Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
  3 *
  4 *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
  5 *
  6 *	This program is free software; you can redistribute it and/or
  7 *	modify it under the terms of the GNU General Public License
  8 *	as published by the Free Software Foundation; either version
  9 *	2 of the License, or (at your option) any later version.
 10 *
 11 *  Meant to be mostly used for localy generated traffic :
 12 *  Fast classification depends on skb->sk being set before reaching us.
 13 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
 14 *  All packets belonging to a socket are considered as a 'flow'.
 15 *
 16 *  Flows are dynamically allocated and stored in a hash table of RB trees
 17 *  They are also part of one Round Robin 'queues' (new or old flows)
 18 *
 19 *  Burst avoidance (aka pacing) capability :
 20 *
 21 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
 22 *  bunch of packets, and this packet scheduler adds delay between
 23 *  packets to respect rate limitation.
 24 *
 25 *  enqueue() :
 26 *   - lookup one RB tree (out of 1024 or more) to find the flow.
 27 *     If non existent flow, create it, add it to the tree.
 28 *     Add skb to the per flow list of skb (fifo).
 29 *   - Use a special fifo for high prio packets
 30 *
 31 *  dequeue() : serves flows in Round Robin
 32 *  Note : When a flow becomes empty, we do not immediately remove it from
 33 *  rb trees, for performance reasons (its expected to send additional packets,
 34 *  or SLAB cache will reuse socket for another flow)
 35 */
 36
 37#include <linux/module.h>
 38#include <linux/types.h>
 39#include <linux/kernel.h>
 40#include <linux/jiffies.h>
 41#include <linux/string.h>
 42#include <linux/in.h>
 43#include <linux/errno.h>
 44#include <linux/init.h>
 45#include <linux/skbuff.h>
 46#include <linux/slab.h>
 47#include <linux/rbtree.h>
 48#include <linux/hash.h>
 49#include <linux/prefetch.h>
 50#include <linux/vmalloc.h>
 51#include <net/netlink.h>
 52#include <net/pkt_sched.h>
 53#include <net/sock.h>
 54#include <net/tcp_states.h>
 55
 56/*
 57 * Per flow structure, dynamically allocated
 58 */
 59struct fq_flow {
 60	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
 61	union {
 62		struct sk_buff *tail;	/* last skb in the list */
 63		unsigned long  age;	/* jiffies when flow was emptied, for gc */
 64	};
 65	struct rb_node	fq_node; 	/* anchor in fq_root[] trees */
 66	struct sock	*sk;
 67	int		qlen;		/* number of packets in flow queue */
 68	int		credit;
 69	u32		socket_hash;	/* sk_hash */
 70	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
 71
 72	struct rb_node  rate_node;	/* anchor in q->delayed tree */
 73	u64		time_next_packet;
 74};
 75
 76struct fq_flow_head {
 77	struct fq_flow *first;
 78	struct fq_flow *last;
 79};
 80
 81struct fq_sched_data {
 82	struct fq_flow_head new_flows;
 83
 84	struct fq_flow_head old_flows;
 85
 86	struct rb_root	delayed;	/* for rate limited flows */
 87	u64		time_next_delayed_flow;
 88
 89	struct fq_flow	internal;	/* for non classified or high prio packets */
 90	u32		quantum;
 91	u32		initial_quantum;
 92	u32		flow_refill_delay;
 93	u32		flow_max_rate;	/* optional max rate per flow */
 94	u32		flow_plimit;	/* max packets per flow */
 95	struct rb_root	*fq_root;
 96	u8		rate_enable;
 97	u8		fq_trees_log;
 98
 99	u32		flows;
100	u32		inactive_flows;
101	u32		throttled_flows;
102
103	u64		stat_gc_flows;
104	u64		stat_internal_packets;
105	u64		stat_tcp_retrans;
106	u64		stat_throttled;
107	u64		stat_flows_plimit;
108	u64		stat_pkts_too_long;
109	u64		stat_allocation_errors;
110	struct qdisc_watchdog watchdog;
111};
112
113/* special value to mark a detached flow (not on old/new list) */
114static struct fq_flow detached, throttled;
115
116static void fq_flow_set_detached(struct fq_flow *f)
117{
118	f->next = &detached;
119	f->age = jiffies;
120}
121
122static bool fq_flow_is_detached(const struct fq_flow *f)
123{
124	return f->next == &detached;
125}
126
127static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
128{
129	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
130
131	while (*p) {
132		struct fq_flow *aux;
133
134		parent = *p;
135		aux = container_of(parent, struct fq_flow, rate_node);
136		if (f->time_next_packet >= aux->time_next_packet)
137			p = &parent->rb_right;
138		else
139			p = &parent->rb_left;
140	}
141	rb_link_node(&f->rate_node, parent, p);
142	rb_insert_color(&f->rate_node, &q->delayed);
143	q->throttled_flows++;
144	q->stat_throttled++;
145
146	f->next = &throttled;
147	if (q->time_next_delayed_flow > f->time_next_packet)
148		q->time_next_delayed_flow = f->time_next_packet;
149}
150
151
152static struct kmem_cache *fq_flow_cachep __read_mostly;
153
154static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
155{
156	if (head->first)
157		head->last->next = flow;
158	else
159		head->first = flow;
160	head->last = flow;
161	flow->next = NULL;
162}
163
164/* limit number of collected flows per round */
165#define FQ_GC_MAX 8
166#define FQ_GC_AGE (3*HZ)
167
168static bool fq_gc_candidate(const struct fq_flow *f)
169{
170	return fq_flow_is_detached(f) &&
171	       time_after(jiffies, f->age + FQ_GC_AGE);
172}
173
174static void fq_gc(struct fq_sched_data *q,
175		  struct rb_root *root,
176		  struct sock *sk)
177{
178	struct fq_flow *f, *tofree[FQ_GC_MAX];
179	struct rb_node **p, *parent;
180	int fcnt = 0;
181
182	p = &root->rb_node;
183	parent = NULL;
184	while (*p) {
185		parent = *p;
186
187		f = container_of(parent, struct fq_flow, fq_node);
188		if (f->sk == sk)
189			break;
190
191		if (fq_gc_candidate(f)) {
192			tofree[fcnt++] = f;
193			if (fcnt == FQ_GC_MAX)
194				break;
195		}
196
197		if (f->sk > sk)
198			p = &parent->rb_right;
199		else
200			p = &parent->rb_left;
201	}
202
203	q->flows -= fcnt;
204	q->inactive_flows -= fcnt;
205	q->stat_gc_flows += fcnt;
206	while (fcnt) {
207		struct fq_flow *f = tofree[--fcnt];
208
209		rb_erase(&f->fq_node, root);
210		kmem_cache_free(fq_flow_cachep, f);
211	}
212}
213
214static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
215{
216	struct rb_node **p, *parent;
217	struct sock *sk = skb->sk;
218	struct rb_root *root;
219	struct fq_flow *f;
220
221	/* warning: no starvation prevention... */
222	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
223		return &q->internal;
224
225	if (unlikely(!sk)) {
226		/* By forcing low order bit to 1, we make sure to not
227		 * collide with a local flow (socket pointers are word aligned)
228		 */
229		sk = (struct sock *)(skb_get_hash(skb) | 1L);
230	}
231
232	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
233
234	if (q->flows >= (2U << q->fq_trees_log) &&
235	    q->inactive_flows > q->flows/2)
236		fq_gc(q, root, sk);
237
238	p = &root->rb_node;
239	parent = NULL;
240	while (*p) {
241		parent = *p;
242
243		f = container_of(parent, struct fq_flow, fq_node);
244		if (f->sk == sk) {
245			/* socket might have been reallocated, so check
246			 * if its sk_hash is the same.
247			 * It not, we need to refill credit with
248			 * initial quantum
249			 */
250			if (unlikely(skb->sk &&
251				     f->socket_hash != sk->sk_hash)) {
252				f->credit = q->initial_quantum;
253				f->socket_hash = sk->sk_hash;
254				f->time_next_packet = 0ULL;
255			}
256			return f;
257		}
258		if (f->sk > sk)
259			p = &parent->rb_right;
260		else
261			p = &parent->rb_left;
262	}
263
264	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
265	if (unlikely(!f)) {
266		q->stat_allocation_errors++;
267		return &q->internal;
268	}
269	fq_flow_set_detached(f);
270	f->sk = sk;
271	if (skb->sk)
272		f->socket_hash = sk->sk_hash;
273	f->credit = q->initial_quantum;
274
275	rb_link_node(&f->fq_node, parent, p);
276	rb_insert_color(&f->fq_node, root);
277
278	q->flows++;
279	q->inactive_flows++;
280	return f;
281}
282
283
284/* remove one skb from head of flow queue */
285static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
286{
287	struct sk_buff *skb = flow->head;
288
289	if (skb) {
290		flow->head = skb->next;
291		skb->next = NULL;
292		flow->qlen--;
293		sch->qstats.backlog -= qdisc_pkt_len(skb);
294		sch->q.qlen--;
295	}
296	return skb;
297}
298
299/* We might add in the future detection of retransmits
300 * For the time being, just return false
301 */
302static bool skb_is_retransmit(struct sk_buff *skb)
303{
304	return false;
305}
306
307/* add skb to flow queue
308 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
309 * We special case tcp retransmits to be transmitted before other packets.
310 * We rely on fact that TCP retransmits are unlikely, so we do not waste
311 * a separate queue or a pointer.
312 * head->  [retrans pkt 1]
313 *         [retrans pkt 2]
314 *         [ normal pkt 1]
315 *         [ normal pkt 2]
316 *         [ normal pkt 3]
317 * tail->  [ normal pkt 4]
318 */
319static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
320{
321	struct sk_buff *prev, *head = flow->head;
322
323	skb->next = NULL;
324	if (!head) {
325		flow->head = skb;
326		flow->tail = skb;
327		return;
328	}
329	if (likely(!skb_is_retransmit(skb))) {
330		flow->tail->next = skb;
331		flow->tail = skb;
332		return;
333	}
334
335	/* This skb is a tcp retransmit,
336	 * find the last retrans packet in the queue
337	 */
338	prev = NULL;
339	while (skb_is_retransmit(head)) {
340		prev = head;
341		head = head->next;
342		if (!head)
343			break;
344	}
345	if (!prev) { /* no rtx packet in queue, become the new head */
346		skb->next = flow->head;
347		flow->head = skb;
348	} else {
349		if (prev == flow->tail)
350			flow->tail = skb;
351		else
352			skb->next = prev->next;
353		prev->next = skb;
354	}
355}
356
357static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
358{
359	struct fq_sched_data *q = qdisc_priv(sch);
360	struct fq_flow *f;
361
362	if (unlikely(sch->q.qlen >= sch->limit))
363		return qdisc_drop(skb, sch);
364
365	f = fq_classify(skb, q);
366	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
367		q->stat_flows_plimit++;
368		return qdisc_drop(skb, sch);
369	}
370
371	f->qlen++;
372	if (skb_is_retransmit(skb))
373		q->stat_tcp_retrans++;
374	sch->qstats.backlog += qdisc_pkt_len(skb);
375	if (fq_flow_is_detached(f)) {
376		fq_flow_add_tail(&q->new_flows, f);
377		if (time_after(jiffies, f->age + q->flow_refill_delay))
378			f->credit = max_t(u32, f->credit, q->quantum);
379		q->inactive_flows--;
380		qdisc_unthrottled(sch);
381	}
382
383	/* Note: this overwrites f->age */
384	flow_queue_add(f, skb);
385
386	if (unlikely(f == &q->internal)) {
387		q->stat_internal_packets++;
388		qdisc_unthrottled(sch);
389	}
390	sch->q.qlen++;
391
392	return NET_XMIT_SUCCESS;
393}
394
395static void fq_check_throttled(struct fq_sched_data *q, u64 now)
396{
397	struct rb_node *p;
398
399	if (q->time_next_delayed_flow > now)
400		return;
401
402	q->time_next_delayed_flow = ~0ULL;
403	while ((p = rb_first(&q->delayed)) != NULL) {
404		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
405
406		if (f->time_next_packet > now) {
407			q->time_next_delayed_flow = f->time_next_packet;
408			break;
409		}
410		rb_erase(p, &q->delayed);
411		q->throttled_flows--;
412		fq_flow_add_tail(&q->old_flows, f);
413	}
414}
415
416static struct sk_buff *fq_dequeue(struct Qdisc *sch)
417{
418	struct fq_sched_data *q = qdisc_priv(sch);
419	u64 now = ktime_to_ns(ktime_get());
420	struct fq_flow_head *head;
421	struct sk_buff *skb;
422	struct fq_flow *f;
423	u32 rate;
424
425	skb = fq_dequeue_head(sch, &q->internal);
426	if (skb)
427		goto out;
428	fq_check_throttled(q, now);
429begin:
430	head = &q->new_flows;
431	if (!head->first) {
432		head = &q->old_flows;
433		if (!head->first) {
434			if (q->time_next_delayed_flow != ~0ULL)
435				qdisc_watchdog_schedule_ns(&q->watchdog,
436							   q->time_next_delayed_flow);
437			return NULL;
438		}
439	}
440	f = head->first;
441
442	if (f->credit <= 0) {
443		f->credit += q->quantum;
444		head->first = f->next;
445		fq_flow_add_tail(&q->old_flows, f);
446		goto begin;
447	}
448
449	if (unlikely(f->head && now < f->time_next_packet)) {
450		head->first = f->next;
451		fq_flow_set_throttled(q, f);
452		goto begin;
453	}
454
455	skb = fq_dequeue_head(sch, f);
456	if (!skb) {
457		head->first = f->next;
458		/* force a pass through old_flows to prevent starvation */
459		if ((head == &q->new_flows) && q->old_flows.first) {
460			fq_flow_add_tail(&q->old_flows, f);
461		} else {
462			fq_flow_set_detached(f);
463			q->inactive_flows++;
464		}
465		goto begin;
466	}
467	prefetch(&skb->end);
468	f->time_next_packet = now;
469	f->credit -= qdisc_pkt_len(skb);
470
471	if (f->credit > 0 || !q->rate_enable)
472		goto out;
473
474	rate = q->flow_max_rate;
475	if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
476		rate = min(skb->sk->sk_pacing_rate, rate);
477
478	if (rate != ~0U) {
479		u32 plen = max(qdisc_pkt_len(skb), q->quantum);
480		u64 len = (u64)plen * NSEC_PER_SEC;
481
482		if (likely(rate))
483			do_div(len, rate);
484		/* Since socket rate can change later,
485		 * clamp the delay to 125 ms.
486		 * TODO: maybe segment the too big skb, as in commit
487		 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
488		 */
489		if (unlikely(len > 125 * NSEC_PER_MSEC)) {
490			len = 125 * NSEC_PER_MSEC;
491			q->stat_pkts_too_long++;
492		}
493
494		f->time_next_packet = now + len;
495	}
496out:
497	qdisc_bstats_update(sch, skb);
498	qdisc_unthrottled(sch);
499	return skb;
500}
501
502static void fq_reset(struct Qdisc *sch)
503{
504	struct fq_sched_data *q = qdisc_priv(sch);
505	struct rb_root *root;
506	struct sk_buff *skb;
507	struct rb_node *p;
508	struct fq_flow *f;
509	unsigned int idx;
510
511	while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
512		kfree_skb(skb);
513
514	if (!q->fq_root)
515		return;
516
517	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
518		root = &q->fq_root[idx];
519		while ((p = rb_first(root)) != NULL) {
520			f = container_of(p, struct fq_flow, fq_node);
521			rb_erase(p, root);
522
523			while ((skb = fq_dequeue_head(sch, f)) != NULL)
524				kfree_skb(skb);
525
526			kmem_cache_free(fq_flow_cachep, f);
527		}
528	}
529	q->new_flows.first	= NULL;
530	q->old_flows.first	= NULL;
531	q->delayed		= RB_ROOT;
532	q->flows		= 0;
533	q->inactive_flows	= 0;
534	q->throttled_flows	= 0;
535}
536
537static void fq_rehash(struct fq_sched_data *q,
538		      struct rb_root *old_array, u32 old_log,
539		      struct rb_root *new_array, u32 new_log)
540{
541	struct rb_node *op, **np, *parent;
542	struct rb_root *oroot, *nroot;
543	struct fq_flow *of, *nf;
544	int fcnt = 0;
545	u32 idx;
546
547	for (idx = 0; idx < (1U << old_log); idx++) {
548		oroot = &old_array[idx];
549		while ((op = rb_first(oroot)) != NULL) {
550			rb_erase(op, oroot);
551			of = container_of(op, struct fq_flow, fq_node);
552			if (fq_gc_candidate(of)) {
553				fcnt++;
554				kmem_cache_free(fq_flow_cachep, of);
555				continue;
556			}
557			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
558
559			np = &nroot->rb_node;
560			parent = NULL;
561			while (*np) {
562				parent = *np;
563
564				nf = container_of(parent, struct fq_flow, fq_node);
565				BUG_ON(nf->sk == of->sk);
566
567				if (nf->sk > of->sk)
568					np = &parent->rb_right;
569				else
570					np = &parent->rb_left;
571			}
572
573			rb_link_node(&of->fq_node, parent, np);
574			rb_insert_color(&of->fq_node, nroot);
575		}
576	}
577	q->flows -= fcnt;
578	q->inactive_flows -= fcnt;
579	q->stat_gc_flows += fcnt;
580}
581
582static void *fq_alloc_node(size_t sz, int node)
583{
584	void *ptr;
585
586	ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
587	if (!ptr)
588		ptr = vmalloc_node(sz, node);
589	return ptr;
590}
591
592static void fq_free(void *addr)
593{
594	if (addr && is_vmalloc_addr(addr))
595		vfree(addr);
596	else
597		kfree(addr);
598}
599
600static int fq_resize(struct Qdisc *sch, u32 log)
601{
602	struct fq_sched_data *q = qdisc_priv(sch);
603	struct rb_root *array;
604	void *old_fq_root;
605	u32 idx;
606
607	if (q->fq_root && log == q->fq_trees_log)
608		return 0;
609
610	/* If XPS was setup, we can allocate memory on right NUMA node */
611	array = fq_alloc_node(sizeof(struct rb_root) << log,
612			      netdev_queue_numa_node_read(sch->dev_queue));
613	if (!array)
614		return -ENOMEM;
615
616	for (idx = 0; idx < (1U << log); idx++)
617		array[idx] = RB_ROOT;
618
619	sch_tree_lock(sch);
620
621	old_fq_root = q->fq_root;
622	if (old_fq_root)
623		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
624
625	q->fq_root = array;
626	q->fq_trees_log = log;
627
628	sch_tree_unlock(sch);
629
630	fq_free(old_fq_root);
631
632	return 0;
633}
634
635static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
636	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
637	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
638	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
639	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
640	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
641	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
642	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
643	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
644	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
645};
646
647static int fq_change(struct Qdisc *sch, struct nlattr *opt)
648{
649	struct fq_sched_data *q = qdisc_priv(sch);
650	struct nlattr *tb[TCA_FQ_MAX + 1];
651	int err, drop_count = 0;
652	u32 fq_log;
653
654	if (!opt)
655		return -EINVAL;
656
657	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
658	if (err < 0)
659		return err;
660
661	sch_tree_lock(sch);
662
663	fq_log = q->fq_trees_log;
664
665	if (tb[TCA_FQ_BUCKETS_LOG]) {
666		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
667
668		if (nval >= 1 && nval <= ilog2(256*1024))
669			fq_log = nval;
670		else
671			err = -EINVAL;
672	}
673	if (tb[TCA_FQ_PLIMIT])
674		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
675
676	if (tb[TCA_FQ_FLOW_PLIMIT])
677		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
678
679	if (tb[TCA_FQ_QUANTUM])
680		q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
681
682	if (tb[TCA_FQ_INITIAL_QUANTUM])
683		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
684
685	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
686		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
687				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
688
689	if (tb[TCA_FQ_FLOW_MAX_RATE])
690		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
691
692	if (tb[TCA_FQ_RATE_ENABLE]) {
693		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
694
695		if (enable <= 1)
696			q->rate_enable = enable;
697		else
698			err = -EINVAL;
699	}
700
701	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
702		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
703
704		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
705	}
706
707	if (!err) {
708		sch_tree_unlock(sch);
709		err = fq_resize(sch, fq_log);
710		sch_tree_lock(sch);
711	}
712	while (sch->q.qlen > sch->limit) {
713		struct sk_buff *skb = fq_dequeue(sch);
714
715		if (!skb)
716			break;
717		kfree_skb(skb);
718		drop_count++;
719	}
720	qdisc_tree_decrease_qlen(sch, drop_count);
721
722	sch_tree_unlock(sch);
723	return err;
724}
725
726static void fq_destroy(struct Qdisc *sch)
727{
728	struct fq_sched_data *q = qdisc_priv(sch);
729
730	fq_reset(sch);
731	fq_free(q->fq_root);
732	qdisc_watchdog_cancel(&q->watchdog);
733}
734
735static int fq_init(struct Qdisc *sch, struct nlattr *opt)
736{
737	struct fq_sched_data *q = qdisc_priv(sch);
738	int err;
739
740	sch->limit		= 10000;
741	q->flow_plimit		= 100;
742	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
743	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
744	q->flow_refill_delay	= msecs_to_jiffies(40);
745	q->flow_max_rate	= ~0U;
746	q->rate_enable		= 1;
747	q->new_flows.first	= NULL;
748	q->old_flows.first	= NULL;
749	q->delayed		= RB_ROOT;
750	q->fq_root		= NULL;
751	q->fq_trees_log		= ilog2(1024);
752	qdisc_watchdog_init(&q->watchdog, sch);
753
754	if (opt)
755		err = fq_change(sch, opt);
756	else
757		err = fq_resize(sch, q->fq_trees_log);
758
759	return err;
760}
761
762static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
763{
764	struct fq_sched_data *q = qdisc_priv(sch);
765	struct nlattr *opts;
766
767	opts = nla_nest_start(skb, TCA_OPTIONS);
768	if (opts == NULL)
769		goto nla_put_failure;
770
771	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
772
773	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
774	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
775	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
776	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
777	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
778	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
779	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
780			jiffies_to_usecs(q->flow_refill_delay)) ||
781	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
782		goto nla_put_failure;
783
784	return nla_nest_end(skb, opts);
785
786nla_put_failure:
787	return -1;
788}
789
790static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
791{
792	struct fq_sched_data *q = qdisc_priv(sch);
793	u64 now = ktime_to_ns(ktime_get());
794	struct tc_fq_qd_stats st = {
795		.gc_flows		= q->stat_gc_flows,
796		.highprio_packets	= q->stat_internal_packets,
797		.tcp_retrans		= q->stat_tcp_retrans,
798		.throttled		= q->stat_throttled,
799		.flows_plimit		= q->stat_flows_plimit,
800		.pkts_too_long		= q->stat_pkts_too_long,
801		.allocation_errors	= q->stat_allocation_errors,
802		.flows			= q->flows,
803		.inactive_flows		= q->inactive_flows,
804		.throttled_flows	= q->throttled_flows,
805		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
806	};
807
808	return gnet_stats_copy_app(d, &st, sizeof(st));
809}
810
811static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
812	.id		=	"fq",
813	.priv_size	=	sizeof(struct fq_sched_data),
814
815	.enqueue	=	fq_enqueue,
816	.dequeue	=	fq_dequeue,
817	.peek		=	qdisc_peek_dequeued,
818	.init		=	fq_init,
819	.reset		=	fq_reset,
820	.destroy	=	fq_destroy,
821	.change		=	fq_change,
822	.dump		=	fq_dump,
823	.dump_stats	=	fq_dump_stats,
824	.owner		=	THIS_MODULE,
825};
826
827static int __init fq_module_init(void)
828{
829	int ret;
830
831	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
832					   sizeof(struct fq_flow),
833					   0, 0, NULL);
834	if (!fq_flow_cachep)
835		return -ENOMEM;
836
837	ret = register_qdisc(&fq_qdisc_ops);
838	if (ret)
839		kmem_cache_destroy(fq_flow_cachep);
840	return ret;
841}
842
843static void __exit fq_module_exit(void)
844{
845	unregister_qdisc(&fq_qdisc_ops);
846	kmem_cache_destroy(fq_flow_cachep);
847}
848
849module_init(fq_module_init)
850module_exit(fq_module_exit)
851MODULE_AUTHOR("Eric Dumazet");
852MODULE_LICENSE("GPL");