid = asoc->default_ppid;
4986		info.sinfo_context = asoc->default_context;
4987		info.sinfo_timetolive = asoc->default_timetolive;
4988	} else {
4989		info.sinfo_stream = sp->default_stream;
4990		info.sinfo_flags = sp->default_flags;
4991		info.sinfo_ppid = sp->default_ppid;
4992		info.sinfo_context = sp->default_context;
4993		info.sinfo_timetolive = sp->default_timetolive;
4994	}
4995
4996	if (put_user(len, optlen))
4997		return -EFAULT;
4998	if (copy_to_user(optval, &info, len))
4999		return -EFAULT;
5000
5001	return 0;
5002}
5003
5004/*
5005 *
5006 * 7.1.5 SCTP_NODELAY
5007 *
5008 * Turn on/off any Nagle-like algorithm.  This means that packets are
5009 * generally sent as soon as possible and no unnecessary delays are
5010 * introduced, at the cost of more packets in the network.  Expects an
5011 * integer boolean flag.
5012 */
5013
5014static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5015				   char __user *optval, int __user *optlen)
5016{
5017	int val;
5018
5019	if (len < sizeof(int))
5020		return -EINVAL;
5021
5022	len = sizeof(int);
5023	val = (sctp_sk(sk)->nodelay == 1);
5024	if (put_user(len, optlen))
5025		return -EFAULT;
5026	if (copy_to_user(optval, &val, len))
5027		return -EFAULT;
5028	return 0;
5029}
5030
5031/*
5032 *
5033 * 7.1.1 SCTP_RTOINFO
5034 *
5035 * The protocol parameters used to initialize and bound retransmission
5036 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5037 * and modify these parameters.
5038 * All parameters are time values, in milliseconds.  A value of 0, when
5039 * modifying the parameters, indicates that the current value should not
5040 * be changed.
5041 *
5042 */
5043static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5044				char __user *optval,
5045				int __user *optlen) {
5046	struct sctp_rtoinfo rtoinfo;
5047	struct sctp_association *asoc;
5048
5049	if (len < sizeof (struct sctp_rtoinfo))
5050		return -EINVAL;
5051
5052	len = sizeof(struct sctp_rtoinfo);
5053
5054	if (copy_from_user(&rtoinfo, optval, len))
5055		return -EFAULT;
5056
5057	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5058
5059	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5060		return -EINVAL;
5061
5062	/* Values corresponding to the specific association. */
5063	if (asoc) {
5064		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5065		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5066		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5067	} else {
5068		/* Values corresponding to the endpoint. */
5069		struct sctp_sock *sp = sctp_sk(sk);
5070
5071		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5072		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5073		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5074	}
5075
5076	if (put_user(len, optlen))
5077		return -EFAULT;
5078
5079	if (copy_to_user(optval, &rtoinfo, len))
5080		return -EFAULT;
5081
5082	return 0;
5083}
5084
5085/*
5086 *
5087 * 7.1.2 SCTP_ASSOCINFO
5088 *
5089 * This option is used to tune the maximum retransmission attempts
5090 * of the association.
5091 * Returns an error if the new association retransmission value is
5092 * greater than the sum of the retransmission value  of the peer.
5093 * See [SCTP] for more information.
5094 *
5095 */
5096static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5097				     char __user *optval,
5098				     int __user *optlen)
5099{
5100
5101	struct sctp_assocparams assocparams;
5102	struct sctp_association *asoc;
5103	struct list_head *pos;
5104	int cnt = 0;
5105
5106	if (len < sizeof (struct sctp_assocparams))
5107		return -EINVAL;
5108
5109	len = sizeof(struct sctp_assocparams);
5110
5111	if (copy_from_user(&assocparams, optval, len))
5112		return -EFAULT;
5113
5114	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5115
5116	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5117		return -EINVAL;
5118
5119	/* Values correspoinding to the specific association */
5120	if (asoc) {
5121		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5122		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5123		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5124		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
 
 
 
5125
5126		list_for_each(pos, &asoc->peer.transport_addr_list) {
5127			cnt++;
5128		}
5129
5130		assocparams.sasoc_number_peer_destinations = cnt;
5131	} else {
5132		/* Values corresponding to the endpoint */
5133		struct sctp_sock *sp = sctp_sk(sk);
5134
5135		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5136		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5137		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5138		assocparams.sasoc_cookie_life =
5139					sp->assocparams.sasoc_cookie_life;
5140		assocparams.sasoc_number_peer_destinations =
5141					sp->assocparams.
5142					sasoc_number_peer_destinations;
5143	}
5144
5145	if (put_user(len, optlen))
5146		return -EFAULT;
5147
5148	if (copy_to_user(optval, &assocparams, len))
5149		return -EFAULT;
5150
5151	return 0;
5152}
5153
5154/*
5155 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5156 *
5157 * This socket option is a boolean flag which turns on or off mapped V4
5158 * addresses.  If this option is turned on and the socket is type
5159 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5160 * If this option is turned off, then no mapping will be done of V4
5161 * addresses and a user will receive both PF_INET6 and PF_INET type
5162 * addresses on the socket.
5163 */
5164static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5165				    char __user *optval, int __user *optlen)
5166{
5167	int val;
5168	struct sctp_sock *sp = sctp_sk(sk);
5169
5170	if (len < sizeof(int))
5171		return -EINVAL;
5172
5173	len = sizeof(int);
5174	val = sp->v4mapped;
5175	if (put_user(len, optlen))
5176		return -EFAULT;
5177	if (copy_to_user(optval, &val, len))
5178		return -EFAULT;
5179
5180	return 0;
5181}
5182
5183/*
5184 * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5185 * (chapter and verse is quoted at sctp_setsockopt_context())
5186 */
5187static int sctp_getsockopt_context(struct sock *sk, int len,
5188				   char __user *optval, int __user *optlen)
5189{
5190	struct sctp_assoc_value params;
5191	struct sctp_sock *sp;
5192	struct sctp_association *asoc;
5193
5194	if (len < sizeof(struct sctp_assoc_value))
5195		return -EINVAL;
5196
5197	len = sizeof(struct sctp_assoc_value);
5198
5199	if (copy_from_user(&params, optval, len))
5200		return -EFAULT;
5201
5202	sp = sctp_sk(sk);
5203
5204	if (params.assoc_id != 0) {
5205		asoc = sctp_id2assoc(sk, params.assoc_id);
5206		if (!asoc)
5207			return -EINVAL;
5208		params.assoc_value = asoc->default_rcv_context;
5209	} else {
5210		params.assoc_value = sp->default_rcv_context;
5211	}
5212
5213	if (put_user(len, optlen))
5214		return -EFAULT;
5215	if (copy_to_user(optval, &params, len))
5216		return -EFAULT;
5217
5218	return 0;
5219}
5220
5221/*
5222 * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5223 * This option will get or set the maximum size to put in any outgoing
5224 * SCTP DATA chunk.  If a message is larger than this size it will be
5225 * fragmented by SCTP into the specified size.  Note that the underlying
5226 * SCTP implementation may fragment into smaller sized chunks when the
5227 * PMTU of the underlying association is smaller than the value set by
5228 * the user.  The default value for this option is '0' which indicates
5229 * the user is NOT limiting fragmentation and only the PMTU will effect
5230 * SCTP's choice of DATA chunk size.  Note also that values set larger
5231 * than the maximum size of an IP datagram will effectively let SCTP
5232 * control fragmentation (i.e. the same as setting this option to 0).
5233 *
5234 * The following structure is used to access and modify this parameter:
5235 *
5236 * struct sctp_assoc_value {
5237 *   sctp_assoc_t assoc_id;
5238 *   uint32_t assoc_value;
5239 * };
5240 *
5241 * assoc_id:  This parameter is ignored for one-to-one style sockets.
5242 *    For one-to-many style sockets this parameter indicates which
5243 *    association the user is performing an action upon.  Note that if
5244 *    this field's value is zero then the endpoints default value is
5245 *    changed (effecting future associations only).
5246 * assoc_value:  This parameter specifies the maximum size in bytes.
5247 */
5248static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5249				  char __user *optval, int __user *optlen)
5250{
5251	struct sctp_assoc_value params;
5252	struct sctp_association *asoc;
5253
5254	if (len == sizeof(int)) {
5255		pr_warn_ratelimited(DEPRECATED
5256				    "%s (pid %d) "
5257				    "Use of int in maxseg socket option.\n"
5258				    "Use struct sctp_assoc_value instead\n",
5259				    current->comm, task_pid_nr(current));
5260		params.assoc_id = 0;
5261	} else if (len >= sizeof(struct sctp_assoc_value)) {
5262		len = sizeof(struct sctp_assoc_value);
5263		if (copy_from_user(&params, optval, sizeof(params)))
5264			return -EFAULT;
5265	} else
5266		return -EINVAL;
5267
5268	asoc = sctp_id2assoc(sk, params.assoc_id);
5269	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5270		return -EINVAL;
5271
5272	if (asoc)
5273		params.assoc_value = asoc->frag_point;
5274	else
5275		params.assoc_value = sctp_sk(sk)->user_frag;
5276
5277	if (put_user(len, optlen))
5278		return -EFAULT;
5279	if (len == sizeof(int)) {
5280		if (copy_to_user(optval, &params.assoc_value, len))
5281			return -EFAULT;
5282	} else {
5283		if (copy_to_user(optval, &params, len))
5284			return -EFAULT;
5285	}
5286
5287	return 0;
5288}
5289
5290/*
5291 * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5292 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5293 */
5294static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5295					       char __user *optval, int __user *optlen)
5296{
5297	int val;
5298
5299	if (len < sizeof(int))
5300		return -EINVAL;
5301
5302	len = sizeof(int);
5303
5304	val = sctp_sk(sk)->frag_interleave;
5305	if (put_user(len, optlen))
5306		return -EFAULT;
5307	if (copy_to_user(optval, &val, len))
5308		return -EFAULT;
5309
5310	return 0;
5311}
5312
5313/*
5314 * 7.1.25.  Set or Get the sctp partial delivery point
5315 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5316 */
5317static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5318						  char __user *optval,
5319						  int __user *optlen)
5320{
5321	u32 val;
5322
5323	if (len < sizeof(u32))
5324		return -EINVAL;
5325
5326	len = sizeof(u32);
5327
5328	val = sctp_sk(sk)->pd_point;
5329	if (put_user(len, optlen))
5330		return -EFAULT;
5331	if (copy_to_user(optval, &val, len))
5332		return -EFAULT;
5333
5334	return 0;
5335}
5336
5337/*
5338 * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5339 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5340 */
5341static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5342				    char __user *optval,
5343				    int __user *optlen)
5344{
5345	struct sctp_assoc_value params;
5346	struct sctp_sock *sp;
5347	struct sctp_association *asoc;
5348
5349	if (len == sizeof(int)) {
5350		pr_warn_ratelimited(DEPRECATED
5351				    "%s (pid %d) "
5352				    "Use of int in max_burst socket option.\n"
5353				    "Use struct sctp_assoc_value instead\n",
5354				    current->comm, task_pid_nr(current));
5355		params.assoc_id = 0;
5356	} else if (len >= sizeof(struct sctp_assoc_value)) {
5357		len = sizeof(struct sctp_assoc_value);
5358		if (copy_from_user(&params, optval, len))
5359			return -EFAULT;
5360	} else
5361		return -EINVAL;
5362
5363	sp = sctp_sk(sk);
5364
5365	if (params.assoc_id != 0) {
5366		asoc = sctp_id2assoc(sk, params.assoc_id);
5367		if (!asoc)
5368			return -EINVAL;
5369		params.assoc_value = asoc->max_burst;
5370	} else
5371		params.assoc_value = sp->max_burst;
5372
5373	if (len == sizeof(int)) {
5374		if (copy_to_user(optval, &params.assoc_value, len))
5375			return -EFAULT;
5376	} else {
5377		if (copy_to_user(optval, &params, len))
5378			return -EFAULT;
5379	}
5380
5381	return 0;
5382
5383}
5384
5385static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5386				    char __user *optval, int __user *optlen)
5387{
5388	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5389	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5390	struct sctp_hmac_algo_param *hmacs;
5391	__u16 data_len = 0;
5392	u32 num_idents;
5393
5394	if (!ep->auth_enable)
5395		return -EACCES;
5396
5397	hmacs = ep->auth_hmacs_list;
5398	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5399
5400	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5401		return -EINVAL;
5402
5403	len = sizeof(struct sctp_hmacalgo) + data_len;
5404	num_idents = data_len / sizeof(u16);
5405
5406	if (put_user(len, optlen))
5407		return -EFAULT;
5408	if (put_user(num_idents, &p->shmac_num_idents))
5409		return -EFAULT;
5410	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5411		return -EFAULT;
5412	return 0;
5413}
5414
5415static int sctp_getsockopt_active_key(struct sock *sk, int len,
5416				    char __user *optval, int __user *optlen)
5417{
5418	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5419	struct sctp_authkeyid val;
5420	struct sctp_association *asoc;
5421
5422	if (!ep->auth_enable)
5423		return -EACCES;
5424
5425	if (len < sizeof(struct sctp_authkeyid))
5426		return -EINVAL;
5427	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5428		return -EFAULT;
5429
5430	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5431	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5432		return -EINVAL;
5433
5434	if (asoc)
5435		val.scact_keynumber = asoc->active_key_id;
5436	else
5437		val.scact_keynumber = ep->active_key_id;
5438
5439	len = sizeof(struct sctp_authkeyid);
5440	if (put_user(len, optlen))
5441		return -EFAULT;
5442	if (copy_to_user(optval, &val, len))
5443		return -EFAULT;
5444
5445	return 0;
5446}
5447
5448static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5449				    char __user *optval, int __user *optlen)
5450{
5451	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5452	struct sctp_authchunks __user *p = (void __user *)optval;
5453	struct sctp_authchunks val;
5454	struct sctp_association *asoc;
5455	struct sctp_chunks_param *ch;
5456	u32    num_chunks = 0;
5457	char __user *to;
5458
5459	if (!ep->auth_enable)
5460		return -EACCES;
5461
5462	if (len < sizeof(struct sctp_authchunks))
5463		return -EINVAL;
5464
5465	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5466		return -EFAULT;
5467
5468	to = p->gauth_chunks;
5469	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5470	if (!asoc)
5471		return -EINVAL;
5472
5473	ch = asoc->peer.peer_chunks;
5474	if (!ch)
5475		goto num;
5476
5477	/* See if the user provided enough room for all the data */
5478	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5479	if (len < num_chunks)
5480		return -EINVAL;
5481
5482	if (copy_to_user(to, ch->chunks, num_chunks))
5483		return -EFAULT;
5484num:
5485	len = sizeof(struct sctp_authchunks) + num_chunks;
5486	if (put_user(len, optlen))
5487		return -EFAULT;
5488	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5489		return -EFAULT;
5490	return 0;
5491}
5492
5493static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5494				    char __user *optval, int __user *optlen)
5495{
5496	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5497	struct sctp_authchunks __user *p = (void __user *)optval;
5498	struct sctp_authchunks val;
5499	struct sctp_association *asoc;
5500	struct sctp_chunks_param *ch;
5501	u32    num_chunks = 0;
5502	char __user *to;
5503
5504	if (!ep->auth_enable)
5505		return -EACCES;
5506
5507	if (len < sizeof(struct sctp_authchunks))
5508		return -EINVAL;
5509
5510	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5511		return -EFAULT;
5512
5513	to = p->gauth_chunks;
5514	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5515	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5516		return -EINVAL;
5517
5518	if (asoc)
5519		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5520	else
5521		ch = ep->auth_chunk_list;
5522
5523	if (!ch)
5524		goto num;
5525
5526	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5527	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5528		return -EINVAL;
5529
5530	if (copy_to_user(to, ch->chunks, num_chunks))
5531		return -EFAULT;
5532num:
5533	len = sizeof(struct sctp_authchunks) + num_chunks;
5534	if (put_user(len, optlen))
5535		return -EFAULT;
5536	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5537		return -EFAULT;
5538
5539	return 0;
5540}
5541
5542/*
5543 * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5544 * This option gets the current number of associations that are attached
5545 * to a one-to-many style socket.  The option value is an uint32_t.
5546 */
5547static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5548				    char __user *optval, int __user *optlen)
5549{
5550	struct sctp_sock *sp = sctp_sk(sk);
5551	struct sctp_association *asoc;
5552	u32 val = 0;
5553
5554	if (sctp_style(sk, TCP))
5555		return -EOPNOTSUPP;
5556
5557	if (len < sizeof(u32))
5558		return -EINVAL;
5559
5560	len = sizeof(u32);
5561
5562	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5563		val++;
5564	}
5565
5566	if (put_user(len, optlen))
5567		return -EFAULT;
5568	if (copy_to_user(optval, &val, len))
5569		return -EFAULT;
5570
5571	return 0;
5572}
5573
5574/*
5575 * 8.1.23 SCTP_AUTO_ASCONF
5576 * See the corresponding setsockopt entry as description
5577 */
5578static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5579				   char __user *optval, int __user *optlen)
5580{
5581	int val = 0;
5582
5583	if (len < sizeof(int))
5584		return -EINVAL;
5585
5586	len = sizeof(int);
5587	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5588		val = 1;
5589	if (put_user(len, optlen))
5590		return -EFAULT;
5591	if (copy_to_user(optval, &val, len))
5592		return -EFAULT;
5593	return 0;
5594}
5595
5596/*
5597 * 8.2.6. Get the Current Identifiers of Associations
5598 *        (SCTP_GET_ASSOC_ID_LIST)
5599 *
5600 * This option gets the current list of SCTP association identifiers of
5601 * the SCTP associations handled by a one-to-many style socket.
5602 */
5603static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5604				    char __user *optval, int __user *optlen)
5605{
5606	struct sctp_sock *sp = sctp_sk(sk);
5607	struct sctp_association *asoc;
5608	struct sctp_assoc_ids *ids;
5609	u32 num = 0;
5610
5611	if (sctp_style(sk, TCP))
5612		return -EOPNOTSUPP;
5613
5614	if (len < sizeof(struct sctp_assoc_ids))
5615		return -EINVAL;
5616
5617	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5618		num++;
5619	}
5620
5621	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5622		return -EINVAL;
5623
5624	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5625
5626	ids = kmalloc(len, GFP_KERNEL);
5627	if (unlikely(!ids))
5628		return -ENOMEM;
5629
5630	ids->gaids_number_of_ids = num;
5631	num = 0;
5632	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5633		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5634	}
5635
5636	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5637		kfree(ids);
5638		return -EFAULT;
5639	}
5640
5641	kfree(ids);
5642	return 0;
5643}
5644
5645/*
5646 * SCTP_PEER_ADDR_THLDS
5647 *
5648 * This option allows us to fetch the partially failed threshold for one or all
5649 * transports in an association.  See Section 6.1 of:
5650 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5651 */
5652static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5653					    char __user *optval,
5654					    int len,
5655					    int __user *optlen)
5656{
5657	struct sctp_paddrthlds val;
5658	struct sctp_transport *trans;
5659	struct sctp_association *asoc;
5660
5661	if (len < sizeof(struct sctp_paddrthlds))
5662		return -EINVAL;
5663	len = sizeof(struct sctp_paddrthlds);
5664	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5665		return -EFAULT;
5666
5667	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5668		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5669		if (!asoc)
5670			return -ENOENT;
5671
5672		val.spt_pathpfthld = asoc->pf_retrans;
5673		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5674	} else {
5675		trans = sctp_addr_id2transport(sk, &val.spt_address,
5676					       val.spt_assoc_id);
5677		if (!trans)
5678			return -ENOENT;
5679
5680		val.spt_pathmaxrxt = trans->pathmaxrxt;
5681		val.spt_pathpfthld = trans->pf_retrans;
5682	}
5683
5684	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5685		return -EFAULT;
5686
5687	return 0;
5688}
5689
5690/*
5691 * SCTP_GET_ASSOC_STATS
5692 *
5693 * This option retrieves local per endpoint statistics. It is modeled
5694 * after OpenSolaris' implementation
5695 */
5696static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5697				       char __user *optval,
5698				       int __user *optlen)
5699{
5700	struct sctp_assoc_stats sas;
5701	struct sctp_association *asoc = NULL;
5702
5703	/* User must provide at least the assoc id */
5704	if (len < sizeof(sctp_assoc_t))
5705		return -EINVAL;
5706
5707	/* Allow the struct to grow and fill in as much as possible */
5708	len = min_t(size_t, len, sizeof(sas));
5709
5710	if (copy_from_user(&sas, optval, len))
5711		return -EFAULT;
5712
5713	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5714	if (!asoc)
5715		return -EINVAL;
5716
5717	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5718	sas.sas_gapcnt = asoc->stats.gapcnt;
5719	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5720	sas.sas_osacks = asoc->stats.osacks;
5721	sas.sas_isacks = asoc->stats.isacks;
5722	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5723	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5724	sas.sas_oodchunks = asoc->stats.oodchunks;
5725	sas.sas_iodchunks = asoc->stats.iodchunks;
5726	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5727	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5728	sas.sas_idupchunks = asoc->stats.idupchunks;
5729	sas.sas_opackets = asoc->stats.opackets;
5730	sas.sas_ipackets = asoc->stats.ipackets;
5731
5732	/* New high max rto observed, will return 0 if not a single
5733	 * RTO update took place. obs_rto_ipaddr will be bogus
5734	 * in such a case
5735	 */
5736	sas.sas_maxrto = asoc->stats.max_obs_rto;
5737	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5738		sizeof(struct sockaddr_storage));
5739
5740	/* Mark beginning of a new observation period */
5741	asoc->stats.max_obs_rto = asoc->rto_min;
5742
5743	if (put_user(len, optlen))
5744		return -EFAULT;
5745
5746	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5747
5748	if (copy_to_user(optval, &sas, len))
5749		return -EFAULT;
5750
5751	return 0;
5752}
5753
5754static int sctp_getsockopt(struct sock *sk, int level, int optname,
5755			   char __user *optval, int __user *optlen)
5756{
5757	int retval = 0;
5758	int len;
5759
5760	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
 
5761
5762	/* I can hardly begin to describe how wrong this is.  This is
5763	 * so broken as to be worse than useless.  The API draft
5764	 * REALLY is NOT helpful here...  I am not convinced that the
5765	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5766	 * are at all well-founded.
5767	 */
5768	if (level != SOL_SCTP) {
5769		struct sctp_af *af = sctp_sk(sk)->pf->af;
5770
5771		retval = af->getsockopt(sk, level, optname, optval, optlen);
5772		return retval;
5773	}
5774
5775	if (get_user(len, optlen))
5776		return -EFAULT;
5777
5778	lock_sock(sk);
5779
5780	switch (optname) {
5781	case SCTP_STATUS:
5782		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5783		break;
5784	case SCTP_DISABLE_FRAGMENTS:
5785		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5786							   optlen);
5787		break;
5788	case SCTP_EVENTS:
5789		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5790		break;
5791	case SCTP_AUTOCLOSE:
5792		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5793		break;
5794	case SCTP_SOCKOPT_PEELOFF:
5795		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5796		break;
5797	case SCTP_PEER_ADDR_PARAMS:
5798		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5799							  optlen);
5800		break;
5801	case SCTP_DELAYED_SACK:
5802		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5803							  optlen);
5804		break;
5805	case SCTP_INITMSG:
5806		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5807		break;
5808	case SCTP_GET_PEER_ADDRS:
5809		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5810						    optlen);
5811		break;
5812	case SCTP_GET_LOCAL_ADDRS:
5813		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5814						     optlen);
5815		break;
5816	case SCTP_SOCKOPT_CONNECTX3:
5817		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5818		break;
5819	case SCTP_DEFAULT_SEND_PARAM:
5820		retval = sctp_getsockopt_default_send_param(sk, len,
5821							    optval, optlen);
5822		break;
5823	case SCTP_PRIMARY_ADDR:
5824		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5825		break;
5826	case SCTP_NODELAY:
5827		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5828		break;
5829	case SCTP_RTOINFO:
5830		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5831		break;
5832	case SCTP_ASSOCINFO:
5833		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5834		break;
5835	case SCTP_I_WANT_MAPPED_V4_ADDR:
5836		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5837		break;
5838	case SCTP_MAXSEG:
5839		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5840		break;
5841	case SCTP_GET_PEER_ADDR_INFO:
5842		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5843							optlen);
5844		break;
5845	case SCTP_ADAPTATION_LAYER:
5846		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5847							optlen);
5848		break;
5849	case SCTP_CONTEXT:
5850		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5851		break;
5852	case SCTP_FRAGMENT_INTERLEAVE:
5853		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5854							     optlen);
5855		break;
5856	case SCTP_PARTIAL_DELIVERY_POINT:
5857		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5858								optlen);
5859		break;
5860	case SCTP_MAX_BURST:
5861		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5862		break;
5863	case SCTP_AUTH_KEY:
5864	case SCTP_AUTH_CHUNK:
5865	case SCTP_AUTH_DELETE_KEY:
5866		retval = -EOPNOTSUPP;
5867		break;
5868	case SCTP_HMAC_IDENT:
5869		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5870		break;
5871	case SCTP_AUTH_ACTIVE_KEY:
5872		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5873		break;
5874	case SCTP_PEER_AUTH_CHUNKS:
5875		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5876							optlen);
5877		break;
5878	case SCTP_LOCAL_AUTH_CHUNKS:
5879		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5880							optlen);
5881		break;
5882	case SCTP_GET_ASSOC_NUMBER:
5883		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5884		break;
5885	case SCTP_GET_ASSOC_ID_LIST:
5886		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5887		break;
5888	case SCTP_AUTO_ASCONF:
5889		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5890		break;
5891	case SCTP_PEER_ADDR_THLDS:
5892		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5893		break;
5894	case SCTP_GET_ASSOC_STATS:
5895		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5896		break;
5897	default:
5898		retval = -ENOPROTOOPT;
5899		break;
5900	}
5901
5902	release_sock(sk);
5903	return retval;
5904}
5905
5906static void sctp_hash(struct sock *sk)
5907{
5908	/* STUB */
5909}
5910
5911static void sctp_unhash(struct sock *sk)
5912{
5913	/* STUB */
5914}
5915
5916/* Check if port is acceptable.  Possibly find first available port.
5917 *
5918 * The port hash table (contained in the 'global' SCTP protocol storage
5919 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5920 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5921 * list (the list number is the port number hashed out, so as you
5922 * would expect from a hash function, all the ports in a given list have
5923 * such a number that hashes out to the same list number; you were
5924 * expecting that, right?); so each list has a set of ports, with a
5925 * link to the socket (struct sock) that uses it, the port number and
5926 * a fastreuse flag (FIXME: NPI ipg).
5927 */
5928static struct sctp_bind_bucket *sctp_bucket_create(
5929	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5930
5931static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5932{
5933	struct sctp_bind_hashbucket *head; /* hash list */
5934	struct sctp_bind_bucket *pp;
 
5935	unsigned short snum;
5936	int ret;
5937
5938	snum = ntohs(addr->v4.sin_port);
5939
5940	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5941
5942	local_bh_disable();
5943
5944	if (snum == 0) {
5945		/* Search for an available port. */
5946		int low, high, remaining, index;
5947		unsigned int rover;
5948
5949		inet_get_local_port_range(sock_net(sk), &low, &high);
5950		remaining = (high - low) + 1;
5951		rover = prandom_u32() % remaining + low;
5952
5953		do {
5954			rover++;
5955			if ((rover < low) || (rover > high))
5956				rover = low;
5957			if (inet_is_reserved_local_port(rover))
5958				continue;
5959			index = sctp_phashfn(sock_net(sk), rover);
5960			head = &sctp_port_hashtable[index];
5961			spin_lock(&head->lock);
5962			sctp_for_each_hentry(pp, &head->chain)
5963				if ((pp->port == rover) &&
5964				    net_eq(sock_net(sk), pp->net))
5965					goto next;
5966			break;
5967		next:
5968			spin_unlock(&head->lock);
5969		} while (--remaining > 0);
5970
5971		/* Exhausted local port range during search? */
5972		ret = 1;
5973		if (remaining <= 0)
5974			goto fail;
5975
5976		/* OK, here is the one we will use.  HEAD (the port
5977		 * hash table list entry) is non-NULL and we hold it's
5978		 * mutex.
5979		 */
5980		snum = rover;
5981	} else {
5982		/* We are given an specific port number; we verify
5983		 * that it is not being used. If it is used, we will
5984		 * exahust the search in the hash list corresponding
5985		 * to the port number (snum) - we detect that with the
5986		 * port iterator, pp being NULL.
5987		 */
5988		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5989		spin_lock(&head->lock);
5990		sctp_for_each_hentry(pp, &head->chain) {
5991			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5992				goto pp_found;
5993		}
5994	}
5995	pp = NULL;
5996	goto pp_not_found;
5997pp_found:
5998	if (!hlist_empty(&pp->owner)) {
5999		/* We had a port hash table hit - there is an
6000		 * available port (pp != NULL) and it is being
6001		 * used by other socket (pp->owner not empty); that other
6002		 * socket is going to be sk2.
6003		 */
6004		int reuse = sk->sk_reuse;
6005		struct sock *sk2;
6006
6007		pr_debug("%s: found a possible match\n", __func__);
6008
6009		if (pp->fastreuse && sk->sk_reuse &&
6010			sk->sk_state != SCTP_SS_LISTENING)
6011			goto success;
6012
6013		/* Run through the list of sockets bound to the port
6014		 * (pp->port) [via the pointers bind_next and
6015		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6016		 * we get the endpoint they describe and run through
6017		 * the endpoint's list of IP (v4 or v6) addresses,
6018		 * comparing each of the addresses with the address of
6019		 * the socket sk. If we find a match, then that means
6020		 * that this port/socket (sk) combination are already
6021		 * in an endpoint.
6022		 */
6023		sk_for_each_bound(sk2, &pp->owner) {
6024			struct sctp_endpoint *ep2;
6025			ep2 = sctp_sk(sk2)->ep;
6026
6027			if (sk == sk2 ||
6028			    (reuse && sk2->sk_reuse &&
6029			     sk2->sk_state != SCTP_SS_LISTENING))
6030				continue;
6031
6032			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6033						 sctp_sk(sk2), sctp_sk(sk))) {
6034				ret = (long)sk2;
6035				goto fail_unlock;
6036			}
6037		}
6038
6039		pr_debug("%s: found a match\n", __func__);
6040	}
6041pp_not_found:
6042	/* If there was a hash table miss, create a new port.  */
6043	ret = 1;
6044	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6045		goto fail_unlock;
6046
6047	/* In either case (hit or miss), make sure fastreuse is 1 only
6048	 * if sk->sk_reuse is too (that is, if the caller requested
6049	 * SO_REUSEADDR on this socket -sk-).
6050	 */
6051	if (hlist_empty(&pp->owner)) {
6052		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6053			pp->fastreuse = 1;
6054		else
6055			pp->fastreuse = 0;
6056	} else if (pp->fastreuse &&
6057		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6058		pp->fastreuse = 0;
6059
6060	/* We are set, so fill up all the data in the hash table
6061	 * entry, tie the socket list information with the rest of the
6062	 * sockets FIXME: Blurry, NPI (ipg).
6063	 */
6064success:
6065	if (!sctp_sk(sk)->bind_hash) {
6066		inet_sk(sk)->inet_num = snum;
6067		sk_add_bind_node(sk, &pp->owner);
6068		sctp_sk(sk)->bind_hash = pp;
6069	}
6070	ret = 0;
6071
6072fail_unlock:
6073	spin_unlock(&head->lock);
6074
6075fail:
6076	local_bh_enable();
6077	return ret;
6078}
6079
6080/* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6081 * port is requested.
6082 */
6083static int sctp_get_port(struct sock *sk, unsigned short snum)
6084{
 
6085	union sctp_addr addr;
6086	struct sctp_af *af = sctp_sk(sk)->pf->af;
6087
6088	/* Set up a dummy address struct from the sk. */
6089	af->from_sk(&addr, sk);
6090	addr.v4.sin_port = htons(snum);
6091
6092	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6093	return !!sctp_get_port_local(sk, &addr);
 
 
6094}
6095
6096/*
6097 *  Move a socket to LISTENING state.
6098 */
6099static int sctp_listen_start(struct sock *sk, int backlog)
6100{
6101	struct sctp_sock *sp = sctp_sk(sk);
6102	struct sctp_endpoint *ep = sp->ep;
6103	struct crypto_hash *tfm = NULL;
6104	char alg[32];
6105
6106	/* Allocate HMAC for generating cookie. */
6107	if (!sp->hmac && sp->sctp_hmac_alg) {
6108		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6109		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6110		if (IS_ERR(tfm)) {
6111			net_info_ratelimited("failed to load transform for %s: %ld\n",
6112					     sp->sctp_hmac_alg, PTR_ERR(tfm));
 
 
6113			return -ENOSYS;
6114		}
6115		sctp_sk(sk)->hmac = tfm;
6116	}
6117
6118	/*
6119	 * If a bind() or sctp_bindx() is not called prior to a listen()
6120	 * call that allows new associations to be accepted, the system
6121	 * picks an ephemeral port and will choose an address set equivalent
6122	 * to binding with a wildcard address.
6123	 *
6124	 * This is not currently spelled out in the SCTP sockets
6125	 * extensions draft, but follows the practice as seen in TCP
6126	 * sockets.
6127	 *
6128	 */
6129	sk->sk_state = SCTP_SS_LISTENING;
6130	if (!ep->base.bind_addr.port) {
6131		if (sctp_autobind(sk))
6132			return -EAGAIN;
6133	} else {
6134		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6135			sk->sk_state = SCTP_SS_CLOSED;
6136			return -EADDRINUSE;
6137		}
6138	}
6139
6140	sk->sk_max_ack_backlog = backlog;
6141	sctp_hash_endpoint(ep);
6142	return 0;
6143}
6144
6145/*
6146 * 4.1.3 / 5.1.3 listen()
6147 *
6148 *   By default, new associations are not accepted for UDP style sockets.
6149 *   An application uses listen() to mark a socket as being able to
6150 *   accept new associations.
6151 *
6152 *   On TCP style sockets, applications use listen() to ready the SCTP
6153 *   endpoint for accepting inbound associations.
6154 *
6155 *   On both types of endpoints a backlog of '0' disables listening.
6156 *
6157 *  Move a socket to LISTENING state.
6158 */
6159int sctp_inet_listen(struct socket *sock, int backlog)
6160{
6161	struct sock *sk = sock->sk;
6162	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6163	int err = -EINVAL;
6164
6165	if (unlikely(backlog < 0))
6166		return err;
6167
6168	lock_sock(sk);
6169
6170	/* Peeled-off sockets are not allowed to listen().  */
6171	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6172		goto out;
6173
6174	if (sock->state != SS_UNCONNECTED)
6175		goto out;
6176
6177	/* If backlog is zero, disable listening. */
6178	if (!backlog) {
6179		if (sctp_sstate(sk, CLOSED))
6180			goto out;
6181
6182		err = 0;
6183		sctp_unhash_endpoint(ep);
6184		sk->sk_state = SCTP_SS_CLOSED;
6185		if (sk->sk_reuse)
6186			sctp_sk(sk)->bind_hash->fastreuse = 1;
6187		goto out;
6188	}
6189
6190	/* If we are already listening, just update the backlog */
6191	if (sctp_sstate(sk, LISTENING))
6192		sk->sk_max_ack_backlog = backlog;
6193	else {
6194		err = sctp_listen_start(sk, backlog);
6195		if (err)
6196			goto out;
6197	}
6198
6199	err = 0;
6200out:
6201	release_sock(sk);
6202	return err;
6203}
6204
6205/*
6206 * This function is done by modeling the current datagram_poll() and the
6207 * tcp_poll().  Note that, based on these implementations, we don't
6208 * lock the socket in this function, even though it seems that,
6209 * ideally, locking or some other mechanisms can be used to ensure
6210 * the integrity of the counters (sndbuf and wmem_alloc) used
6211 * in this place.  We assume that we don't need locks either until proven
6212 * otherwise.
6213 *
6214 * Another thing to note is that we include the Async I/O support
6215 * here, again, by modeling the current TCP/UDP code.  We don't have
6216 * a good way to test with it yet.
6217 */
6218unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6219{
6220	struct sock *sk = sock->sk;
6221	struct sctp_sock *sp = sctp_sk(sk);
6222	unsigned int mask;
6223
6224	poll_wait(file, sk_sleep(sk), wait);
6225
6226	/* A TCP-style listening socket becomes readable when the accept queue
6227	 * is not empty.
6228	 */
6229	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6230		return (!list_empty(&sp->ep->asocs)) ?
6231			(POLLIN | POLLRDNORM) : 0;
6232
6233	mask = 0;
6234
6235	/* Is there any exceptional events?  */
6236	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6237		mask |= POLLERR |
6238			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6239	if (sk->sk_shutdown & RCV_SHUTDOWN)
6240		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6241	if (sk->sk_shutdown == SHUTDOWN_MASK)
6242		mask |= POLLHUP;
6243
6244	/* Is it readable?  Reconsider this code with TCP-style support.  */
6245	if (!skb_queue_empty(&sk->sk_receive_queue))
6246		mask |= POLLIN | POLLRDNORM;
6247
6248	/* The association is either gone or not ready.  */
6249	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6250		return mask;
6251
6252	/* Is it writable?  */
6253	if (sctp_writeable(sk)) {
6254		mask |= POLLOUT | POLLWRNORM;
6255	} else {
6256		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6257		/*
6258		 * Since the socket is not locked, the buffer
6259		 * might be made available after the writeable check and
6260		 * before the bit is set.  This could cause a lost I/O
6261		 * signal.  tcp_poll() has a race breaker for this race
6262		 * condition.  Based on their implementation, we put
6263		 * in the following code to cover it as well.
6264		 */
6265		if (sctp_writeable(sk))
6266			mask |= POLLOUT | POLLWRNORM;
6267	}
6268	return mask;
6269}
6270
6271/********************************************************************
6272 * 2nd Level Abstractions
6273 ********************************************************************/
6274
6275static struct sctp_bind_bucket *sctp_bucket_create(
6276	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6277{
6278	struct sctp_bind_bucket *pp;
6279
6280	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6281	if (pp) {
6282		SCTP_DBG_OBJCNT_INC(bind_bucket);
6283		pp->port = snum;
6284		pp->fastreuse = 0;
6285		INIT_HLIST_HEAD(&pp->owner);
6286		pp->net = net;
6287		hlist_add_head(&pp->node, &head->chain);
6288	}
6289	return pp;
6290}
6291
6292/* Caller must hold hashbucket lock for this tb with local BH disabled */
6293static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6294{
6295	if (pp && hlist_empty(&pp->owner)) {
6296		__hlist_del(&pp->node);
6297		kmem_cache_free(sctp_bucket_cachep, pp);
6298		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6299	}
6300}
6301
6302/* Release this socket's reference to a local port.  */
6303static inline void __sctp_put_port(struct sock *sk)
6304{
6305	struct sctp_bind_hashbucket *head =
6306		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6307						  inet_sk(sk)->inet_num)];
6308	struct sctp_bind_bucket *pp;
6309
6310	spin_lock(&head->lock);
6311	pp = sctp_sk(sk)->bind_hash;
6312	__sk_del_bind_node(sk);
6313	sctp_sk(sk)->bind_hash = NULL;
6314	inet_sk(sk)->inet_num = 0;
6315	sctp_bucket_destroy(pp);
6316	spin_unlock(&head->lock);
6317}
6318
6319void sctp_put_port(struct sock *sk)
6320{
6321	local_bh_disable();
6322	__sctp_put_port(sk);
6323	local_bh_enable();
6324}
6325
6326/*
6327 * The system picks an ephemeral port and choose an address set equivalent
6328 * to binding with a wildcard address.
6329 * One of those addresses will be the primary address for the association.
6330 * This automatically enables the multihoming capability of SCTP.
6331 */
6332static int sctp_autobind(struct sock *sk)
6333{
6334	union sctp_addr autoaddr;
6335	struct sctp_af *af;
6336	__be16 port;
6337
6338	/* Initialize a local sockaddr structure to INADDR_ANY. */
6339	af = sctp_sk(sk)->pf->af;
6340
6341	port = htons(inet_sk(sk)->inet_num);
6342	af->inaddr_any(&autoaddr, port);
6343
6344	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6345}
6346
6347/* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6348 *
6349 * From RFC 2292
6350 * 4.2 The cmsghdr Structure *
6351 *
6352 * When ancillary data is sent or received, any number of ancillary data
6353 * objects can be specified by the msg_control and msg_controllen members of
6354 * the msghdr structure, because each object is preceded by
6355 * a cmsghdr structure defining the object's length (the cmsg_len member).
6356 * Historically Berkeley-derived implementations have passed only one object
6357 * at a time, but this API allows multiple objects to be
6358 * passed in a single call to sendmsg() or recvmsg(). The following example
6359 * shows two ancillary data objects in a control buffer.
6360 *
6361 *   |<--------------------------- msg_controllen -------------------------->|
6362 *   |                                                                       |
6363 *
6364 *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6365 *
6366 *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6367 *   |                                   |                                   |
6368 *
6369 *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6370 *
6371 *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6372 *   |                                |  |                                |  |
6373 *
6374 *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6375 *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6376 *
6377 *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6378 *
6379 *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6380 *    ^
6381 *    |
6382 *
6383 * msg_control
6384 * points here
6385 */
6386static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
 
6387{
6388	struct cmsghdr *cmsg;
6389	struct msghdr *my_msg = (struct msghdr *)msg;
6390
6391	for (cmsg = CMSG_FIRSTHDR(msg);
6392	     cmsg != NULL;
6393	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6394		if (!CMSG_OK(my_msg, cmsg))
6395			return -EINVAL;
6396
6397		/* Should we parse this header or ignore?  */
6398		if (cmsg->cmsg_level != IPPROTO_SCTP)
6399			continue;
6400
6401		/* Strictly check lengths following example in SCM code.  */
6402		switch (cmsg->cmsg_type) {
6403		case SCTP_INIT:
6404			/* SCTP Socket API Extension
6405			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6406			 *
6407			 * This cmsghdr structure provides information for
6408			 * initializing new SCTP associations with sendmsg().
6409			 * The SCTP_INITMSG socket option uses this same data
6410			 * structure.  This structure is not used for
6411			 * recvmsg().
6412			 *
6413			 * cmsg_level    cmsg_type      cmsg_data[]
6414			 * ------------  ------------   ----------------------
6415			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6416			 */
6417			if (cmsg->cmsg_len !=
6418			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6419				return -EINVAL;
6420			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6421			break;
6422
6423		case SCTP_SNDRCV:
6424			/* SCTP Socket API Extension
6425			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6426			 *
6427			 * This cmsghdr structure specifies SCTP options for
6428			 * sendmsg() and describes SCTP header information
6429			 * about a received message through recvmsg().
6430			 *
6431			 * cmsg_level    cmsg_type      cmsg_data[]
6432			 * ------------  ------------   ----------------------
6433			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6434			 */
6435			if (cmsg->cmsg_len !=
6436			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6437				return -EINVAL;
6438
6439			cmsgs->info =
6440				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6441
6442			/* Minimally, validate the sinfo_flags. */
6443			if (cmsgs->info->sinfo_flags &
6444			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6445			      SCTP_ABORT | SCTP_EOF))
6446				return -EINVAL;
6447			break;
6448
6449		default:
6450			return -EINVAL;
6451		}
6452	}
6453	return 0;
6454}
6455
6456/*
6457 * Wait for a packet..
6458 * Note: This function is the same function as in core/datagram.c
6459 * with a few modifications to make lksctp work.
6460 */
6461static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6462{
6463	int error;
6464	DEFINE_WAIT(wait);
6465
6466	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6467
6468	/* Socket errors? */
6469	error = sock_error(sk);
6470	if (error)
6471		goto out;
6472
6473	if (!skb_queue_empty(&sk->sk_receive_queue))
6474		goto ready;
6475
6476	/* Socket shut down?  */
6477	if (sk->sk_shutdown & RCV_SHUTDOWN)
6478		goto out;
6479
6480	/* Sequenced packets can come disconnected.  If so we report the
6481	 * problem.
6482	 */
6483	error = -ENOTCONN;
6484
6485	/* Is there a good reason to think that we may receive some data?  */
6486	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6487		goto out;
6488
6489	/* Handle signals.  */
6490	if (signal_pending(current))
6491		goto interrupted;
6492
6493	/* Let another process have a go.  Since we are going to sleep
6494	 * anyway.  Note: This may cause odd behaviors if the message
6495	 * does not fit in the user's buffer, but this seems to be the
6496	 * only way to honor MSG_DONTWAIT realistically.
6497	 */
6498	release_sock(sk);
6499	*timeo_p = schedule_timeout(*timeo_p);
6500	lock_sock(sk);
6501
6502ready:
6503	finish_wait(sk_sleep(sk), &wait);
6504	return 0;
6505
6506interrupted:
6507	error = sock_intr_errno(*timeo_p);
6508
6509out:
6510	finish_wait(sk_sleep(sk), &wait);
6511	*err = error;
6512	return error;
6513}
6514
6515/* Receive a datagram.
6516 * Note: This is pretty much the same routine as in core/datagram.c
6517 * with a few changes to make lksctp work.
6518 */
6519static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6520					      int noblock, int *err)
6521{
6522	int error;
6523	struct sk_buff *skb;
6524	long timeo;
6525
6526	timeo = sock_rcvtimeo(sk, noblock);
6527
6528	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6529		 MAX_SCHEDULE_TIMEOUT);
6530
6531	do {
6532		/* Again only user level code calls this function,
6533		 * so nothing interrupt level
6534		 * will suddenly eat the receive_queue.
6535		 *
6536		 *  Look at current nfs client by the way...
6537		 *  However, this function was correct in any case. 8)
6538		 */
6539		if (flags & MSG_PEEK) {
6540			spin_lock_bh(&sk->sk_receive_queue.lock);
6541			skb = skb_peek(&sk->sk_receive_queue);
6542			if (skb)
6543				atomic_inc(&skb->users);
6544			spin_unlock_bh(&sk->sk_receive_queue.lock);
6545		} else {
6546			skb = skb_dequeue(&sk->sk_receive_queue);
6547		}
6548
6549		if (skb)
6550			return skb;
6551
6552		/* Caller is allowed not to check sk->sk_err before calling. */
6553		error = sock_error(sk);
6554		if (error)
6555			goto no_packet;
6556
6557		if (sk->sk_shutdown & RCV_SHUTDOWN)
6558			break;
6559
6560		/* User doesn't want to wait.  */
6561		error = -EAGAIN;
6562		if (!timeo)
6563			goto no_packet;
6564	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6565
6566	return NULL;
6567
6568no_packet:
6569	*err = error;
6570	return NULL;
6571}
6572
6573/* If sndbuf has changed, wake up per association sndbuf waiters.  */
6574static void __sctp_write_space(struct sctp_association *asoc)
6575{
6576	struct sock *sk = asoc->base.sk;
6577	struct socket *sock = sk->sk_socket;
6578
6579	if ((sctp_wspace(asoc) > 0) && sock) {
6580		if (waitqueue_active(&asoc->wait))
6581			wake_up_interruptible(&asoc->wait);
6582
6583		if (sctp_writeable(sk)) {
6584			wait_queue_head_t *wq = sk_sleep(sk);
6585
6586			if (wq && waitqueue_active(wq))
6587				wake_up_interruptible(wq);
6588
6589			/* Note that we try to include the Async I/O support
6590			 * here by modeling from the current TCP/UDP code.
6591			 * We have not tested with it yet.
6592			 */
6593			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6594				sock_wake_async(sock,
6595						SOCK_WAKE_SPACE, POLL_OUT);
6596		}
6597	}
6598}
6599
6600static void sctp_wake_up_waiters(struct sock *sk,
6601				 struct sctp_association *asoc)
6602{
6603	struct sctp_association *tmp = asoc;
6604
6605	/* We do accounting for the sndbuf space per association,
6606	 * so we only need to wake our own association.
6607	 */
6608	if (asoc->ep->sndbuf_policy)
6609		return __sctp_write_space(asoc);
6610
6611	/* If association goes down and is just flushing its
6612	 * outq, then just normally notify others.
6613	 */
6614	if (asoc->base.dead)
6615		return sctp_write_space(sk);
6616
6617	/* Accounting for the sndbuf space is per socket, so we
6618	 * need to wake up others, try to be fair and in case of
6619	 * other associations, let them have a go first instead
6620	 * of just doing a sctp_write_space() call.
6621	 *
6622	 * Note that we reach sctp_wake_up_waiters() only when
6623	 * associations free up queued chunks, thus we are under
6624	 * lock and the list of associations on a socket is
6625	 * guaranteed not to change.
6626	 */
6627	for (tmp = list_next_entry(tmp, asocs); 1;
6628	     tmp = list_next_entry(tmp, asocs)) {
6629		/* Manually skip the head element. */
6630		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6631			continue;
6632		/* Wake up association. */
6633		__sctp_write_space(tmp);
6634		/* We've reached the end. */
6635		if (tmp == asoc)
6636			break;
6637	}
6638}
6639
6640/* Do accounting for the sndbuf space.
6641 * Decrement the used sndbuf space of the corresponding association by the
6642 * data size which was just transmitted(freed).
6643 */
6644static void sctp_wfree(struct sk_buff *skb)
6645{
6646	struct sctp_association *asoc;
6647	struct sctp_chunk *chunk;
6648	struct sock *sk;
6649
6650	/* Get the saved chunk pointer.  */
6651	chunk = *((struct sctp_chunk **)(skb->cb));
6652	asoc = chunk->asoc;
6653	sk = asoc->base.sk;
6654	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6655				sizeof(struct sk_buff) +
6656				sizeof(struct sctp_chunk);
6657
6658	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6659
6660	/*
6661	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6662	 */
6663	sk->sk_wmem_queued   -= skb->truesize;
6664	sk_mem_uncharge(sk, skb->truesize);
6665
6666	sock_wfree(skb);
6667	sctp_wake_up_waiters(sk, asoc);
6668
6669	sctp_association_put(asoc);
6670}
6671
6672/* Do accounting for the receive space on the socket.
6673 * Accounting for the association is done in ulpevent.c
6674 * We set this as a destructor for the cloned data skbs so that
6675 * accounting is done at the correct time.
6676 */
6677void sctp_sock_rfree(struct sk_buff *skb)
6678{
6679	struct sock *sk = skb->sk;
6680	struct sctp_ulpevent *event = sctp_skb2event(skb);
6681
6682	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6683
6684	/*
6685	 * Mimic the behavior of sock_rfree
6686	 */
6687	sk_mem_uncharge(sk, event->rmem_len);
6688}
6689
6690
6691/* Helper function to wait for space in the sndbuf.  */
6692static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6693				size_t msg_len)
6694{
6695	struct sock *sk = asoc->base.sk;
6696	int err = 0;
6697	long current_timeo = *timeo_p;
6698	DEFINE_WAIT(wait);
6699
6700	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6701		 *timeo_p, msg_len);
6702
6703	/* Increment the association's refcnt.  */
6704	sctp_association_hold(asoc);
6705
6706	/* Wait on the association specific sndbuf space. */
6707	for (;;) {
6708		prepare_to_wait_exclusive(&asoc->wait, &wait,
6709					  TASK_INTERRUPTIBLE);
6710		if (!*timeo_p)
6711			goto do_nonblock;
6712		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6713		    asoc->base.dead)
6714			goto do_error;
6715		if (signal_pending(current))
6716			goto do_interrupted;
6717		if (msg_len <= sctp_wspace(asoc))
6718			break;
6719
6720		/* Let another process have a go.  Since we are going
6721		 * to sleep anyway.
6722		 */
6723		release_sock(sk);
6724		current_timeo = schedule_timeout(current_timeo);
6725		BUG_ON(sk != asoc->base.sk);
6726		lock_sock(sk);
6727
6728		*timeo_p = current_timeo;
6729	}
6730
6731out:
6732	finish_wait(&asoc->wait, &wait);
6733
6734	/* Release the association's refcnt.  */
6735	sctp_association_put(asoc);
6736
6737	return err;
6738
6739do_error:
6740	err = -EPIPE;
6741	goto out;
6742
6743do_interrupted:
6744	err = sock_intr_errno(*timeo_p);
6745	goto out;
6746
6747do_nonblock:
6748	err = -EAGAIN;
6749	goto out;
6750}
6751
6752void sctp_data_ready(struct sock *sk)
6753{
6754	struct socket_wq *wq;
6755
6756	rcu_read_lock();
6757	wq = rcu_dereference(sk->sk_wq);
6758	if (wq_has_sleeper(wq))
6759		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6760						POLLRDNORM | POLLRDBAND);
6761	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6762	rcu_read_unlock();
6763}
6764
6765/* If socket sndbuf has changed, wake up all per association waiters.  */
6766void sctp_write_space(struct sock *sk)
6767{
6768	struct sctp_association *asoc;
6769
6770	/* Wake up the tasks in each wait queue.  */
6771	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6772		__sctp_write_space(asoc);
6773	}
6774}
6775
6776/* Is there any sndbuf space available on the socket?
6777 *
6778 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6779 * associations on the same socket.  For a UDP-style socket with
6780 * multiple associations, it is possible for it to be "unwriteable"
6781 * prematurely.  I assume that this is acceptable because
6782 * a premature "unwriteable" is better than an accidental "writeable" which
6783 * would cause an unwanted block under certain circumstances.  For the 1-1
6784 * UDP-style sockets or TCP-style sockets, this code should work.
6785 *  - Daisy
6786 */
6787static int sctp_writeable(struct sock *sk)
6788{
6789	int amt = 0;
6790
6791	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6792	if (amt < 0)
6793		amt = 0;
6794	return amt;
6795}
6796
6797/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6798 * returns immediately with EINPROGRESS.
6799 */
6800static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6801{
6802	struct sock *sk = asoc->base.sk;
6803	int err = 0;
6804	long current_timeo = *timeo_p;
6805	DEFINE_WAIT(wait);
6806
6807	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
 
6808
6809	/* Increment the association's refcnt.  */
6810	sctp_association_hold(asoc);
6811
6812	for (;;) {
6813		prepare_to_wait_exclusive(&asoc->wait, &wait,
6814					  TASK_INTERRUPTIBLE);
6815		if (!*timeo_p)
6816			goto do_nonblock;
6817		if (sk->sk_shutdown & RCV_SHUTDOWN)
6818			break;
6819		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6820		    asoc->base.dead)
6821			goto do_error;
6822		if (signal_pending(current))
6823			goto do_interrupted;
6824
6825		if (sctp_state(asoc, ESTABLISHED))
6826			break;
6827
6828		/* Let another process have a go.  Since we are going
6829		 * to sleep anyway.
6830		 */
6831		release_sock(sk);
6832		current_timeo = schedule_timeout(current_timeo);
6833		lock_sock(sk);
6834
6835		*timeo_p = current_timeo;
6836	}
6837
6838out:
6839	finish_wait(&asoc->wait, &wait);
6840
6841	/* Release the association's refcnt.  */
6842	sctp_association_put(asoc);
6843
6844	return err;
6845
6846do_error:
6847	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6848		err = -ETIMEDOUT;
6849	else
6850		err = -ECONNREFUSED;
6851	goto out;
6852
6853do_interrupted:
6854	err = sock_intr_errno(*timeo_p);
6855	goto out;
6856
6857do_nonblock:
6858	err = -EINPROGRESS;
6859	goto out;
6860}
6861
6862static int sctp_wait_for_accept(struct sock *sk, long timeo)
6863{
6864	struct sctp_endpoint *ep;
6865	int err = 0;
6866	DEFINE_WAIT(wait);
6867
6868	ep = sctp_sk(sk)->ep;
6869
6870
6871	for (;;) {
6872		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6873					  TASK_INTERRUPTIBLE);
6874
6875		if (list_empty(&ep->asocs)) {
6876			release_sock(sk);
6877			timeo = schedule_timeout(timeo);
6878			lock_sock(sk);
6879		}
6880
6881		err = -EINVAL;
6882		if (!sctp_sstate(sk, LISTENING))
6883			break;
6884
6885		err = 0;
6886		if (!list_empty(&ep->asocs))
6887			break;
6888
6889		err = sock_intr_errno(timeo);
6890		if (signal_pending(current))
6891			break;
6892
6893		err = -EAGAIN;
6894		if (!timeo)
6895			break;
6896	}
6897
6898	finish_wait(sk_sleep(sk), &wait);
6899
6900	return err;
6901}
6902
6903static void sctp_wait_for_close(struct sock *sk, long timeout)
6904{
6905	DEFINE_WAIT(wait);
6906
6907	do {
6908		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6909		if (list_empty(&sctp_sk(sk)->ep->asocs))
6910			break;
6911		release_sock(sk);
6912		timeout = schedule_timeout(timeout);
6913		lock_sock(sk);
6914	} while (!signal_pending(current) && timeout);
6915
6916	finish_wait(sk_sleep(sk), &wait);
6917}
6918
6919static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6920{
6921	struct sk_buff *frag;
6922
6923	if (!skb->data_len)
6924		goto done;
6925
6926	/* Don't forget the fragments. */
6927	skb_walk_frags(skb, frag)
6928		sctp_skb_set_owner_r_frag(frag, sk);
6929
6930done:
6931	sctp_skb_set_owner_r(skb, sk);
6932}
6933
6934void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6935		    struct sctp_association *asoc)
6936{
6937	struct inet_sock *inet = inet_sk(sk);
6938	struct inet_sock *newinet;
6939
6940	newsk->sk_type = sk->sk_type;
6941	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6942	newsk->sk_flags = sk->sk_flags;
6943	newsk->sk_no_check = sk->sk_no_check;
6944	newsk->sk_reuse = sk->sk_reuse;
6945
6946	newsk->sk_shutdown = sk->sk_shutdown;
6947	newsk->sk_destruct = sctp_destruct_sock;
6948	newsk->sk_family = sk->sk_family;
6949	newsk->sk_protocol = IPPROTO_SCTP;
6950	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6951	newsk->sk_sndbuf = sk->sk_sndbuf;
6952	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6953	newsk->sk_lingertime = sk->sk_lingertime;
6954	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6955	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6956
6957	newinet = inet_sk(newsk);
6958
6959	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6960	 * getsockname() and getpeername()
6961	 */
6962	newinet->inet_sport = inet->inet_sport;
6963	newinet->inet_saddr = inet->inet_saddr;
6964	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6965	newinet->inet_dport = htons(asoc->peer.port);
6966	newinet->pmtudisc = inet->pmtudisc;
6967	newinet->inet_id = asoc->next_tsn ^ jiffies;
6968
6969	newinet->uc_ttl = inet->uc_ttl;
6970	newinet->mc_loop = 1;
6971	newinet->mc_ttl = 1;
6972	newinet->mc_index = 0;
6973	newinet->mc_list = NULL;
6974}
6975
6976/* Populate the fields of the newsk from the oldsk and migrate the assoc
6977 * and its messages to the newsk.
6978 */
6979static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6980			      struct sctp_association *assoc,
6981			      sctp_socket_type_t type)
6982{
6983	struct sctp_sock *oldsp = sctp_sk(oldsk);
6984	struct sctp_sock *newsp = sctp_sk(newsk);
6985	struct sctp_bind_bucket *pp; /* hash list port iterator */
6986	struct sctp_endpoint *newep = newsp->ep;
6987	struct sk_buff *skb, *tmp;
6988	struct sctp_ulpevent *event;
6989	struct sctp_bind_hashbucket *head;
6990	struct list_head tmplist;
6991
6992	/* Migrate socket buffer sizes and all the socket level options to the
6993	 * new socket.
6994	 */
6995	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6996	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6997	/* Brute force copy old sctp opt. */
6998	if (oldsp->do_auto_asconf) {
6999		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
7000		inet_sk_copy_descendant(newsk, oldsk);
7001		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
7002	} else
7003		inet_sk_copy_descendant(newsk, oldsk);
7004
7005	/* Restore the ep value that was overwritten with the above structure
7006	 * copy.
7007	 */
7008	newsp->ep = newep;
7009	newsp->hmac = NULL;
7010
7011	/* Hook this new socket in to the bind_hash list. */
7012	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7013						 inet_sk(oldsk)->inet_num)];
7014	local_bh_disable();
7015	spin_lock(&head->lock);
7016	pp = sctp_sk(oldsk)->bind_hash;
7017	sk_add_bind_node(newsk, &pp->owner);
7018	sctp_sk(newsk)->bind_hash = pp;
7019	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7020	spin_unlock(&head->lock);
7021	local_bh_enable();
7022
7023	/* Copy the bind_addr list from the original endpoint to the new
7024	 * endpoint so that we can handle restarts properly
7025	 */
7026	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7027				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7028
7029	/* Move any messages in the old socket's receive queue that are for the
7030	 * peeled off association to the new socket's receive queue.
7031	 */
7032	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7033		event = sctp_skb2event(skb);
7034		if (event->asoc == assoc) {
7035			__skb_unlink(skb, &oldsk->sk_receive_queue);
7036			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7037			sctp_skb_set_owner_r_frag(skb, newsk);
7038		}
7039	}
7040
7041	/* Clean up any messages pending delivery due to partial
7042	 * delivery.   Three cases:
7043	 * 1) No partial deliver;  no work.
7044	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7045	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7046	 */
7047	skb_queue_head_init(&newsp->pd_lobby);
7048	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7049
7050	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7051		struct sk_buff_head *queue;
7052
7053		/* Decide which queue to move pd_lobby skbs to. */
7054		if (assoc->ulpq.pd_mode) {
7055			queue = &newsp->pd_lobby;
7056		} else
7057			queue = &newsk->sk_receive_queue;
7058
7059		/* Walk through the pd_lobby, looking for skbs that
7060		 * need moved to the new socket.
7061		 */
7062		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7063			event = sctp_skb2event(skb);
7064			if (event->asoc == assoc) {
7065				__skb_unlink(skb, &oldsp->pd_lobby);
7066				__skb_queue_tail(queue, skb);
7067				sctp_skb_set_owner_r_frag(skb, newsk);
7068			}
7069		}
7070
7071		/* Clear up any skbs waiting for the partial
7072		 * delivery to finish.
7073		 */
7074		if (assoc->ulpq.pd_mode)
7075			sctp_clear_pd(oldsk, NULL);
7076
7077	}
7078
7079	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7080		sctp_skb_set_owner_r_frag(skb, newsk);
7081
7082	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7083		sctp_skb_set_owner_r_frag(skb, newsk);
7084
7085	/* Set the type of socket to indicate that it is peeled off from the
7086	 * original UDP-style socket or created with the accept() call on a
7087	 * TCP-style socket..
7088	 */
7089	newsp->type = type;
7090
7091	/* Mark the new socket "in-use" by the user so that any packets
7092	 * that may arrive on the association after we've moved it are
7093	 * queued to the backlog.  This prevents a potential race between
7094	 * backlog processing on the old socket and new-packet processing
7095	 * on the new socket.
7096	 *
7097	 * The caller has just allocated newsk so we can guarantee that other
7098	 * paths won't try to lock it and then oldsk.
7099	 */
7100	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7101	sctp_assoc_migrate(assoc, newsk);
7102
7103	/* If the association on the newsk is already closed before accept()
7104	 * is called, set RCV_SHUTDOWN flag.
7105	 */
7106	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7107		newsk->sk_shutdown |= RCV_SHUTDOWN;
7108
7109	newsk->sk_state = SCTP_SS_ESTABLISHED;
7110	release_sock(newsk);
7111}
7112
7113
7114/* This proto struct describes the ULP interface for SCTP.  */
7115struct proto sctp_prot = {
7116	.name        =	"SCTP",
7117	.owner       =	THIS_MODULE,
7118	.close       =	sctp_close,
7119	.connect     =	sctp_connect,
7120	.disconnect  =	sctp_disconnect,
7121	.accept      =	sctp_accept,
7122	.ioctl       =	sctp_ioctl,
7123	.init        =	sctp_init_sock,
7124	.destroy     =	sctp_destroy_sock,
7125	.shutdown    =	sctp_shutdown,
7126	.setsockopt  =	sctp_setsockopt,
7127	.getsockopt  =	sctp_getsockopt,
7128	.sendmsg     =	sctp_sendmsg,
7129	.recvmsg     =	sctp_recvmsg,
7130	.bind        =	sctp_bind,
7131	.backlog_rcv =	sctp_backlog_rcv,
7132	.hash        =	sctp_hash,
7133	.unhash      =	sctp_unhash,
7134	.get_port    =	sctp_get_port,
7135	.obj_size    =  sizeof(struct sctp_sock),
7136	.sysctl_mem  =  sysctl_sctp_mem,
7137	.sysctl_rmem =  sysctl_sctp_rmem,
7138	.sysctl_wmem =  sysctl_sctp_wmem,
7139	.memory_pressure = &sctp_memory_pressure,
7140	.enter_memory_pressure = sctp_enter_memory_pressure,
7141	.memory_allocated = &sctp_memory_allocated,
7142	.sockets_allocated = &sctp_sockets_allocated,
7143};
7144
7145#if IS_ENABLED(CONFIG_IPV6)
7146
7147struct proto sctpv6_prot = {
7148	.name		= "SCTPv6",
7149	.owner		= THIS_MODULE,
7150	.close		= sctp_close,
7151	.connect	= sctp_connect,
7152	.disconnect	= sctp_disconnect,
7153	.accept		= sctp_accept,
7154	.ioctl		= sctp_ioctl,
7155	.init		= sctp_init_sock,
7156	.destroy	= sctp_destroy_sock,
7157	.shutdown	= sctp_shutdown,
7158	.setsockopt	= sctp_setsockopt,
7159	.getsockopt	= sctp_getsockopt,
7160	.sendmsg	= sctp_sendmsg,
7161	.recvmsg	= sctp_recvmsg,
7162	.bind		= sctp_bind,
7163	.backlog_rcv	= sctp_backlog_rcv,
7164	.hash		= sctp_hash,
7165	.unhash		= sctp_unhash,
7166	.get_port	= sctp_get_port,
7167	.obj_size	= sizeof(struct sctp6_sock),
7168	.sysctl_mem	= sysctl_sctp_mem,
7169	.sysctl_rmem	= sysctl_sctp_rmem,
7170	.sysctl_wmem	= sysctl_sctp_wmem,
7171	.memory_pressure = &sctp_memory_pressure,
7172	.enter_memory_pressure = sctp_enter_memory_pressure,
7173	.memory_allocated = &sctp_memory_allocated,
7174	.sockets_allocated = &sctp_sockets_allocated,
7175};
7176#endif /* IS_ENABLED(CONFIG_IPV6) */
v3.1
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001-2003 Intel Corp.
   6 * Copyright (c) 2001-2002 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions interface with the sockets layer to implement the
  12 * SCTP Extensions for the Sockets API.
  13 *
  14 * Note that the descriptions from the specification are USER level
  15 * functions--this file is the functions which populate the struct proto
  16 * for SCTP which is the BOTTOM of the sockets interface.
  17 *
  18 * This SCTP implementation is free software;
  19 * you can redistribute it and/or modify it under the terms of
  20 * the GNU General Public License as published by
  21 * the Free Software Foundation; either version 2, or (at your option)
  22 * any later version.
  23 *
  24 * This SCTP implementation is distributed in the hope that it
  25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  26 *                 ************************
  27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  28 * See the GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with GNU CC; see the file COPYING.  If not, write to
  32 * the Free Software Foundation, 59 Temple Place - Suite 330,
  33 * Boston, MA 02111-1307, USA.
  34 *
  35 * Please send any bug reports or fixes you make to the
  36 * email address(es):
  37 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  38 *
  39 * Or submit a bug report through the following website:
  40 *    http://www.sf.net/projects/lksctp
  41 *
  42 * Written or modified by:
  43 *    La Monte H.P. Yarroll <piggy@acm.org>
  44 *    Narasimha Budihal     <narsi@refcode.org>
  45 *    Karl Knutson          <karl@athena.chicago.il.us>
  46 *    Jon Grimm             <jgrimm@us.ibm.com>
  47 *    Xingang Guo           <xingang.guo@intel.com>
  48 *    Daisy Chang           <daisyc@us.ibm.com>
  49 *    Sridhar Samudrala     <samudrala@us.ibm.com>
  50 *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
  51 *    Ardelle Fan	    <ardelle.fan@intel.com>
  52 *    Ryan Layer	    <rmlayer@us.ibm.com>
  53 *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
  54 *    Kevin Gao             <kevin.gao@intel.com>
  55 *
  56 * Any bugs reported given to us we will try to fix... any fixes shared will
  57 * be incorporated into the next SCTP release.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61
  62#include <linux/types.h>
  63#include <linux/kernel.h>
  64#include <linux/wait.h>
  65#include <linux/time.h>
  66#include <linux/ip.h>
  67#include <linux/capability.h>
  68#include <linux/fcntl.h>
  69#include <linux/poll.h>
  70#include <linux/init.h>
  71#include <linux/crypto.h>
  72#include <linux/slab.h>
 
 
  73
  74#include <net/ip.h>
  75#include <net/icmp.h>
  76#include <net/route.h>
  77#include <net/ipv6.h>
  78#include <net/inet_common.h>
  79
  80#include <linux/socket.h> /* for sa_family_t */
 
  81#include <net/sock.h>
  82#include <net/sctp/sctp.h>
  83#include <net/sctp/sm.h>
  84
  85/* WARNING:  Please do not remove the SCTP_STATIC attribute to
  86 * any of the functions below as they are used to export functions
  87 * used by a project regression testsuite.
  88 */
  89
  90/* Forward declarations for internal helper functions. */
  91static int sctp_writeable(struct sock *sk);
  92static void sctp_wfree(struct sk_buff *skb);
  93static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
  94				size_t msg_len);
  95static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
  96static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
  97static int sctp_wait_for_accept(struct sock *sk, long timeo);
  98static void sctp_wait_for_close(struct sock *sk, long timeo);
 
  99static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
 100					union sctp_addr *addr, int len);
 101static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
 102static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
 103static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
 104static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
 105static int sctp_send_asconf(struct sctp_association *asoc,
 106			    struct sctp_chunk *chunk);
 107static int sctp_do_bind(struct sock *, union sctp_addr *, int);
 108static int sctp_autobind(struct sock *sk);
 109static void sctp_sock_migrate(struct sock *, struct sock *,
 110			      struct sctp_association *, sctp_socket_type_t);
 111static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
 112
 113extern struct kmem_cache *sctp_bucket_cachep;
 114extern long sysctl_sctp_mem[3];
 115extern int sysctl_sctp_rmem[3];
 116extern int sysctl_sctp_wmem[3];
 117
 118static int sctp_memory_pressure;
 119static atomic_long_t sctp_memory_allocated;
 120struct percpu_counter sctp_sockets_allocated;
 121
 122static void sctp_enter_memory_pressure(struct sock *sk)
 123{
 124	sctp_memory_pressure = 1;
 125}
 126
 127
 128/* Get the sndbuf space available at the time on the association.  */
 129static inline int sctp_wspace(struct sctp_association *asoc)
 130{
 131	int amt;
 132
 133	if (asoc->ep->sndbuf_policy)
 134		amt = asoc->sndbuf_used;
 135	else
 136		amt = sk_wmem_alloc_get(asoc->base.sk);
 137
 138	if (amt >= asoc->base.sk->sk_sndbuf) {
 139		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
 140			amt = 0;
 141		else {
 142			amt = sk_stream_wspace(asoc->base.sk);
 143			if (amt < 0)
 144				amt = 0;
 145		}
 146	} else {
 147		amt = asoc->base.sk->sk_sndbuf - amt;
 148	}
 149	return amt;
 150}
 151
 152/* Increment the used sndbuf space count of the corresponding association by
 153 * the size of the outgoing data chunk.
 154 * Also, set the skb destructor for sndbuf accounting later.
 155 *
 156 * Since it is always 1-1 between chunk and skb, and also a new skb is always
 157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
 158 * destructor in the data chunk skb for the purpose of the sndbuf space
 159 * tracking.
 160 */
 161static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
 162{
 163	struct sctp_association *asoc = chunk->asoc;
 164	struct sock *sk = asoc->base.sk;
 165
 166	/* The sndbuf space is tracked per association.  */
 167	sctp_association_hold(asoc);
 168
 169	skb_set_owner_w(chunk->skb, sk);
 170
 171	chunk->skb->destructor = sctp_wfree;
 172	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
 173	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
 174
 175	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
 176				sizeof(struct sk_buff) +
 177				sizeof(struct sctp_chunk);
 178
 179	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
 180	sk->sk_wmem_queued += chunk->skb->truesize;
 181	sk_mem_charge(sk, chunk->skb->truesize);
 182}
 183
 184/* Verify that this is a valid address. */
 185static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
 186				   int len)
 187{
 188	struct sctp_af *af;
 189
 190	/* Verify basic sockaddr. */
 191	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
 192	if (!af)
 193		return -EINVAL;
 194
 195	/* Is this a valid SCTP address?  */
 196	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
 197		return -EINVAL;
 198
 199	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
 200		return -EINVAL;
 201
 202	return 0;
 203}
 204
 205/* Look up the association by its id.  If this is not a UDP-style
 206 * socket, the ID field is always ignored.
 207 */
 208struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
 209{
 210	struct sctp_association *asoc = NULL;
 211
 212	/* If this is not a UDP-style socket, assoc id should be ignored. */
 213	if (!sctp_style(sk, UDP)) {
 214		/* Return NULL if the socket state is not ESTABLISHED. It
 215		 * could be a TCP-style listening socket or a socket which
 216		 * hasn't yet called connect() to establish an association.
 217		 */
 218		if (!sctp_sstate(sk, ESTABLISHED))
 219			return NULL;
 220
 221		/* Get the first and the only association from the list. */
 222		if (!list_empty(&sctp_sk(sk)->ep->asocs))
 223			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
 224					  struct sctp_association, asocs);
 225		return asoc;
 226	}
 227
 228	/* Otherwise this is a UDP-style socket. */
 229	if (!id || (id == (sctp_assoc_t)-1))
 230		return NULL;
 231
 232	spin_lock_bh(&sctp_assocs_id_lock);
 233	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
 234	spin_unlock_bh(&sctp_assocs_id_lock);
 235
 236	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
 237		return NULL;
 238
 239	return asoc;
 240}
 241
 242/* Look up the transport from an address and an assoc id. If both address and
 243 * id are specified, the associations matching the address and the id should be
 244 * the same.
 245 */
 246static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
 247					      struct sockaddr_storage *addr,
 248					      sctp_assoc_t id)
 249{
 250	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
 251	struct sctp_transport *transport;
 252	union sctp_addr *laddr = (union sctp_addr *)addr;
 253
 254	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
 255					       laddr,
 256					       &transport);
 257
 258	if (!addr_asoc)
 259		return NULL;
 260
 261	id_asoc = sctp_id2assoc(sk, id);
 262	if (id_asoc && (id_asoc != addr_asoc))
 263		return NULL;
 264
 265	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
 266						(union sctp_addr *)addr);
 267
 268	return transport;
 269}
 270
 271/* API 3.1.2 bind() - UDP Style Syntax
 272 * The syntax of bind() is,
 273 *
 274 *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
 275 *
 276 *   sd      - the socket descriptor returned by socket().
 277 *   addr    - the address structure (struct sockaddr_in or struct
 278 *             sockaddr_in6 [RFC 2553]),
 279 *   addr_len - the size of the address structure.
 280 */
 281SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
 282{
 283	int retval = 0;
 284
 285	sctp_lock_sock(sk);
 286
 287	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
 288			  sk, addr, addr_len);
 289
 290	/* Disallow binding twice. */
 291	if (!sctp_sk(sk)->ep->base.bind_addr.port)
 292		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
 293				      addr_len);
 294	else
 295		retval = -EINVAL;
 296
 297	sctp_release_sock(sk);
 298
 299	return retval;
 300}
 301
 302static long sctp_get_port_local(struct sock *, union sctp_addr *);
 303
 304/* Verify this is a valid sockaddr. */
 305static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
 306					union sctp_addr *addr, int len)
 307{
 308	struct sctp_af *af;
 309
 310	/* Check minimum size.  */
 311	if (len < sizeof (struct sockaddr))
 312		return NULL;
 313
 314	/* V4 mapped address are really of AF_INET family */
 315	if (addr->sa.sa_family == AF_INET6 &&
 316	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
 317		if (!opt->pf->af_supported(AF_INET, opt))
 318			return NULL;
 319	} else {
 320		/* Does this PF support this AF? */
 321		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
 322			return NULL;
 323	}
 324
 325	/* If we get this far, af is valid. */
 326	af = sctp_get_af_specific(addr->sa.sa_family);
 327
 328	if (len < af->sockaddr_len)
 329		return NULL;
 330
 331	return af;
 332}
 333
 334/* Bind a local address either to an endpoint or to an association.  */
 335SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
 336{
 
 337	struct sctp_sock *sp = sctp_sk(sk);
 338	struct sctp_endpoint *ep = sp->ep;
 339	struct sctp_bind_addr *bp = &ep->base.bind_addr;
 340	struct sctp_af *af;
 341	unsigned short snum;
 342	int ret = 0;
 343
 344	/* Common sockaddr verification. */
 345	af = sctp_sockaddr_af(sp, addr, len);
 346	if (!af) {
 347		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
 348				  sk, addr, len);
 349		return -EINVAL;
 350	}
 351
 352	snum = ntohs(addr->v4.sin_port);
 353
 354	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
 355				 ", port: %d, new port: %d, len: %d)\n",
 356				 sk,
 357				 addr,
 358				 bp->port, snum,
 359				 len);
 360
 361	/* PF specific bind() address verification. */
 362	if (!sp->pf->bind_verify(sp, addr))
 363		return -EADDRNOTAVAIL;
 364
 365	/* We must either be unbound, or bind to the same port.
 366	 * It's OK to allow 0 ports if we are already bound.
 367	 * We'll just inhert an already bound port in this case
 368	 */
 369	if (bp->port) {
 370		if (!snum)
 371			snum = bp->port;
 372		else if (snum != bp->port) {
 373			SCTP_DEBUG_PRINTK("sctp_do_bind:"
 374				  " New port %d does not match existing port "
 375				  "%d.\n", snum, bp->port);
 376			return -EINVAL;
 377		}
 378	}
 379
 380	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
 
 381		return -EACCES;
 382
 383	/* See if the address matches any of the addresses we may have
 384	 * already bound before checking against other endpoints.
 385	 */
 386	if (sctp_bind_addr_match(bp, addr, sp))
 387		return -EINVAL;
 388
 389	/* Make sure we are allowed to bind here.
 390	 * The function sctp_get_port_local() does duplicate address
 391	 * detection.
 392	 */
 393	addr->v4.sin_port = htons(snum);
 394	if ((ret = sctp_get_port_local(sk, addr))) {
 395		return -EADDRINUSE;
 396	}
 397
 398	/* Refresh ephemeral port.  */
 399	if (!bp->port)
 400		bp->port = inet_sk(sk)->inet_num;
 401
 402	/* Add the address to the bind address list.
 403	 * Use GFP_ATOMIC since BHs will be disabled.
 404	 */
 405	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
 406
 407	/* Copy back into socket for getsockname() use. */
 408	if (!ret) {
 409		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
 410		af->to_sk_saddr(addr, sk);
 411	}
 412
 413	return ret;
 414}
 415
 416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
 417 *
 418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
 419 * at any one time.  If a sender, after sending an ASCONF chunk, decides
 420 * it needs to transfer another ASCONF Chunk, it MUST wait until the
 421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
 422 * subsequent ASCONF. Note this restriction binds each side, so at any
 423 * time two ASCONF may be in-transit on any given association (one sent
 424 * from each endpoint).
 425 */
 426static int sctp_send_asconf(struct sctp_association *asoc,
 427			    struct sctp_chunk *chunk)
 428{
 
 429	int		retval = 0;
 430
 431	/* If there is an outstanding ASCONF chunk, queue it for later
 432	 * transmission.
 433	 */
 434	if (asoc->addip_last_asconf) {
 435		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
 436		goto out;
 437	}
 438
 439	/* Hold the chunk until an ASCONF_ACK is received. */
 440	sctp_chunk_hold(chunk);
 441	retval = sctp_primitive_ASCONF(asoc, chunk);
 442	if (retval)
 443		sctp_chunk_free(chunk);
 444	else
 445		asoc->addip_last_asconf = chunk;
 446
 447out:
 448	return retval;
 449}
 450
 451/* Add a list of addresses as bind addresses to local endpoint or
 452 * association.
 453 *
 454 * Basically run through each address specified in the addrs/addrcnt
 455 * array/length pair, determine if it is IPv6 or IPv4 and call
 456 * sctp_do_bind() on it.
 457 *
 458 * If any of them fails, then the operation will be reversed and the
 459 * ones that were added will be removed.
 460 *
 461 * Only sctp_setsockopt_bindx() is supposed to call this function.
 462 */
 463static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
 464{
 465	int cnt;
 466	int retval = 0;
 467	void *addr_buf;
 468	struct sockaddr *sa_addr;
 469	struct sctp_af *af;
 470
 471	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
 472			  sk, addrs, addrcnt);
 473
 474	addr_buf = addrs;
 475	for (cnt = 0; cnt < addrcnt; cnt++) {
 476		/* The list may contain either IPv4 or IPv6 address;
 477		 * determine the address length for walking thru the list.
 478		 */
 479		sa_addr = addr_buf;
 480		af = sctp_get_af_specific(sa_addr->sa_family);
 481		if (!af) {
 482			retval = -EINVAL;
 483			goto err_bindx_add;
 484		}
 485
 486		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
 487				      af->sockaddr_len);
 488
 489		addr_buf += af->sockaddr_len;
 490
 491err_bindx_add:
 492		if (retval < 0) {
 493			/* Failed. Cleanup the ones that have been added */
 494			if (cnt > 0)
 495				sctp_bindx_rem(sk, addrs, cnt);
 496			return retval;
 497		}
 498	}
 499
 500	return retval;
 501}
 502
 503/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
 504 * associations that are part of the endpoint indicating that a list of local
 505 * addresses are added to the endpoint.
 506 *
 507 * If any of the addresses is already in the bind address list of the
 508 * association, we do not send the chunk for that association.  But it will not
 509 * affect other associations.
 510 *
 511 * Only sctp_setsockopt_bindx() is supposed to call this function.
 512 */
 513static int sctp_send_asconf_add_ip(struct sock		*sk,
 514				   struct sockaddr	*addrs,
 515				   int 			addrcnt)
 516{
 
 517	struct sctp_sock		*sp;
 518	struct sctp_endpoint		*ep;
 519	struct sctp_association		*asoc;
 520	struct sctp_bind_addr		*bp;
 521	struct sctp_chunk		*chunk;
 522	struct sctp_sockaddr_entry	*laddr;
 523	union sctp_addr			*addr;
 524	union sctp_addr			saveaddr;
 525	void				*addr_buf;
 526	struct sctp_af			*af;
 527	struct list_head		*p;
 528	int 				i;
 529	int 				retval = 0;
 530
 531	if (!sctp_addip_enable)
 532		return retval;
 533
 534	sp = sctp_sk(sk);
 535	ep = sp->ep;
 536
 537	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
 538			  __func__, sk, addrs, addrcnt);
 539
 540	list_for_each_entry(asoc, &ep->asocs, asocs) {
 541
 542		if (!asoc->peer.asconf_capable)
 543			continue;
 544
 545		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
 546			continue;
 547
 548		if (!sctp_state(asoc, ESTABLISHED))
 549			continue;
 550
 551		/* Check if any address in the packed array of addresses is
 552		 * in the bind address list of the association. If so,
 553		 * do not send the asconf chunk to its peer, but continue with
 554		 * other associations.
 555		 */
 556		addr_buf = addrs;
 557		for (i = 0; i < addrcnt; i++) {
 558			addr = addr_buf;
 559			af = sctp_get_af_specific(addr->v4.sin_family);
 560			if (!af) {
 561				retval = -EINVAL;
 562				goto out;
 563			}
 564
 565			if (sctp_assoc_lookup_laddr(asoc, addr))
 566				break;
 567
 568			addr_buf += af->sockaddr_len;
 569		}
 570		if (i < addrcnt)
 571			continue;
 572
 573		/* Use the first valid address in bind addr list of
 574		 * association as Address Parameter of ASCONF CHUNK.
 575		 */
 576		bp = &asoc->base.bind_addr;
 577		p = bp->address_list.next;
 578		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
 579		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
 580						   addrcnt, SCTP_PARAM_ADD_IP);
 581		if (!chunk) {
 582			retval = -ENOMEM;
 583			goto out;
 584		}
 585
 586		/* Add the new addresses to the bind address list with
 587		 * use_as_src set to 0.
 588		 */
 589		addr_buf = addrs;
 590		for (i = 0; i < addrcnt; i++) {
 591			addr = addr_buf;
 592			af = sctp_get_af_specific(addr->v4.sin_family);
 593			memcpy(&saveaddr, addr, af->sockaddr_len);
 594			retval = sctp_add_bind_addr(bp, &saveaddr,
 595						    SCTP_ADDR_NEW, GFP_ATOMIC);
 596			addr_buf += af->sockaddr_len;
 597		}
 598		if (asoc->src_out_of_asoc_ok) {
 599			struct sctp_transport *trans;
 600
 601			list_for_each_entry(trans,
 602			    &asoc->peer.transport_addr_list, transports) {
 603				/* Clear the source and route cache */
 604				dst_release(trans->dst);
 605				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
 606				    2*asoc->pathmtu, 4380));
 607				trans->ssthresh = asoc->peer.i.a_rwnd;
 608				trans->rto = asoc->rto_initial;
 
 609				trans->rtt = trans->srtt = trans->rttvar = 0;
 610				sctp_transport_route(trans, NULL,
 611				    sctp_sk(asoc->base.sk));
 612			}
 613		}
 614		retval = sctp_send_asconf(asoc, chunk);
 615	}
 616
 617out:
 618	return retval;
 619}
 620
 621/* Remove a list of addresses from bind addresses list.  Do not remove the
 622 * last address.
 623 *
 624 * Basically run through each address specified in the addrs/addrcnt
 625 * array/length pair, determine if it is IPv6 or IPv4 and call
 626 * sctp_del_bind() on it.
 627 *
 628 * If any of them fails, then the operation will be reversed and the
 629 * ones that were removed will be added back.
 630 *
 631 * At least one address has to be left; if only one address is
 632 * available, the operation will return -EBUSY.
 633 *
 634 * Only sctp_setsockopt_bindx() is supposed to call this function.
 635 */
 636static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
 637{
 638	struct sctp_sock *sp = sctp_sk(sk);
 639	struct sctp_endpoint *ep = sp->ep;
 640	int cnt;
 641	struct sctp_bind_addr *bp = &ep->base.bind_addr;
 642	int retval = 0;
 643	void *addr_buf;
 644	union sctp_addr *sa_addr;
 645	struct sctp_af *af;
 646
 647	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
 648			  sk, addrs, addrcnt);
 649
 650	addr_buf = addrs;
 651	for (cnt = 0; cnt < addrcnt; cnt++) {
 652		/* If the bind address list is empty or if there is only one
 653		 * bind address, there is nothing more to be removed (we need
 654		 * at least one address here).
 655		 */
 656		if (list_empty(&bp->address_list) ||
 657		    (sctp_list_single_entry(&bp->address_list))) {
 658			retval = -EBUSY;
 659			goto err_bindx_rem;
 660		}
 661
 662		sa_addr = addr_buf;
 663		af = sctp_get_af_specific(sa_addr->sa.sa_family);
 664		if (!af) {
 665			retval = -EINVAL;
 666			goto err_bindx_rem;
 667		}
 668
 669		if (!af->addr_valid(sa_addr, sp, NULL)) {
 670			retval = -EADDRNOTAVAIL;
 671			goto err_bindx_rem;
 672		}
 673
 674		if (sa_addr->v4.sin_port &&
 675		    sa_addr->v4.sin_port != htons(bp->port)) {
 676			retval = -EINVAL;
 677			goto err_bindx_rem;
 678		}
 679
 680		if (!sa_addr->v4.sin_port)
 681			sa_addr->v4.sin_port = htons(bp->port);
 682
 683		/* FIXME - There is probably a need to check if sk->sk_saddr and
 684		 * sk->sk_rcv_addr are currently set to one of the addresses to
 685		 * be removed. This is something which needs to be looked into
 686		 * when we are fixing the outstanding issues with multi-homing
 687		 * socket routing and failover schemes. Refer to comments in
 688		 * sctp_do_bind(). -daisy
 689		 */
 690		retval = sctp_del_bind_addr(bp, sa_addr);
 691
 692		addr_buf += af->sockaddr_len;
 693err_bindx_rem:
 694		if (retval < 0) {
 695			/* Failed. Add the ones that has been removed back */
 696			if (cnt > 0)
 697				sctp_bindx_add(sk, addrs, cnt);
 698			return retval;
 699		}
 700	}
 701
 702	return retval;
 703}
 704
 705/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
 706 * the associations that are part of the endpoint indicating that a list of
 707 * local addresses are removed from the endpoint.
 708 *
 709 * If any of the addresses is already in the bind address list of the
 710 * association, we do not send the chunk for that association.  But it will not
 711 * affect other associations.
 712 *
 713 * Only sctp_setsockopt_bindx() is supposed to call this function.
 714 */
 715static int sctp_send_asconf_del_ip(struct sock		*sk,
 716				   struct sockaddr	*addrs,
 717				   int			addrcnt)
 718{
 
 719	struct sctp_sock	*sp;
 720	struct sctp_endpoint	*ep;
 721	struct sctp_association	*asoc;
 722	struct sctp_transport	*transport;
 723	struct sctp_bind_addr	*bp;
 724	struct sctp_chunk	*chunk;
 725	union sctp_addr		*laddr;
 726	void			*addr_buf;
 727	struct sctp_af		*af;
 728	struct sctp_sockaddr_entry *saddr;
 729	int 			i;
 730	int 			retval = 0;
 731	int			stored = 0;
 732
 733	chunk = NULL;
 734	if (!sctp_addip_enable)
 735		return retval;
 736
 737	sp = sctp_sk(sk);
 738	ep = sp->ep;
 739
 740	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
 741			  __func__, sk, addrs, addrcnt);
 742
 743	list_for_each_entry(asoc, &ep->asocs, asocs) {
 744
 745		if (!asoc->peer.asconf_capable)
 746			continue;
 747
 748		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
 749			continue;
 750
 751		if (!sctp_state(asoc, ESTABLISHED))
 752			continue;
 753
 754		/* Check if any address in the packed array of addresses is
 755		 * not present in the bind address list of the association.
 756		 * If so, do not send the asconf chunk to its peer, but
 757		 * continue with other associations.
 758		 */
 759		addr_buf = addrs;
 760		for (i = 0; i < addrcnt; i++) {
 761			laddr = addr_buf;
 762			af = sctp_get_af_specific(laddr->v4.sin_family);
 763			if (!af) {
 764				retval = -EINVAL;
 765				goto out;
 766			}
 767
 768			if (!sctp_assoc_lookup_laddr(asoc, laddr))
 769				break;
 770
 771			addr_buf += af->sockaddr_len;
 772		}
 773		if (i < addrcnt)
 774			continue;
 775
 776		/* Find one address in the association's bind address list
 777		 * that is not in the packed array of addresses. This is to
 778		 * make sure that we do not delete all the addresses in the
 779		 * association.
 780		 */
 781		bp = &asoc->base.bind_addr;
 782		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
 783					       addrcnt, sp);
 784		if ((laddr == NULL) && (addrcnt == 1)) {
 785			if (asoc->asconf_addr_del_pending)
 786				continue;
 787			asoc->asconf_addr_del_pending =
 788			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
 789			if (asoc->asconf_addr_del_pending == NULL) {
 790				retval = -ENOMEM;
 791				goto out;
 792			}
 793			asoc->asconf_addr_del_pending->sa.sa_family =
 794				    addrs->sa_family;
 795			asoc->asconf_addr_del_pending->v4.sin_port =
 796				    htons(bp->port);
 797			if (addrs->sa_family == AF_INET) {
 798				struct sockaddr_in *sin;
 799
 800				sin = (struct sockaddr_in *)addrs;
 801				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
 802			} else if (addrs->sa_family == AF_INET6) {
 803				struct sockaddr_in6 *sin6;
 804
 805				sin6 = (struct sockaddr_in6 *)addrs;
 806				ipv6_addr_copy(&asoc->asconf_addr_del_pending->v6.sin6_addr, &sin6->sin6_addr);
 807			}
 808			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
 809			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
 810			    asoc->asconf_addr_del_pending);
 
 
 811			asoc->src_out_of_asoc_ok = 1;
 812			stored = 1;
 813			goto skip_mkasconf;
 814		}
 815
 
 
 
 816		/* We do not need RCU protection throughout this loop
 817		 * because this is done under a socket lock from the
 818		 * setsockopt call.
 819		 */
 820		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
 821						   SCTP_PARAM_DEL_IP);
 822		if (!chunk) {
 823			retval = -ENOMEM;
 824			goto out;
 825		}
 826
 827skip_mkasconf:
 828		/* Reset use_as_src flag for the addresses in the bind address
 829		 * list that are to be deleted.
 830		 */
 831		addr_buf = addrs;
 832		for (i = 0; i < addrcnt; i++) {
 833			laddr = addr_buf;
 834			af = sctp_get_af_specific(laddr->v4.sin_family);
 835			list_for_each_entry(saddr, &bp->address_list, list) {
 836				if (sctp_cmp_addr_exact(&saddr->a, laddr))
 837					saddr->state = SCTP_ADDR_DEL;
 838			}
 839			addr_buf += af->sockaddr_len;
 840		}
 841
 842		/* Update the route and saddr entries for all the transports
 843		 * as some of the addresses in the bind address list are
 844		 * about to be deleted and cannot be used as source addresses.
 845		 */
 846		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
 847					transports) {
 848			dst_release(transport->dst);
 849			sctp_transport_route(transport, NULL,
 850					     sctp_sk(asoc->base.sk));
 851		}
 852
 853		if (stored)
 854			/* We don't need to transmit ASCONF */
 855			continue;
 856		retval = sctp_send_asconf(asoc, chunk);
 857	}
 858out:
 859	return retval;
 860}
 861
 862/* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
 863int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
 864{
 865	struct sock *sk = sctp_opt2sk(sp);
 866	union sctp_addr *addr;
 867	struct sctp_af *af;
 868
 869	/* It is safe to write port space in caller. */
 870	addr = &addrw->a;
 871	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
 872	af = sctp_get_af_specific(addr->sa.sa_family);
 873	if (!af)
 874		return -EINVAL;
 875	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
 876		return -EINVAL;
 877
 878	if (addrw->state == SCTP_ADDR_NEW)
 879		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
 880	else
 881		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
 882}
 883
 884/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
 885 *
 886 * API 8.1
 887 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
 888 *                int flags);
 889 *
 890 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
 891 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
 892 * or IPv6 addresses.
 893 *
 894 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
 895 * Section 3.1.2 for this usage.
 896 *
 897 * addrs is a pointer to an array of one or more socket addresses. Each
 898 * address is contained in its appropriate structure (i.e. struct
 899 * sockaddr_in or struct sockaddr_in6) the family of the address type
 900 * must be used to distinguish the address length (note that this
 901 * representation is termed a "packed array" of addresses). The caller
 902 * specifies the number of addresses in the array with addrcnt.
 903 *
 904 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
 905 * -1, and sets errno to the appropriate error code.
 906 *
 907 * For SCTP, the port given in each socket address must be the same, or
 908 * sctp_bindx() will fail, setting errno to EINVAL.
 909 *
 910 * The flags parameter is formed from the bitwise OR of zero or more of
 911 * the following currently defined flags:
 912 *
 913 * SCTP_BINDX_ADD_ADDR
 914 *
 915 * SCTP_BINDX_REM_ADDR
 916 *
 917 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
 918 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
 919 * addresses from the association. The two flags are mutually exclusive;
 920 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
 921 * not remove all addresses from an association; sctp_bindx() will
 922 * reject such an attempt with EINVAL.
 923 *
 924 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
 925 * additional addresses with an endpoint after calling bind().  Or use
 926 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
 927 * socket is associated with so that no new association accepted will be
 928 * associated with those addresses. If the endpoint supports dynamic
 929 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
 930 * endpoint to send the appropriate message to the peer to change the
 931 * peers address lists.
 932 *
 933 * Adding and removing addresses from a connected association is
 934 * optional functionality. Implementations that do not support this
 935 * functionality should return EOPNOTSUPP.
 936 *
 937 * Basically do nothing but copying the addresses from user to kernel
 938 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
 939 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
 940 * from userspace.
 941 *
 942 * We don't use copy_from_user() for optimization: we first do the
 943 * sanity checks (buffer size -fast- and access check-healthy
 944 * pointer); if all of those succeed, then we can alloc the memory
 945 * (expensive operation) needed to copy the data to kernel. Then we do
 946 * the copying without checking the user space area
 947 * (__copy_from_user()).
 948 *
 949 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
 950 * it.
 951 *
 952 * sk        The sk of the socket
 953 * addrs     The pointer to the addresses in user land
 954 * addrssize Size of the addrs buffer
 955 * op        Operation to perform (add or remove, see the flags of
 956 *           sctp_bindx)
 957 *
 958 * Returns 0 if ok, <0 errno code on error.
 959 */
 960SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
 961				      struct sockaddr __user *addrs,
 962				      int addrs_size, int op)
 963{
 964	struct sockaddr *kaddrs;
 965	int err;
 966	int addrcnt = 0;
 967	int walk_size = 0;
 968	struct sockaddr *sa_addr;
 969	void *addr_buf;
 970	struct sctp_af *af;
 971
 972	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
 973			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
 974
 975	if (unlikely(addrs_size <= 0))
 976		return -EINVAL;
 977
 978	/* Check the user passed a healthy pointer.  */
 979	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
 980		return -EFAULT;
 981
 982	/* Alloc space for the address array in kernel memory.  */
 983	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
 984	if (unlikely(!kaddrs))
 985		return -ENOMEM;
 986
 987	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
 988		kfree(kaddrs);
 989		return -EFAULT;
 990	}
 991
 992	/* Walk through the addrs buffer and count the number of addresses. */
 993	addr_buf = kaddrs;
 994	while (walk_size < addrs_size) {
 995		if (walk_size + sizeof(sa_family_t) > addrs_size) {
 996			kfree(kaddrs);
 997			return -EINVAL;
 998		}
 999
1000		sa_addr = addr_buf;
1001		af = sctp_get_af_specific(sa_addr->sa_family);
1002
1003		/* If the address family is not supported or if this address
1004		 * causes the address buffer to overflow return EINVAL.
1005		 */
1006		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1007			kfree(kaddrs);
1008			return -EINVAL;
1009		}
1010		addrcnt++;
1011		addr_buf += af->sockaddr_len;
1012		walk_size += af->sockaddr_len;
1013	}
1014
1015	/* Do the work. */
1016	switch (op) {
1017	case SCTP_BINDX_ADD_ADDR:
1018		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1019		if (err)
1020			goto out;
1021		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1022		break;
1023
1024	case SCTP_BINDX_REM_ADDR:
1025		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1026		if (err)
1027			goto out;
1028		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1029		break;
1030
1031	default:
1032		err = -EINVAL;
1033		break;
1034	}
1035
1036out:
1037	kfree(kaddrs);
1038
1039	return err;
1040}
1041
1042/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1043 *
1044 * Common routine for handling connect() and sctp_connectx().
1045 * Connect will come in with just a single address.
1046 */
1047static int __sctp_connect(struct sock* sk,
1048			  struct sockaddr *kaddrs,
1049			  int addrs_size,
1050			  sctp_assoc_t *assoc_id)
1051{
 
1052	struct sctp_sock *sp;
1053	struct sctp_endpoint *ep;
1054	struct sctp_association *asoc = NULL;
1055	struct sctp_association *asoc2;
1056	struct sctp_transport *transport;
1057	union sctp_addr to;
1058	struct sctp_af *af;
1059	sctp_scope_t scope;
1060	long timeo;
1061	int err = 0;
1062	int addrcnt = 0;
1063	int walk_size = 0;
1064	union sctp_addr *sa_addr = NULL;
1065	void *addr_buf;
1066	unsigned short port;
1067	unsigned int f_flags = 0;
1068
1069	sp = sctp_sk(sk);
1070	ep = sp->ep;
1071
1072	/* connect() cannot be done on a socket that is already in ESTABLISHED
1073	 * state - UDP-style peeled off socket or a TCP-style socket that
1074	 * is already connected.
1075	 * It cannot be done even on a TCP-style listening socket.
1076	 */
1077	if (sctp_sstate(sk, ESTABLISHED) ||
1078	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1079		err = -EISCONN;
1080		goto out_free;
1081	}
1082
1083	/* Walk through the addrs buffer and count the number of addresses. */
1084	addr_buf = kaddrs;
1085	while (walk_size < addrs_size) {
1086		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087			err = -EINVAL;
1088			goto out_free;
1089		}
1090
1091		sa_addr = addr_buf;
1092		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093
1094		/* If the address family is not supported or if this address
1095		 * causes the address buffer to overflow return EINVAL.
1096		 */
1097		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098			err = -EINVAL;
1099			goto out_free;
1100		}
1101
1102		port = ntohs(sa_addr->v4.sin_port);
1103
1104		/* Save current address so we can work with it */
1105		memcpy(&to, sa_addr, af->sockaddr_len);
1106
1107		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108		if (err)
1109			goto out_free;
1110
1111		/* Make sure the destination port is correctly set
1112		 * in all addresses.
1113		 */
1114		if (asoc && asoc->peer.port && asoc->peer.port != port)
 
1115			goto out_free;
1116
1117
1118		/* Check if there already is a matching association on the
1119		 * endpoint (other than the one created here).
1120		 */
1121		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1122		if (asoc2 && asoc2 != asoc) {
1123			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1124				err = -EISCONN;
1125			else
1126				err = -EALREADY;
1127			goto out_free;
1128		}
1129
1130		/* If we could not find a matching association on the endpoint,
1131		 * make sure that there is no peeled-off association matching
1132		 * the peer address even on another socket.
1133		 */
1134		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1135			err = -EADDRNOTAVAIL;
1136			goto out_free;
1137		}
1138
1139		if (!asoc) {
1140			/* If a bind() or sctp_bindx() is not called prior to
1141			 * an sctp_connectx() call, the system picks an
1142			 * ephemeral port and will choose an address set
1143			 * equivalent to binding with a wildcard address.
1144			 */
1145			if (!ep->base.bind_addr.port) {
1146				if (sctp_autobind(sk)) {
1147					err = -EAGAIN;
1148					goto out_free;
1149				}
1150			} else {
1151				/*
1152				 * If an unprivileged user inherits a 1-many
1153				 * style socket with open associations on a
1154				 * privileged port, it MAY be permitted to
1155				 * accept new associations, but it SHOULD NOT
1156				 * be permitted to open new associations.
1157				 */
1158				if (ep->base.bind_addr.port < PROT_SOCK &&
1159				    !capable(CAP_NET_BIND_SERVICE)) {
1160					err = -EACCES;
1161					goto out_free;
1162				}
1163			}
1164
1165			scope = sctp_scope(&to);
1166			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1167			if (!asoc) {
1168				err = -ENOMEM;
1169				goto out_free;
1170			}
1171
1172			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1173							      GFP_KERNEL);
1174			if (err < 0) {
1175				goto out_free;
1176			}
1177
1178		}
1179
1180		/* Prime the peer's transport structures.  */
1181		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1182						SCTP_UNKNOWN);
1183		if (!transport) {
1184			err = -ENOMEM;
1185			goto out_free;
1186		}
1187
1188		addrcnt++;
1189		addr_buf += af->sockaddr_len;
1190		walk_size += af->sockaddr_len;
1191	}
1192
1193	/* In case the user of sctp_connectx() wants an association
1194	 * id back, assign one now.
1195	 */
1196	if (assoc_id) {
1197		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1198		if (err < 0)
1199			goto out_free;
1200	}
1201
1202	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1203	if (err < 0) {
1204		goto out_free;
1205	}
1206
1207	/* Initialize sk's dport and daddr for getpeername() */
1208	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1209	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1210	af->to_sk_daddr(sa_addr, sk);
1211	sk->sk_err = 0;
1212
1213	/* in-kernel sockets don't generally have a file allocated to them
1214	 * if all they do is call sock_create_kern().
1215	 */
1216	if (sk->sk_socket->file)
1217		f_flags = sk->sk_socket->file->f_flags;
1218
1219	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1220
1221	err = sctp_wait_for_connect(asoc, &timeo);
1222	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1223		*assoc_id = asoc->assoc_id;
1224
1225	/* Don't free association on exit. */
1226	asoc = NULL;
1227
1228out_free:
 
 
1229
1230	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1231			  " kaddrs: %p err: %d\n",
1232			  asoc, kaddrs, err);
1233	if (asoc)
 
 
1234		sctp_association_free(asoc);
 
1235	return err;
1236}
1237
1238/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239 *
1240 * API 8.9
1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242 * 			sctp_assoc_t *asoc);
1243 *
1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246 * or IPv6 addresses.
1247 *
1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249 * Section 3.1.2 for this usage.
1250 *
1251 * addrs is a pointer to an array of one or more socket addresses. Each
1252 * address is contained in its appropriate structure (i.e. struct
1253 * sockaddr_in or struct sockaddr_in6) the family of the address type
1254 * must be used to distengish the address length (note that this
1255 * representation is termed a "packed array" of addresses). The caller
1256 * specifies the number of addresses in the array with addrcnt.
1257 *
1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259 * the association id of the new association.  On failure, sctp_connectx()
1260 * returns -1, and sets errno to the appropriate error code.  The assoc_id
1261 * is not touched by the kernel.
1262 *
1263 * For SCTP, the port given in each socket address must be the same, or
1264 * sctp_connectx() will fail, setting errno to EINVAL.
1265 *
1266 * An application can use sctp_connectx to initiate an association with
1267 * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1268 * allows a caller to specify multiple addresses at which a peer can be
1269 * reached.  The way the SCTP stack uses the list of addresses to set up
1270 * the association is implementation dependent.  This function only
1271 * specifies that the stack will try to make use of all the addresses in
1272 * the list when needed.
1273 *
1274 * Note that the list of addresses passed in is only used for setting up
1275 * the association.  It does not necessarily equal the set of addresses
1276 * the peer uses for the resulting association.  If the caller wants to
1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278 * retrieve them after the association has been set up.
1279 *
1280 * Basically do nothing but copying the addresses from user to kernel
1281 * land and invoking either sctp_connectx(). This is used for tunneling
1282 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283 *
1284 * We don't use copy_from_user() for optimization: we first do the
1285 * sanity checks (buffer size -fast- and access check-healthy
1286 * pointer); if all of those succeed, then we can alloc the memory
1287 * (expensive operation) needed to copy the data to kernel. Then we do
1288 * the copying without checking the user space area
1289 * (__copy_from_user()).
1290 *
1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292 * it.
1293 *
1294 * sk        The sk of the socket
1295 * addrs     The pointer to the addresses in user land
1296 * addrssize Size of the addrs buffer
1297 *
1298 * Returns >=0 if ok, <0 errno code on error.
1299 */
1300SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1301				      struct sockaddr __user *addrs,
1302				      int addrs_size,
1303				      sctp_assoc_t *assoc_id)
1304{
1305	int err = 0;
1306	struct sockaddr *kaddrs;
1307
1308	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1309			  __func__, sk, addrs, addrs_size);
1310
1311	if (unlikely(addrs_size <= 0))
1312		return -EINVAL;
1313
1314	/* Check the user passed a healthy pointer.  */
1315	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1316		return -EFAULT;
1317
1318	/* Alloc space for the address array in kernel memory.  */
1319	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1320	if (unlikely(!kaddrs))
1321		return -ENOMEM;
1322
1323	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1324		err = -EFAULT;
1325	} else {
1326		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1327	}
1328
1329	kfree(kaddrs);
1330
1331	return err;
1332}
1333
1334/*
1335 * This is an older interface.  It's kept for backward compatibility
1336 * to the option that doesn't provide association id.
1337 */
1338SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1339				      struct sockaddr __user *addrs,
1340				      int addrs_size)
1341{
1342	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1343}
1344
1345/*
1346 * New interface for the API.  The since the API is done with a socket
1347 * option, to make it simple we feed back the association id is as a return
1348 * indication to the call.  Error is always negative and association id is
1349 * always positive.
1350 */
1351SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1352				      struct sockaddr __user *addrs,
1353				      int addrs_size)
1354{
1355	sctp_assoc_t assoc_id = 0;
1356	int err = 0;
1357
1358	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1359
1360	if (err)
1361		return err;
1362	else
1363		return assoc_id;
1364}
1365
1366/*
1367 * New (hopefully final) interface for the API.
1368 * We use the sctp_getaddrs_old structure so that use-space library
1369 * can avoid any unnecessary allocations.   The only defferent part
1370 * is that we store the actual length of the address buffer into the
1371 * addrs_num structure member.  That way we can re-use the existing
1372 * code.
1373 */
1374SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1375					char __user *optval,
1376					int __user *optlen)
 
 
 
 
 
 
 
 
1377{
1378	struct sctp_getaddrs_old param;
1379	sctp_assoc_t assoc_id = 0;
1380	int err = 0;
1381
1382	if (len < sizeof(param))
1383		return -EINVAL;
 
1384
1385	if (copy_from_user(&param, optval, sizeof(param)))
1386		return -EFAULT;
 
 
1387
1388	err = __sctp_setsockopt_connectx(sk,
1389			(struct sockaddr __user *)param.addrs,
1390			param.addr_num, &assoc_id);
 
 
 
 
 
 
 
 
1391
 
 
 
1392	if (err == 0 || err == -EINPROGRESS) {
1393		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1394			return -EFAULT;
1395		if (put_user(sizeof(assoc_id), optlen))
1396			return -EFAULT;
1397	}
1398
1399	return err;
1400}
1401
1402/* API 3.1.4 close() - UDP Style Syntax
1403 * Applications use close() to perform graceful shutdown (as described in
1404 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1405 * by a UDP-style socket.
1406 *
1407 * The syntax is
1408 *
1409 *   ret = close(int sd);
1410 *
1411 *   sd      - the socket descriptor of the associations to be closed.
1412 *
1413 * To gracefully shutdown a specific association represented by the
1414 * UDP-style socket, an application should use the sendmsg() call,
1415 * passing no user data, but including the appropriate flag in the
1416 * ancillary data (see Section xxxx).
1417 *
1418 * If sd in the close() call is a branched-off socket representing only
1419 * one association, the shutdown is performed on that association only.
1420 *
1421 * 4.1.6 close() - TCP Style Syntax
1422 *
1423 * Applications use close() to gracefully close down an association.
1424 *
1425 * The syntax is:
1426 *
1427 *    int close(int sd);
1428 *
1429 *      sd      - the socket descriptor of the association to be closed.
1430 *
1431 * After an application calls close() on a socket descriptor, no further
1432 * socket operations will succeed on that descriptor.
1433 *
1434 * API 7.1.4 SO_LINGER
1435 *
1436 * An application using the TCP-style socket can use this option to
1437 * perform the SCTP ABORT primitive.  The linger option structure is:
1438 *
1439 *  struct  linger {
1440 *     int     l_onoff;                // option on/off
1441 *     int     l_linger;               // linger time
1442 * };
1443 *
1444 * To enable the option, set l_onoff to 1.  If the l_linger value is set
1445 * to 0, calling close() is the same as the ABORT primitive.  If the
1446 * value is set to a negative value, the setsockopt() call will return
1447 * an error.  If the value is set to a positive value linger_time, the
1448 * close() can be blocked for at most linger_time ms.  If the graceful
1449 * shutdown phase does not finish during this period, close() will
1450 * return but the graceful shutdown phase continues in the system.
1451 */
1452SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1453{
 
1454	struct sctp_endpoint *ep;
1455	struct sctp_association *asoc;
1456	struct list_head *pos, *temp;
1457	unsigned int data_was_unread;
1458
1459	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1460
1461	sctp_lock_sock(sk);
1462	sk->sk_shutdown = SHUTDOWN_MASK;
1463	sk->sk_state = SCTP_SS_CLOSING;
1464
1465	ep = sctp_sk(sk)->ep;
1466
1467	/* Clean up any skbs sitting on the receive queue.  */
1468	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1469	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1470
1471	/* Walk all associations on an endpoint.  */
1472	list_for_each_safe(pos, temp, &ep->asocs) {
1473		asoc = list_entry(pos, struct sctp_association, asocs);
1474
1475		if (sctp_style(sk, TCP)) {
1476			/* A closed association can still be in the list if
1477			 * it belongs to a TCP-style listening socket that is
1478			 * not yet accepted. If so, free it. If not, send an
1479			 * ABORT or SHUTDOWN based on the linger options.
1480			 */
1481			if (sctp_state(asoc, CLOSED)) {
1482				sctp_unhash_established(asoc);
1483				sctp_association_free(asoc);
1484				continue;
1485			}
1486		}
1487
1488		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1489		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1490		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1491			struct sctp_chunk *chunk;
1492
1493			chunk = sctp_make_abort_user(asoc, NULL, 0);
1494			if (chunk)
1495				sctp_primitive_ABORT(asoc, chunk);
1496		} else
1497			sctp_primitive_SHUTDOWN(asoc, NULL);
1498	}
1499
1500	/* On a TCP-style socket, block for at most linger_time if set. */
1501	if (sctp_style(sk, TCP) && timeout)
1502		sctp_wait_for_close(sk, timeout);
1503
1504	/* This will run the backlog queue.  */
1505	sctp_release_sock(sk);
1506
1507	/* Supposedly, no process has access to the socket, but
1508	 * the net layers still may.
1509	 */
1510	sctp_local_bh_disable();
1511	sctp_bh_lock_sock(sk);
1512
1513	/* Hold the sock, since sk_common_release() will put sock_put()
1514	 * and we have just a little more cleanup.
1515	 */
1516	sock_hold(sk);
1517	sk_common_release(sk);
1518
1519	sctp_bh_unlock_sock(sk);
1520	sctp_local_bh_enable();
1521
1522	sock_put(sk);
1523
1524	SCTP_DBG_OBJCNT_DEC(sock);
1525}
1526
1527/* Handle EPIPE error. */
1528static int sctp_error(struct sock *sk, int flags, int err)
1529{
1530	if (err == -EPIPE)
1531		err = sock_error(sk) ? : -EPIPE;
1532	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1533		send_sig(SIGPIPE, current, 0);
1534	return err;
1535}
1536
1537/* API 3.1.3 sendmsg() - UDP Style Syntax
1538 *
1539 * An application uses sendmsg() and recvmsg() calls to transmit data to
1540 * and receive data from its peer.
1541 *
1542 *  ssize_t sendmsg(int socket, const struct msghdr *message,
1543 *                  int flags);
1544 *
1545 *  socket  - the socket descriptor of the endpoint.
1546 *  message - pointer to the msghdr structure which contains a single
1547 *            user message and possibly some ancillary data.
1548 *
1549 *            See Section 5 for complete description of the data
1550 *            structures.
1551 *
1552 *  flags   - flags sent or received with the user message, see Section
1553 *            5 for complete description of the flags.
1554 *
1555 * Note:  This function could use a rewrite especially when explicit
1556 * connect support comes in.
1557 */
1558/* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1559
1560SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1561
1562SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1563			     struct msghdr *msg, size_t msg_len)
1564{
 
1565	struct sctp_sock *sp;
1566	struct sctp_endpoint *ep;
1567	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1568	struct sctp_transport *transport, *chunk_tp;
1569	struct sctp_chunk *chunk;
1570	union sctp_addr to;
1571	struct sockaddr *msg_name = NULL;
1572	struct sctp_sndrcvinfo default_sinfo;
1573	struct sctp_sndrcvinfo *sinfo;
1574	struct sctp_initmsg *sinit;
1575	sctp_assoc_t associd = 0;
1576	sctp_cmsgs_t cmsgs = { NULL };
1577	int err;
1578	sctp_scope_t scope;
1579	long timeo;
1580	__u16 sinfo_flags = 0;
1581	struct sctp_datamsg *datamsg;
1582	int msg_flags = msg->msg_flags;
1583
1584	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1585			  sk, msg, msg_len);
1586
1587	err = 0;
1588	sp = sctp_sk(sk);
1589	ep = sp->ep;
1590
1591	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
 
1592
1593	/* We cannot send a message over a TCP-style listening socket. */
1594	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1595		err = -EPIPE;
1596		goto out_nounlock;
1597	}
1598
1599	/* Parse out the SCTP CMSGs.  */
1600	err = sctp_msghdr_parse(msg, &cmsgs);
1601
1602	if (err) {
1603		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1604		goto out_nounlock;
1605	}
1606
1607	/* Fetch the destination address for this packet.  This
1608	 * address only selects the association--it is not necessarily
1609	 * the address we will send to.
1610	 * For a peeled-off socket, msg_name is ignored.
1611	 */
1612	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1613		int msg_namelen = msg->msg_namelen;
1614
1615		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1616				       msg_namelen);
1617		if (err)
1618			return err;
1619
1620		if (msg_namelen > sizeof(to))
1621			msg_namelen = sizeof(to);
1622		memcpy(&to, msg->msg_name, msg_namelen);
1623		msg_name = msg->msg_name;
1624	}
1625
1626	sinfo = cmsgs.info;
1627	sinit = cmsgs.init;
1628
1629	/* Did the user specify SNDRCVINFO?  */
1630	if (sinfo) {
1631		sinfo_flags = sinfo->sinfo_flags;
1632		associd = sinfo->sinfo_assoc_id;
1633	}
1634
1635	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1636			  msg_len, sinfo_flags);
1637
1638	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1639	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1640		err = -EINVAL;
1641		goto out_nounlock;
1642	}
1643
1644	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1645	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1646	 * If SCTP_ABORT is set, the message length could be non zero with
1647	 * the msg_iov set to the user abort reason.
1648	 */
1649	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1650	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1651		err = -EINVAL;
1652		goto out_nounlock;
1653	}
1654
1655	/* If SCTP_ADDR_OVER is set, there must be an address
1656	 * specified in msg_name.
1657	 */
1658	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1659		err = -EINVAL;
1660		goto out_nounlock;
1661	}
1662
1663	transport = NULL;
1664
1665	SCTP_DEBUG_PRINTK("About to look up association.\n");
1666
1667	sctp_lock_sock(sk);
1668
1669	/* If a msg_name has been specified, assume this is to be used.  */
1670	if (msg_name) {
1671		/* Look for a matching association on the endpoint. */
1672		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1673		if (!asoc) {
1674			/* If we could not find a matching association on the
1675			 * endpoint, make sure that it is not a TCP-style
1676			 * socket that already has an association or there is
1677			 * no peeled-off association on another socket.
1678			 */
1679			if ((sctp_style(sk, TCP) &&
1680			     sctp_sstate(sk, ESTABLISHED)) ||
1681			    sctp_endpoint_is_peeled_off(ep, &to)) {
1682				err = -EADDRNOTAVAIL;
1683				goto out_unlock;
1684			}
1685		}
1686	} else {
1687		asoc = sctp_id2assoc(sk, associd);
1688		if (!asoc) {
1689			err = -EPIPE;
1690			goto out_unlock;
1691		}
1692	}
1693
1694	if (asoc) {
1695		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1696
1697		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1698		 * socket that has an association in CLOSED state. This can
1699		 * happen when an accepted socket has an association that is
1700		 * already CLOSED.
1701		 */
1702		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1703			err = -EPIPE;
1704			goto out_unlock;
1705		}
1706
1707		if (sinfo_flags & SCTP_EOF) {
1708			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1709					  asoc);
1710			sctp_primitive_SHUTDOWN(asoc, NULL);
 
1711			err = 0;
1712			goto out_unlock;
1713		}
1714		if (sinfo_flags & SCTP_ABORT) {
1715
1716			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1717			if (!chunk) {
1718				err = -ENOMEM;
1719				goto out_unlock;
1720			}
1721
1722			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1723			sctp_primitive_ABORT(asoc, chunk);
 
 
1724			err = 0;
1725			goto out_unlock;
1726		}
1727	}
1728
1729	/* Do we need to create the association?  */
1730	if (!asoc) {
1731		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1732
1733		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1734			err = -EINVAL;
1735			goto out_unlock;
1736		}
1737
1738		/* Check for invalid stream against the stream counts,
1739		 * either the default or the user specified stream counts.
1740		 */
1741		if (sinfo) {
1742			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1743				/* Check against the defaults. */
1744				if (sinfo->sinfo_stream >=
1745				    sp->initmsg.sinit_num_ostreams) {
1746					err = -EINVAL;
1747					goto out_unlock;
1748				}
1749			} else {
1750				/* Check against the requested.  */
1751				if (sinfo->sinfo_stream >=
1752				    sinit->sinit_num_ostreams) {
1753					err = -EINVAL;
1754					goto out_unlock;
1755				}
1756			}
1757		}
1758
1759		/*
1760		 * API 3.1.2 bind() - UDP Style Syntax
1761		 * If a bind() or sctp_bindx() is not called prior to a
1762		 * sendmsg() call that initiates a new association, the
1763		 * system picks an ephemeral port and will choose an address
1764		 * set equivalent to binding with a wildcard address.
1765		 */
1766		if (!ep->base.bind_addr.port) {
1767			if (sctp_autobind(sk)) {
1768				err = -EAGAIN;
1769				goto out_unlock;
1770			}
1771		} else {
1772			/*
1773			 * If an unprivileged user inherits a one-to-many
1774			 * style socket with open associations on a privileged
1775			 * port, it MAY be permitted to accept new associations,
1776			 * but it SHOULD NOT be permitted to open new
1777			 * associations.
1778			 */
1779			if (ep->base.bind_addr.port < PROT_SOCK &&
1780			    !capable(CAP_NET_BIND_SERVICE)) {
1781				err = -EACCES;
1782				goto out_unlock;
1783			}
1784		}
1785
1786		scope = sctp_scope(&to);
1787		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1788		if (!new_asoc) {
1789			err = -ENOMEM;
1790			goto out_unlock;
1791		}
1792		asoc = new_asoc;
1793		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1794		if (err < 0) {
1795			err = -ENOMEM;
1796			goto out_free;
1797		}
1798
1799		/* If the SCTP_INIT ancillary data is specified, set all
1800		 * the association init values accordingly.
1801		 */
1802		if (sinit) {
1803			if (sinit->sinit_num_ostreams) {
1804				asoc->c.sinit_num_ostreams =
1805					sinit->sinit_num_ostreams;
1806			}
1807			if (sinit->sinit_max_instreams) {
1808				asoc->c.sinit_max_instreams =
1809					sinit->sinit_max_instreams;
1810			}
1811			if (sinit->sinit_max_attempts) {
1812				asoc->max_init_attempts
1813					= sinit->sinit_max_attempts;
1814			}
1815			if (sinit->sinit_max_init_timeo) {
1816				asoc->max_init_timeo =
1817				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1818			}
1819		}
1820
1821		/* Prime the peer's transport structures.  */
1822		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1823		if (!transport) {
1824			err = -ENOMEM;
1825			goto out_free;
1826		}
1827	}
1828
1829	/* ASSERT: we have a valid association at this point.  */
1830	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1831
1832	if (!sinfo) {
1833		/* If the user didn't specify SNDRCVINFO, make up one with
1834		 * some defaults.
1835		 */
1836		memset(&default_sinfo, 0, sizeof(default_sinfo));
1837		default_sinfo.sinfo_stream = asoc->default_stream;
1838		default_sinfo.sinfo_flags = asoc->default_flags;
1839		default_sinfo.sinfo_ppid = asoc->default_ppid;
1840		default_sinfo.sinfo_context = asoc->default_context;
1841		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1842		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1843		sinfo = &default_sinfo;
1844	}
1845
1846	/* API 7.1.7, the sndbuf size per association bounds the
1847	 * maximum size of data that can be sent in a single send call.
1848	 */
1849	if (msg_len > sk->sk_sndbuf) {
1850		err = -EMSGSIZE;
1851		goto out_free;
1852	}
1853
1854	if (asoc->pmtu_pending)
1855		sctp_assoc_pending_pmtu(asoc);
1856
1857	/* If fragmentation is disabled and the message length exceeds the
1858	 * association fragmentation point, return EMSGSIZE.  The I-D
1859	 * does not specify what this error is, but this looks like
1860	 * a great fit.
1861	 */
1862	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1863		err = -EMSGSIZE;
1864		goto out_free;
1865	}
1866
1867	/* Check for invalid stream. */
1868	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1869		err = -EINVAL;
1870		goto out_free;
1871	}
1872
1873	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1874	if (!sctp_wspace(asoc)) {
1875		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1876		if (err)
1877			goto out_free;
1878	}
1879
1880	/* If an address is passed with the sendto/sendmsg call, it is used
1881	 * to override the primary destination address in the TCP model, or
1882	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1883	 */
1884	if ((sctp_style(sk, TCP) && msg_name) ||
1885	    (sinfo_flags & SCTP_ADDR_OVER)) {
1886		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1887		if (!chunk_tp) {
1888			err = -EINVAL;
1889			goto out_free;
1890		}
1891	} else
1892		chunk_tp = NULL;
1893
1894	/* Auto-connect, if we aren't connected already. */
1895	if (sctp_state(asoc, CLOSED)) {
1896		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1897		if (err < 0)
1898			goto out_free;
1899		SCTP_DEBUG_PRINTK("We associated primitively.\n");
 
1900	}
1901
1902	/* Break the message into multiple chunks of maximum size. */
1903	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1904	if (!datamsg) {
1905		err = -ENOMEM;
1906		goto out_free;
1907	}
1908
1909	/* Now send the (possibly) fragmented message. */
1910	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1911		sctp_chunk_hold(chunk);
1912
1913		/* Do accounting for the write space.  */
1914		sctp_set_owner_w(chunk);
1915
1916		chunk->transport = chunk_tp;
1917	}
1918
1919	/* Send it to the lower layers.  Note:  all chunks
1920	 * must either fail or succeed.   The lower layer
1921	 * works that way today.  Keep it that way or this
1922	 * breaks.
1923	 */
1924	err = sctp_primitive_SEND(asoc, datamsg);
1925	/* Did the lower layer accept the chunk? */
1926	if (err)
1927		sctp_datamsg_free(datamsg);
1928	else
1929		sctp_datamsg_put(datamsg);
1930
1931	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1932
1933	if (err)
1934		goto out_free;
1935	else
1936		err = msg_len;
1937
1938	/* If we are already past ASSOCIATE, the lower
1939	 * layers are responsible for association cleanup.
1940	 */
1941	goto out_unlock;
1942
1943out_free:
1944	if (new_asoc)
 
1945		sctp_association_free(asoc);
 
1946out_unlock:
1947	sctp_release_sock(sk);
1948
1949out_nounlock:
1950	return sctp_error(sk, msg_flags, err);
1951
1952#if 0
1953do_sock_err:
1954	if (msg_len)
1955		err = msg_len;
1956	else
1957		err = sock_error(sk);
1958	goto out;
1959
1960do_interrupted:
1961	if (msg_len)
1962		err = msg_len;
1963	goto out;
1964#endif /* 0 */
1965}
1966
1967/* This is an extended version of skb_pull() that removes the data from the
1968 * start of a skb even when data is spread across the list of skb's in the
1969 * frag_list. len specifies the total amount of data that needs to be removed.
1970 * when 'len' bytes could be removed from the skb, it returns 0.
1971 * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1972 * could not be removed.
1973 */
1974static int sctp_skb_pull(struct sk_buff *skb, int len)
1975{
1976	struct sk_buff *list;
1977	int skb_len = skb_headlen(skb);
1978	int rlen;
1979
1980	if (len <= skb_len) {
1981		__skb_pull(skb, len);
1982		return 0;
1983	}
1984	len -= skb_len;
1985	__skb_pull(skb, skb_len);
1986
1987	skb_walk_frags(skb, list) {
1988		rlen = sctp_skb_pull(list, len);
1989		skb->len -= (len-rlen);
1990		skb->data_len -= (len-rlen);
1991
1992		if (!rlen)
1993			return 0;
1994
1995		len = rlen;
1996	}
1997
1998	return len;
1999}
2000
2001/* API 3.1.3  recvmsg() - UDP Style Syntax
2002 *
2003 *  ssize_t recvmsg(int socket, struct msghdr *message,
2004 *                    int flags);
2005 *
2006 *  socket  - the socket descriptor of the endpoint.
2007 *  message - pointer to the msghdr structure which contains a single
2008 *            user message and possibly some ancillary data.
2009 *
2010 *            See Section 5 for complete description of the data
2011 *            structures.
2012 *
2013 *  flags   - flags sent or received with the user message, see Section
2014 *            5 for complete description of the flags.
2015 */
2016static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2017
2018SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2019			     struct msghdr *msg, size_t len, int noblock,
2020			     int flags, int *addr_len)
2021{
2022	struct sctp_ulpevent *event = NULL;
2023	struct sctp_sock *sp = sctp_sk(sk);
2024	struct sk_buff *skb;
2025	int copied;
2026	int err = 0;
2027	int skb_len;
2028
2029	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2030			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2031			  "len", len, "knoblauch", noblock,
2032			  "flags", flags, "addr_len", addr_len);
2033
2034	sctp_lock_sock(sk);
2035
2036	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2037		err = -ENOTCONN;
2038		goto out;
2039	}
2040
2041	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2042	if (!skb)
2043		goto out;
2044
2045	/* Get the total length of the skb including any skb's in the
2046	 * frag_list.
2047	 */
2048	skb_len = skb->len;
2049
2050	copied = skb_len;
2051	if (copied > len)
2052		copied = len;
2053
2054	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2055
2056	event = sctp_skb2event(skb);
2057
2058	if (err)
2059		goto out_free;
2060
2061	sock_recv_ts_and_drops(msg, sk, skb);
2062	if (sctp_ulpevent_is_notification(event)) {
2063		msg->msg_flags |= MSG_NOTIFICATION;
2064		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2065	} else {
2066		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2067	}
2068
2069	/* Check if we allow SCTP_SNDRCVINFO. */
2070	if (sp->subscribe.sctp_data_io_event)
2071		sctp_ulpevent_read_sndrcvinfo(event, msg);
2072#if 0
2073	/* FIXME: we should be calling IP/IPv6 layers.  */
2074	if (sk->sk_protinfo.af_inet.cmsg_flags)
2075		ip_cmsg_recv(msg, skb);
2076#endif
2077
2078	err = copied;
2079
2080	/* If skb's length exceeds the user's buffer, update the skb and
2081	 * push it back to the receive_queue so that the next call to
2082	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2083	 */
2084	if (skb_len > copied) {
2085		msg->msg_flags &= ~MSG_EOR;
2086		if (flags & MSG_PEEK)
2087			goto out_free;
2088		sctp_skb_pull(skb, copied);
2089		skb_queue_head(&sk->sk_receive_queue, skb);
2090
2091		/* When only partial message is copied to the user, increase
2092		 * rwnd by that amount. If all the data in the skb is read,
2093		 * rwnd is updated when the event is freed.
2094		 */
2095		if (!sctp_ulpevent_is_notification(event))
2096			sctp_assoc_rwnd_increase(event->asoc, copied);
2097		goto out;
2098	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2099		   (event->msg_flags & MSG_EOR))
2100		msg->msg_flags |= MSG_EOR;
2101	else
2102		msg->msg_flags &= ~MSG_EOR;
2103
2104out_free:
2105	if (flags & MSG_PEEK) {
2106		/* Release the skb reference acquired after peeking the skb in
2107		 * sctp_skb_recv_datagram().
2108		 */
2109		kfree_skb(skb);
2110	} else {
2111		/* Free the event which includes releasing the reference to
2112		 * the owner of the skb, freeing the skb and updating the
2113		 * rwnd.
2114		 */
2115		sctp_ulpevent_free(event);
2116	}
2117out:
2118	sctp_release_sock(sk);
2119	return err;
2120}
2121
2122/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2123 *
2124 * This option is a on/off flag.  If enabled no SCTP message
2125 * fragmentation will be performed.  Instead if a message being sent
2126 * exceeds the current PMTU size, the message will NOT be sent and
2127 * instead a error will be indicated to the user.
2128 */
2129static int sctp_setsockopt_disable_fragments(struct sock *sk,
2130					     char __user *optval,
2131					     unsigned int optlen)
2132{
2133	int val;
2134
2135	if (optlen < sizeof(int))
2136		return -EINVAL;
2137
2138	if (get_user(val, (int __user *)optval))
2139		return -EFAULT;
2140
2141	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2142
2143	return 0;
2144}
2145
2146static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2147				  unsigned int optlen)
2148{
2149	struct sctp_association *asoc;
2150	struct sctp_ulpevent *event;
2151
2152	if (optlen > sizeof(struct sctp_event_subscribe))
2153		return -EINVAL;
2154	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2155		return -EFAULT;
2156
2157	/*
2158	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2159	 * if there is no data to be sent or retransmit, the stack will
2160	 * immediately send up this notification.
2161	 */
2162	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2163				       &sctp_sk(sk)->subscribe)) {
2164		asoc = sctp_id2assoc(sk, 0);
2165
2166		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2167			event = sctp_ulpevent_make_sender_dry_event(asoc,
2168					GFP_ATOMIC);
2169			if (!event)
2170				return -ENOMEM;
2171
2172			sctp_ulpq_tail_event(&asoc->ulpq, event);
2173		}
2174	}
2175
2176	return 0;
2177}
2178
2179/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2180 *
2181 * This socket option is applicable to the UDP-style socket only.  When
2182 * set it will cause associations that are idle for more than the
2183 * specified number of seconds to automatically close.  An association
2184 * being idle is defined an association that has NOT sent or received
2185 * user data.  The special value of '0' indicates that no automatic
2186 * close of any associations should be performed.  The option expects an
2187 * integer defining the number of seconds of idle time before an
2188 * association is closed.
2189 */
2190static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2191				     unsigned int optlen)
2192{
2193	struct sctp_sock *sp = sctp_sk(sk);
 
2194
2195	/* Applicable to UDP-style socket only */
2196	if (sctp_style(sk, TCP))
2197		return -EOPNOTSUPP;
2198	if (optlen != sizeof(int))
2199		return -EINVAL;
2200	if (copy_from_user(&sp->autoclose, optval, optlen))
2201		return -EFAULT;
2202	/* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2203	sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
 
2204
2205	return 0;
2206}
2207
2208/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2209 *
2210 * Applications can enable or disable heartbeats for any peer address of
2211 * an association, modify an address's heartbeat interval, force a
2212 * heartbeat to be sent immediately, and adjust the address's maximum
2213 * number of retransmissions sent before an address is considered
2214 * unreachable.  The following structure is used to access and modify an
2215 * address's parameters:
2216 *
2217 *  struct sctp_paddrparams {
2218 *     sctp_assoc_t            spp_assoc_id;
2219 *     struct sockaddr_storage spp_address;
2220 *     uint32_t                spp_hbinterval;
2221 *     uint16_t                spp_pathmaxrxt;
2222 *     uint32_t                spp_pathmtu;
2223 *     uint32_t                spp_sackdelay;
2224 *     uint32_t                spp_flags;
2225 * };
2226 *
2227 *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2228 *                     application, and identifies the association for
2229 *                     this query.
2230 *   spp_address     - This specifies which address is of interest.
2231 *   spp_hbinterval  - This contains the value of the heartbeat interval,
2232 *                     in milliseconds.  If a  value of zero
2233 *                     is present in this field then no changes are to
2234 *                     be made to this parameter.
2235 *   spp_pathmaxrxt  - This contains the maximum number of
2236 *                     retransmissions before this address shall be
2237 *                     considered unreachable. If a  value of zero
2238 *                     is present in this field then no changes are to
2239 *                     be made to this parameter.
2240 *   spp_pathmtu     - When Path MTU discovery is disabled the value
2241 *                     specified here will be the "fixed" path mtu.
2242 *                     Note that if the spp_address field is empty
2243 *                     then all associations on this address will
2244 *                     have this fixed path mtu set upon them.
2245 *
2246 *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2247 *                     the number of milliseconds that sacks will be delayed
2248 *                     for. This value will apply to all addresses of an
2249 *                     association if the spp_address field is empty. Note
2250 *                     also, that if delayed sack is enabled and this
2251 *                     value is set to 0, no change is made to the last
2252 *                     recorded delayed sack timer value.
2253 *
2254 *   spp_flags       - These flags are used to control various features
2255 *                     on an association. The flag field may contain
2256 *                     zero or more of the following options.
2257 *
2258 *                     SPP_HB_ENABLE  - Enable heartbeats on the
2259 *                     specified address. Note that if the address
2260 *                     field is empty all addresses for the association
2261 *                     have heartbeats enabled upon them.
2262 *
2263 *                     SPP_HB_DISABLE - Disable heartbeats on the
2264 *                     speicifed address. Note that if the address
2265 *                     field is empty all addresses for the association
2266 *                     will have their heartbeats disabled. Note also
2267 *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2268 *                     mutually exclusive, only one of these two should
2269 *                     be specified. Enabling both fields will have
2270 *                     undetermined results.
2271 *
2272 *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2273 *                     to be made immediately.
2274 *
2275 *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2276 *                     heartbeat delayis to be set to the value of 0
2277 *                     milliseconds.
2278 *
2279 *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2280 *                     discovery upon the specified address. Note that
2281 *                     if the address feild is empty then all addresses
2282 *                     on the association are effected.
2283 *
2284 *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2285 *                     discovery upon the specified address. Note that
2286 *                     if the address feild is empty then all addresses
2287 *                     on the association are effected. Not also that
2288 *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2289 *                     exclusive. Enabling both will have undetermined
2290 *                     results.
2291 *
2292 *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2293 *                     on delayed sack. The time specified in spp_sackdelay
2294 *                     is used to specify the sack delay for this address. Note
2295 *                     that if spp_address is empty then all addresses will
2296 *                     enable delayed sack and take on the sack delay
2297 *                     value specified in spp_sackdelay.
2298 *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2299 *                     off delayed sack. If the spp_address field is blank then
2300 *                     delayed sack is disabled for the entire association. Note
2301 *                     also that this field is mutually exclusive to
2302 *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2303 *                     results.
2304 */
2305static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2306				       struct sctp_transport   *trans,
2307				       struct sctp_association *asoc,
2308				       struct sctp_sock        *sp,
2309				       int                      hb_change,
2310				       int                      pmtud_change,
2311				       int                      sackdelay_change)
2312{
2313	int error;
2314
2315	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2316		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
 
 
2317		if (error)
2318			return error;
2319	}
2320
2321	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2322	 * this field is ignored.  Note also that a value of zero indicates
2323	 * the current setting should be left unchanged.
2324	 */
2325	if (params->spp_flags & SPP_HB_ENABLE) {
2326
2327		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2328		 * set.  This lets us use 0 value when this flag
2329		 * is set.
2330		 */
2331		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2332			params->spp_hbinterval = 0;
2333
2334		if (params->spp_hbinterval ||
2335		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2336			if (trans) {
2337				trans->hbinterval =
2338				    msecs_to_jiffies(params->spp_hbinterval);
2339			} else if (asoc) {
2340				asoc->hbinterval =
2341				    msecs_to_jiffies(params->spp_hbinterval);
2342			} else {
2343				sp->hbinterval = params->spp_hbinterval;
2344			}
2345		}
2346	}
2347
2348	if (hb_change) {
2349		if (trans) {
2350			trans->param_flags =
2351				(trans->param_flags & ~SPP_HB) | hb_change;
2352		} else if (asoc) {
2353			asoc->param_flags =
2354				(asoc->param_flags & ~SPP_HB) | hb_change;
2355		} else {
2356			sp->param_flags =
2357				(sp->param_flags & ~SPP_HB) | hb_change;
2358		}
2359	}
2360
2361	/* When Path MTU discovery is disabled the value specified here will
2362	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2363	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2364	 * effect).
2365	 */
2366	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2367		if (trans) {
2368			trans->pathmtu = params->spp_pathmtu;
2369			sctp_assoc_sync_pmtu(asoc);
2370		} else if (asoc) {
2371			asoc->pathmtu = params->spp_pathmtu;
2372			sctp_frag_point(asoc, params->spp_pathmtu);
2373		} else {
2374			sp->pathmtu = params->spp_pathmtu;
2375		}
2376	}
2377
2378	if (pmtud_change) {
2379		if (trans) {
2380			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2381				(params->spp_flags & SPP_PMTUD_ENABLE);
2382			trans->param_flags =
2383				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2384			if (update) {
2385				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2386				sctp_assoc_sync_pmtu(asoc);
2387			}
2388		} else if (asoc) {
2389			asoc->param_flags =
2390				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2391		} else {
2392			sp->param_flags =
2393				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2394		}
2395	}
2396
2397	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2398	 * value of this field is ignored.  Note also that a value of zero
2399	 * indicates the current setting should be left unchanged.
2400	 */
2401	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2402		if (trans) {
2403			trans->sackdelay =
2404				msecs_to_jiffies(params->spp_sackdelay);
2405		} else if (asoc) {
2406			asoc->sackdelay =
2407				msecs_to_jiffies(params->spp_sackdelay);
2408		} else {
2409			sp->sackdelay = params->spp_sackdelay;
2410		}
2411	}
2412
2413	if (sackdelay_change) {
2414		if (trans) {
2415			trans->param_flags =
2416				(trans->param_flags & ~SPP_SACKDELAY) |
2417				sackdelay_change;
2418		} else if (asoc) {
2419			asoc->param_flags =
2420				(asoc->param_flags & ~SPP_SACKDELAY) |
2421				sackdelay_change;
2422		} else {
2423			sp->param_flags =
2424				(sp->param_flags & ~SPP_SACKDELAY) |
2425				sackdelay_change;
2426		}
2427	}
2428
2429	/* Note that a value of zero indicates the current setting should be
2430	   left unchanged.
2431	 */
2432	if (params->spp_pathmaxrxt) {
2433		if (trans) {
2434			trans->pathmaxrxt = params->spp_pathmaxrxt;
2435		} else if (asoc) {
2436			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2437		} else {
2438			sp->pathmaxrxt = params->spp_pathmaxrxt;
2439		}
2440	}
2441
2442	return 0;
2443}
2444
2445static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2446					    char __user *optval,
2447					    unsigned int optlen)
2448{
2449	struct sctp_paddrparams  params;
2450	struct sctp_transport   *trans = NULL;
2451	struct sctp_association *asoc = NULL;
2452	struct sctp_sock        *sp = sctp_sk(sk);
2453	int error;
2454	int hb_change, pmtud_change, sackdelay_change;
2455
2456	if (optlen != sizeof(struct sctp_paddrparams))
2457		return - EINVAL;
2458
2459	if (copy_from_user(&params, optval, optlen))
2460		return -EFAULT;
2461
2462	/* Validate flags and value parameters. */
2463	hb_change        = params.spp_flags & SPP_HB;
2464	pmtud_change     = params.spp_flags & SPP_PMTUD;
2465	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2466
2467	if (hb_change        == SPP_HB ||
2468	    pmtud_change     == SPP_PMTUD ||
2469	    sackdelay_change == SPP_SACKDELAY ||
2470	    params.spp_sackdelay > 500 ||
2471	    (params.spp_pathmtu &&
2472	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2473		return -EINVAL;
2474
2475	/* If an address other than INADDR_ANY is specified, and
2476	 * no transport is found, then the request is invalid.
2477	 */
2478	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2479		trans = sctp_addr_id2transport(sk, &params.spp_address,
2480					       params.spp_assoc_id);
2481		if (!trans)
2482			return -EINVAL;
2483	}
2484
2485	/* Get association, if assoc_id != 0 and the socket is a one
2486	 * to many style socket, and an association was not found, then
2487	 * the id was invalid.
2488	 */
2489	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2490	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2491		return -EINVAL;
2492
2493	/* Heartbeat demand can only be sent on a transport or
2494	 * association, but not a socket.
2495	 */
2496	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2497		return -EINVAL;
2498
2499	/* Process parameters. */
2500	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2501					    hb_change, pmtud_change,
2502					    sackdelay_change);
2503
2504	if (error)
2505		return error;
2506
2507	/* If changes are for association, also apply parameters to each
2508	 * transport.
2509	 */
2510	if (!trans && asoc) {
2511		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2512				transports) {
2513			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2514						    hb_change, pmtud_change,
2515						    sackdelay_change);
2516		}
2517	}
2518
2519	return 0;
2520}
2521
 
 
 
 
 
 
 
 
 
 
2522/*
2523 * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2524 *
2525 * This option will effect the way delayed acks are performed.  This
2526 * option allows you to get or set the delayed ack time, in
2527 * milliseconds.  It also allows changing the delayed ack frequency.
2528 * Changing the frequency to 1 disables the delayed sack algorithm.  If
2529 * the assoc_id is 0, then this sets or gets the endpoints default
2530 * values.  If the assoc_id field is non-zero, then the set or get
2531 * effects the specified association for the one to many model (the
2532 * assoc_id field is ignored by the one to one model).  Note that if
2533 * sack_delay or sack_freq are 0 when setting this option, then the
2534 * current values will remain unchanged.
2535 *
2536 * struct sctp_sack_info {
2537 *     sctp_assoc_t            sack_assoc_id;
2538 *     uint32_t                sack_delay;
2539 *     uint32_t                sack_freq;
2540 * };
2541 *
2542 * sack_assoc_id -  This parameter, indicates which association the user
2543 *    is performing an action upon.  Note that if this field's value is
2544 *    zero then the endpoints default value is changed (effecting future
2545 *    associations only).
2546 *
2547 * sack_delay -  This parameter contains the number of milliseconds that
2548 *    the user is requesting the delayed ACK timer be set to.  Note that
2549 *    this value is defined in the standard to be between 200 and 500
2550 *    milliseconds.
2551 *
2552 * sack_freq -  This parameter contains the number of packets that must
2553 *    be received before a sack is sent without waiting for the delay
2554 *    timer to expire.  The default value for this is 2, setting this
2555 *    value to 1 will disable the delayed sack algorithm.
2556 */
2557
2558static int sctp_setsockopt_delayed_ack(struct sock *sk,
2559				       char __user *optval, unsigned int optlen)
2560{
2561	struct sctp_sack_info    params;
2562	struct sctp_transport   *trans = NULL;
2563	struct sctp_association *asoc = NULL;
2564	struct sctp_sock        *sp = sctp_sk(sk);
2565
2566	if (optlen == sizeof(struct sctp_sack_info)) {
2567		if (copy_from_user(&params, optval, optlen))
2568			return -EFAULT;
2569
2570		if (params.sack_delay == 0 && params.sack_freq == 0)
2571			return 0;
2572	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2573		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2574		pr_warn("Use struct sctp_sack_info instead\n");
 
 
 
2575		if (copy_from_user(&params, optval, optlen))
2576			return -EFAULT;
2577
2578		if (params.sack_delay == 0)
2579			params.sack_freq = 1;
2580		else
2581			params.sack_freq = 0;
2582	} else
2583		return - EINVAL;
2584
2585	/* Validate value parameter. */
2586	if (params.sack_delay > 500)
2587		return -EINVAL;
2588
2589	/* Get association, if sack_assoc_id != 0 and the socket is a one
2590	 * to many style socket, and an association was not found, then
2591	 * the id was invalid.
2592	 */
2593	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2594	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2595		return -EINVAL;
2596
2597	if (params.sack_delay) {
2598		if (asoc) {
2599			asoc->sackdelay =
2600				msecs_to_jiffies(params.sack_delay);
2601			asoc->param_flags =
2602				(asoc->param_flags & ~SPP_SACKDELAY) |
2603				SPP_SACKDELAY_ENABLE;
2604		} else {
2605			sp->sackdelay = params.sack_delay;
2606			sp->param_flags =
2607				(sp->param_flags & ~SPP_SACKDELAY) |
2608				SPP_SACKDELAY_ENABLE;
2609		}
2610	}
2611
2612	if (params.sack_freq == 1) {
2613		if (asoc) {
2614			asoc->param_flags =
2615				(asoc->param_flags & ~SPP_SACKDELAY) |
2616				SPP_SACKDELAY_DISABLE;
2617		} else {
2618			sp->param_flags =
2619				(sp->param_flags & ~SPP_SACKDELAY) |
2620				SPP_SACKDELAY_DISABLE;
2621		}
2622	} else if (params.sack_freq > 1) {
2623		if (asoc) {
2624			asoc->sackfreq = params.sack_freq;
2625			asoc->param_flags =
2626				(asoc->param_flags & ~SPP_SACKDELAY) |
2627				SPP_SACKDELAY_ENABLE;
2628		} else {
2629			sp->sackfreq = params.sack_freq;
2630			sp->param_flags =
2631				(sp->param_flags & ~SPP_SACKDELAY) |
2632				SPP_SACKDELAY_ENABLE;
2633		}
2634	}
2635
2636	/* If change is for association, also apply to each transport. */
2637	if (asoc) {
2638		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2639				transports) {
2640			if (params.sack_delay) {
2641				trans->sackdelay =
2642					msecs_to_jiffies(params.sack_delay);
2643				trans->param_flags =
2644					(trans->param_flags & ~SPP_SACKDELAY) |
2645					SPP_SACKDELAY_ENABLE;
2646			}
2647			if (params.sack_freq == 1) {
2648				trans->param_flags =
2649					(trans->param_flags & ~SPP_SACKDELAY) |
2650					SPP_SACKDELAY_DISABLE;
2651			} else if (params.sack_freq > 1) {
2652				trans->sackfreq = params.sack_freq;
2653				trans->param_flags =
2654					(trans->param_flags & ~SPP_SACKDELAY) |
2655					SPP_SACKDELAY_ENABLE;
2656			}
2657		}
2658	}
2659
2660	return 0;
2661}
2662
2663/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2664 *
2665 * Applications can specify protocol parameters for the default association
2666 * initialization.  The option name argument to setsockopt() and getsockopt()
2667 * is SCTP_INITMSG.
2668 *
2669 * Setting initialization parameters is effective only on an unconnected
2670 * socket (for UDP-style sockets only future associations are effected
2671 * by the change).  With TCP-style sockets, this option is inherited by
2672 * sockets derived from a listener socket.
2673 */
2674static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2675{
2676	struct sctp_initmsg sinit;
2677	struct sctp_sock *sp = sctp_sk(sk);
2678
2679	if (optlen != sizeof(struct sctp_initmsg))
2680		return -EINVAL;
2681	if (copy_from_user(&sinit, optval, optlen))
2682		return -EFAULT;
2683
2684	if (sinit.sinit_num_ostreams)
2685		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2686	if (sinit.sinit_max_instreams)
2687		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2688	if (sinit.sinit_max_attempts)
2689		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2690	if (sinit.sinit_max_init_timeo)
2691		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2692
2693	return 0;
2694}
2695
2696/*
2697 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2698 *
2699 *   Applications that wish to use the sendto() system call may wish to
2700 *   specify a default set of parameters that would normally be supplied
2701 *   through the inclusion of ancillary data.  This socket option allows
2702 *   such an application to set the default sctp_sndrcvinfo structure.
2703 *   The application that wishes to use this socket option simply passes
2704 *   in to this call the sctp_sndrcvinfo structure defined in Section
2705 *   5.2.2) The input parameters accepted by this call include
2706 *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2707 *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2708 *   to this call if the caller is using the UDP model.
2709 */
2710static int sctp_setsockopt_default_send_param(struct sock *sk,
2711					      char __user *optval,
2712					      unsigned int optlen)
2713{
2714	struct sctp_sndrcvinfo info;
2715	struct sctp_association *asoc;
2716	struct sctp_sock *sp = sctp_sk(sk);
2717
2718	if (optlen != sizeof(struct sctp_sndrcvinfo))
2719		return -EINVAL;
2720	if (copy_from_user(&info, optval, optlen))
2721		return -EFAULT;
2722
2723	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2724	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2725		return -EINVAL;
2726
2727	if (asoc) {
2728		asoc->default_stream = info.sinfo_stream;
2729		asoc->default_flags = info.sinfo_flags;
2730		asoc->default_ppid = info.sinfo_ppid;
2731		asoc->default_context = info.sinfo_context;
2732		asoc->default_timetolive = info.sinfo_timetolive;
2733	} else {
2734		sp->default_stream = info.sinfo_stream;
2735		sp->default_flags = info.sinfo_flags;
2736		sp->default_ppid = info.sinfo_ppid;
2737		sp->default_context = info.sinfo_context;
2738		sp->default_timetolive = info.sinfo_timetolive;
2739	}
2740
2741	return 0;
2742}
2743
2744/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2745 *
2746 * Requests that the local SCTP stack use the enclosed peer address as
2747 * the association primary.  The enclosed address must be one of the
2748 * association peer's addresses.
2749 */
2750static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2751					unsigned int optlen)
2752{
2753	struct sctp_prim prim;
2754	struct sctp_transport *trans;
2755
2756	if (optlen != sizeof(struct sctp_prim))
2757		return -EINVAL;
2758
2759	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2760		return -EFAULT;
2761
2762	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2763	if (!trans)
2764		return -EINVAL;
2765
2766	sctp_assoc_set_primary(trans->asoc, trans);
2767
2768	return 0;
2769}
2770
2771/*
2772 * 7.1.5 SCTP_NODELAY
2773 *
2774 * Turn on/off any Nagle-like algorithm.  This means that packets are
2775 * generally sent as soon as possible and no unnecessary delays are
2776 * introduced, at the cost of more packets in the network.  Expects an
2777 *  integer boolean flag.
2778 */
2779static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2780				   unsigned int optlen)
2781{
2782	int val;
2783
2784	if (optlen < sizeof(int))
2785		return -EINVAL;
2786	if (get_user(val, (int __user *)optval))
2787		return -EFAULT;
2788
2789	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2790	return 0;
2791}
2792
2793/*
2794 *
2795 * 7.1.1 SCTP_RTOINFO
2796 *
2797 * The protocol parameters used to initialize and bound retransmission
2798 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2799 * and modify these parameters.
2800 * All parameters are time values, in milliseconds.  A value of 0, when
2801 * modifying the parameters, indicates that the current value should not
2802 * be changed.
2803 *
2804 */
2805static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2806{
2807	struct sctp_rtoinfo rtoinfo;
2808	struct sctp_association *asoc;
 
 
2809
2810	if (optlen != sizeof (struct sctp_rtoinfo))
2811		return -EINVAL;
2812
2813	if (copy_from_user(&rtoinfo, optval, optlen))
2814		return -EFAULT;
2815
2816	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2817
2818	/* Set the values to the specific association */
2819	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2820		return -EINVAL;
2821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822	if (asoc) {
2823		if (rtoinfo.srto_initial != 0)
2824			asoc->rto_initial =
2825				msecs_to_jiffies(rtoinfo.srto_initial);
2826		if (rtoinfo.srto_max != 0)
2827			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2828		if (rtoinfo.srto_min != 0)
2829			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2830	} else {
2831		/* If there is no association or the association-id = 0
2832		 * set the values to the endpoint.
2833		 */
2834		struct sctp_sock *sp = sctp_sk(sk);
2835
2836		if (rtoinfo.srto_initial != 0)
2837			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2838		if (rtoinfo.srto_max != 0)
2839			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2840		if (rtoinfo.srto_min != 0)
2841			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2842	}
2843
2844	return 0;
2845}
2846
2847/*
2848 *
2849 * 7.1.2 SCTP_ASSOCINFO
2850 *
2851 * This option is used to tune the maximum retransmission attempts
2852 * of the association.
2853 * Returns an error if the new association retransmission value is
2854 * greater than the sum of the retransmission value  of the peer.
2855 * See [SCTP] for more information.
2856 *
2857 */
2858static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2859{
2860
2861	struct sctp_assocparams assocparams;
2862	struct sctp_association *asoc;
2863
2864	if (optlen != sizeof(struct sctp_assocparams))
2865		return -EINVAL;
2866	if (copy_from_user(&assocparams, optval, optlen))
2867		return -EFAULT;
2868
2869	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2870
2871	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2872		return -EINVAL;
2873
2874	/* Set the values to the specific association */
2875	if (asoc) {
2876		if (assocparams.sasoc_asocmaxrxt != 0) {
2877			__u32 path_sum = 0;
2878			int   paths = 0;
2879			struct sctp_transport *peer_addr;
2880
2881			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2882					transports) {
2883				path_sum += peer_addr->pathmaxrxt;
2884				paths++;
2885			}
2886
2887			/* Only validate asocmaxrxt if we have more than
2888			 * one path/transport.  We do this because path
2889			 * retransmissions are only counted when we have more
2890			 * then one path.
2891			 */
2892			if (paths > 1 &&
2893			    assocparams.sasoc_asocmaxrxt > path_sum)
2894				return -EINVAL;
2895
2896			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2897		}
2898
2899		if (assocparams.sasoc_cookie_life != 0) {
2900			asoc->cookie_life.tv_sec =
2901					assocparams.sasoc_cookie_life / 1000;
2902			asoc->cookie_life.tv_usec =
2903					(assocparams.sasoc_cookie_life % 1000)
2904					* 1000;
2905		}
2906	} else {
2907		/* Set the values to the endpoint */
2908		struct sctp_sock *sp = sctp_sk(sk);
2909
2910		if (assocparams.sasoc_asocmaxrxt != 0)
2911			sp->assocparams.sasoc_asocmaxrxt =
2912						assocparams.sasoc_asocmaxrxt;
2913		if (assocparams.sasoc_cookie_life != 0)
2914			sp->assocparams.sasoc_cookie_life =
2915						assocparams.sasoc_cookie_life;
2916	}
2917	return 0;
2918}
2919
2920/*
2921 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2922 *
2923 * This socket option is a boolean flag which turns on or off mapped V4
2924 * addresses.  If this option is turned on and the socket is type
2925 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2926 * If this option is turned off, then no mapping will be done of V4
2927 * addresses and a user will receive both PF_INET6 and PF_INET type
2928 * addresses on the socket.
2929 */
2930static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2931{
2932	int val;
2933	struct sctp_sock *sp = sctp_sk(sk);
2934
2935	if (optlen < sizeof(int))
2936		return -EINVAL;
2937	if (get_user(val, (int __user *)optval))
2938		return -EFAULT;
2939	if (val)
2940		sp->v4mapped = 1;
2941	else
2942		sp->v4mapped = 0;
2943
2944	return 0;
2945}
2946
2947/*
2948 * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2949 * This option will get or set the maximum size to put in any outgoing
2950 * SCTP DATA chunk.  If a message is larger than this size it will be
2951 * fragmented by SCTP into the specified size.  Note that the underlying
2952 * SCTP implementation may fragment into smaller sized chunks when the
2953 * PMTU of the underlying association is smaller than the value set by
2954 * the user.  The default value for this option is '0' which indicates
2955 * the user is NOT limiting fragmentation and only the PMTU will effect
2956 * SCTP's choice of DATA chunk size.  Note also that values set larger
2957 * than the maximum size of an IP datagram will effectively let SCTP
2958 * control fragmentation (i.e. the same as setting this option to 0).
2959 *
2960 * The following structure is used to access and modify this parameter:
2961 *
2962 * struct sctp_assoc_value {
2963 *   sctp_assoc_t assoc_id;
2964 *   uint32_t assoc_value;
2965 * };
2966 *
2967 * assoc_id:  This parameter is ignored for one-to-one style sockets.
2968 *    For one-to-many style sockets this parameter indicates which
2969 *    association the user is performing an action upon.  Note that if
2970 *    this field's value is zero then the endpoints default value is
2971 *    changed (effecting future associations only).
2972 * assoc_value:  This parameter specifies the maximum size in bytes.
2973 */
2974static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2975{
2976	struct sctp_assoc_value params;
2977	struct sctp_association *asoc;
2978	struct sctp_sock *sp = sctp_sk(sk);
2979	int val;
2980
2981	if (optlen == sizeof(int)) {
2982		pr_warn("Use of int in maxseg socket option deprecated\n");
2983		pr_warn("Use struct sctp_assoc_value instead\n");
 
 
 
2984		if (copy_from_user(&val, optval, optlen))
2985			return -EFAULT;
2986		params.assoc_id = 0;
2987	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2988		if (copy_from_user(&params, optval, optlen))
2989			return -EFAULT;
2990		val = params.assoc_value;
2991	} else
2992		return -EINVAL;
2993
2994	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2995		return -EINVAL;
2996
2997	asoc = sctp_id2assoc(sk, params.assoc_id);
2998	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2999		return -EINVAL;
3000
3001	if (asoc) {
3002		if (val == 0) {
3003			val = asoc->pathmtu;
3004			val -= sp->pf->af->net_header_len;
3005			val -= sizeof(struct sctphdr) +
3006					sizeof(struct sctp_data_chunk);
3007		}
3008		asoc->user_frag = val;
3009		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3010	} else {
3011		sp->user_frag = val;
3012	}
3013
3014	return 0;
3015}
3016
3017
3018/*
3019 *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3020 *
3021 *   Requests that the peer mark the enclosed address as the association
3022 *   primary. The enclosed address must be one of the association's
3023 *   locally bound addresses. The following structure is used to make a
3024 *   set primary request:
3025 */
3026static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3027					     unsigned int optlen)
3028{
 
3029	struct sctp_sock	*sp;
3030	struct sctp_association	*asoc = NULL;
3031	struct sctp_setpeerprim	prim;
3032	struct sctp_chunk	*chunk;
3033	struct sctp_af		*af;
3034	int 			err;
3035
3036	sp = sctp_sk(sk);
3037
3038	if (!sctp_addip_enable)
3039		return -EPERM;
3040
3041	if (optlen != sizeof(struct sctp_setpeerprim))
3042		return -EINVAL;
3043
3044	if (copy_from_user(&prim, optval, optlen))
3045		return -EFAULT;
3046
3047	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3048	if (!asoc)
3049		return -EINVAL;
3050
3051	if (!asoc->peer.asconf_capable)
3052		return -EPERM;
3053
3054	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3055		return -EPERM;
3056
3057	if (!sctp_state(asoc, ESTABLISHED))
3058		return -ENOTCONN;
3059
3060	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3061	if (!af)
3062		return -EINVAL;
3063
3064	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3065		return -EADDRNOTAVAIL;
3066
3067	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3068		return -EADDRNOTAVAIL;
3069
3070	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3071	chunk = sctp_make_asconf_set_prim(asoc,
3072					  (union sctp_addr *)&prim.sspp_addr);
3073	if (!chunk)
3074		return -ENOMEM;
3075
3076	err = sctp_send_asconf(asoc, chunk);
3077
3078	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3079
3080	return err;
3081}
3082
3083static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3084					    unsigned int optlen)
3085{
3086	struct sctp_setadaptation adaptation;
3087
3088	if (optlen != sizeof(struct sctp_setadaptation))
3089		return -EINVAL;
3090	if (copy_from_user(&adaptation, optval, optlen))
3091		return -EFAULT;
3092
3093	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3094
3095	return 0;
3096}
3097
3098/*
3099 * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3100 *
3101 * The context field in the sctp_sndrcvinfo structure is normally only
3102 * used when a failed message is retrieved holding the value that was
3103 * sent down on the actual send call.  This option allows the setting of
3104 * a default context on an association basis that will be received on
3105 * reading messages from the peer.  This is especially helpful in the
3106 * one-2-many model for an application to keep some reference to an
3107 * internal state machine that is processing messages on the
3108 * association.  Note that the setting of this value only effects
3109 * received messages from the peer and does not effect the value that is
3110 * saved with outbound messages.
3111 */
3112static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3113				   unsigned int optlen)
3114{
3115	struct sctp_assoc_value params;
3116	struct sctp_sock *sp;
3117	struct sctp_association *asoc;
3118
3119	if (optlen != sizeof(struct sctp_assoc_value))
3120		return -EINVAL;
3121	if (copy_from_user(&params, optval, optlen))
3122		return -EFAULT;
3123
3124	sp = sctp_sk(sk);
3125
3126	if (params.assoc_id != 0) {
3127		asoc = sctp_id2assoc(sk, params.assoc_id);
3128		if (!asoc)
3129			return -EINVAL;
3130		asoc->default_rcv_context = params.assoc_value;
3131	} else {
3132		sp->default_rcv_context = params.assoc_value;
3133	}
3134
3135	return 0;
3136}
3137
3138/*
3139 * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3140 *
3141 * This options will at a minimum specify if the implementation is doing
3142 * fragmented interleave.  Fragmented interleave, for a one to many
3143 * socket, is when subsequent calls to receive a message may return
3144 * parts of messages from different associations.  Some implementations
3145 * may allow you to turn this value on or off.  If so, when turned off,
3146 * no fragment interleave will occur (which will cause a head of line
3147 * blocking amongst multiple associations sharing the same one to many
3148 * socket).  When this option is turned on, then each receive call may
3149 * come from a different association (thus the user must receive data
3150 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3151 * association each receive belongs to.
3152 *
3153 * This option takes a boolean value.  A non-zero value indicates that
3154 * fragmented interleave is on.  A value of zero indicates that
3155 * fragmented interleave is off.
3156 *
3157 * Note that it is important that an implementation that allows this
3158 * option to be turned on, have it off by default.  Otherwise an unaware
3159 * application using the one to many model may become confused and act
3160 * incorrectly.
3161 */
3162static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3163					       char __user *optval,
3164					       unsigned int optlen)
3165{
3166	int val;
3167
3168	if (optlen != sizeof(int))
3169		return -EINVAL;
3170	if (get_user(val, (int __user *)optval))
3171		return -EFAULT;
3172
3173	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3174
3175	return 0;
3176}
3177
3178/*
3179 * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3180 *       (SCTP_PARTIAL_DELIVERY_POINT)
3181 *
3182 * This option will set or get the SCTP partial delivery point.  This
3183 * point is the size of a message where the partial delivery API will be
3184 * invoked to help free up rwnd space for the peer.  Setting this to a
3185 * lower value will cause partial deliveries to happen more often.  The
3186 * calls argument is an integer that sets or gets the partial delivery
3187 * point.  Note also that the call will fail if the user attempts to set
3188 * this value larger than the socket receive buffer size.
3189 *
3190 * Note that any single message having a length smaller than or equal to
3191 * the SCTP partial delivery point will be delivered in one single read
3192 * call as long as the user provided buffer is large enough to hold the
3193 * message.
3194 */
3195static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3196						  char __user *optval,
3197						  unsigned int optlen)
3198{
3199	u32 val;
3200
3201	if (optlen != sizeof(u32))
3202		return -EINVAL;
3203	if (get_user(val, (int __user *)optval))
3204		return -EFAULT;
3205
3206	/* Note: We double the receive buffer from what the user sets
3207	 * it to be, also initial rwnd is based on rcvbuf/2.
3208	 */
3209	if (val > (sk->sk_rcvbuf >> 1))
3210		return -EINVAL;
3211
3212	sctp_sk(sk)->pd_point = val;
3213
3214	return 0; /* is this the right error code? */
3215}
3216
3217/*
3218 * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3219 *
3220 * This option will allow a user to change the maximum burst of packets
3221 * that can be emitted by this association.  Note that the default value
3222 * is 4, and some implementations may restrict this setting so that it
3223 * can only be lowered.
3224 *
3225 * NOTE: This text doesn't seem right.  Do this on a socket basis with
3226 * future associations inheriting the socket value.
3227 */
3228static int sctp_setsockopt_maxburst(struct sock *sk,
3229				    char __user *optval,
3230				    unsigned int optlen)
3231{
3232	struct sctp_assoc_value params;
3233	struct sctp_sock *sp;
3234	struct sctp_association *asoc;
3235	int val;
3236	int assoc_id = 0;
3237
3238	if (optlen == sizeof(int)) {
3239		pr_warn("Use of int in max_burst socket option deprecated\n");
3240		pr_warn("Use struct sctp_assoc_value instead\n");
 
 
 
3241		if (copy_from_user(&val, optval, optlen))
3242			return -EFAULT;
3243	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3244		if (copy_from_user(&params, optval, optlen))
3245			return -EFAULT;
3246		val = params.assoc_value;
3247		assoc_id = params.assoc_id;
3248	} else
3249		return -EINVAL;
3250
3251	sp = sctp_sk(sk);
3252
3253	if (assoc_id != 0) {
3254		asoc = sctp_id2assoc(sk, assoc_id);
3255		if (!asoc)
3256			return -EINVAL;
3257		asoc->max_burst = val;
3258	} else
3259		sp->max_burst = val;
3260
3261	return 0;
3262}
3263
3264/*
3265 * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3266 *
3267 * This set option adds a chunk type that the user is requesting to be
3268 * received only in an authenticated way.  Changes to the list of chunks
3269 * will only effect future associations on the socket.
3270 */
3271static int sctp_setsockopt_auth_chunk(struct sock *sk,
3272				      char __user *optval,
3273				      unsigned int optlen)
3274{
 
3275	struct sctp_authchunk val;
3276
3277	if (!sctp_auth_enable)
3278		return -EACCES;
3279
3280	if (optlen != sizeof(struct sctp_authchunk))
3281		return -EINVAL;
3282	if (copy_from_user(&val, optval, optlen))
3283		return -EFAULT;
3284
3285	switch (val.sauth_chunk) {
3286	case SCTP_CID_INIT:
3287	case SCTP_CID_INIT_ACK:
3288	case SCTP_CID_SHUTDOWN_COMPLETE:
3289	case SCTP_CID_AUTH:
3290		return -EINVAL;
3291	}
3292
3293	/* add this chunk id to the endpoint */
3294	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3295}
3296
3297/*
3298 * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3299 *
3300 * This option gets or sets the list of HMAC algorithms that the local
3301 * endpoint requires the peer to use.
3302 */
3303static int sctp_setsockopt_hmac_ident(struct sock *sk,
3304				      char __user *optval,
3305				      unsigned int optlen)
3306{
 
3307	struct sctp_hmacalgo *hmacs;
3308	u32 idents;
3309	int err;
3310
3311	if (!sctp_auth_enable)
3312		return -EACCES;
3313
3314	if (optlen < sizeof(struct sctp_hmacalgo))
3315		return -EINVAL;
3316
3317	hmacs= memdup_user(optval, optlen);
3318	if (IS_ERR(hmacs))
3319		return PTR_ERR(hmacs);
3320
3321	idents = hmacs->shmac_num_idents;
3322	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3323	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3324		err = -EINVAL;
3325		goto out;
3326	}
3327
3328	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3329out:
3330	kfree(hmacs);
3331	return err;
3332}
3333
3334/*
3335 * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3336 *
3337 * This option will set a shared secret key which is used to build an
3338 * association shared key.
3339 */
3340static int sctp_setsockopt_auth_key(struct sock *sk,
3341				    char __user *optval,
3342				    unsigned int optlen)
3343{
 
3344	struct sctp_authkey *authkey;
3345	struct sctp_association *asoc;
3346	int ret;
3347
3348	if (!sctp_auth_enable)
3349		return -EACCES;
3350
3351	if (optlen <= sizeof(struct sctp_authkey))
3352		return -EINVAL;
3353
3354	authkey= memdup_user(optval, optlen);
3355	if (IS_ERR(authkey))
3356		return PTR_ERR(authkey);
3357
3358	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3359		ret = -EINVAL;
3360		goto out;
3361	}
3362
3363	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3364	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3365		ret = -EINVAL;
3366		goto out;
3367	}
3368
3369	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3370out:
3371	kfree(authkey);
3372	return ret;
3373}
3374
3375/*
3376 * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3377 *
3378 * This option will get or set the active shared key to be used to build
3379 * the association shared key.
3380 */
3381static int sctp_setsockopt_active_key(struct sock *sk,
3382				      char __user *optval,
3383				      unsigned int optlen)
3384{
 
3385	struct sctp_authkeyid val;
3386	struct sctp_association *asoc;
3387
3388	if (!sctp_auth_enable)
3389		return -EACCES;
3390
3391	if (optlen != sizeof(struct sctp_authkeyid))
3392		return -EINVAL;
3393	if (copy_from_user(&val, optval, optlen))
3394		return -EFAULT;
3395
3396	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3397	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3398		return -EINVAL;
3399
3400	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3401					val.scact_keynumber);
3402}
3403
3404/*
3405 * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3406 *
3407 * This set option will delete a shared secret key from use.
3408 */
3409static int sctp_setsockopt_del_key(struct sock *sk,
3410				   char __user *optval,
3411				   unsigned int optlen)
3412{
 
3413	struct sctp_authkeyid val;
3414	struct sctp_association *asoc;
3415
3416	if (!sctp_auth_enable)
3417		return -EACCES;
3418
3419	if (optlen != sizeof(struct sctp_authkeyid))
3420		return -EINVAL;
3421	if (copy_from_user(&val, optval, optlen))
3422		return -EFAULT;
3423
3424	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3425	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3426		return -EINVAL;
3427
3428	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3429				    val.scact_keynumber);
3430
3431}
3432
3433/*
3434 * 8.1.23 SCTP_AUTO_ASCONF
3435 *
3436 * This option will enable or disable the use of the automatic generation of
3437 * ASCONF chunks to add and delete addresses to an existing association.  Note
3438 * that this option has two caveats namely: a) it only affects sockets that
3439 * are bound to all addresses available to the SCTP stack, and b) the system
3440 * administrator may have an overriding control that turns the ASCONF feature
3441 * off no matter what setting the socket option may have.
3442 * This option expects an integer boolean flag, where a non-zero value turns on
3443 * the option, and a zero value turns off the option.
3444 * Note. In this implementation, socket operation overrides default parameter
3445 * being set by sysctl as well as FreeBSD implementation
3446 */
3447static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3448					unsigned int optlen)
3449{
3450	int val;
3451	struct sctp_sock *sp = sctp_sk(sk);
3452
3453	if (optlen < sizeof(int))
3454		return -EINVAL;
3455	if (get_user(val, (int __user *)optval))
3456		return -EFAULT;
3457	if (!sctp_is_ep_boundall(sk) && val)
3458		return -EINVAL;
3459	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3460		return 0;
3461
3462	if (val == 0 && sp->do_auto_asconf) {
3463		list_del(&sp->auto_asconf_list);
3464		sp->do_auto_asconf = 0;
3465	} else if (val && !sp->do_auto_asconf) {
3466		list_add_tail(&sp->auto_asconf_list,
3467		    &sctp_auto_asconf_splist);
3468		sp->do_auto_asconf = 1;
3469	}
3470	return 0;
3471}
3472
3473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3474/* API 6.2 setsockopt(), getsockopt()
3475 *
3476 * Applications use setsockopt() and getsockopt() to set or retrieve
3477 * socket options.  Socket options are used to change the default
3478 * behavior of sockets calls.  They are described in Section 7.
3479 *
3480 * The syntax is:
3481 *
3482 *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3483 *                    int __user *optlen);
3484 *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3485 *                    int optlen);
3486 *
3487 *   sd      - the socket descript.
3488 *   level   - set to IPPROTO_SCTP for all SCTP options.
3489 *   optname - the option name.
3490 *   optval  - the buffer to store the value of the option.
3491 *   optlen  - the size of the buffer.
3492 */
3493SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3494				char __user *optval, unsigned int optlen)
3495{
3496	int retval = 0;
3497
3498	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3499			  sk, optname);
3500
3501	/* I can hardly begin to describe how wrong this is.  This is
3502	 * so broken as to be worse than useless.  The API draft
3503	 * REALLY is NOT helpful here...  I am not convinced that the
3504	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3505	 * are at all well-founded.
3506	 */
3507	if (level != SOL_SCTP) {
3508		struct sctp_af *af = sctp_sk(sk)->pf->af;
3509		retval = af->setsockopt(sk, level, optname, optval, optlen);
3510		goto out_nounlock;
3511	}
3512
3513	sctp_lock_sock(sk);
3514
3515	switch (optname) {
3516	case SCTP_SOCKOPT_BINDX_ADD:
3517		/* 'optlen' is the size of the addresses buffer. */
3518		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3519					       optlen, SCTP_BINDX_ADD_ADDR);
3520		break;
3521
3522	case SCTP_SOCKOPT_BINDX_REM:
3523		/* 'optlen' is the size of the addresses buffer. */
3524		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3525					       optlen, SCTP_BINDX_REM_ADDR);
3526		break;
3527
3528	case SCTP_SOCKOPT_CONNECTX_OLD:
3529		/* 'optlen' is the size of the addresses buffer. */
3530		retval = sctp_setsockopt_connectx_old(sk,
3531					    (struct sockaddr __user *)optval,
3532					    optlen);
3533		break;
3534
3535	case SCTP_SOCKOPT_CONNECTX:
3536		/* 'optlen' is the size of the addresses buffer. */
3537		retval = sctp_setsockopt_connectx(sk,
3538					    (struct sockaddr __user *)optval,
3539					    optlen);
3540		break;
3541
3542	case SCTP_DISABLE_FRAGMENTS:
3543		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3544		break;
3545
3546	case SCTP_EVENTS:
3547		retval = sctp_setsockopt_events(sk, optval, optlen);
3548		break;
3549
3550	case SCTP_AUTOCLOSE:
3551		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3552		break;
3553
3554	case SCTP_PEER_ADDR_PARAMS:
3555		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3556		break;
3557
3558	case SCTP_DELAYED_SACK:
3559		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3560		break;
3561	case SCTP_PARTIAL_DELIVERY_POINT:
3562		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3563		break;
3564
3565	case SCTP_INITMSG:
3566		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3567		break;
3568	case SCTP_DEFAULT_SEND_PARAM:
3569		retval = sctp_setsockopt_default_send_param(sk, optval,
3570							    optlen);
3571		break;
3572	case SCTP_PRIMARY_ADDR:
3573		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3574		break;
3575	case SCTP_SET_PEER_PRIMARY_ADDR:
3576		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3577		break;
3578	case SCTP_NODELAY:
3579		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3580		break;
3581	case SCTP_RTOINFO:
3582		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3583		break;
3584	case SCTP_ASSOCINFO:
3585		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3586		break;
3587	case SCTP_I_WANT_MAPPED_V4_ADDR:
3588		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3589		break;
3590	case SCTP_MAXSEG:
3591		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3592		break;
3593	case SCTP_ADAPTATION_LAYER:
3594		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3595		break;
3596	case SCTP_CONTEXT:
3597		retval = sctp_setsockopt_context(sk, optval, optlen);
3598		break;
3599	case SCTP_FRAGMENT_INTERLEAVE:
3600		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3601		break;
3602	case SCTP_MAX_BURST:
3603		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3604		break;
3605	case SCTP_AUTH_CHUNK:
3606		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3607		break;
3608	case SCTP_HMAC_IDENT:
3609		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3610		break;
3611	case SCTP_AUTH_KEY:
3612		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3613		break;
3614	case SCTP_AUTH_ACTIVE_KEY:
3615		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3616		break;
3617	case SCTP_AUTH_DELETE_KEY:
3618		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3619		break;
3620	case SCTP_AUTO_ASCONF:
3621		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3622		break;
 
 
 
3623	default:
3624		retval = -ENOPROTOOPT;
3625		break;
3626	}
3627
3628	sctp_release_sock(sk);
3629
3630out_nounlock:
3631	return retval;
3632}
3633
3634/* API 3.1.6 connect() - UDP Style Syntax
3635 *
3636 * An application may use the connect() call in the UDP model to initiate an
3637 * association without sending data.
3638 *
3639 * The syntax is:
3640 *
3641 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3642 *
3643 * sd: the socket descriptor to have a new association added to.
3644 *
3645 * nam: the address structure (either struct sockaddr_in or struct
3646 *    sockaddr_in6 defined in RFC2553 [7]).
3647 *
3648 * len: the size of the address.
3649 */
3650SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3651			     int addr_len)
3652{
3653	int err = 0;
3654	struct sctp_af *af;
3655
3656	sctp_lock_sock(sk);
3657
3658	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3659			  __func__, sk, addr, addr_len);
3660
3661	/* Validate addr_len before calling common connect/connectx routine. */
3662	af = sctp_get_af_specific(addr->sa_family);
3663	if (!af || addr_len < af->sockaddr_len) {
3664		err = -EINVAL;
3665	} else {
3666		/* Pass correct addr len to common routine (so it knows there
3667		 * is only one address being passed.
3668		 */
3669		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3670	}
3671
3672	sctp_release_sock(sk);
3673	return err;
3674}
3675
3676/* FIXME: Write comments. */
3677SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3678{
3679	return -EOPNOTSUPP; /* STUB */
3680}
3681
3682/* 4.1.4 accept() - TCP Style Syntax
3683 *
3684 * Applications use accept() call to remove an established SCTP
3685 * association from the accept queue of the endpoint.  A new socket
3686 * descriptor will be returned from accept() to represent the newly
3687 * formed association.
3688 */
3689SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3690{
3691	struct sctp_sock *sp;
3692	struct sctp_endpoint *ep;
3693	struct sock *newsk = NULL;
3694	struct sctp_association *asoc;
3695	long timeo;
3696	int error = 0;
3697
3698	sctp_lock_sock(sk);
3699
3700	sp = sctp_sk(sk);
3701	ep = sp->ep;
3702
3703	if (!sctp_style(sk, TCP)) {
3704		error = -EOPNOTSUPP;
3705		goto out;
3706	}
3707
3708	if (!sctp_sstate(sk, LISTENING)) {
3709		error = -EINVAL;
3710		goto out;
3711	}
3712
3713	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3714
3715	error = sctp_wait_for_accept(sk, timeo);
3716	if (error)
3717		goto out;
3718
3719	/* We treat the list of associations on the endpoint as the accept
3720	 * queue and pick the first association on the list.
3721	 */
3722	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3723
3724	newsk = sp->pf->create_accept_sk(sk, asoc);
3725	if (!newsk) {
3726		error = -ENOMEM;
3727		goto out;
3728	}
3729
3730	/* Populate the fields of the newsk from the oldsk and migrate the
3731	 * asoc to the newsk.
3732	 */
3733	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3734
3735out:
3736	sctp_release_sock(sk);
3737	*err = error;
3738	return newsk;
3739}
3740
3741/* The SCTP ioctl handler. */
3742SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3743{
3744	int rc = -ENOTCONN;
3745
3746	sctp_lock_sock(sk);
3747
3748	/*
3749	 * SEQPACKET-style sockets in LISTENING state are valid, for
3750	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3751	 */
3752	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3753		goto out;
3754
3755	switch (cmd) {
3756	case SIOCINQ: {
3757		struct sk_buff *skb;
3758		unsigned int amount = 0;
3759
3760		skb = skb_peek(&sk->sk_receive_queue);
3761		if (skb != NULL) {
3762			/*
3763			 * We will only return the amount of this packet since
3764			 * that is all that will be read.
3765			 */
3766			amount = skb->len;
3767		}
3768		rc = put_user(amount, (int __user *)arg);
3769		break;
3770	}
3771	default:
3772		rc = -ENOIOCTLCMD;
3773		break;
3774	}
3775out:
3776	sctp_release_sock(sk);
3777	return rc;
3778}
3779
3780/* This is the function which gets called during socket creation to
3781 * initialized the SCTP-specific portion of the sock.
3782 * The sock structure should already be zero-filled memory.
3783 */
3784SCTP_STATIC int sctp_init_sock(struct sock *sk)
3785{
3786	struct sctp_endpoint *ep;
3787	struct sctp_sock *sp;
3788
3789	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3790
3791	sp = sctp_sk(sk);
3792
3793	/* Initialize the SCTP per socket area.  */
3794	switch (sk->sk_type) {
3795	case SOCK_SEQPACKET:
3796		sp->type = SCTP_SOCKET_UDP;
3797		break;
3798	case SOCK_STREAM:
3799		sp->type = SCTP_SOCKET_TCP;
3800		break;
3801	default:
3802		return -ESOCKTNOSUPPORT;
3803	}
3804
3805	/* Initialize default send parameters. These parameters can be
3806	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3807	 */
3808	sp->default_stream = 0;
3809	sp->default_ppid = 0;
3810	sp->default_flags = 0;
3811	sp->default_context = 0;
3812	sp->default_timetolive = 0;
3813
3814	sp->default_rcv_context = 0;
3815	sp->max_burst = sctp_max_burst;
 
 
3816
3817	/* Initialize default setup parameters. These parameters
3818	 * can be modified with the SCTP_INITMSG socket option or
3819	 * overridden by the SCTP_INIT CMSG.
3820	 */
3821	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3822	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3823	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3824	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3825
3826	/* Initialize default RTO related parameters.  These parameters can
3827	 * be modified for with the SCTP_RTOINFO socket option.
3828	 */
3829	sp->rtoinfo.srto_initial = sctp_rto_initial;
3830	sp->rtoinfo.srto_max     = sctp_rto_max;
3831	sp->rtoinfo.srto_min     = sctp_rto_min;
3832
3833	/* Initialize default association related parameters. These parameters
3834	 * can be modified with the SCTP_ASSOCINFO socket option.
3835	 */
3836	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3837	sp->assocparams.sasoc_number_peer_destinations = 0;
3838	sp->assocparams.sasoc_peer_rwnd = 0;
3839	sp->assocparams.sasoc_local_rwnd = 0;
3840	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3841
3842	/* Initialize default event subscriptions. By default, all the
3843	 * options are off.
3844	 */
3845	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3846
3847	/* Default Peer Address Parameters.  These defaults can
3848	 * be modified via SCTP_PEER_ADDR_PARAMS
3849	 */
3850	sp->hbinterval  = sctp_hb_interval;
3851	sp->pathmaxrxt  = sctp_max_retrans_path;
3852	sp->pathmtu     = 0; // allow default discovery
3853	sp->sackdelay   = sctp_sack_timeout;
3854	sp->sackfreq	= 2;
3855	sp->param_flags = SPP_HB_ENABLE |
3856			  SPP_PMTUD_ENABLE |
3857			  SPP_SACKDELAY_ENABLE;
3858
3859	/* If enabled no SCTP message fragmentation will be performed.
3860	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3861	 */
3862	sp->disable_fragments = 0;
3863
3864	/* Enable Nagle algorithm by default.  */
3865	sp->nodelay           = 0;
3866
3867	/* Enable by default. */
3868	sp->v4mapped          = 1;
3869
3870	/* Auto-close idle associations after the configured
3871	 * number of seconds.  A value of 0 disables this
3872	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3873	 * for UDP-style sockets only.
3874	 */
3875	sp->autoclose         = 0;
3876
3877	/* User specified fragmentation limit. */
3878	sp->user_frag         = 0;
3879
3880	sp->adaptation_ind = 0;
3881
3882	sp->pf = sctp_get_pf_specific(sk->sk_family);
3883
3884	/* Control variables for partial data delivery. */
3885	atomic_set(&sp->pd_mode, 0);
3886	skb_queue_head_init(&sp->pd_lobby);
3887	sp->frag_interleave = 0;
3888
3889	/* Create a per socket endpoint structure.  Even if we
3890	 * change the data structure relationships, this may still
3891	 * be useful for storing pre-connect address information.
3892	 */
3893	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3894	if (!ep)
3895		return -ENOMEM;
3896
3897	sp->ep = ep;
3898	sp->hmac = NULL;
3899
 
 
3900	SCTP_DBG_OBJCNT_INC(sock);
3901
3902	local_bh_disable();
3903	percpu_counter_inc(&sctp_sockets_allocated);
3904	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3905	if (sctp_default_auto_asconf) {
3906		list_add_tail(&sp->auto_asconf_list,
3907		    &sctp_auto_asconf_splist);
3908		sp->do_auto_asconf = 1;
3909	} else
3910		sp->do_auto_asconf = 0;
3911	local_bh_enable();
3912
3913	return 0;
3914}
3915
3916/* Cleanup any SCTP per socket resources.  */
3917SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3918{
3919	struct sctp_sock *sp;
3920
3921	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3922
3923	/* Release our hold on the endpoint. */
3924	sp = sctp_sk(sk);
 
 
 
 
 
 
3925	if (sp->do_auto_asconf) {
3926		sp->do_auto_asconf = 0;
3927		list_del(&sp->auto_asconf_list);
3928	}
3929	sctp_endpoint_free(sp->ep);
3930	local_bh_disable();
3931	percpu_counter_dec(&sctp_sockets_allocated);
3932	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3933	local_bh_enable();
3934}
3935
 
 
 
 
 
 
 
 
 
 
 
3936/* API 4.1.7 shutdown() - TCP Style Syntax
3937 *     int shutdown(int socket, int how);
3938 *
3939 *     sd      - the socket descriptor of the association to be closed.
3940 *     how     - Specifies the type of shutdown.  The  values  are
3941 *               as follows:
3942 *               SHUT_RD
3943 *                     Disables further receive operations. No SCTP
3944 *                     protocol action is taken.
3945 *               SHUT_WR
3946 *                     Disables further send operations, and initiates
3947 *                     the SCTP shutdown sequence.
3948 *               SHUT_RDWR
3949 *                     Disables further send  and  receive  operations
3950 *                     and initiates the SCTP shutdown sequence.
3951 */
3952SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3953{
 
3954	struct sctp_endpoint *ep;
3955	struct sctp_association *asoc;
3956
3957	if (!sctp_style(sk, TCP))
3958		return;
3959
3960	if (how & SEND_SHUTDOWN) {
3961		ep = sctp_sk(sk)->ep;
3962		if (!list_empty(&ep->asocs)) {
3963			asoc = list_entry(ep->asocs.next,
3964					  struct sctp_association, asocs);
3965			sctp_primitive_SHUTDOWN(asoc, NULL);
3966		}
3967	}
3968}
3969
3970/* 7.2.1 Association Status (SCTP_STATUS)
3971
3972 * Applications can retrieve current status information about an
3973 * association, including association state, peer receiver window size,
3974 * number of unacked data chunks, and number of data chunks pending
3975 * receipt.  This information is read-only.
3976 */
3977static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3978				       char __user *optval,
3979				       int __user *optlen)
3980{
3981	struct sctp_status status;
3982	struct sctp_association *asoc = NULL;
3983	struct sctp_transport *transport;
3984	sctp_assoc_t associd;
3985	int retval = 0;
3986
3987	if (len < sizeof(status)) {
3988		retval = -EINVAL;
3989		goto out;
3990	}
3991
3992	len = sizeof(status);
3993	if (copy_from_user(&status, optval, len)) {
3994		retval = -EFAULT;
3995		goto out;
3996	}
3997
3998	associd = status.sstat_assoc_id;
3999	asoc = sctp_id2assoc(sk, associd);
4000	if (!asoc) {
4001		retval = -EINVAL;
4002		goto out;
4003	}
4004
4005	transport = asoc->peer.primary_path;
4006
4007	status.sstat_assoc_id = sctp_assoc2id(asoc);
4008	status.sstat_state = asoc->state;
4009	status.sstat_rwnd =  asoc->peer.rwnd;
4010	status.sstat_unackdata = asoc->unack_data;
4011
4012	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4013	status.sstat_instrms = asoc->c.sinit_max_instreams;
4014	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4015	status.sstat_fragmentation_point = asoc->frag_point;
4016	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4017	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4018			transport->af_specific->sockaddr_len);
4019	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4020	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4021		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4022	status.sstat_primary.spinfo_state = transport->state;
4023	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4024	status.sstat_primary.spinfo_srtt = transport->srtt;
4025	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4026	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4027
4028	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4029		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4030
4031	if (put_user(len, optlen)) {
4032		retval = -EFAULT;
4033		goto out;
4034	}
4035
4036	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4037			  len, status.sstat_state, status.sstat_rwnd,
4038			  status.sstat_assoc_id);
4039
4040	if (copy_to_user(optval, &status, len)) {
4041		retval = -EFAULT;
4042		goto out;
4043	}
4044
4045out:
4046	return retval;
4047}
4048
4049
4050/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4051 *
4052 * Applications can retrieve information about a specific peer address
4053 * of an association, including its reachability state, congestion
4054 * window, and retransmission timer values.  This information is
4055 * read-only.
4056 */
4057static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4058					  char __user *optval,
4059					  int __user *optlen)
4060{
4061	struct sctp_paddrinfo pinfo;
4062	struct sctp_transport *transport;
4063	int retval = 0;
4064
4065	if (len < sizeof(pinfo)) {
4066		retval = -EINVAL;
4067		goto out;
4068	}
4069
4070	len = sizeof(pinfo);
4071	if (copy_from_user(&pinfo, optval, len)) {
4072		retval = -EFAULT;
4073		goto out;
4074	}
4075
4076	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4077					   pinfo.spinfo_assoc_id);
4078	if (!transport)
4079		return -EINVAL;
4080
4081	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4082	pinfo.spinfo_state = transport->state;
4083	pinfo.spinfo_cwnd = transport->cwnd;
4084	pinfo.spinfo_srtt = transport->srtt;
4085	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4086	pinfo.spinfo_mtu = transport->pathmtu;
4087
4088	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4089		pinfo.spinfo_state = SCTP_ACTIVE;
4090
4091	if (put_user(len, optlen)) {
4092		retval = -EFAULT;
4093		goto out;
4094	}
4095
4096	if (copy_to_user(optval, &pinfo, len)) {
4097		retval = -EFAULT;
4098		goto out;
4099	}
4100
4101out:
4102	return retval;
4103}
4104
4105/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4106 *
4107 * This option is a on/off flag.  If enabled no SCTP message
4108 * fragmentation will be performed.  Instead if a message being sent
4109 * exceeds the current PMTU size, the message will NOT be sent and
4110 * instead a error will be indicated to the user.
4111 */
4112static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4113					char __user *optval, int __user *optlen)
4114{
4115	int val;
4116
4117	if (len < sizeof(int))
4118		return -EINVAL;
4119
4120	len = sizeof(int);
4121	val = (sctp_sk(sk)->disable_fragments == 1);
4122	if (put_user(len, optlen))
4123		return -EFAULT;
4124	if (copy_to_user(optval, &val, len))
4125		return -EFAULT;
4126	return 0;
4127}
4128
4129/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4130 *
4131 * This socket option is used to specify various notifications and
4132 * ancillary data the user wishes to receive.
4133 */
4134static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4135				  int __user *optlen)
4136{
4137	if (len < sizeof(struct sctp_event_subscribe))
4138		return -EINVAL;
4139	len = sizeof(struct sctp_event_subscribe);
 
4140	if (put_user(len, optlen))
4141		return -EFAULT;
4142	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4143		return -EFAULT;
4144	return 0;
4145}
4146
4147/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4148 *
4149 * This socket option is applicable to the UDP-style socket only.  When
4150 * set it will cause associations that are idle for more than the
4151 * specified number of seconds to automatically close.  An association
4152 * being idle is defined an association that has NOT sent or received
4153 * user data.  The special value of '0' indicates that no automatic
4154 * close of any associations should be performed.  The option expects an
4155 * integer defining the number of seconds of idle time before an
4156 * association is closed.
4157 */
4158static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4159{
4160	/* Applicable to UDP-style socket only */
4161	if (sctp_style(sk, TCP))
4162		return -EOPNOTSUPP;
4163	if (len < sizeof(int))
4164		return -EINVAL;
4165	len = sizeof(int);
4166	if (put_user(len, optlen))
4167		return -EFAULT;
4168	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4169		return -EFAULT;
4170	return 0;
4171}
4172
4173/* Helper routine to branch off an association to a new socket.  */
4174SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4175				struct socket **sockp)
4176{
4177	struct sock *sk = asoc->base.sk;
4178	struct socket *sock;
4179	struct sctp_af *af;
4180	int err = 0;
4181
 
 
 
4182	/* An association cannot be branched off from an already peeled-off
4183	 * socket, nor is this supported for tcp style sockets.
4184	 */
4185	if (!sctp_style(sk, UDP))
4186		return -EINVAL;
4187
4188	/* Create a new socket.  */
4189	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4190	if (err < 0)
4191		return err;
4192
4193	sctp_copy_sock(sock->sk, sk, asoc);
4194
4195	/* Make peeled-off sockets more like 1-1 accepted sockets.
4196	 * Set the daddr and initialize id to something more random
4197	 */
4198	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4199	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4200
4201	/* Populate the fields of the newsk from the oldsk and migrate the
4202	 * asoc to the newsk.
4203	 */
4204	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4205
4206	*sockp = sock;
4207
4208	return err;
4209}
 
4210
4211static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4212{
4213	sctp_peeloff_arg_t peeloff;
4214	struct socket *newsock;
 
4215	int retval = 0;
4216	struct sctp_association *asoc;
4217
4218	if (len < sizeof(sctp_peeloff_arg_t))
4219		return -EINVAL;
4220	len = sizeof(sctp_peeloff_arg_t);
4221	if (copy_from_user(&peeloff, optval, len))
4222		return -EFAULT;
4223
4224	asoc = sctp_id2assoc(sk, peeloff.associd);
4225	if (!asoc) {
4226		retval = -EINVAL;
4227		goto out;
4228	}
4229
4230	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4231
4232	retval = sctp_do_peeloff(asoc, &newsock);
4233	if (retval < 0)
4234		goto out;
4235
4236	/* Map the socket to an unused fd that can be returned to the user.  */
4237	retval = sock_map_fd(newsock, 0);
4238	if (retval < 0) {
4239		sock_release(newsock);
4240		goto out;
4241	}
4242
4243	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4244			  __func__, sk, asoc, newsock->sk, retval);
 
 
 
 
 
 
 
4245
4246	/* Return the fd mapped to the new socket.  */
 
 
 
 
 
4247	peeloff.sd = retval;
4248	if (put_user(len, optlen))
 
 
4249		return -EFAULT;
4250	if (copy_to_user(optval, &peeloff, len))
4251		retval = -EFAULT;
4252
4253out:
4254	return retval;
4255}
4256
4257/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4258 *
4259 * Applications can enable or disable heartbeats for any peer address of
4260 * an association, modify an address's heartbeat interval, force a
4261 * heartbeat to be sent immediately, and adjust the address's maximum
4262 * number of retransmissions sent before an address is considered
4263 * unreachable.  The following structure is used to access and modify an
4264 * address's parameters:
4265 *
4266 *  struct sctp_paddrparams {
4267 *     sctp_assoc_t            spp_assoc_id;
4268 *     struct sockaddr_storage spp_address;
4269 *     uint32_t                spp_hbinterval;
4270 *     uint16_t                spp_pathmaxrxt;
4271 *     uint32_t                spp_pathmtu;
4272 *     uint32_t                spp_sackdelay;
4273 *     uint32_t                spp_flags;
4274 * };
4275 *
4276 *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4277 *                     application, and identifies the association for
4278 *                     this query.
4279 *   spp_address     - This specifies which address is of interest.
4280 *   spp_hbinterval  - This contains the value of the heartbeat interval,
4281 *                     in milliseconds.  If a  value of zero
4282 *                     is present in this field then no changes are to
4283 *                     be made to this parameter.
4284 *   spp_pathmaxrxt  - This contains the maximum number of
4285 *                     retransmissions before this address shall be
4286 *                     considered unreachable. If a  value of zero
4287 *                     is present in this field then no changes are to
4288 *                     be made to this parameter.
4289 *   spp_pathmtu     - When Path MTU discovery is disabled the value
4290 *                     specified here will be the "fixed" path mtu.
4291 *                     Note that if the spp_address field is empty
4292 *                     then all associations on this address will
4293 *                     have this fixed path mtu set upon them.
4294 *
4295 *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4296 *                     the number of milliseconds that sacks will be delayed
4297 *                     for. This value will apply to all addresses of an
4298 *                     association if the spp_address field is empty. Note
4299 *                     also, that if delayed sack is enabled and this
4300 *                     value is set to 0, no change is made to the last
4301 *                     recorded delayed sack timer value.
4302 *
4303 *   spp_flags       - These flags are used to control various features
4304 *                     on an association. The flag field may contain
4305 *                     zero or more of the following options.
4306 *
4307 *                     SPP_HB_ENABLE  - Enable heartbeats on the
4308 *                     specified address. Note that if the address
4309 *                     field is empty all addresses for the association
4310 *                     have heartbeats enabled upon them.
4311 *
4312 *                     SPP_HB_DISABLE - Disable heartbeats on the
4313 *                     speicifed address. Note that if the address
4314 *                     field is empty all addresses for the association
4315 *                     will have their heartbeats disabled. Note also
4316 *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4317 *                     mutually exclusive, only one of these two should
4318 *                     be specified. Enabling both fields will have
4319 *                     undetermined results.
4320 *
4321 *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4322 *                     to be made immediately.
4323 *
4324 *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4325 *                     discovery upon the specified address. Note that
4326 *                     if the address feild is empty then all addresses
4327 *                     on the association are effected.
4328 *
4329 *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4330 *                     discovery upon the specified address. Note that
4331 *                     if the address feild is empty then all addresses
4332 *                     on the association are effected. Not also that
4333 *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4334 *                     exclusive. Enabling both will have undetermined
4335 *                     results.
4336 *
4337 *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4338 *                     on delayed sack. The time specified in spp_sackdelay
4339 *                     is used to specify the sack delay for this address. Note
4340 *                     that if spp_address is empty then all addresses will
4341 *                     enable delayed sack and take on the sack delay
4342 *                     value specified in spp_sackdelay.
4343 *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4344 *                     off delayed sack. If the spp_address field is blank then
4345 *                     delayed sack is disabled for the entire association. Note
4346 *                     also that this field is mutually exclusive to
4347 *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4348 *                     results.
4349 */
4350static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4351					    char __user *optval, int __user *optlen)
4352{
4353	struct sctp_paddrparams  params;
4354	struct sctp_transport   *trans = NULL;
4355	struct sctp_association *asoc = NULL;
4356	struct sctp_sock        *sp = sctp_sk(sk);
4357
4358	if (len < sizeof(struct sctp_paddrparams))
4359		return -EINVAL;
4360	len = sizeof(struct sctp_paddrparams);
4361	if (copy_from_user(&params, optval, len))
4362		return -EFAULT;
4363
4364	/* If an address other than INADDR_ANY is specified, and
4365	 * no transport is found, then the request is invalid.
4366	 */
4367	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4368		trans = sctp_addr_id2transport(sk, &params.spp_address,
4369					       params.spp_assoc_id);
4370		if (!trans) {
4371			SCTP_DEBUG_PRINTK("Failed no transport\n");
4372			return -EINVAL;
4373		}
4374	}
4375
4376	/* Get association, if assoc_id != 0 and the socket is a one
4377	 * to many style socket, and an association was not found, then
4378	 * the id was invalid.
4379	 */
4380	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4381	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4382		SCTP_DEBUG_PRINTK("Failed no association\n");
4383		return -EINVAL;
4384	}
4385
4386	if (trans) {
4387		/* Fetch transport values. */
4388		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4389		params.spp_pathmtu    = trans->pathmtu;
4390		params.spp_pathmaxrxt = trans->pathmaxrxt;
4391		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4392
4393		/*draft-11 doesn't say what to return in spp_flags*/
4394		params.spp_flags      = trans->param_flags;
4395	} else if (asoc) {
4396		/* Fetch association values. */
4397		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4398		params.spp_pathmtu    = asoc->pathmtu;
4399		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4400		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4401
4402		/*draft-11 doesn't say what to return in spp_flags*/
4403		params.spp_flags      = asoc->param_flags;
4404	} else {
4405		/* Fetch socket values. */
4406		params.spp_hbinterval = sp->hbinterval;
4407		params.spp_pathmtu    = sp->pathmtu;
4408		params.spp_sackdelay  = sp->sackdelay;
4409		params.spp_pathmaxrxt = sp->pathmaxrxt;
4410
4411		/*draft-11 doesn't say what to return in spp_flags*/
4412		params.spp_flags      = sp->param_flags;
4413	}
4414
4415	if (copy_to_user(optval, &params, len))
4416		return -EFAULT;
4417
4418	if (put_user(len, optlen))
4419		return -EFAULT;
4420
4421	return 0;
4422}
4423
4424/*
4425 * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4426 *
4427 * This option will effect the way delayed acks are performed.  This
4428 * option allows you to get or set the delayed ack time, in
4429 * milliseconds.  It also allows changing the delayed ack frequency.
4430 * Changing the frequency to 1 disables the delayed sack algorithm.  If
4431 * the assoc_id is 0, then this sets or gets the endpoints default
4432 * values.  If the assoc_id field is non-zero, then the set or get
4433 * effects the specified association for the one to many model (the
4434 * assoc_id field is ignored by the one to one model).  Note that if
4435 * sack_delay or sack_freq are 0 when setting this option, then the
4436 * current values will remain unchanged.
4437 *
4438 * struct sctp_sack_info {
4439 *     sctp_assoc_t            sack_assoc_id;
4440 *     uint32_t                sack_delay;
4441 *     uint32_t                sack_freq;
4442 * };
4443 *
4444 * sack_assoc_id -  This parameter, indicates which association the user
4445 *    is performing an action upon.  Note that if this field's value is
4446 *    zero then the endpoints default value is changed (effecting future
4447 *    associations only).
4448 *
4449 * sack_delay -  This parameter contains the number of milliseconds that
4450 *    the user is requesting the delayed ACK timer be set to.  Note that
4451 *    this value is defined in the standard to be between 200 and 500
4452 *    milliseconds.
4453 *
4454 * sack_freq -  This parameter contains the number of packets that must
4455 *    be received before a sack is sent without waiting for the delay
4456 *    timer to expire.  The default value for this is 2, setting this
4457 *    value to 1 will disable the delayed sack algorithm.
4458 */
4459static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4460					    char __user *optval,
4461					    int __user *optlen)
4462{
4463	struct sctp_sack_info    params;
4464	struct sctp_association *asoc = NULL;
4465	struct sctp_sock        *sp = sctp_sk(sk);
4466
4467	if (len >= sizeof(struct sctp_sack_info)) {
4468		len = sizeof(struct sctp_sack_info);
4469
4470		if (copy_from_user(&params, optval, len))
4471			return -EFAULT;
4472	} else if (len == sizeof(struct sctp_assoc_value)) {
4473		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4474		pr_warn("Use struct sctp_sack_info instead\n");
 
 
 
4475		if (copy_from_user(&params, optval, len))
4476			return -EFAULT;
4477	} else
4478		return - EINVAL;
4479
4480	/* Get association, if sack_assoc_id != 0 and the socket is a one
4481	 * to many style socket, and an association was not found, then
4482	 * the id was invalid.
4483	 */
4484	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4485	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4486		return -EINVAL;
4487
4488	if (asoc) {
4489		/* Fetch association values. */
4490		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4491			params.sack_delay = jiffies_to_msecs(
4492				asoc->sackdelay);
4493			params.sack_freq = asoc->sackfreq;
4494
4495		} else {
4496			params.sack_delay = 0;
4497			params.sack_freq = 1;
4498		}
4499	} else {
4500		/* Fetch socket values. */
4501		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4502			params.sack_delay  = sp->sackdelay;
4503			params.sack_freq = sp->sackfreq;
4504		} else {
4505			params.sack_delay  = 0;
4506			params.sack_freq = 1;
4507		}
4508	}
4509
4510	if (copy_to_user(optval, &params, len))
4511		return -EFAULT;
4512
4513	if (put_user(len, optlen))
4514		return -EFAULT;
4515
4516	return 0;
4517}
4518
4519/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4520 *
4521 * Applications can specify protocol parameters for the default association
4522 * initialization.  The option name argument to setsockopt() and getsockopt()
4523 * is SCTP_INITMSG.
4524 *
4525 * Setting initialization parameters is effective only on an unconnected
4526 * socket (for UDP-style sockets only future associations are effected
4527 * by the change).  With TCP-style sockets, this option is inherited by
4528 * sockets derived from a listener socket.
4529 */
4530static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4531{
4532	if (len < sizeof(struct sctp_initmsg))
4533		return -EINVAL;
4534	len = sizeof(struct sctp_initmsg);
4535	if (put_user(len, optlen))
4536		return -EFAULT;
4537	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4538		return -EFAULT;
4539	return 0;
4540}
4541
4542
4543static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4544				      char __user *optval, int __user *optlen)
4545{
4546	struct sctp_association *asoc;
4547	int cnt = 0;
4548	struct sctp_getaddrs getaddrs;
4549	struct sctp_transport *from;
4550	void __user *to;
4551	union sctp_addr temp;
4552	struct sctp_sock *sp = sctp_sk(sk);
4553	int addrlen;
4554	size_t space_left;
4555	int bytes_copied;
4556
4557	if (len < sizeof(struct sctp_getaddrs))
4558		return -EINVAL;
4559
4560	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4561		return -EFAULT;
4562
4563	/* For UDP-style sockets, id specifies the association to query.  */
4564	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4565	if (!asoc)
4566		return -EINVAL;
4567
4568	to = optval + offsetof(struct sctp_getaddrs,addrs);
4569	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4570
4571	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4572				transports) {
4573		memcpy(&temp, &from->ipaddr, sizeof(temp));
4574		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4575		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4576		if (space_left < addrlen)
4577			return -ENOMEM;
4578		if (copy_to_user(to, &temp, addrlen))
4579			return -EFAULT;
4580		to += addrlen;
4581		cnt++;
4582		space_left -= addrlen;
4583	}
4584
4585	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4586		return -EFAULT;
4587	bytes_copied = ((char __user *)to) - optval;
4588	if (put_user(bytes_copied, optlen))
4589		return -EFAULT;
4590
4591	return 0;
4592}
4593
4594static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4595			    size_t space_left, int *bytes_copied)
4596{
4597	struct sctp_sockaddr_entry *addr;
4598	union sctp_addr temp;
4599	int cnt = 0;
4600	int addrlen;
 
4601
4602	rcu_read_lock();
4603	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4604		if (!addr->valid)
4605			continue;
4606
4607		if ((PF_INET == sk->sk_family) &&
4608		    (AF_INET6 == addr->a.sa.sa_family))
4609			continue;
4610		if ((PF_INET6 == sk->sk_family) &&
4611		    inet_v6_ipv6only(sk) &&
4612		    (AF_INET == addr->a.sa.sa_family))
4613			continue;
4614		memcpy(&temp, &addr->a, sizeof(temp));
4615		if (!temp.v4.sin_port)
4616			temp.v4.sin_port = htons(port);
4617
4618		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4619								&temp);
4620		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4621		if (space_left < addrlen) {
4622			cnt =  -ENOMEM;
4623			break;
4624		}
4625		memcpy(to, &temp, addrlen);
4626
4627		to += addrlen;
4628		cnt ++;
4629		space_left -= addrlen;
4630		*bytes_copied += addrlen;
4631	}
4632	rcu_read_unlock();
4633
4634	return cnt;
4635}
4636
4637
4638static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4639				       char __user *optval, int __user *optlen)
4640{
4641	struct sctp_bind_addr *bp;
4642	struct sctp_association *asoc;
4643	int cnt = 0;
4644	struct sctp_getaddrs getaddrs;
4645	struct sctp_sockaddr_entry *addr;
4646	void __user *to;
4647	union sctp_addr temp;
4648	struct sctp_sock *sp = sctp_sk(sk);
4649	int addrlen;
4650	int err = 0;
4651	size_t space_left;
4652	int bytes_copied = 0;
4653	void *addrs;
4654	void *buf;
4655
4656	if (len < sizeof(struct sctp_getaddrs))
4657		return -EINVAL;
4658
4659	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4660		return -EFAULT;
4661
4662	/*
4663	 *  For UDP-style sockets, id specifies the association to query.
4664	 *  If the id field is set to the value '0' then the locally bound
4665	 *  addresses are returned without regard to any particular
4666	 *  association.
4667	 */
4668	if (0 == getaddrs.assoc_id) {
4669		bp = &sctp_sk(sk)->ep->base.bind_addr;
4670	} else {
4671		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4672		if (!asoc)
4673			return -EINVAL;
4674		bp = &asoc->base.bind_addr;
4675	}
4676
4677	to = optval + offsetof(struct sctp_getaddrs,addrs);
4678	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4679
4680	addrs = kmalloc(space_left, GFP_KERNEL);
4681	if (!addrs)
4682		return -ENOMEM;
4683
4684	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4685	 * addresses from the global local address list.
4686	 */
4687	if (sctp_list_single_entry(&bp->address_list)) {
4688		addr = list_entry(bp->address_list.next,
4689				  struct sctp_sockaddr_entry, list);
4690		if (sctp_is_any(sk, &addr->a)) {
4691			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4692						space_left, &bytes_copied);
4693			if (cnt < 0) {
4694				err = cnt;
4695				goto out;
4696			}
4697			goto copy_getaddrs;
4698		}
4699	}
4700
4701	buf = addrs;
4702	/* Protection on the bound address list is not needed since
4703	 * in the socket option context we hold a socket lock and
4704	 * thus the bound address list can't change.
4705	 */
4706	list_for_each_entry(addr, &bp->address_list, list) {
4707		memcpy(&temp, &addr->a, sizeof(temp));
4708		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4709		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4710		if (space_left < addrlen) {
4711			err =  -ENOMEM; /*fixme: right error?*/
4712			goto out;
4713		}
4714		memcpy(buf, &temp, addrlen);
4715		buf += addrlen;
4716		bytes_copied += addrlen;
4717		cnt ++;
4718		space_left -= addrlen;
4719	}
4720
4721copy_getaddrs:
4722	if (copy_to_user(to, addrs, bytes_copied)) {
4723		err = -EFAULT;
4724		goto out;
4725	}
4726	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4727		err = -EFAULT;
4728		goto out;
4729	}
4730	if (put_user(bytes_copied, optlen))
4731		err = -EFAULT;
4732out:
4733	kfree(addrs);
4734	return err;
4735}
4736
4737/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4738 *
4739 * Requests that the local SCTP stack use the enclosed peer address as
4740 * the association primary.  The enclosed address must be one of the
4741 * association peer's addresses.
4742 */
4743static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4744					char __user *optval, int __user *optlen)
4745{
4746	struct sctp_prim prim;
4747	struct sctp_association *asoc;
4748	struct sctp_sock *sp = sctp_sk(sk);
4749
4750	if (len < sizeof(struct sctp_prim))
4751		return -EINVAL;
4752
4753	len = sizeof(struct sctp_prim);
4754
4755	if (copy_from_user(&prim, optval, len))
4756		return -EFAULT;
4757
4758	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4759	if (!asoc)
4760		return -EINVAL;
4761
4762	if (!asoc->peer.primary_path)
4763		return -ENOTCONN;
4764
4765	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4766		asoc->peer.primary_path->af_specific->sockaddr_len);
4767
4768	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4769			(union sctp_addr *)&prim.ssp_addr);
4770
4771	if (put_user(len, optlen))
4772		return -EFAULT;
4773	if (copy_to_user(optval, &prim, len))
4774		return -EFAULT;
4775
4776	return 0;
4777}
4778
4779/*
4780 * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4781 *
4782 * Requests that the local endpoint set the specified Adaptation Layer
4783 * Indication parameter for all future INIT and INIT-ACK exchanges.
4784 */
4785static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4786				  char __user *optval, int __user *optlen)
4787{
4788	struct sctp_setadaptation adaptation;
4789
4790	if (len < sizeof(struct sctp_setadaptation))
4791		return -EINVAL;
4792
4793	len = sizeof(struct sctp_setadaptation);
4794
4795	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4796
4797	if (put_user(len, optlen))
4798		return -EFAULT;
4799	if (copy_to_user(optval, &adaptation, len))
4800		return -EFAULT;
4801
4802	return 0;
4803}
4804
4805/*
4806 *
4807 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4808 *
4809 *   Applications that wish to use the sendto() system call may wish to
4810 *   specify a default set of parameters that would normally be supplied
4811 *   through the inclusion of ancillary data.  This socket option allows
4812 *   such an application to set the default sctp_sndrcvinfo structure.
4813
4814
4815 *   The application that wishes to use this socket option simply passes
4816 *   in to this call the sctp_sndrcvinfo structure defined in Section
4817 *   5.2.2) The input parameters accepted by this call include
4818 *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4819 *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4820 *   to this call if the caller is using the UDP model.
4821 *
4822 *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4823 */
4824static int sctp_getsockopt_default_send_param(struct sock *sk,
4825					int len, char __user *optval,
4826					int __user *optlen)
4827{
4828	struct sctp_sndrcvinfo info;
4829	struct sctp_association *asoc;
4830	struct sctp_sock *sp = sctp_sk(sk);
4831
4832	if (len < sizeof(struct sctp_sndrcvinfo))
4833		return -EINVAL;
4834
4835	len = sizeof(struct sctp_sndrcvinfo);
4836
4837	if (copy_from_user(&info, optval, len))
4838		return -EFAULT;
4839
4840	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4841	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4842		return -EINVAL;
4843
4844	if (asoc) {
4845		info.sinfo_stream = asoc->default_stream;
4846		info.sinfo_flags = asoc->default_flags;
4847		info.sinfo_ppid = asoc->default_ppid;
4848		info.sinfo_context = asoc->default_context;
4849		info.sinfo_timetolive = asoc->default_timetolive;
4850	} else {
4851		info.sinfo_stream = sp->default_stream;
4852		info.sinfo_flags = sp->default_flags;
4853		info.sinfo_ppid = sp->default_ppid;
4854		info.sinfo_context = sp->default_context;
4855		info.sinfo_timetolive = sp->default_timetolive;
4856	}
4857
4858	if (put_user(len, optlen))
4859		return -EFAULT;
4860	if (copy_to_user(optval, &info, len))
4861		return -EFAULT;
4862
4863	return 0;
4864}
4865
4866/*
4867 *
4868 * 7.1.5 SCTP_NODELAY
4869 *
4870 * Turn on/off any Nagle-like algorithm.  This means that packets are
4871 * generally sent as soon as possible and no unnecessary delays are
4872 * introduced, at the cost of more packets in the network.  Expects an
4873 * integer boolean flag.
4874 */
4875
4876static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4877				   char __user *optval, int __user *optlen)
4878{
4879	int val;
4880
4881	if (len < sizeof(int))
4882		return -EINVAL;
4883
4884	len = sizeof(int);
4885	val = (sctp_sk(sk)->nodelay == 1);
4886	if (put_user(len, optlen))
4887		return -EFAULT;
4888	if (copy_to_user(optval, &val, len))
4889		return -EFAULT;
4890	return 0;
4891}
4892
4893/*
4894 *
4895 * 7.1.1 SCTP_RTOINFO
4896 *
4897 * The protocol parameters used to initialize and bound retransmission
4898 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4899 * and modify these parameters.
4900 * All parameters are time values, in milliseconds.  A value of 0, when
4901 * modifying the parameters, indicates that the current value should not
4902 * be changed.
4903 *
4904 */
4905static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4906				char __user *optval,
4907				int __user *optlen) {
4908	struct sctp_rtoinfo rtoinfo;
4909	struct sctp_association *asoc;
4910
4911	if (len < sizeof (struct sctp_rtoinfo))
4912		return -EINVAL;
4913
4914	len = sizeof(struct sctp_rtoinfo);
4915
4916	if (copy_from_user(&rtoinfo, optval, len))
4917		return -EFAULT;
4918
4919	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4920
4921	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4922		return -EINVAL;
4923
4924	/* Values corresponding to the specific association. */
4925	if (asoc) {
4926		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4927		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4928		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4929	} else {
4930		/* Values corresponding to the endpoint. */
4931		struct sctp_sock *sp = sctp_sk(sk);
4932
4933		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4934		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4935		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4936	}
4937
4938	if (put_user(len, optlen))
4939		return -EFAULT;
4940
4941	if (copy_to_user(optval, &rtoinfo, len))
4942		return -EFAULT;
4943
4944	return 0;
4945}
4946
4947/*
4948 *
4949 * 7.1.2 SCTP_ASSOCINFO
4950 *
4951 * This option is used to tune the maximum retransmission attempts
4952 * of the association.
4953 * Returns an error if the new association retransmission value is
4954 * greater than the sum of the retransmission value  of the peer.
4955 * See [SCTP] for more information.
4956 *
4957 */
4958static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4959				     char __user *optval,
4960				     int __user *optlen)
4961{
4962
4963	struct sctp_assocparams assocparams;
4964	struct sctp_association *asoc;
4965	struct list_head *pos;
4966	int cnt = 0;
4967
4968	if (len < sizeof (struct sctp_assocparams))
4969		return -EINVAL;
4970
4971	len = sizeof(struct sctp_assocparams);
4972
4973	if (copy_from_user(&assocparams, optval, len))
4974		return -EFAULT;
4975
4976	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4977
4978	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4979		return -EINVAL;
4980
4981	/* Values correspoinding to the specific association */
4982	if (asoc) {
4983		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4984		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4985		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4986		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4987						* 1000) +
4988						(asoc->cookie_life.tv_usec
4989						/ 1000);
4990
4991		list_for_each(pos, &asoc->peer.transport_addr_list) {
4992			cnt ++;
4993		}
4994
4995		assocparams.sasoc_number_peer_destinations = cnt;
4996	} else {
4997		/* Values corresponding to the endpoint */
4998		struct sctp_sock *sp = sctp_sk(sk);
4999
5000		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5001		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5002		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5003		assocparams.sasoc_cookie_life =
5004					sp->assocparams.sasoc_cookie_life;
5005		assocparams.sasoc_number_peer_destinations =
5006					sp->assocparams.
5007					sasoc_number_peer_destinations;
5008	}
5009
5010	if (put_user(len, optlen))
5011		return -EFAULT;
5012
5013	if (copy_to_user(optval, &assocparams, len))
5014		return -EFAULT;
5015
5016	return 0;
5017}
5018
5019/*
5020 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5021 *
5022 * This socket option is a boolean flag which turns on or off mapped V4
5023 * addresses.  If this option is turned on and the socket is type
5024 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5025 * If this option is turned off, then no mapping will be done of V4
5026 * addresses and a user will receive both PF_INET6 and PF_INET type
5027 * addresses on the socket.
5028 */
5029static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5030				    char __user *optval, int __user *optlen)
5031{
5032	int val;
5033	struct sctp_sock *sp = sctp_sk(sk);
5034
5035	if (len < sizeof(int))
5036		return -EINVAL;
5037
5038	len = sizeof(int);
5039	val = sp->v4mapped;
5040	if (put_user(len, optlen))
5041		return -EFAULT;
5042	if (copy_to_user(optval, &val, len))
5043		return -EFAULT;
5044
5045	return 0;
5046}
5047
5048/*
5049 * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5050 * (chapter and verse is quoted at sctp_setsockopt_context())
5051 */
5052static int sctp_getsockopt_context(struct sock *sk, int len,
5053				   char __user *optval, int __user *optlen)
5054{
5055	struct sctp_assoc_value params;
5056	struct sctp_sock *sp;
5057	struct sctp_association *asoc;
5058
5059	if (len < sizeof(struct sctp_assoc_value))
5060		return -EINVAL;
5061
5062	len = sizeof(struct sctp_assoc_value);
5063
5064	if (copy_from_user(&params, optval, len))
5065		return -EFAULT;
5066
5067	sp = sctp_sk(sk);
5068
5069	if (params.assoc_id != 0) {
5070		asoc = sctp_id2assoc(sk, params.assoc_id);
5071		if (!asoc)
5072			return -EINVAL;
5073		params.assoc_value = asoc->default_rcv_context;
5074	} else {
5075		params.assoc_value = sp->default_rcv_context;
5076	}
5077
5078	if (put_user(len, optlen))
5079		return -EFAULT;
5080	if (copy_to_user(optval, &params, len))
5081		return -EFAULT;
5082
5083	return 0;
5084}
5085
5086/*
5087 * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5088 * This option will get or set the maximum size to put in any outgoing
5089 * SCTP DATA chunk.  If a message is larger than this size it will be
5090 * fragmented by SCTP into the specified size.  Note that the underlying
5091 * SCTP implementation may fragment into smaller sized chunks when the
5092 * PMTU of the underlying association is smaller than the value set by
5093 * the user.  The default value for this option is '0' which indicates
5094 * the user is NOT limiting fragmentation and only the PMTU will effect
5095 * SCTP's choice of DATA chunk size.  Note also that values set larger
5096 * than the maximum size of an IP datagram will effectively let SCTP
5097 * control fragmentation (i.e. the same as setting this option to 0).
5098 *
5099 * The following structure is used to access and modify this parameter:
5100 *
5101 * struct sctp_assoc_value {
5102 *   sctp_assoc_t assoc_id;
5103 *   uint32_t assoc_value;
5104 * };
5105 *
5106 * assoc_id:  This parameter is ignored for one-to-one style sockets.
5107 *    For one-to-many style sockets this parameter indicates which
5108 *    association the user is performing an action upon.  Note that if
5109 *    this field's value is zero then the endpoints default value is
5110 *    changed (effecting future associations only).
5111 * assoc_value:  This parameter specifies the maximum size in bytes.
5112 */
5113static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5114				  char __user *optval, int __user *optlen)
5115{
5116	struct sctp_assoc_value params;
5117	struct sctp_association *asoc;
5118
5119	if (len == sizeof(int)) {
5120		pr_warn("Use of int in maxseg socket option deprecated\n");
5121		pr_warn("Use struct sctp_assoc_value instead\n");
 
 
 
5122		params.assoc_id = 0;
5123	} else if (len >= sizeof(struct sctp_assoc_value)) {
5124		len = sizeof(struct sctp_assoc_value);
5125		if (copy_from_user(&params, optval, sizeof(params)))
5126			return -EFAULT;
5127	} else
5128		return -EINVAL;
5129
5130	asoc = sctp_id2assoc(sk, params.assoc_id);
5131	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5132		return -EINVAL;
5133
5134	if (asoc)
5135		params.assoc_value = asoc->frag_point;
5136	else
5137		params.assoc_value = sctp_sk(sk)->user_frag;
5138
5139	if (put_user(len, optlen))
5140		return -EFAULT;
5141	if (len == sizeof(int)) {
5142		if (copy_to_user(optval, &params.assoc_value, len))
5143			return -EFAULT;
5144	} else {
5145		if (copy_to_user(optval, &params, len))
5146			return -EFAULT;
5147	}
5148
5149	return 0;
5150}
5151
5152/*
5153 * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5154 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5155 */
5156static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5157					       char __user *optval, int __user *optlen)
5158{
5159	int val;
5160
5161	if (len < sizeof(int))
5162		return -EINVAL;
5163
5164	len = sizeof(int);
5165
5166	val = sctp_sk(sk)->frag_interleave;
5167	if (put_user(len, optlen))
5168		return -EFAULT;
5169	if (copy_to_user(optval, &val, len))
5170		return -EFAULT;
5171
5172	return 0;
5173}
5174
5175/*
5176 * 7.1.25.  Set or Get the sctp partial delivery point
5177 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5178 */
5179static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5180						  char __user *optval,
5181						  int __user *optlen)
5182{
5183	u32 val;
5184
5185	if (len < sizeof(u32))
5186		return -EINVAL;
5187
5188	len = sizeof(u32);
5189
5190	val = sctp_sk(sk)->pd_point;
5191	if (put_user(len, optlen))
5192		return -EFAULT;
5193	if (copy_to_user(optval, &val, len))
5194		return -EFAULT;
5195
5196	return 0;
5197}
5198
5199/*
5200 * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5201 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5202 */
5203static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5204				    char __user *optval,
5205				    int __user *optlen)
5206{
5207	struct sctp_assoc_value params;
5208	struct sctp_sock *sp;
5209	struct sctp_association *asoc;
5210
5211	if (len == sizeof(int)) {
5212		pr_warn("Use of int in max_burst socket option deprecated\n");
5213		pr_warn("Use struct sctp_assoc_value instead\n");
 
 
 
5214		params.assoc_id = 0;
5215	} else if (len >= sizeof(struct sctp_assoc_value)) {
5216		len = sizeof(struct sctp_assoc_value);
5217		if (copy_from_user(&params, optval, len))
5218			return -EFAULT;
5219	} else
5220		return -EINVAL;
5221
5222	sp = sctp_sk(sk);
5223
5224	if (params.assoc_id != 0) {
5225		asoc = sctp_id2assoc(sk, params.assoc_id);
5226		if (!asoc)
5227			return -EINVAL;
5228		params.assoc_value = asoc->max_burst;
5229	} else
5230		params.assoc_value = sp->max_burst;
5231
5232	if (len == sizeof(int)) {
5233		if (copy_to_user(optval, &params.assoc_value, len))
5234			return -EFAULT;
5235	} else {
5236		if (copy_to_user(optval, &params, len))
5237			return -EFAULT;
5238	}
5239
5240	return 0;
5241
5242}
5243
5244static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5245				    char __user *optval, int __user *optlen)
5246{
 
5247	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5248	struct sctp_hmac_algo_param *hmacs;
5249	__u16 data_len = 0;
5250	u32 num_idents;
5251
5252	if (!sctp_auth_enable)
5253		return -EACCES;
5254
5255	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5256	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5257
5258	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5259		return -EINVAL;
5260
5261	len = sizeof(struct sctp_hmacalgo) + data_len;
5262	num_idents = data_len / sizeof(u16);
5263
5264	if (put_user(len, optlen))
5265		return -EFAULT;
5266	if (put_user(num_idents, &p->shmac_num_idents))
5267		return -EFAULT;
5268	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5269		return -EFAULT;
5270	return 0;
5271}
5272
5273static int sctp_getsockopt_active_key(struct sock *sk, int len,
5274				    char __user *optval, int __user *optlen)
5275{
 
5276	struct sctp_authkeyid val;
5277	struct sctp_association *asoc;
5278
5279	if (!sctp_auth_enable)
5280		return -EACCES;
5281
5282	if (len < sizeof(struct sctp_authkeyid))
5283		return -EINVAL;
5284	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5285		return -EFAULT;
5286
5287	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5288	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5289		return -EINVAL;
5290
5291	if (asoc)
5292		val.scact_keynumber = asoc->active_key_id;
5293	else
5294		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5295
5296	len = sizeof(struct sctp_authkeyid);
5297	if (put_user(len, optlen))
5298		return -EFAULT;
5299	if (copy_to_user(optval, &val, len))
5300		return -EFAULT;
5301
5302	return 0;
5303}
5304
5305static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5306				    char __user *optval, int __user *optlen)
5307{
 
5308	struct sctp_authchunks __user *p = (void __user *)optval;
5309	struct sctp_authchunks val;
5310	struct sctp_association *asoc;
5311	struct sctp_chunks_param *ch;
5312	u32    num_chunks = 0;
5313	char __user *to;
5314
5315	if (!sctp_auth_enable)
5316		return -EACCES;
5317
5318	if (len < sizeof(struct sctp_authchunks))
5319		return -EINVAL;
5320
5321	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5322		return -EFAULT;
5323
5324	to = p->gauth_chunks;
5325	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5326	if (!asoc)
5327		return -EINVAL;
5328
5329	ch = asoc->peer.peer_chunks;
5330	if (!ch)
5331		goto num;
5332
5333	/* See if the user provided enough room for all the data */
5334	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5335	if (len < num_chunks)
5336		return -EINVAL;
5337
5338	if (copy_to_user(to, ch->chunks, num_chunks))
5339		return -EFAULT;
5340num:
5341	len = sizeof(struct sctp_authchunks) + num_chunks;
5342	if (put_user(len, optlen)) return -EFAULT;
 
5343	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5344		return -EFAULT;
5345	return 0;
5346}
5347
5348static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5349				    char __user *optval, int __user *optlen)
5350{
 
5351	struct sctp_authchunks __user *p = (void __user *)optval;
5352	struct sctp_authchunks val;
5353	struct sctp_association *asoc;
5354	struct sctp_chunks_param *ch;
5355	u32    num_chunks = 0;
5356	char __user *to;
5357
5358	if (!sctp_auth_enable)
5359		return -EACCES;
5360
5361	if (len < sizeof(struct sctp_authchunks))
5362		return -EINVAL;
5363
5364	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5365		return -EFAULT;
5366
5367	to = p->gauth_chunks;
5368	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5369	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5370		return -EINVAL;
5371
5372	if (asoc)
5373		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5374	else
5375		ch = sctp_sk(sk)->ep->auth_chunk_list;
5376
5377	if (!ch)
5378		goto num;
5379
5380	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5381	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5382		return -EINVAL;
5383
5384	if (copy_to_user(to, ch->chunks, num_chunks))
5385		return -EFAULT;
5386num:
5387	len = sizeof(struct sctp_authchunks) + num_chunks;
5388	if (put_user(len, optlen))
5389		return -EFAULT;
5390	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5391		return -EFAULT;
5392
5393	return 0;
5394}
5395
5396/*
5397 * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5398 * This option gets the current number of associations that are attached
5399 * to a one-to-many style socket.  The option value is an uint32_t.
5400 */
5401static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5402				    char __user *optval, int __user *optlen)
5403{
5404	struct sctp_sock *sp = sctp_sk(sk);
5405	struct sctp_association *asoc;
5406	u32 val = 0;
5407
5408	if (sctp_style(sk, TCP))
5409		return -EOPNOTSUPP;
5410
5411	if (len < sizeof(u32))
5412		return -EINVAL;
5413
5414	len = sizeof(u32);
5415
5416	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5417		val++;
5418	}
5419
5420	if (put_user(len, optlen))
5421		return -EFAULT;
5422	if (copy_to_user(optval, &val, len))
5423		return -EFAULT;
5424
5425	return 0;
5426}
5427
5428/*
5429 * 8.1.23 SCTP_AUTO_ASCONF
5430 * See the corresponding setsockopt entry as description
5431 */
5432static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5433				   char __user *optval, int __user *optlen)
5434{
5435	int val = 0;
5436
5437	if (len < sizeof(int))
5438		return -EINVAL;
5439
5440	len = sizeof(int);
5441	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5442		val = 1;
5443	if (put_user(len, optlen))
5444		return -EFAULT;
5445	if (copy_to_user(optval, &val, len))
5446		return -EFAULT;
5447	return 0;
5448}
5449
5450/*
5451 * 8.2.6. Get the Current Identifiers of Associations
5452 *        (SCTP_GET_ASSOC_ID_LIST)
5453 *
5454 * This option gets the current list of SCTP association identifiers of
5455 * the SCTP associations handled by a one-to-many style socket.
5456 */
5457static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5458				    char __user *optval, int __user *optlen)
5459{
5460	struct sctp_sock *sp = sctp_sk(sk);
5461	struct sctp_association *asoc;
5462	struct sctp_assoc_ids *ids;
5463	u32 num = 0;
5464
5465	if (sctp_style(sk, TCP))
5466		return -EOPNOTSUPP;
5467
5468	if (len < sizeof(struct sctp_assoc_ids))
5469		return -EINVAL;
5470
5471	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5472		num++;
5473	}
5474
5475	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5476		return -EINVAL;
5477
5478	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5479
5480	ids = kmalloc(len, GFP_KERNEL);
5481	if (unlikely(!ids))
5482		return -ENOMEM;
5483
5484	ids->gaids_number_of_ids = num;
5485	num = 0;
5486	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5487		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5488	}
5489
5490	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5491		kfree(ids);
5492		return -EFAULT;
5493	}
5494
5495	kfree(ids);
5496	return 0;
5497}
5498
5499SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5500				char __user *optval, int __user *optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5501{
5502	int retval = 0;
5503	int len;
5504
5505	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5506			  sk, optname);
5507
5508	/* I can hardly begin to describe how wrong this is.  This is
5509	 * so broken as to be worse than useless.  The API draft
5510	 * REALLY is NOT helpful here...  I am not convinced that the
5511	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5512	 * are at all well-founded.
5513	 */
5514	if (level != SOL_SCTP) {
5515		struct sctp_af *af = sctp_sk(sk)->pf->af;
5516
5517		retval = af->getsockopt(sk, level, optname, optval, optlen);
5518		return retval;
5519	}
5520
5521	if (get_user(len, optlen))
5522		return -EFAULT;
5523
5524	sctp_lock_sock(sk);
5525
5526	switch (optname) {
5527	case SCTP_STATUS:
5528		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5529		break;
5530	case SCTP_DISABLE_FRAGMENTS:
5531		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5532							   optlen);
5533		break;
5534	case SCTP_EVENTS:
5535		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5536		break;
5537	case SCTP_AUTOCLOSE:
5538		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5539		break;
5540	case SCTP_SOCKOPT_PEELOFF:
5541		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5542		break;
5543	case SCTP_PEER_ADDR_PARAMS:
5544		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5545							  optlen);
5546		break;
5547	case SCTP_DELAYED_SACK:
5548		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5549							  optlen);
5550		break;
5551	case SCTP_INITMSG:
5552		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5553		break;
5554	case SCTP_GET_PEER_ADDRS:
5555		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5556						    optlen);
5557		break;
5558	case SCTP_GET_LOCAL_ADDRS:
5559		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5560						     optlen);
5561		break;
5562	case SCTP_SOCKOPT_CONNECTX3:
5563		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5564		break;
5565	case SCTP_DEFAULT_SEND_PARAM:
5566		retval = sctp_getsockopt_default_send_param(sk, len,
5567							    optval, optlen);
5568		break;
5569	case SCTP_PRIMARY_ADDR:
5570		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5571		break;
5572	case SCTP_NODELAY:
5573		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5574		break;
5575	case SCTP_RTOINFO:
5576		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5577		break;
5578	case SCTP_ASSOCINFO:
5579		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5580		break;
5581	case SCTP_I_WANT_MAPPED_V4_ADDR:
5582		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5583		break;
5584	case SCTP_MAXSEG:
5585		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5586		break;
5587	case SCTP_GET_PEER_ADDR_INFO:
5588		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5589							optlen);
5590		break;
5591	case SCTP_ADAPTATION_LAYER:
5592		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5593							optlen);
5594		break;
5595	case SCTP_CONTEXT:
5596		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5597		break;
5598	case SCTP_FRAGMENT_INTERLEAVE:
5599		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5600							     optlen);
5601		break;
5602	case SCTP_PARTIAL_DELIVERY_POINT:
5603		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5604								optlen);
5605		break;
5606	case SCTP_MAX_BURST:
5607		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5608		break;
5609	case SCTP_AUTH_KEY:
5610	case SCTP_AUTH_CHUNK:
5611	case SCTP_AUTH_DELETE_KEY:
5612		retval = -EOPNOTSUPP;
5613		break;
5614	case SCTP_HMAC_IDENT:
5615		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5616		break;
5617	case SCTP_AUTH_ACTIVE_KEY:
5618		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5619		break;
5620	case SCTP_PEER_AUTH_CHUNKS:
5621		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5622							optlen);
5623		break;
5624	case SCTP_LOCAL_AUTH_CHUNKS:
5625		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5626							optlen);
5627		break;
5628	case SCTP_GET_ASSOC_NUMBER:
5629		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5630		break;
5631	case SCTP_GET_ASSOC_ID_LIST:
5632		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5633		break;
5634	case SCTP_AUTO_ASCONF:
5635		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5636		break;
 
 
 
 
 
 
5637	default:
5638		retval = -ENOPROTOOPT;
5639		break;
5640	}
5641
5642	sctp_release_sock(sk);
5643	return retval;
5644}
5645
5646static void sctp_hash(struct sock *sk)
5647{
5648	/* STUB */
5649}
5650
5651static void sctp_unhash(struct sock *sk)
5652{
5653	/* STUB */
5654}
5655
5656/* Check if port is acceptable.  Possibly find first available port.
5657 *
5658 * The port hash table (contained in the 'global' SCTP protocol storage
5659 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5660 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5661 * list (the list number is the port number hashed out, so as you
5662 * would expect from a hash function, all the ports in a given list have
5663 * such a number that hashes out to the same list number; you were
5664 * expecting that, right?); so each list has a set of ports, with a
5665 * link to the socket (struct sock) that uses it, the port number and
5666 * a fastreuse flag (FIXME: NPI ipg).
5667 */
5668static struct sctp_bind_bucket *sctp_bucket_create(
5669	struct sctp_bind_hashbucket *head, unsigned short snum);
5670
5671static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5672{
5673	struct sctp_bind_hashbucket *head; /* hash list */
5674	struct sctp_bind_bucket *pp; /* hash list port iterator */
5675	struct hlist_node *node;
5676	unsigned short snum;
5677	int ret;
5678
5679	snum = ntohs(addr->v4.sin_port);
5680
5681	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5682	sctp_local_bh_disable();
 
5683
5684	if (snum == 0) {
5685		/* Search for an available port. */
5686		int low, high, remaining, index;
5687		unsigned int rover;
5688
5689		inet_get_local_port_range(&low, &high);
5690		remaining = (high - low) + 1;
5691		rover = net_random() % remaining + low;
5692
5693		do {
5694			rover++;
5695			if ((rover < low) || (rover > high))
5696				rover = low;
5697			if (inet_is_reserved_local_port(rover))
5698				continue;
5699			index = sctp_phashfn(rover);
5700			head = &sctp_port_hashtable[index];
5701			sctp_spin_lock(&head->lock);
5702			sctp_for_each_hentry(pp, node, &head->chain)
5703				if (pp->port == rover)
 
5704					goto next;
5705			break;
5706		next:
5707			sctp_spin_unlock(&head->lock);
5708		} while (--remaining > 0);
5709
5710		/* Exhausted local port range during search? */
5711		ret = 1;
5712		if (remaining <= 0)
5713			goto fail;
5714
5715		/* OK, here is the one we will use.  HEAD (the port
5716		 * hash table list entry) is non-NULL and we hold it's
5717		 * mutex.
5718		 */
5719		snum = rover;
5720	} else {
5721		/* We are given an specific port number; we verify
5722		 * that it is not being used. If it is used, we will
5723		 * exahust the search in the hash list corresponding
5724		 * to the port number (snum) - we detect that with the
5725		 * port iterator, pp being NULL.
5726		 */
5727		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5728		sctp_spin_lock(&head->lock);
5729		sctp_for_each_hentry(pp, node, &head->chain) {
5730			if (pp->port == snum)
5731				goto pp_found;
5732		}
5733	}
5734	pp = NULL;
5735	goto pp_not_found;
5736pp_found:
5737	if (!hlist_empty(&pp->owner)) {
5738		/* We had a port hash table hit - there is an
5739		 * available port (pp != NULL) and it is being
5740		 * used by other socket (pp->owner not empty); that other
5741		 * socket is going to be sk2.
5742		 */
5743		int reuse = sk->sk_reuse;
5744		struct sock *sk2;
5745
5746		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
 
5747		if (pp->fastreuse && sk->sk_reuse &&
5748			sk->sk_state != SCTP_SS_LISTENING)
5749			goto success;
5750
5751		/* Run through the list of sockets bound to the port
5752		 * (pp->port) [via the pointers bind_next and
5753		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5754		 * we get the endpoint they describe and run through
5755		 * the endpoint's list of IP (v4 or v6) addresses,
5756		 * comparing each of the addresses with the address of
5757		 * the socket sk. If we find a match, then that means
5758		 * that this port/socket (sk) combination are already
5759		 * in an endpoint.
5760		 */
5761		sk_for_each_bound(sk2, node, &pp->owner) {
5762			struct sctp_endpoint *ep2;
5763			ep2 = sctp_sk(sk2)->ep;
5764
5765			if (sk == sk2 ||
5766			    (reuse && sk2->sk_reuse &&
5767			     sk2->sk_state != SCTP_SS_LISTENING))
5768				continue;
5769
5770			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5771						 sctp_sk(sk2), sctp_sk(sk))) {
5772				ret = (long)sk2;
5773				goto fail_unlock;
5774			}
5775		}
5776		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
 
5777	}
5778pp_not_found:
5779	/* If there was a hash table miss, create a new port.  */
5780	ret = 1;
5781	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5782		goto fail_unlock;
5783
5784	/* In either case (hit or miss), make sure fastreuse is 1 only
5785	 * if sk->sk_reuse is too (that is, if the caller requested
5786	 * SO_REUSEADDR on this socket -sk-).
5787	 */
5788	if (hlist_empty(&pp->owner)) {
5789		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5790			pp->fastreuse = 1;
5791		else
5792			pp->fastreuse = 0;
5793	} else if (pp->fastreuse &&
5794		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5795		pp->fastreuse = 0;
5796
5797	/* We are set, so fill up all the data in the hash table
5798	 * entry, tie the socket list information with the rest of the
5799	 * sockets FIXME: Blurry, NPI (ipg).
5800	 */
5801success:
5802	if (!sctp_sk(sk)->bind_hash) {
5803		inet_sk(sk)->inet_num = snum;
5804		sk_add_bind_node(sk, &pp->owner);
5805		sctp_sk(sk)->bind_hash = pp;
5806	}
5807	ret = 0;
5808
5809fail_unlock:
5810	sctp_spin_unlock(&head->lock);
5811
5812fail:
5813	sctp_local_bh_enable();
5814	return ret;
5815}
5816
5817/* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5818 * port is requested.
5819 */
5820static int sctp_get_port(struct sock *sk, unsigned short snum)
5821{
5822	long ret;
5823	union sctp_addr addr;
5824	struct sctp_af *af = sctp_sk(sk)->pf->af;
5825
5826	/* Set up a dummy address struct from the sk. */
5827	af->from_sk(&addr, sk);
5828	addr.v4.sin_port = htons(snum);
5829
5830	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5831	ret = sctp_get_port_local(sk, &addr);
5832
5833	return ret ? 1 : 0;
5834}
5835
5836/*
5837 *  Move a socket to LISTENING state.
5838 */
5839SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5840{
5841	struct sctp_sock *sp = sctp_sk(sk);
5842	struct sctp_endpoint *ep = sp->ep;
5843	struct crypto_hash *tfm = NULL;
 
5844
5845	/* Allocate HMAC for generating cookie. */
5846	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5847		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
 
5848		if (IS_ERR(tfm)) {
5849			if (net_ratelimit()) {
5850				pr_info("failed to load transform for %s: %ld\n",
5851					sctp_hmac_alg, PTR_ERR(tfm));
5852			}
5853			return -ENOSYS;
5854		}
5855		sctp_sk(sk)->hmac = tfm;
5856	}
5857
5858	/*
5859	 * If a bind() or sctp_bindx() is not called prior to a listen()
5860	 * call that allows new associations to be accepted, the system
5861	 * picks an ephemeral port and will choose an address set equivalent
5862	 * to binding with a wildcard address.
5863	 *
5864	 * This is not currently spelled out in the SCTP sockets
5865	 * extensions draft, but follows the practice as seen in TCP
5866	 * sockets.
5867	 *
5868	 */
5869	sk->sk_state = SCTP_SS_LISTENING;
5870	if (!ep->base.bind_addr.port) {
5871		if (sctp_autobind(sk))
5872			return -EAGAIN;
5873	} else {
5874		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5875			sk->sk_state = SCTP_SS_CLOSED;
5876			return -EADDRINUSE;
5877		}
5878	}
5879
5880	sk->sk_max_ack_backlog = backlog;
5881	sctp_hash_endpoint(ep);
5882	return 0;
5883}
5884
5885/*
5886 * 4.1.3 / 5.1.3 listen()
5887 *
5888 *   By default, new associations are not accepted for UDP style sockets.
5889 *   An application uses listen() to mark a socket as being able to
5890 *   accept new associations.
5891 *
5892 *   On TCP style sockets, applications use listen() to ready the SCTP
5893 *   endpoint for accepting inbound associations.
5894 *
5895 *   On both types of endpoints a backlog of '0' disables listening.
5896 *
5897 *  Move a socket to LISTENING state.
5898 */
5899int sctp_inet_listen(struct socket *sock, int backlog)
5900{
5901	struct sock *sk = sock->sk;
5902	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5903	int err = -EINVAL;
5904
5905	if (unlikely(backlog < 0))
5906		return err;
5907
5908	sctp_lock_sock(sk);
5909
5910	/* Peeled-off sockets are not allowed to listen().  */
5911	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5912		goto out;
5913
5914	if (sock->state != SS_UNCONNECTED)
5915		goto out;
5916
5917	/* If backlog is zero, disable listening. */
5918	if (!backlog) {
5919		if (sctp_sstate(sk, CLOSED))
5920			goto out;
5921
5922		err = 0;
5923		sctp_unhash_endpoint(ep);
5924		sk->sk_state = SCTP_SS_CLOSED;
5925		if (sk->sk_reuse)
5926			sctp_sk(sk)->bind_hash->fastreuse = 1;
5927		goto out;
5928	}
5929
5930	/* If we are already listening, just update the backlog */
5931	if (sctp_sstate(sk, LISTENING))
5932		sk->sk_max_ack_backlog = backlog;
5933	else {
5934		err = sctp_listen_start(sk, backlog);
5935		if (err)
5936			goto out;
5937	}
5938
5939	err = 0;
5940out:
5941	sctp_release_sock(sk);
5942	return err;
5943}
5944
5945/*
5946 * This function is done by modeling the current datagram_poll() and the
5947 * tcp_poll().  Note that, based on these implementations, we don't
5948 * lock the socket in this function, even though it seems that,
5949 * ideally, locking or some other mechanisms can be used to ensure
5950 * the integrity of the counters (sndbuf and wmem_alloc) used
5951 * in this place.  We assume that we don't need locks either until proven
5952 * otherwise.
5953 *
5954 * Another thing to note is that we include the Async I/O support
5955 * here, again, by modeling the current TCP/UDP code.  We don't have
5956 * a good way to test with it yet.
5957 */
5958unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5959{
5960	struct sock *sk = sock->sk;
5961	struct sctp_sock *sp = sctp_sk(sk);
5962	unsigned int mask;
5963
5964	poll_wait(file, sk_sleep(sk), wait);
5965
5966	/* A TCP-style listening socket becomes readable when the accept queue
5967	 * is not empty.
5968	 */
5969	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5970		return (!list_empty(&sp->ep->asocs)) ?
5971			(POLLIN | POLLRDNORM) : 0;
5972
5973	mask = 0;
5974
5975	/* Is there any exceptional events?  */
5976	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5977		mask |= POLLERR;
 
5978	if (sk->sk_shutdown & RCV_SHUTDOWN)
5979		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5980	if (sk->sk_shutdown == SHUTDOWN_MASK)
5981		mask |= POLLHUP;
5982
5983	/* Is it readable?  Reconsider this code with TCP-style support.  */
5984	if (!skb_queue_empty(&sk->sk_receive_queue))
5985		mask |= POLLIN | POLLRDNORM;
5986
5987	/* The association is either gone or not ready.  */
5988	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5989		return mask;
5990
5991	/* Is it writable?  */
5992	if (sctp_writeable(sk)) {
5993		mask |= POLLOUT | POLLWRNORM;
5994	} else {
5995		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5996		/*
5997		 * Since the socket is not locked, the buffer
5998		 * might be made available after the writeable check and
5999		 * before the bit is set.  This could cause a lost I/O
6000		 * signal.  tcp_poll() has a race breaker for this race
6001		 * condition.  Based on their implementation, we put
6002		 * in the following code to cover it as well.
6003		 */
6004		if (sctp_writeable(sk))
6005			mask |= POLLOUT | POLLWRNORM;
6006	}
6007	return mask;
6008}
6009
6010/********************************************************************
6011 * 2nd Level Abstractions
6012 ********************************************************************/
6013
6014static struct sctp_bind_bucket *sctp_bucket_create(
6015	struct sctp_bind_hashbucket *head, unsigned short snum)
6016{
6017	struct sctp_bind_bucket *pp;
6018
6019	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6020	if (pp) {
6021		SCTP_DBG_OBJCNT_INC(bind_bucket);
6022		pp->port = snum;
6023		pp->fastreuse = 0;
6024		INIT_HLIST_HEAD(&pp->owner);
 
6025		hlist_add_head(&pp->node, &head->chain);
6026	}
6027	return pp;
6028}
6029
6030/* Caller must hold hashbucket lock for this tb with local BH disabled */
6031static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6032{
6033	if (pp && hlist_empty(&pp->owner)) {
6034		__hlist_del(&pp->node);
6035		kmem_cache_free(sctp_bucket_cachep, pp);
6036		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6037	}
6038}
6039
6040/* Release this socket's reference to a local port.  */
6041static inline void __sctp_put_port(struct sock *sk)
6042{
6043	struct sctp_bind_hashbucket *head =
6044		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
 
6045	struct sctp_bind_bucket *pp;
6046
6047	sctp_spin_lock(&head->lock);
6048	pp = sctp_sk(sk)->bind_hash;
6049	__sk_del_bind_node(sk);
6050	sctp_sk(sk)->bind_hash = NULL;
6051	inet_sk(sk)->inet_num = 0;
6052	sctp_bucket_destroy(pp);
6053	sctp_spin_unlock(&head->lock);
6054}
6055
6056void sctp_put_port(struct sock *sk)
6057{
6058	sctp_local_bh_disable();
6059	__sctp_put_port(sk);
6060	sctp_local_bh_enable();
6061}
6062
6063/*
6064 * The system picks an ephemeral port and choose an address set equivalent
6065 * to binding with a wildcard address.
6066 * One of those addresses will be the primary address for the association.
6067 * This automatically enables the multihoming capability of SCTP.
6068 */
6069static int sctp_autobind(struct sock *sk)
6070{
6071	union sctp_addr autoaddr;
6072	struct sctp_af *af;
6073	__be16 port;
6074
6075	/* Initialize a local sockaddr structure to INADDR_ANY. */
6076	af = sctp_sk(sk)->pf->af;
6077
6078	port = htons(inet_sk(sk)->inet_num);
6079	af->inaddr_any(&autoaddr, port);
6080
6081	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6082}
6083
6084/* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6085 *
6086 * From RFC 2292
6087 * 4.2 The cmsghdr Structure *
6088 *
6089 * When ancillary data is sent or received, any number of ancillary data
6090 * objects can be specified by the msg_control and msg_controllen members of
6091 * the msghdr structure, because each object is preceded by
6092 * a cmsghdr structure defining the object's length (the cmsg_len member).
6093 * Historically Berkeley-derived implementations have passed only one object
6094 * at a time, but this API allows multiple objects to be
6095 * passed in a single call to sendmsg() or recvmsg(). The following example
6096 * shows two ancillary data objects in a control buffer.
6097 *
6098 *   |<--------------------------- msg_controllen -------------------------->|
6099 *   |                                                                       |
6100 *
6101 *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6102 *
6103 *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6104 *   |                                   |                                   |
6105 *
6106 *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6107 *
6108 *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6109 *   |                                |  |                                |  |
6110 *
6111 *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6112 *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6113 *
6114 *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6115 *
6116 *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6117 *    ^
6118 *    |
6119 *
6120 * msg_control
6121 * points here
6122 */
6123SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6124				  sctp_cmsgs_t *cmsgs)
6125{
6126	struct cmsghdr *cmsg;
6127	struct msghdr *my_msg = (struct msghdr *)msg;
6128
6129	for (cmsg = CMSG_FIRSTHDR(msg);
6130	     cmsg != NULL;
6131	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6132		if (!CMSG_OK(my_msg, cmsg))
6133			return -EINVAL;
6134
6135		/* Should we parse this header or ignore?  */
6136		if (cmsg->cmsg_level != IPPROTO_SCTP)
6137			continue;
6138
6139		/* Strictly check lengths following example in SCM code.  */
6140		switch (cmsg->cmsg_type) {
6141		case SCTP_INIT:
6142			/* SCTP Socket API Extension
6143			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6144			 *
6145			 * This cmsghdr structure provides information for
6146			 * initializing new SCTP associations with sendmsg().
6147			 * The SCTP_INITMSG socket option uses this same data
6148			 * structure.  This structure is not used for
6149			 * recvmsg().
6150			 *
6151			 * cmsg_level    cmsg_type      cmsg_data[]
6152			 * ------------  ------------   ----------------------
6153			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6154			 */
6155			if (cmsg->cmsg_len !=
6156			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6157				return -EINVAL;
6158			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6159			break;
6160
6161		case SCTP_SNDRCV:
6162			/* SCTP Socket API Extension
6163			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6164			 *
6165			 * This cmsghdr structure specifies SCTP options for
6166			 * sendmsg() and describes SCTP header information
6167			 * about a received message through recvmsg().
6168			 *
6169			 * cmsg_level    cmsg_type      cmsg_data[]
6170			 * ------------  ------------   ----------------------
6171			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6172			 */
6173			if (cmsg->cmsg_len !=
6174			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6175				return -EINVAL;
6176
6177			cmsgs->info =
6178				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6179
6180			/* Minimally, validate the sinfo_flags. */
6181			if (cmsgs->info->sinfo_flags &
6182			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6183			      SCTP_ABORT | SCTP_EOF))
6184				return -EINVAL;
6185			break;
6186
6187		default:
6188			return -EINVAL;
6189		}
6190	}
6191	return 0;
6192}
6193
6194/*
6195 * Wait for a packet..
6196 * Note: This function is the same function as in core/datagram.c
6197 * with a few modifications to make lksctp work.
6198 */
6199static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6200{
6201	int error;
6202	DEFINE_WAIT(wait);
6203
6204	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6205
6206	/* Socket errors? */
6207	error = sock_error(sk);
6208	if (error)
6209		goto out;
6210
6211	if (!skb_queue_empty(&sk->sk_receive_queue))
6212		goto ready;
6213
6214	/* Socket shut down?  */
6215	if (sk->sk_shutdown & RCV_SHUTDOWN)
6216		goto out;
6217
6218	/* Sequenced packets can come disconnected.  If so we report the
6219	 * problem.
6220	 */
6221	error = -ENOTCONN;
6222
6223	/* Is there a good reason to think that we may receive some data?  */
6224	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6225		goto out;
6226
6227	/* Handle signals.  */
6228	if (signal_pending(current))
6229		goto interrupted;
6230
6231	/* Let another process have a go.  Since we are going to sleep
6232	 * anyway.  Note: This may cause odd behaviors if the message
6233	 * does not fit in the user's buffer, but this seems to be the
6234	 * only way to honor MSG_DONTWAIT realistically.
6235	 */
6236	sctp_release_sock(sk);
6237	*timeo_p = schedule_timeout(*timeo_p);
6238	sctp_lock_sock(sk);
6239
6240ready:
6241	finish_wait(sk_sleep(sk), &wait);
6242	return 0;
6243
6244interrupted:
6245	error = sock_intr_errno(*timeo_p);
6246
6247out:
6248	finish_wait(sk_sleep(sk), &wait);
6249	*err = error;
6250	return error;
6251}
6252
6253/* Receive a datagram.
6254 * Note: This is pretty much the same routine as in core/datagram.c
6255 * with a few changes to make lksctp work.
6256 */
6257static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6258					      int noblock, int *err)
6259{
6260	int error;
6261	struct sk_buff *skb;
6262	long timeo;
6263
6264	timeo = sock_rcvtimeo(sk, noblock);
6265
6266	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6267			  timeo, MAX_SCHEDULE_TIMEOUT);
6268
6269	do {
6270		/* Again only user level code calls this function,
6271		 * so nothing interrupt level
6272		 * will suddenly eat the receive_queue.
6273		 *
6274		 *  Look at current nfs client by the way...
6275		 *  However, this function was correct in any case. 8)
6276		 */
6277		if (flags & MSG_PEEK) {
6278			spin_lock_bh(&sk->sk_receive_queue.lock);
6279			skb = skb_peek(&sk->sk_receive_queue);
6280			if (skb)
6281				atomic_inc(&skb->users);
6282			spin_unlock_bh(&sk->sk_receive_queue.lock);
6283		} else {
6284			skb = skb_dequeue(&sk->sk_receive_queue);
6285		}
6286
6287		if (skb)
6288			return skb;
6289
6290		/* Caller is allowed not to check sk->sk_err before calling. */
6291		error = sock_error(sk);
6292		if (error)
6293			goto no_packet;
6294
6295		if (sk->sk_shutdown & RCV_SHUTDOWN)
6296			break;
6297
6298		/* User doesn't want to wait.  */
6299		error = -EAGAIN;
6300		if (!timeo)
6301			goto no_packet;
6302	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6303
6304	return NULL;
6305
6306no_packet:
6307	*err = error;
6308	return NULL;
6309}
6310
6311/* If sndbuf has changed, wake up per association sndbuf waiters.  */
6312static void __sctp_write_space(struct sctp_association *asoc)
6313{
6314	struct sock *sk = asoc->base.sk;
6315	struct socket *sock = sk->sk_socket;
6316
6317	if ((sctp_wspace(asoc) > 0) && sock) {
6318		if (waitqueue_active(&asoc->wait))
6319			wake_up_interruptible(&asoc->wait);
6320
6321		if (sctp_writeable(sk)) {
6322			wait_queue_head_t *wq = sk_sleep(sk);
6323
6324			if (wq && waitqueue_active(wq))
6325				wake_up_interruptible(wq);
6326
6327			/* Note that we try to include the Async I/O support
6328			 * here by modeling from the current TCP/UDP code.
6329			 * We have not tested with it yet.
6330			 */
6331			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6332				sock_wake_async(sock,
6333						SOCK_WAKE_SPACE, POLL_OUT);
6334		}
6335	}
6336}
6337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6338/* Do accounting for the sndbuf space.
6339 * Decrement the used sndbuf space of the corresponding association by the
6340 * data size which was just transmitted(freed).
6341 */
6342static void sctp_wfree(struct sk_buff *skb)
6343{
6344	struct sctp_association *asoc;
6345	struct sctp_chunk *chunk;
6346	struct sock *sk;
6347
6348	/* Get the saved chunk pointer.  */
6349	chunk = *((struct sctp_chunk **)(skb->cb));
6350	asoc = chunk->asoc;
6351	sk = asoc->base.sk;
6352	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6353				sizeof(struct sk_buff) +
6354				sizeof(struct sctp_chunk);
6355
6356	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6357
6358	/*
6359	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6360	 */
6361	sk->sk_wmem_queued   -= skb->truesize;
6362	sk_mem_uncharge(sk, skb->truesize);
6363
6364	sock_wfree(skb);
6365	__sctp_write_space(asoc);
6366
6367	sctp_association_put(asoc);
6368}
6369
6370/* Do accounting for the receive space on the socket.
6371 * Accounting for the association is done in ulpevent.c
6372 * We set this as a destructor for the cloned data skbs so that
6373 * accounting is done at the correct time.
6374 */
6375void sctp_sock_rfree(struct sk_buff *skb)
6376{
6377	struct sock *sk = skb->sk;
6378	struct sctp_ulpevent *event = sctp_skb2event(skb);
6379
6380	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6381
6382	/*
6383	 * Mimic the behavior of sock_rfree
6384	 */
6385	sk_mem_uncharge(sk, event->rmem_len);
6386}
6387
6388
6389/* Helper function to wait for space in the sndbuf.  */
6390static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6391				size_t msg_len)
6392{
6393	struct sock *sk = asoc->base.sk;
6394	int err = 0;
6395	long current_timeo = *timeo_p;
6396	DEFINE_WAIT(wait);
6397
6398	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6399			  asoc, (long)(*timeo_p), msg_len);
6400
6401	/* Increment the association's refcnt.  */
6402	sctp_association_hold(asoc);
6403
6404	/* Wait on the association specific sndbuf space. */
6405	for (;;) {
6406		prepare_to_wait_exclusive(&asoc->wait, &wait,
6407					  TASK_INTERRUPTIBLE);
6408		if (!*timeo_p)
6409			goto do_nonblock;
6410		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6411		    asoc->base.dead)
6412			goto do_error;
6413		if (signal_pending(current))
6414			goto do_interrupted;
6415		if (msg_len <= sctp_wspace(asoc))
6416			break;
6417
6418		/* Let another process have a go.  Since we are going
6419		 * to sleep anyway.
6420		 */
6421		sctp_release_sock(sk);
6422		current_timeo = schedule_timeout(current_timeo);
6423		BUG_ON(sk != asoc->base.sk);
6424		sctp_lock_sock(sk);
6425
6426		*timeo_p = current_timeo;
6427	}
6428
6429out:
6430	finish_wait(&asoc->wait, &wait);
6431
6432	/* Release the association's refcnt.  */
6433	sctp_association_put(asoc);
6434
6435	return err;
6436
6437do_error:
6438	err = -EPIPE;
6439	goto out;
6440
6441do_interrupted:
6442	err = sock_intr_errno(*timeo_p);
6443	goto out;
6444
6445do_nonblock:
6446	err = -EAGAIN;
6447	goto out;
6448}
6449
6450void sctp_data_ready(struct sock *sk, int len)
6451{
6452	struct socket_wq *wq;
6453
6454	rcu_read_lock();
6455	wq = rcu_dereference(sk->sk_wq);
6456	if (wq_has_sleeper(wq))
6457		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6458						POLLRDNORM | POLLRDBAND);
6459	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6460	rcu_read_unlock();
6461}
6462
6463/* If socket sndbuf has changed, wake up all per association waiters.  */
6464void sctp_write_space(struct sock *sk)
6465{
6466	struct sctp_association *asoc;
6467
6468	/* Wake up the tasks in each wait queue.  */
6469	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6470		__sctp_write_space(asoc);
6471	}
6472}
6473
6474/* Is there any sndbuf space available on the socket?
6475 *
6476 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6477 * associations on the same socket.  For a UDP-style socket with
6478 * multiple associations, it is possible for it to be "unwriteable"
6479 * prematurely.  I assume that this is acceptable because
6480 * a premature "unwriteable" is better than an accidental "writeable" which
6481 * would cause an unwanted block under certain circumstances.  For the 1-1
6482 * UDP-style sockets or TCP-style sockets, this code should work.
6483 *  - Daisy
6484 */
6485static int sctp_writeable(struct sock *sk)
6486{
6487	int amt = 0;
6488
6489	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6490	if (amt < 0)
6491		amt = 0;
6492	return amt;
6493}
6494
6495/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6496 * returns immediately with EINPROGRESS.
6497 */
6498static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6499{
6500	struct sock *sk = asoc->base.sk;
6501	int err = 0;
6502	long current_timeo = *timeo_p;
6503	DEFINE_WAIT(wait);
6504
6505	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6506			  (long)(*timeo_p));
6507
6508	/* Increment the association's refcnt.  */
6509	sctp_association_hold(asoc);
6510
6511	for (;;) {
6512		prepare_to_wait_exclusive(&asoc->wait, &wait,
6513					  TASK_INTERRUPTIBLE);
6514		if (!*timeo_p)
6515			goto do_nonblock;
6516		if (sk->sk_shutdown & RCV_SHUTDOWN)
6517			break;
6518		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6519		    asoc->base.dead)
6520			goto do_error;
6521		if (signal_pending(current))
6522			goto do_interrupted;
6523
6524		if (sctp_state(asoc, ESTABLISHED))
6525			break;
6526
6527		/* Let another process have a go.  Since we are going
6528		 * to sleep anyway.
6529		 */
6530		sctp_release_sock(sk);
6531		current_timeo = schedule_timeout(current_timeo);
6532		sctp_lock_sock(sk);
6533
6534		*timeo_p = current_timeo;
6535	}
6536
6537out:
6538	finish_wait(&asoc->wait, &wait);
6539
6540	/* Release the association's refcnt.  */
6541	sctp_association_put(asoc);
6542
6543	return err;
6544
6545do_error:
6546	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6547		err = -ETIMEDOUT;
6548	else
6549		err = -ECONNREFUSED;
6550	goto out;
6551
6552do_interrupted:
6553	err = sock_intr_errno(*timeo_p);
6554	goto out;
6555
6556do_nonblock:
6557	err = -EINPROGRESS;
6558	goto out;
6559}
6560
6561static int sctp_wait_for_accept(struct sock *sk, long timeo)
6562{
6563	struct sctp_endpoint *ep;
6564	int err = 0;
6565	DEFINE_WAIT(wait);
6566
6567	ep = sctp_sk(sk)->ep;
6568
6569
6570	for (;;) {
6571		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6572					  TASK_INTERRUPTIBLE);
6573
6574		if (list_empty(&ep->asocs)) {
6575			sctp_release_sock(sk);
6576			timeo = schedule_timeout(timeo);
6577			sctp_lock_sock(sk);
6578		}
6579
6580		err = -EINVAL;
6581		if (!sctp_sstate(sk, LISTENING))
6582			break;
6583
6584		err = 0;
6585		if (!list_empty(&ep->asocs))
6586			break;
6587
6588		err = sock_intr_errno(timeo);
6589		if (signal_pending(current))
6590			break;
6591
6592		err = -EAGAIN;
6593		if (!timeo)
6594			break;
6595	}
6596
6597	finish_wait(sk_sleep(sk), &wait);
6598
6599	return err;
6600}
6601
6602static void sctp_wait_for_close(struct sock *sk, long timeout)
6603{
6604	DEFINE_WAIT(wait);
6605
6606	do {
6607		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6608		if (list_empty(&sctp_sk(sk)->ep->asocs))
6609			break;
6610		sctp_release_sock(sk);
6611		timeout = schedule_timeout(timeout);
6612		sctp_lock_sock(sk);
6613	} while (!signal_pending(current) && timeout);
6614
6615	finish_wait(sk_sleep(sk), &wait);
6616}
6617
6618static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6619{
6620	struct sk_buff *frag;
6621
6622	if (!skb->data_len)
6623		goto done;
6624
6625	/* Don't forget the fragments. */
6626	skb_walk_frags(skb, frag)
6627		sctp_skb_set_owner_r_frag(frag, sk);
6628
6629done:
6630	sctp_skb_set_owner_r(skb, sk);
6631}
6632
6633void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6634		    struct sctp_association *asoc)
6635{
6636	struct inet_sock *inet = inet_sk(sk);
6637	struct inet_sock *newinet;
6638
6639	newsk->sk_type = sk->sk_type;
6640	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6641	newsk->sk_flags = sk->sk_flags;
6642	newsk->sk_no_check = sk->sk_no_check;
6643	newsk->sk_reuse = sk->sk_reuse;
6644
6645	newsk->sk_shutdown = sk->sk_shutdown;
6646	newsk->sk_destruct = inet_sock_destruct;
6647	newsk->sk_family = sk->sk_family;
6648	newsk->sk_protocol = IPPROTO_SCTP;
6649	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6650	newsk->sk_sndbuf = sk->sk_sndbuf;
6651	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6652	newsk->sk_lingertime = sk->sk_lingertime;
6653	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6654	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6655
6656	newinet = inet_sk(newsk);
6657
6658	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6659	 * getsockname() and getpeername()
6660	 */
6661	newinet->inet_sport = inet->inet_sport;
6662	newinet->inet_saddr = inet->inet_saddr;
6663	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6664	newinet->inet_dport = htons(asoc->peer.port);
6665	newinet->pmtudisc = inet->pmtudisc;
6666	newinet->inet_id = asoc->next_tsn ^ jiffies;
6667
6668	newinet->uc_ttl = inet->uc_ttl;
6669	newinet->mc_loop = 1;
6670	newinet->mc_ttl = 1;
6671	newinet->mc_index = 0;
6672	newinet->mc_list = NULL;
6673}
6674
6675/* Populate the fields of the newsk from the oldsk and migrate the assoc
6676 * and its messages to the newsk.
6677 */
6678static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6679			      struct sctp_association *assoc,
6680			      sctp_socket_type_t type)
6681{
6682	struct sctp_sock *oldsp = sctp_sk(oldsk);
6683	struct sctp_sock *newsp = sctp_sk(newsk);
6684	struct sctp_bind_bucket *pp; /* hash list port iterator */
6685	struct sctp_endpoint *newep = newsp->ep;
6686	struct sk_buff *skb, *tmp;
6687	struct sctp_ulpevent *event;
6688	struct sctp_bind_hashbucket *head;
6689	struct list_head tmplist;
6690
6691	/* Migrate socket buffer sizes and all the socket level options to the
6692	 * new socket.
6693	 */
6694	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6695	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6696	/* Brute force copy old sctp opt. */
6697	if (oldsp->do_auto_asconf) {
6698		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6699		inet_sk_copy_descendant(newsk, oldsk);
6700		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6701	} else
6702		inet_sk_copy_descendant(newsk, oldsk);
6703
6704	/* Restore the ep value that was overwritten with the above structure
6705	 * copy.
6706	 */
6707	newsp->ep = newep;
6708	newsp->hmac = NULL;
6709
6710	/* Hook this new socket in to the bind_hash list. */
6711	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6712	sctp_local_bh_disable();
6713	sctp_spin_lock(&head->lock);
 
6714	pp = sctp_sk(oldsk)->bind_hash;
6715	sk_add_bind_node(newsk, &pp->owner);
6716	sctp_sk(newsk)->bind_hash = pp;
6717	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6718	sctp_spin_unlock(&head->lock);
6719	sctp_local_bh_enable();
6720
6721	/* Copy the bind_addr list from the original endpoint to the new
6722	 * endpoint so that we can handle restarts properly
6723	 */
6724	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6725				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6726
6727	/* Move any messages in the old socket's receive queue that are for the
6728	 * peeled off association to the new socket's receive queue.
6729	 */
6730	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6731		event = sctp_skb2event(skb);
6732		if (event->asoc == assoc) {
6733			__skb_unlink(skb, &oldsk->sk_receive_queue);
6734			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6735			sctp_skb_set_owner_r_frag(skb, newsk);
6736		}
6737	}
6738
6739	/* Clean up any messages pending delivery due to partial
6740	 * delivery.   Three cases:
6741	 * 1) No partial deliver;  no work.
6742	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6743	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6744	 */
6745	skb_queue_head_init(&newsp->pd_lobby);
6746	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6747
6748	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6749		struct sk_buff_head *queue;
6750
6751		/* Decide which queue to move pd_lobby skbs to. */
6752		if (assoc->ulpq.pd_mode) {
6753			queue = &newsp->pd_lobby;
6754		} else
6755			queue = &newsk->sk_receive_queue;
6756
6757		/* Walk through the pd_lobby, looking for skbs that
6758		 * need moved to the new socket.
6759		 */
6760		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6761			event = sctp_skb2event(skb);
6762			if (event->asoc == assoc) {
6763				__skb_unlink(skb, &oldsp->pd_lobby);
6764				__skb_queue_tail(queue, skb);
6765				sctp_skb_set_owner_r_frag(skb, newsk);
6766			}
6767		}
6768
6769		/* Clear up any skbs waiting for the partial
6770		 * delivery to finish.
6771		 */
6772		if (assoc->ulpq.pd_mode)
6773			sctp_clear_pd(oldsk, NULL);
6774
6775	}
6776
6777	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6778		sctp_skb_set_owner_r_frag(skb, newsk);
6779
6780	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6781		sctp_skb_set_owner_r_frag(skb, newsk);
6782
6783	/* Set the type of socket to indicate that it is peeled off from the
6784	 * original UDP-style socket or created with the accept() call on a
6785	 * TCP-style socket..
6786	 */
6787	newsp->type = type;
6788
6789	/* Mark the new socket "in-use" by the user so that any packets
6790	 * that may arrive on the association after we've moved it are
6791	 * queued to the backlog.  This prevents a potential race between
6792	 * backlog processing on the old socket and new-packet processing
6793	 * on the new socket.
6794	 *
6795	 * The caller has just allocated newsk so we can guarantee that other
6796	 * paths won't try to lock it and then oldsk.
6797	 */
6798	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6799	sctp_assoc_migrate(assoc, newsk);
6800
6801	/* If the association on the newsk is already closed before accept()
6802	 * is called, set RCV_SHUTDOWN flag.
6803	 */
6804	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6805		newsk->sk_shutdown |= RCV_SHUTDOWN;
6806
6807	newsk->sk_state = SCTP_SS_ESTABLISHED;
6808	sctp_release_sock(newsk);
6809}
6810
6811
6812/* This proto struct describes the ULP interface for SCTP.  */
6813struct proto sctp_prot = {
6814	.name        =	"SCTP",
6815	.owner       =	THIS_MODULE,
6816	.close       =	sctp_close,
6817	.connect     =	sctp_connect,
6818	.disconnect  =	sctp_disconnect,
6819	.accept      =	sctp_accept,
6820	.ioctl       =	sctp_ioctl,
6821	.init        =	sctp_init_sock,
6822	.destroy     =	sctp_destroy_sock,
6823	.shutdown    =	sctp_shutdown,
6824	.setsockopt  =	sctp_setsockopt,
6825	.getsockopt  =	sctp_getsockopt,
6826	.sendmsg     =	sctp_sendmsg,
6827	.recvmsg     =	sctp_recvmsg,
6828	.bind        =	sctp_bind,
6829	.backlog_rcv =	sctp_backlog_rcv,
6830	.hash        =	sctp_hash,
6831	.unhash      =	sctp_unhash,
6832	.get_port    =	sctp_get_port,
6833	.obj_size    =  sizeof(struct sctp_sock),
6834	.sysctl_mem  =  sysctl_sctp_mem,
6835	.sysctl_rmem =  sysctl_sctp_rmem,
6836	.sysctl_wmem =  sysctl_sctp_wmem,
6837	.memory_pressure = &sctp_memory_pressure,
6838	.enter_memory_pressure = sctp_enter_memory_pressure,
6839	.memory_allocated = &sctp_memory_allocated,
6840	.sockets_allocated = &sctp_sockets_allocated,
6841};
6842
6843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6844
6845struct proto sctpv6_prot = {
6846	.name		= "SCTPv6",
6847	.owner		= THIS_MODULE,
6848	.close		= sctp_close,
6849	.connect	= sctp_connect,
6850	.disconnect	= sctp_disconnect,
6851	.accept		= sctp_accept,
6852	.ioctl		= sctp_ioctl,
6853	.init		= sctp_init_sock,
6854	.destroy	= sctp_destroy_sock,
6855	.shutdown	= sctp_shutdown,
6856	.setsockopt	= sctp_setsockopt,
6857	.getsockopt	= sctp_getsockopt,
6858	.sendmsg	= sctp_sendmsg,
6859	.recvmsg	= sctp_recvmsg,
6860	.bind		= sctp_bind,
6861	.backlog_rcv	= sctp_backlog_rcv,
6862	.hash		= sctp_hash,
6863	.unhash		= sctp_unhash,
6864	.get_port	= sctp_get_port,
6865	.obj_size	= sizeof(struct sctp6_sock),
6866	.sysctl_mem	= sysctl_sctp_mem,
6867	.sysctl_rmem	= sysctl_sctp_rmem,
6868	.sysctl_wmem	= sysctl_sctp_wmem,
6869	.memory_pressure = &sctp_memory_pressure,
6870	.enter_memory_pressure = sctp_enter_memory_pressure,
6871	.memory_allocated = &sctp_memory_allocated,
6872	.sockets_allocated = &sctp_sockets_allocated,
6873};
6874#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */