Linux Audio

Check our new training course

Loading...
v3.15
  1/* SCTP kernel implementation
  2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
  3 *
  4 * This file is part of the SCTP kernel implementation
  5 *
  6 * This SCTP implementation is free software;
  7 * you can redistribute it and/or modify it under the terms of
  8 * the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2, or (at your option)
 10 * any later version.
 11 *
 12 * This SCTP implementation is distributed in the hope that it
 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
 14 *                 ************************
 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 16 * See the GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with GNU CC; see the file COPYING.  If not, see
 20 * <http://www.gnu.org/licenses/>.
 
 21 *
 22 * Please send any bug reports or fixes you make to the
 23 * email address(es):
 24 *    lksctp developers <linux-sctp@vger.kernel.org>
 
 
 
 25 *
 26 * Written or modified by:
 27 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
 
 
 
 28 */
 29
 30#include <linux/slab.h>
 31#include <linux/types.h>
 32#include <linux/crypto.h>
 33#include <linux/scatterlist.h>
 34#include <net/sctp/sctp.h>
 35#include <net/sctp/auth.h>
 36
 37static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
 38	{
 39		/* id 0 is reserved.  as all 0 */
 40		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
 41	},
 42	{
 43		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
 44		.hmac_name = "hmac(sha1)",
 45		.hmac_len = SCTP_SHA1_SIG_SIZE,
 46	},
 47	{
 48		/* id 2 is reserved as well */
 49		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
 50	},
 51#if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
 52	{
 53		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
 54		.hmac_name = "hmac(sha256)",
 55		.hmac_len = SCTP_SHA256_SIG_SIZE,
 56	}
 57#endif
 58};
 59
 60
 61void sctp_auth_key_put(struct sctp_auth_bytes *key)
 62{
 63	if (!key)
 64		return;
 65
 66	if (atomic_dec_and_test(&key->refcnt)) {
 67		kzfree(key);
 68		SCTP_DBG_OBJCNT_DEC(keys);
 69	}
 70}
 71
 72/* Create a new key structure of a given length */
 73static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
 74{
 75	struct sctp_auth_bytes *key;
 76
 77	/* Verify that we are not going to overflow INT_MAX */
 78	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
 79		return NULL;
 80
 81	/* Allocate the shared key */
 82	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
 83	if (!key)
 84		return NULL;
 85
 86	key->len = key_len;
 87	atomic_set(&key->refcnt, 1);
 88	SCTP_DBG_OBJCNT_INC(keys);
 89
 90	return key;
 91}
 92
 93/* Create a new shared key container with a give key id */
 94struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
 95{
 96	struct sctp_shared_key *new;
 97
 98	/* Allocate the shared key container */
 99	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100	if (!new)
101		return NULL;
102
103	INIT_LIST_HEAD(&new->key_list);
104	new->key_id = key_id;
105
106	return new;
107}
108
109/* Free the shared key structure */
110static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111{
112	BUG_ON(!list_empty(&sh_key->key_list));
113	sctp_auth_key_put(sh_key->key);
114	sh_key->key = NULL;
115	kfree(sh_key);
116}
117
118/* Destroy the entire key list.  This is done during the
119 * associon and endpoint free process.
120 */
121void sctp_auth_destroy_keys(struct list_head *keys)
122{
123	struct sctp_shared_key *ep_key;
124	struct sctp_shared_key *tmp;
125
126	if (list_empty(keys))
127		return;
128
129	key_for_each_safe(ep_key, tmp, keys) {
130		list_del_init(&ep_key->key_list);
131		sctp_auth_shkey_free(ep_key);
132	}
133}
134
135/* Compare two byte vectors as numbers.  Return values
136 * are:
137 * 	  0 - vectors are equal
138 * 	< 0 - vector 1 is smaller than vector2
139 * 	> 0 - vector 1 is greater than vector2
140 *
141 * Algorithm is:
142 * 	This is performed by selecting the numerically smaller key vector...
143 *	If the key vectors are equal as numbers but differ in length ...
144 *	the shorter vector is considered smaller
145 *
146 * Examples (with small values):
147 * 	000123456789 > 123456789 (first number is longer)
148 * 	000123456789 < 234567891 (second number is larger numerically)
149 * 	123456789 > 2345678 	 (first number is both larger & longer)
150 */
151static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152			      struct sctp_auth_bytes *vector2)
153{
154	int diff;
155	int i;
156	const __u8 *longer;
157
158	diff = vector1->len - vector2->len;
159	if (diff) {
160		longer = (diff > 0) ? vector1->data : vector2->data;
161
162		/* Check to see if the longer number is
163		 * lead-zero padded.  If it is not, it
164		 * is automatically larger numerically.
165		 */
166		for (i = 0; i < abs(diff); i++) {
167			if (longer[i] != 0)
168				return diff;
169		}
170	}
171
172	/* lengths are the same, compare numbers */
173	return memcmp(vector1->data, vector2->data, vector1->len);
174}
175
176/*
177 * Create a key vector as described in SCTP-AUTH, Section 6.1
178 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179 *    parameter sent by each endpoint are concatenated as byte vectors.
180 *    These parameters include the parameter type, parameter length, and
181 *    the parameter value, but padding is omitted; all padding MUST be
182 *    removed from this concatenation before proceeding with further
183 *    computation of keys.  Parameters which were not sent are simply
184 *    omitted from the concatenation process.  The resulting two vectors
185 *    are called the two key vectors.
186 */
187static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188			sctp_random_param_t *random,
189			sctp_chunks_param_t *chunks,
190			sctp_hmac_algo_param_t *hmacs,
191			gfp_t gfp)
192{
193	struct sctp_auth_bytes *new;
194	__u32	len;
195	__u32	offset = 0;
196	__u16	random_len, hmacs_len, chunks_len = 0;
197
198	random_len = ntohs(random->param_hdr.length);
199	hmacs_len = ntohs(hmacs->param_hdr.length);
200	if (chunks)
201		chunks_len = ntohs(chunks->param_hdr.length);
202
203	len = random_len + hmacs_len + chunks_len;
 
 
204
205	new = sctp_auth_create_key(len, gfp);
206	if (!new)
207		return NULL;
208
209	memcpy(new->data, random, random_len);
210	offset += random_len;
 
 
211
212	if (chunks) {
213		memcpy(new->data + offset, chunks, chunks_len);
214		offset += chunks_len;
 
215	}
216
217	memcpy(new->data + offset, hmacs, hmacs_len);
218
219	return new;
220}
221
222
223/* Make a key vector based on our local parameters */
224static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225				    const struct sctp_association *asoc,
226				    gfp_t gfp)
227{
228	return sctp_auth_make_key_vector(
229				    (sctp_random_param_t *)asoc->c.auth_random,
230				    (sctp_chunks_param_t *)asoc->c.auth_chunks,
231				    (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
232				    gfp);
233}
234
235/* Make a key vector based on peer's parameters */
236static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
237				    const struct sctp_association *asoc,
238				    gfp_t gfp)
239{
240	return sctp_auth_make_key_vector(asoc->peer.peer_random,
241					 asoc->peer.peer_chunks,
242					 asoc->peer.peer_hmacs,
243					 gfp);
244}
245
246
247/* Set the value of the association shared key base on the parameters
248 * given.  The algorithm is:
249 *    From the endpoint pair shared keys and the key vectors the
250 *    association shared keys are computed.  This is performed by selecting
251 *    the numerically smaller key vector and concatenating it to the
252 *    endpoint pair shared key, and then concatenating the numerically
253 *    larger key vector to that.  The result of the concatenation is the
254 *    association shared key.
255 */
256static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
257			struct sctp_shared_key *ep_key,
258			struct sctp_auth_bytes *first_vector,
259			struct sctp_auth_bytes *last_vector,
260			gfp_t gfp)
261{
262	struct sctp_auth_bytes *secret;
263	__u32 offset = 0;
264	__u32 auth_len;
265
266	auth_len = first_vector->len + last_vector->len;
267	if (ep_key->key)
268		auth_len += ep_key->key->len;
269
270	secret = sctp_auth_create_key(auth_len, gfp);
271	if (!secret)
272		return NULL;
273
274	if (ep_key->key) {
275		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
276		offset += ep_key->key->len;
277	}
278
279	memcpy(secret->data + offset, first_vector->data, first_vector->len);
280	offset += first_vector->len;
281
282	memcpy(secret->data + offset, last_vector->data, last_vector->len);
283
284	return secret;
285}
286
287/* Create an association shared key.  Follow the algorithm
288 * described in SCTP-AUTH, Section 6.1
289 */
290static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
291				 const struct sctp_association *asoc,
292				 struct sctp_shared_key *ep_key,
293				 gfp_t gfp)
294{
295	struct sctp_auth_bytes *local_key_vector;
296	struct sctp_auth_bytes *peer_key_vector;
297	struct sctp_auth_bytes	*first_vector,
298				*last_vector;
299	struct sctp_auth_bytes	*secret = NULL;
300	int	cmp;
301
302
303	/* Now we need to build the key vectors
304	 * SCTP-AUTH , Section 6.1
305	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
306	 *    parameter sent by each endpoint are concatenated as byte vectors.
307	 *    These parameters include the parameter type, parameter length, and
308	 *    the parameter value, but padding is omitted; all padding MUST be
309	 *    removed from this concatenation before proceeding with further
310	 *    computation of keys.  Parameters which were not sent are simply
311	 *    omitted from the concatenation process.  The resulting two vectors
312	 *    are called the two key vectors.
313	 */
314
315	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
316	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
317
318	if (!peer_key_vector || !local_key_vector)
319		goto out;
320
321	/* Figure out the order in which the key_vectors will be
322	 * added to the endpoint shared key.
323	 * SCTP-AUTH, Section 6.1:
324	 *   This is performed by selecting the numerically smaller key
325	 *   vector and concatenating it to the endpoint pair shared
326	 *   key, and then concatenating the numerically larger key
327	 *   vector to that.  If the key vectors are equal as numbers
328	 *   but differ in length, then the concatenation order is the
329	 *   endpoint shared key, followed by the shorter key vector,
330	 *   followed by the longer key vector.  Otherwise, the key
331	 *   vectors are identical, and may be concatenated to the
332	 *   endpoint pair key in any order.
333	 */
334	cmp = sctp_auth_compare_vectors(local_key_vector,
335					peer_key_vector);
336	if (cmp < 0) {
337		first_vector = local_key_vector;
338		last_vector = peer_key_vector;
339	} else {
340		first_vector = peer_key_vector;
341		last_vector = local_key_vector;
342	}
343
344	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
345					    gfp);
346out:
347	sctp_auth_key_put(local_key_vector);
348	sctp_auth_key_put(peer_key_vector);
349
350	return secret;
351}
352
353/*
354 * Populate the association overlay list with the list
355 * from the endpoint.
356 */
357int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
358				struct sctp_association *asoc,
359				gfp_t gfp)
360{
361	struct sctp_shared_key *sh_key;
362	struct sctp_shared_key *new;
363
364	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
365
366	key_for_each(sh_key, &ep->endpoint_shared_keys) {
367		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
368		if (!new)
369			goto nomem;
370
371		new->key = sh_key->key;
372		sctp_auth_key_hold(new->key);
373		list_add(&new->key_list, &asoc->endpoint_shared_keys);
374	}
375
376	return 0;
377
378nomem:
379	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
380	return -ENOMEM;
381}
382
383
384/* Public interface to creat the association shared key.
385 * See code above for the algorithm.
386 */
387int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
388{
389	struct sctp_auth_bytes	*secret;
390	struct sctp_shared_key *ep_key;
391
392	/* If we don't support AUTH, or peer is not capable
393	 * we don't need to do anything.
394	 */
395	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
396		return 0;
397
398	/* If the key_id is non-zero and we couldn't find an
399	 * endpoint pair shared key, we can't compute the
400	 * secret.
401	 * For key_id 0, endpoint pair shared key is a NULL key.
402	 */
403	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
404	BUG_ON(!ep_key);
405
406	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
407	if (!secret)
408		return -ENOMEM;
409
410	sctp_auth_key_put(asoc->asoc_shared_key);
411	asoc->asoc_shared_key = secret;
412
413	return 0;
414}
415
416
417/* Find the endpoint pair shared key based on the key_id */
418struct sctp_shared_key *sctp_auth_get_shkey(
419				const struct sctp_association *asoc,
420				__u16 key_id)
421{
422	struct sctp_shared_key *key;
423
424	/* First search associations set of endpoint pair shared keys */
425	key_for_each(key, &asoc->endpoint_shared_keys) {
426		if (key->key_id == key_id)
427			return key;
428	}
429
430	return NULL;
431}
432
433/*
434 * Initialize all the possible digest transforms that we can use.  Right now
435 * now, the supported digests are SHA1 and SHA256.  We do this here once
436 * because of the restrictiong that transforms may only be allocated in
437 * user context.  This forces us to pre-allocated all possible transforms
438 * at the endpoint init time.
439 */
440int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
441{
442	struct crypto_hash *tfm = NULL;
443	__u16   id;
444
445	/* If AUTH extension is disabled, we are done */
446	if (!ep->auth_enable) {
447		ep->auth_hmacs = NULL;
448		return 0;
449	}
450
451	/* If the transforms are already allocated, we are done */
452	if (ep->auth_hmacs)
453		return 0;
454
455	/* Allocated the array of pointers to transorms */
456	ep->auth_hmacs = kzalloc(
457			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
458			    gfp);
459	if (!ep->auth_hmacs)
460		return -ENOMEM;
461
462	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
463
464		/* See is we support the id.  Supported IDs have name and
465		 * length fields set, so that we can allocated and use
466		 * them.  We can safely just check for name, for without the
467		 * name, we can't allocate the TFM.
468		 */
469		if (!sctp_hmac_list[id].hmac_name)
470			continue;
471
472		/* If this TFM has been allocated, we are all set */
473		if (ep->auth_hmacs[id])
474			continue;
475
476		/* Allocate the ID */
477		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
478					CRYPTO_ALG_ASYNC);
479		if (IS_ERR(tfm))
480			goto out_err;
481
482		ep->auth_hmacs[id] = tfm;
483	}
484
485	return 0;
486
487out_err:
488	/* Clean up any successful allocations */
489	sctp_auth_destroy_hmacs(ep->auth_hmacs);
490	return -ENOMEM;
491}
492
493/* Destroy the hmac tfm array */
494void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
495{
496	int i;
497
498	if (!auth_hmacs)
499		return;
500
501	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
 
502		if (auth_hmacs[i])
503			crypto_free_hash(auth_hmacs[i]);
504	}
505	kfree(auth_hmacs);
506}
507
508
509struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
510{
511	return &sctp_hmac_list[hmac_id];
512}
513
514/* Get an hmac description information that we can use to build
515 * the AUTH chunk
516 */
517struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
518{
519	struct sctp_hmac_algo_param *hmacs;
520	__u16 n_elt;
521	__u16 id = 0;
522	int i;
523
524	/* If we have a default entry, use it */
525	if (asoc->default_hmac_id)
526		return &sctp_hmac_list[asoc->default_hmac_id];
527
528	/* Since we do not have a default entry, find the first entry
529	 * we support and return that.  Do not cache that id.
530	 */
531	hmacs = asoc->peer.peer_hmacs;
532	if (!hmacs)
533		return NULL;
534
535	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
536	for (i = 0; i < n_elt; i++) {
537		id = ntohs(hmacs->hmac_ids[i]);
538
539		/* Check the id is in the supported range. And
540		 * see if we support the id.  Supported IDs have name and
541		 * length fields set, so that we can allocate and use
 
 
 
 
 
542		 * them.  We can safely just check for name, for without the
543		 * name, we can't allocate the TFM.
544		 */
545		if (id > SCTP_AUTH_HMAC_ID_MAX ||
546		    !sctp_hmac_list[id].hmac_name) {
547			id = 0;
548			continue;
549		}
550
551		break;
552	}
553
554	if (id == 0)
555		return NULL;
556
557	return &sctp_hmac_list[id];
558}
559
560static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
561{
562	int  found = 0;
563	int  i;
564
565	for (i = 0; i < n_elts; i++) {
566		if (hmac_id == hmacs[i]) {
567			found = 1;
568			break;
569		}
570	}
571
572	return found;
573}
574
575/* See if the HMAC_ID is one that we claim as supported */
576int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
577				    __be16 hmac_id)
578{
579	struct sctp_hmac_algo_param *hmacs;
580	__u16 n_elt;
581
582	if (!asoc)
583		return 0;
584
585	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
586	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
587
588	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
589}
590
591
592/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
593 * Section 6.1:
594 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
595 *   algorithm it supports.
596 */
597void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
598				     struct sctp_hmac_algo_param *hmacs)
599{
600	struct sctp_endpoint *ep;
601	__u16   id;
602	int	i;
603	int	n_params;
604
605	/* if the default id is already set, use it */
606	if (asoc->default_hmac_id)
607		return;
608
609	n_params = (ntohs(hmacs->param_hdr.length)
610				- sizeof(sctp_paramhdr_t)) >> 1;
611	ep = asoc->ep;
612	for (i = 0; i < n_params; i++) {
613		id = ntohs(hmacs->hmac_ids[i]);
614
615		/* Check the id is in the supported range */
616		if (id > SCTP_AUTH_HMAC_ID_MAX)
617			continue;
618
619		/* If this TFM has been allocated, use this id */
620		if (ep->auth_hmacs[id]) {
621			asoc->default_hmac_id = id;
622			break;
623		}
624	}
625}
626
627
628/* Check to see if the given chunk is supposed to be authenticated */
629static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
630{
631	unsigned short len;
632	int found = 0;
633	int i;
634
635	if (!param || param->param_hdr.length == 0)
636		return 0;
637
638	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
639
640	/* SCTP-AUTH, Section 3.2
641	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
642	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
643	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
644	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
645	 */
646	for (i = 0; !found && i < len; i++) {
647		switch (param->chunks[i]) {
648		case SCTP_CID_INIT:
649		case SCTP_CID_INIT_ACK:
650		case SCTP_CID_SHUTDOWN_COMPLETE:
651		case SCTP_CID_AUTH:
652			break;
653
654		default:
655			if (param->chunks[i] == chunk)
656				found = 1;
657			break;
658		}
659	}
660
661	return found;
662}
663
664/* Check if peer requested that this chunk is authenticated */
665int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
666{
667	if (!asoc)
668		return 0;
669
670	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
671		return 0;
672
673	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
674}
675
676/* Check if we requested that peer authenticate this chunk. */
677int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
678{
679	if (!asoc)
680		return 0;
681
682	if (!asoc->ep->auth_enable)
683		return 0;
684
685	return __sctp_auth_cid(chunk,
686			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
687}
688
689/* SCTP-AUTH: Section 6.2:
690 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
691 *    the hash function H as described by the MAC Identifier and the shared
692 *    association key K based on the endpoint pair shared key described by
693 *    the shared key identifier.  The 'data' used for the computation of
694 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
695 *    zero (as shown in Figure 6) followed by all chunks that are placed
696 *    after the AUTH chunk in the SCTP packet.
697 */
698void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
699			      struct sk_buff *skb,
700			      struct sctp_auth_chunk *auth,
701			      gfp_t gfp)
702{
703	struct scatterlist sg;
704	struct hash_desc desc;
705	struct sctp_auth_bytes *asoc_key;
706	__u16 key_id, hmac_id;
707	__u8 *digest;
708	unsigned char *end;
709	int free_key = 0;
710
711	/* Extract the info we need:
712	 * - hmac id
713	 * - key id
714	 */
715	key_id = ntohs(auth->auth_hdr.shkey_id);
716	hmac_id = ntohs(auth->auth_hdr.hmac_id);
717
718	if (key_id == asoc->active_key_id)
719		asoc_key = asoc->asoc_shared_key;
720	else {
721		struct sctp_shared_key *ep_key;
722
723		ep_key = sctp_auth_get_shkey(asoc, key_id);
724		if (!ep_key)
725			return;
726
727		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
728		if (!asoc_key)
729			return;
730
731		free_key = 1;
732	}
733
734	/* set up scatter list */
735	end = skb_tail_pointer(skb);
736	sg_init_one(&sg, auth, end - (unsigned char *)auth);
737
738	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
739	desc.flags = 0;
740
741	digest = auth->auth_hdr.hmac;
742	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
743		goto free;
744
745	crypto_hash_digest(&desc, &sg, sg.length, digest);
746
747free:
748	if (free_key)
749		sctp_auth_key_put(asoc_key);
750}
751
752/* API Helpers */
753
754/* Add a chunk to the endpoint authenticated chunk list */
755int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
756{
757	struct sctp_chunks_param *p = ep->auth_chunk_list;
758	__u16 nchunks;
759	__u16 param_len;
760
761	/* If this chunk is already specified, we are done */
762	if (__sctp_auth_cid(chunk_id, p))
763		return 0;
764
765	/* Check if we can add this chunk to the array */
766	param_len = ntohs(p->param_hdr.length);
767	nchunks = param_len - sizeof(sctp_paramhdr_t);
768	if (nchunks == SCTP_NUM_CHUNK_TYPES)
769		return -EINVAL;
770
771	p->chunks[nchunks] = chunk_id;
772	p->param_hdr.length = htons(param_len + 1);
773	return 0;
774}
775
776/* Add hmac identifires to the endpoint list of supported hmac ids */
777int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
778			   struct sctp_hmacalgo *hmacs)
779{
780	int has_sha1 = 0;
781	__u16 id;
782	int i;
783
784	/* Scan the list looking for unsupported id.  Also make sure that
785	 * SHA1 is specified.
786	 */
787	for (i = 0; i < hmacs->shmac_num_idents; i++) {
788		id = hmacs->shmac_idents[i];
789
790		if (id > SCTP_AUTH_HMAC_ID_MAX)
791			return -EOPNOTSUPP;
792
793		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
794			has_sha1 = 1;
795
796		if (!sctp_hmac_list[id].hmac_name)
797			return -EOPNOTSUPP;
798	}
799
800	if (!has_sha1)
801		return -EINVAL;
802
803	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
804		hmacs->shmac_num_idents * sizeof(__u16));
805	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
806				hmacs->shmac_num_idents * sizeof(__u16));
807	return 0;
808}
809
810/* Set a new shared key on either endpoint or association.  If the
811 * the key with a same ID already exists, replace the key (remove the
812 * old key and add a new one).
813 */
814int sctp_auth_set_key(struct sctp_endpoint *ep,
815		      struct sctp_association *asoc,
816		      struct sctp_authkey *auth_key)
817{
818	struct sctp_shared_key *cur_key = NULL;
819	struct sctp_auth_bytes *key;
820	struct list_head *sh_keys;
821	int replace = 0;
822
823	/* Try to find the given key id to see if
824	 * we are doing a replace, or adding a new key
825	 */
826	if (asoc)
827		sh_keys = &asoc->endpoint_shared_keys;
828	else
829		sh_keys = &ep->endpoint_shared_keys;
830
831	key_for_each(cur_key, sh_keys) {
832		if (cur_key->key_id == auth_key->sca_keynumber) {
833			replace = 1;
834			break;
835		}
836	}
837
838	/* If we are not replacing a key id, we need to allocate
839	 * a shared key.
840	 */
841	if (!replace) {
842		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
843						 GFP_KERNEL);
844		if (!cur_key)
845			return -ENOMEM;
846	}
847
848	/* Create a new key data based on the info passed in */
849	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
850	if (!key)
851		goto nomem;
852
853	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
854
855	/* If we are replacing, remove the old keys data from the
856	 * key id.  If we are adding new key id, add it to the
857	 * list.
858	 */
859	if (replace)
860		sctp_auth_key_put(cur_key->key);
861	else
862		list_add(&cur_key->key_list, sh_keys);
863
864	cur_key->key = key;
865	sctp_auth_key_hold(key);
866
867	return 0;
868nomem:
869	if (!replace)
870		sctp_auth_shkey_free(cur_key);
871
872	return -ENOMEM;
873}
874
875int sctp_auth_set_active_key(struct sctp_endpoint *ep,
876			     struct sctp_association *asoc,
877			     __u16  key_id)
878{
879	struct sctp_shared_key *key;
880	struct list_head *sh_keys;
881	int found = 0;
882
883	/* The key identifier MUST correst to an existing key */
884	if (asoc)
885		sh_keys = &asoc->endpoint_shared_keys;
886	else
887		sh_keys = &ep->endpoint_shared_keys;
888
889	key_for_each(key, sh_keys) {
890		if (key->key_id == key_id) {
891			found = 1;
892			break;
893		}
894	}
895
896	if (!found)
897		return -EINVAL;
898
899	if (asoc) {
900		asoc->active_key_id = key_id;
901		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
902	} else
903		ep->active_key_id = key_id;
904
905	return 0;
906}
907
908int sctp_auth_del_key_id(struct sctp_endpoint *ep,
909			 struct sctp_association *asoc,
910			 __u16  key_id)
911{
912	struct sctp_shared_key *key;
913	struct list_head *sh_keys;
914	int found = 0;
915
916	/* The key identifier MUST NOT be the current active key
917	 * The key identifier MUST correst to an existing key
918	 */
919	if (asoc) {
920		if (asoc->active_key_id == key_id)
921			return -EINVAL;
922
923		sh_keys = &asoc->endpoint_shared_keys;
924	} else {
925		if (ep->active_key_id == key_id)
926			return -EINVAL;
927
928		sh_keys = &ep->endpoint_shared_keys;
929	}
930
931	key_for_each(key, sh_keys) {
932		if (key->key_id == key_id) {
933			found = 1;
934			break;
935		}
936	}
937
938	if (!found)
939		return -EINVAL;
940
941	/* Delete the shared key */
942	list_del_init(&key->key_list);
943	sctp_auth_shkey_free(key);
944
945	return 0;
946}
v3.1
  1/* SCTP kernel implementation
  2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
  3 *
  4 * This file is part of the SCTP kernel implementation
  5 *
  6 * This SCTP implementation is free software;
  7 * you can redistribute it and/or modify it under the terms of
  8 * the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2, or (at your option)
 10 * any later version.
 11 *
 12 * This SCTP implementation is distributed in the hope that it
 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
 14 *                 ************************
 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 16 * See the GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with GNU CC; see the file COPYING.  If not, write to
 20 * the Free Software Foundation, 59 Temple Place - Suite 330,
 21 * Boston, MA 02111-1307, USA.
 22 *
 23 * Please send any bug reports or fixes you make to the
 24 * email address(es):
 25 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
 26 *
 27 * Or submit a bug report through the following website:
 28 *    http://www.sf.net/projects/lksctp
 29 *
 30 * Written or modified by:
 31 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
 32 *
 33 * Any bugs reported given to us we will try to fix... any fixes shared will
 34 * be incorporated into the next SCTP release.
 35 */
 36
 37#include <linux/slab.h>
 38#include <linux/types.h>
 39#include <linux/crypto.h>
 40#include <linux/scatterlist.h>
 41#include <net/sctp/sctp.h>
 42#include <net/sctp/auth.h>
 43
 44static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
 45	{
 46		/* id 0 is reserved.  as all 0 */
 47		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
 48	},
 49	{
 50		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
 51		.hmac_name="hmac(sha1)",
 52		.hmac_len = SCTP_SHA1_SIG_SIZE,
 53	},
 54	{
 55		/* id 2 is reserved as well */
 56		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
 57	},
 58#if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
 59	{
 60		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
 61		.hmac_name="hmac(sha256)",
 62		.hmac_len = SCTP_SHA256_SIG_SIZE,
 63	}
 64#endif
 65};
 66
 67
 68void sctp_auth_key_put(struct sctp_auth_bytes *key)
 69{
 70	if (!key)
 71		return;
 72
 73	if (atomic_dec_and_test(&key->refcnt)) {
 74		kfree(key);
 75		SCTP_DBG_OBJCNT_DEC(keys);
 76	}
 77}
 78
 79/* Create a new key structure of a given length */
 80static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
 81{
 82	struct sctp_auth_bytes *key;
 83
 84	/* Verify that we are not going to overflow INT_MAX */
 85	if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes))
 86		return NULL;
 87
 88	/* Allocate the shared key */
 89	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
 90	if (!key)
 91		return NULL;
 92
 93	key->len = key_len;
 94	atomic_set(&key->refcnt, 1);
 95	SCTP_DBG_OBJCNT_INC(keys);
 96
 97	return key;
 98}
 99
100/* Create a new shared key container with a give key id */
101struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
102{
103	struct sctp_shared_key *new;
104
105	/* Allocate the shared key container */
106	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
107	if (!new)
108		return NULL;
109
110	INIT_LIST_HEAD(&new->key_list);
111	new->key_id = key_id;
112
113	return new;
114}
115
116/* Free the shared key structure */
117static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
118{
119	BUG_ON(!list_empty(&sh_key->key_list));
120	sctp_auth_key_put(sh_key->key);
121	sh_key->key = NULL;
122	kfree(sh_key);
123}
124
125/* Destroy the entire key list.  This is done during the
126 * associon and endpoint free process.
127 */
128void sctp_auth_destroy_keys(struct list_head *keys)
129{
130	struct sctp_shared_key *ep_key;
131	struct sctp_shared_key *tmp;
132
133	if (list_empty(keys))
134		return;
135
136	key_for_each_safe(ep_key, tmp, keys) {
137		list_del_init(&ep_key->key_list);
138		sctp_auth_shkey_free(ep_key);
139	}
140}
141
142/* Compare two byte vectors as numbers.  Return values
143 * are:
144 * 	  0 - vectors are equal
145 * 	< 0 - vector 1 is smaller than vector2
146 * 	> 0 - vector 1 is greater than vector2
147 *
148 * Algorithm is:
149 * 	This is performed by selecting the numerically smaller key vector...
150 *	If the key vectors are equal as numbers but differ in length ...
151 *	the shorter vector is considered smaller
152 *
153 * Examples (with small values):
154 * 	000123456789 > 123456789 (first number is longer)
155 * 	000123456789 < 234567891 (second number is larger numerically)
156 * 	123456789 > 2345678 	 (first number is both larger & longer)
157 */
158static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
159			      struct sctp_auth_bytes *vector2)
160{
161	int diff;
162	int i;
163	const __u8 *longer;
164
165	diff = vector1->len - vector2->len;
166	if (diff) {
167		longer = (diff > 0) ? vector1->data : vector2->data;
168
169		/* Check to see if the longer number is
170		 * lead-zero padded.  If it is not, it
171		 * is automatically larger numerically.
172		 */
173		for (i = 0; i < abs(diff); i++ ) {
174			if (longer[i] != 0)
175				return diff;
176		}
177	}
178
179	/* lengths are the same, compare numbers */
180	return memcmp(vector1->data, vector2->data, vector1->len);
181}
182
183/*
184 * Create a key vector as described in SCTP-AUTH, Section 6.1
185 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186 *    parameter sent by each endpoint are concatenated as byte vectors.
187 *    These parameters include the parameter type, parameter length, and
188 *    the parameter value, but padding is omitted; all padding MUST be
189 *    removed from this concatenation before proceeding with further
190 *    computation of keys.  Parameters which were not sent are simply
191 *    omitted from the concatenation process.  The resulting two vectors
192 *    are called the two key vectors.
193 */
194static struct sctp_auth_bytes *sctp_auth_make_key_vector(
195			sctp_random_param_t *random,
196			sctp_chunks_param_t *chunks,
197			sctp_hmac_algo_param_t *hmacs,
198			gfp_t gfp)
199{
200	struct sctp_auth_bytes *new;
201	__u32	len;
202	__u32	offset = 0;
 
 
 
 
 
 
203
204	len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
205        if (chunks)
206		len += ntohs(chunks->param_hdr.length);
207
208	new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
209	if (!new)
210		return NULL;
211
212	new->len = len;
213
214	memcpy(new->data, random, ntohs(random->param_hdr.length));
215	offset += ntohs(random->param_hdr.length);
216
217	if (chunks) {
218		memcpy(new->data + offset, chunks,
219			ntohs(chunks->param_hdr.length));
220		offset += ntohs(chunks->param_hdr.length);
221	}
222
223	memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
224
225	return new;
226}
227
228
229/* Make a key vector based on our local parameters */
230static struct sctp_auth_bytes *sctp_auth_make_local_vector(
231				    const struct sctp_association *asoc,
232				    gfp_t gfp)
233{
234	return sctp_auth_make_key_vector(
235				    (sctp_random_param_t*)asoc->c.auth_random,
236				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
237				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
238				    gfp);
239}
240
241/* Make a key vector based on peer's parameters */
242static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
243				    const struct sctp_association *asoc,
244				    gfp_t gfp)
245{
246	return sctp_auth_make_key_vector(asoc->peer.peer_random,
247					 asoc->peer.peer_chunks,
248					 asoc->peer.peer_hmacs,
249					 gfp);
250}
251
252
253/* Set the value of the association shared key base on the parameters
254 * given.  The algorithm is:
255 *    From the endpoint pair shared keys and the key vectors the
256 *    association shared keys are computed.  This is performed by selecting
257 *    the numerically smaller key vector and concatenating it to the
258 *    endpoint pair shared key, and then concatenating the numerically
259 *    larger key vector to that.  The result of the concatenation is the
260 *    association shared key.
261 */
262static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
263			struct sctp_shared_key *ep_key,
264			struct sctp_auth_bytes *first_vector,
265			struct sctp_auth_bytes *last_vector,
266			gfp_t gfp)
267{
268	struct sctp_auth_bytes *secret;
269	__u32 offset = 0;
270	__u32 auth_len;
271
272	auth_len = first_vector->len + last_vector->len;
273	if (ep_key->key)
274		auth_len += ep_key->key->len;
275
276	secret = sctp_auth_create_key(auth_len, gfp);
277	if (!secret)
278		return NULL;
279
280	if (ep_key->key) {
281		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
282		offset += ep_key->key->len;
283	}
284
285	memcpy(secret->data + offset, first_vector->data, first_vector->len);
286	offset += first_vector->len;
287
288	memcpy(secret->data + offset, last_vector->data, last_vector->len);
289
290	return secret;
291}
292
293/* Create an association shared key.  Follow the algorithm
294 * described in SCTP-AUTH, Section 6.1
295 */
296static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
297				 const struct sctp_association *asoc,
298				 struct sctp_shared_key *ep_key,
299				 gfp_t gfp)
300{
301	struct sctp_auth_bytes *local_key_vector;
302	struct sctp_auth_bytes *peer_key_vector;
303	struct sctp_auth_bytes	*first_vector,
304				*last_vector;
305	struct sctp_auth_bytes	*secret = NULL;
306	int	cmp;
307
308
309	/* Now we need to build the key vectors
310	 * SCTP-AUTH , Section 6.1
311	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
312	 *    parameter sent by each endpoint are concatenated as byte vectors.
313	 *    These parameters include the parameter type, parameter length, and
314	 *    the parameter value, but padding is omitted; all padding MUST be
315	 *    removed from this concatenation before proceeding with further
316	 *    computation of keys.  Parameters which were not sent are simply
317	 *    omitted from the concatenation process.  The resulting two vectors
318	 *    are called the two key vectors.
319	 */
320
321	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
322	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
323
324	if (!peer_key_vector || !local_key_vector)
325		goto out;
326
327	/* Figure out the order in which the key_vectors will be
328	 * added to the endpoint shared key.
329	 * SCTP-AUTH, Section 6.1:
330	 *   This is performed by selecting the numerically smaller key
331	 *   vector and concatenating it to the endpoint pair shared
332	 *   key, and then concatenating the numerically larger key
333	 *   vector to that.  If the key vectors are equal as numbers
334	 *   but differ in length, then the concatenation order is the
335	 *   endpoint shared key, followed by the shorter key vector,
336	 *   followed by the longer key vector.  Otherwise, the key
337	 *   vectors are identical, and may be concatenated to the
338	 *   endpoint pair key in any order.
339	 */
340	cmp = sctp_auth_compare_vectors(local_key_vector,
341					peer_key_vector);
342	if (cmp < 0) {
343		first_vector = local_key_vector;
344		last_vector = peer_key_vector;
345	} else {
346		first_vector = peer_key_vector;
347		last_vector = local_key_vector;
348	}
349
350	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
351					    gfp);
352out:
353	kfree(local_key_vector);
354	kfree(peer_key_vector);
355
356	return secret;
357}
358
359/*
360 * Populate the association overlay list with the list
361 * from the endpoint.
362 */
363int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
364				struct sctp_association *asoc,
365				gfp_t gfp)
366{
367	struct sctp_shared_key *sh_key;
368	struct sctp_shared_key *new;
369
370	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
371
372	key_for_each(sh_key, &ep->endpoint_shared_keys) {
373		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
374		if (!new)
375			goto nomem;
376
377		new->key = sh_key->key;
378		sctp_auth_key_hold(new->key);
379		list_add(&new->key_list, &asoc->endpoint_shared_keys);
380	}
381
382	return 0;
383
384nomem:
385	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
386	return -ENOMEM;
387}
388
389
390/* Public interface to creat the association shared key.
391 * See code above for the algorithm.
392 */
393int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
394{
395	struct sctp_auth_bytes	*secret;
396	struct sctp_shared_key *ep_key;
397
398	/* If we don't support AUTH, or peer is not capable
399	 * we don't need to do anything.
400	 */
401	if (!sctp_auth_enable || !asoc->peer.auth_capable)
402		return 0;
403
404	/* If the key_id is non-zero and we couldn't find an
405	 * endpoint pair shared key, we can't compute the
406	 * secret.
407	 * For key_id 0, endpoint pair shared key is a NULL key.
408	 */
409	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
410	BUG_ON(!ep_key);
411
412	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
413	if (!secret)
414		return -ENOMEM;
415
416	sctp_auth_key_put(asoc->asoc_shared_key);
417	asoc->asoc_shared_key = secret;
418
419	return 0;
420}
421
422
423/* Find the endpoint pair shared key based on the key_id */
424struct sctp_shared_key *sctp_auth_get_shkey(
425				const struct sctp_association *asoc,
426				__u16 key_id)
427{
428	struct sctp_shared_key *key;
429
430	/* First search associations set of endpoint pair shared keys */
431	key_for_each(key, &asoc->endpoint_shared_keys) {
432		if (key->key_id == key_id)
433			return key;
434	}
435
436	return NULL;
437}
438
439/*
440 * Initialize all the possible digest transforms that we can use.  Right now
441 * now, the supported digests are SHA1 and SHA256.  We do this here once
442 * because of the restrictiong that transforms may only be allocated in
443 * user context.  This forces us to pre-allocated all possible transforms
444 * at the endpoint init time.
445 */
446int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
447{
448	struct crypto_hash *tfm = NULL;
449	__u16   id;
450
451	/* if the transforms are already allocted, we are done */
452	if (!sctp_auth_enable) {
453		ep->auth_hmacs = NULL;
454		return 0;
455	}
456
 
457	if (ep->auth_hmacs)
458		return 0;
459
460	/* Allocated the array of pointers to transorms */
461	ep->auth_hmacs = kzalloc(
462			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
463			    gfp);
464	if (!ep->auth_hmacs)
465		return -ENOMEM;
466
467	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
468
469		/* See is we support the id.  Supported IDs have name and
470		 * length fields set, so that we can allocated and use
471		 * them.  We can safely just check for name, for without the
472		 * name, we can't allocate the TFM.
473		 */
474		if (!sctp_hmac_list[id].hmac_name)
475			continue;
476
477		/* If this TFM has been allocated, we are all set */
478		if (ep->auth_hmacs[id])
479			continue;
480
481		/* Allocate the ID */
482		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
483					CRYPTO_ALG_ASYNC);
484		if (IS_ERR(tfm))
485			goto out_err;
486
487		ep->auth_hmacs[id] = tfm;
488	}
489
490	return 0;
491
492out_err:
493	/* Clean up any successful allocations */
494	sctp_auth_destroy_hmacs(ep->auth_hmacs);
495	return -ENOMEM;
496}
497
498/* Destroy the hmac tfm array */
499void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
500{
501	int i;
502
503	if (!auth_hmacs)
504		return;
505
506	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
507	{
508		if (auth_hmacs[i])
509			crypto_free_hash(auth_hmacs[i]);
510	}
511	kfree(auth_hmacs);
512}
513
514
515struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516{
517	return &sctp_hmac_list[hmac_id];
518}
519
520/* Get an hmac description information that we can use to build
521 * the AUTH chunk
522 */
523struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524{
525	struct sctp_hmac_algo_param *hmacs;
526	__u16 n_elt;
527	__u16 id = 0;
528	int i;
529
530	/* If we have a default entry, use it */
531	if (asoc->default_hmac_id)
532		return &sctp_hmac_list[asoc->default_hmac_id];
533
534	/* Since we do not have a default entry, find the first entry
535	 * we support and return that.  Do not cache that id.
536	 */
537	hmacs = asoc->peer.peer_hmacs;
538	if (!hmacs)
539		return NULL;
540
541	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
542	for (i = 0; i < n_elt; i++) {
543		id = ntohs(hmacs->hmac_ids[i]);
544
545		/* Check the id is in the supported range */
546		if (id > SCTP_AUTH_HMAC_ID_MAX) {
547			id = 0;
548			continue;
549		}
550
551		/* See is we support the id.  Supported IDs have name and
552		 * length fields set, so that we can allocated and use
553		 * them.  We can safely just check for name, for without the
554		 * name, we can't allocate the TFM.
555		 */
556		if (!sctp_hmac_list[id].hmac_name) {
 
557			id = 0;
558			continue;
559		}
560
561		break;
562	}
563
564	if (id == 0)
565		return NULL;
566
567	return &sctp_hmac_list[id];
568}
569
570static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
571{
572	int  found = 0;
573	int  i;
574
575	for (i = 0; i < n_elts; i++) {
576		if (hmac_id == hmacs[i]) {
577			found = 1;
578			break;
579		}
580	}
581
582	return found;
583}
584
585/* See if the HMAC_ID is one that we claim as supported */
586int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
587				    __be16 hmac_id)
588{
589	struct sctp_hmac_algo_param *hmacs;
590	__u16 n_elt;
591
592	if (!asoc)
593		return 0;
594
595	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
596	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
597
598	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
599}
600
601
602/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
603 * Section 6.1:
604 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
605 *   algorithm it supports.
606 */
607void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
608				     struct sctp_hmac_algo_param *hmacs)
609{
610	struct sctp_endpoint *ep;
611	__u16   id;
612	int	i;
613	int	n_params;
614
615	/* if the default id is already set, use it */
616	if (asoc->default_hmac_id)
617		return;
618
619	n_params = (ntohs(hmacs->param_hdr.length)
620				- sizeof(sctp_paramhdr_t)) >> 1;
621	ep = asoc->ep;
622	for (i = 0; i < n_params; i++) {
623		id = ntohs(hmacs->hmac_ids[i]);
624
625		/* Check the id is in the supported range */
626		if (id > SCTP_AUTH_HMAC_ID_MAX)
627			continue;
628
629		/* If this TFM has been allocated, use this id */
630		if (ep->auth_hmacs[id]) {
631			asoc->default_hmac_id = id;
632			break;
633		}
634	}
635}
636
637
638/* Check to see if the given chunk is supposed to be authenticated */
639static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
640{
641	unsigned short len;
642	int found = 0;
643	int i;
644
645	if (!param || param->param_hdr.length == 0)
646		return 0;
647
648	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
649
650	/* SCTP-AUTH, Section 3.2
651	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
652	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
653	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
654	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
655	 */
656	for (i = 0; !found && i < len; i++) {
657		switch (param->chunks[i]) {
658		    case SCTP_CID_INIT:
659		    case SCTP_CID_INIT_ACK:
660		    case SCTP_CID_SHUTDOWN_COMPLETE:
661		    case SCTP_CID_AUTH:
662			break;
663
664		    default:
665			if (param->chunks[i] == chunk)
666			    found = 1;
667			break;
668		}
669	}
670
671	return found;
672}
673
674/* Check if peer requested that this chunk is authenticated */
675int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
676{
677	if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
 
 
 
678		return 0;
679
680	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
681}
682
683/* Check if we requested that peer authenticate this chunk. */
684int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
685{
686	if (!sctp_auth_enable || !asoc)
 
 
 
687		return 0;
688
689	return __sctp_auth_cid(chunk,
690			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
691}
692
693/* SCTP-AUTH: Section 6.2:
694 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
695 *    the hash function H as described by the MAC Identifier and the shared
696 *    association key K based on the endpoint pair shared key described by
697 *    the shared key identifier.  The 'data' used for the computation of
698 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
699 *    zero (as shown in Figure 6) followed by all chunks that are placed
700 *    after the AUTH chunk in the SCTP packet.
701 */
702void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
703			      struct sk_buff *skb,
704			      struct sctp_auth_chunk *auth,
705			      gfp_t gfp)
706{
707	struct scatterlist sg;
708	struct hash_desc desc;
709	struct sctp_auth_bytes *asoc_key;
710	__u16 key_id, hmac_id;
711	__u8 *digest;
712	unsigned char *end;
713	int free_key = 0;
714
715	/* Extract the info we need:
716	 * - hmac id
717	 * - key id
718	 */
719	key_id = ntohs(auth->auth_hdr.shkey_id);
720	hmac_id = ntohs(auth->auth_hdr.hmac_id);
721
722	if (key_id == asoc->active_key_id)
723		asoc_key = asoc->asoc_shared_key;
724	else {
725		struct sctp_shared_key *ep_key;
726
727		ep_key = sctp_auth_get_shkey(asoc, key_id);
728		if (!ep_key)
729			return;
730
731		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
732		if (!asoc_key)
733			return;
734
735		free_key = 1;
736	}
737
738	/* set up scatter list */
739	end = skb_tail_pointer(skb);
740	sg_init_one(&sg, auth, end - (unsigned char *)auth);
741
742	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
743	desc.flags = 0;
744
745	digest = auth->auth_hdr.hmac;
746	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
747		goto free;
748
749	crypto_hash_digest(&desc, &sg, sg.length, digest);
750
751free:
752	if (free_key)
753		sctp_auth_key_put(asoc_key);
754}
755
756/* API Helpers */
757
758/* Add a chunk to the endpoint authenticated chunk list */
759int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
760{
761	struct sctp_chunks_param *p = ep->auth_chunk_list;
762	__u16 nchunks;
763	__u16 param_len;
764
765	/* If this chunk is already specified, we are done */
766	if (__sctp_auth_cid(chunk_id, p))
767		return 0;
768
769	/* Check if we can add this chunk to the array */
770	param_len = ntohs(p->param_hdr.length);
771	nchunks = param_len - sizeof(sctp_paramhdr_t);
772	if (nchunks == SCTP_NUM_CHUNK_TYPES)
773		return -EINVAL;
774
775	p->chunks[nchunks] = chunk_id;
776	p->param_hdr.length = htons(param_len + 1);
777	return 0;
778}
779
780/* Add hmac identifires to the endpoint list of supported hmac ids */
781int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
782			   struct sctp_hmacalgo *hmacs)
783{
784	int has_sha1 = 0;
785	__u16 id;
786	int i;
787
788	/* Scan the list looking for unsupported id.  Also make sure that
789	 * SHA1 is specified.
790	 */
791	for (i = 0; i < hmacs->shmac_num_idents; i++) {
792		id = hmacs->shmac_idents[i];
793
794		if (id > SCTP_AUTH_HMAC_ID_MAX)
795			return -EOPNOTSUPP;
796
797		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
798			has_sha1 = 1;
799
800		if (!sctp_hmac_list[id].hmac_name)
801			return -EOPNOTSUPP;
802	}
803
804	if (!has_sha1)
805		return -EINVAL;
806
807	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
808		hmacs->shmac_num_idents * sizeof(__u16));
809	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
810				hmacs->shmac_num_idents * sizeof(__u16));
811	return 0;
812}
813
814/* Set a new shared key on either endpoint or association.  If the
815 * the key with a same ID already exists, replace the key (remove the
816 * old key and add a new one).
817 */
818int sctp_auth_set_key(struct sctp_endpoint *ep,
819		      struct sctp_association *asoc,
820		      struct sctp_authkey *auth_key)
821{
822	struct sctp_shared_key *cur_key = NULL;
823	struct sctp_auth_bytes *key;
824	struct list_head *sh_keys;
825	int replace = 0;
826
827	/* Try to find the given key id to see if
828	 * we are doing a replace, or adding a new key
829	 */
830	if (asoc)
831		sh_keys = &asoc->endpoint_shared_keys;
832	else
833		sh_keys = &ep->endpoint_shared_keys;
834
835	key_for_each(cur_key, sh_keys) {
836		if (cur_key->key_id == auth_key->sca_keynumber) {
837			replace = 1;
838			break;
839		}
840	}
841
842	/* If we are not replacing a key id, we need to allocate
843	 * a shared key.
844	 */
845	if (!replace) {
846		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
847						 GFP_KERNEL);
848		if (!cur_key)
849			return -ENOMEM;
850	}
851
852	/* Create a new key data based on the info passed in */
853	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
854	if (!key)
855		goto nomem;
856
857	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
858
859	/* If we are replacing, remove the old keys data from the
860	 * key id.  If we are adding new key id, add it to the
861	 * list.
862	 */
863	if (replace)
864		sctp_auth_key_put(cur_key->key);
865	else
866		list_add(&cur_key->key_list, sh_keys);
867
868	cur_key->key = key;
869	sctp_auth_key_hold(key);
870
871	return 0;
872nomem:
873	if (!replace)
874		sctp_auth_shkey_free(cur_key);
875
876	return -ENOMEM;
877}
878
879int sctp_auth_set_active_key(struct sctp_endpoint *ep,
880			     struct sctp_association *asoc,
881			     __u16  key_id)
882{
883	struct sctp_shared_key *key;
884	struct list_head *sh_keys;
885	int found = 0;
886
887	/* The key identifier MUST correst to an existing key */
888	if (asoc)
889		sh_keys = &asoc->endpoint_shared_keys;
890	else
891		sh_keys = &ep->endpoint_shared_keys;
892
893	key_for_each(key, sh_keys) {
894		if (key->key_id == key_id) {
895			found = 1;
896			break;
897		}
898	}
899
900	if (!found)
901		return -EINVAL;
902
903	if (asoc) {
904		asoc->active_key_id = key_id;
905		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
906	} else
907		ep->active_key_id = key_id;
908
909	return 0;
910}
911
912int sctp_auth_del_key_id(struct sctp_endpoint *ep,
913			 struct sctp_association *asoc,
914			 __u16  key_id)
915{
916	struct sctp_shared_key *key;
917	struct list_head *sh_keys;
918	int found = 0;
919
920	/* The key identifier MUST NOT be the current active key
921	 * The key identifier MUST correst to an existing key
922	 */
923	if (asoc) {
924		if (asoc->active_key_id == key_id)
925			return -EINVAL;
926
927		sh_keys = &asoc->endpoint_shared_keys;
928	} else {
929		if (ep->active_key_id == key_id)
930			return -EINVAL;
931
932		sh_keys = &ep->endpoint_shared_keys;
933	}
934
935	key_for_each(key, sh_keys) {
936		if (key->key_id == key_id) {
937			found = 1;
938			break;
939		}
940	}
941
942	if (!found)
943		return -EINVAL;
944
945	/* Delete the shared key */
946	list_del_init(&key->key_list);
947	sctp_auth_shkey_free(key);
948
949	return 0;
950}