Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
  19#include "slab.h"
  20#include <linux/proc_fs.h>
  21#include <linux/notifier.h>
  22#include <linux/seq_file.h>
  23#include <linux/kmemcheck.h>
  24#include <linux/cpu.h>
  25#include <linux/cpuset.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ctype.h>
  28#include <linux/debugobjects.h>
  29#include <linux/kallsyms.h>
  30#include <linux/memory.h>
  31#include <linux/math64.h>
  32#include <linux/fault-inject.h>
  33#include <linux/stacktrace.h>
  34#include <linux/prefetch.h>
  35#include <linux/memcontrol.h>
  36
  37#include <trace/events/kmem.h>
  38
  39#include "internal.h"
  40
  41/*
  42 * Lock order:
  43 *   1. slab_mutex (Global Mutex)
  44 *   2. node->list_lock
  45 *   3. slab_lock(page) (Only on some arches and for debugging)
  46 *
  47 *   slab_mutex
  48 *
  49 *   The role of the slab_mutex is to protect the list of all the slabs
  50 *   and to synchronize major metadata changes to slab cache structures.
  51 *
  52 *   The slab_lock is only used for debugging and on arches that do not
  53 *   have the ability to do a cmpxchg_double. It only protects the second
  54 *   double word in the page struct. Meaning
  55 *	A. page->freelist	-> List of object free in a page
  56 *	B. page->counters	-> Counters of objects
  57 *	C. page->frozen		-> frozen state
  58 *
  59 *   If a slab is frozen then it is exempt from list management. It is not
  60 *   on any list. The processor that froze the slab is the one who can
  61 *   perform list operations on the page. Other processors may put objects
  62 *   onto the freelist but the processor that froze the slab is the only
  63 *   one that can retrieve the objects from the page's freelist.
  64 *
  65 *   The list_lock protects the partial and full list on each node and
  66 *   the partial slab counter. If taken then no new slabs may be added or
  67 *   removed from the lists nor make the number of partial slabs be modified.
  68 *   (Note that the total number of slabs is an atomic value that may be
  69 *   modified without taking the list lock).
  70 *
  71 *   The list_lock is a centralized lock and thus we avoid taking it as
  72 *   much as possible. As long as SLUB does not have to handle partial
  73 *   slabs, operations can continue without any centralized lock. F.e.
  74 *   allocating a long series of objects that fill up slabs does not require
  75 *   the list lock.
  76 *   Interrupts are disabled during allocation and deallocation in order to
  77 *   make the slab allocator safe to use in the context of an irq. In addition
  78 *   interrupts are disabled to ensure that the processor does not change
  79 *   while handling per_cpu slabs, due to kernel preemption.
  80 *
  81 * SLUB assigns one slab for allocation to each processor.
  82 * Allocations only occur from these slabs called cpu slabs.
  83 *
  84 * Slabs with free elements are kept on a partial list and during regular
  85 * operations no list for full slabs is used. If an object in a full slab is
  86 * freed then the slab will show up again on the partial lists.
  87 * We track full slabs for debugging purposes though because otherwise we
  88 * cannot scan all objects.
  89 *
  90 * Slabs are freed when they become empty. Teardown and setup is
  91 * minimal so we rely on the page allocators per cpu caches for
  92 * fast frees and allocs.
  93 *
  94 * Overloading of page flags that are otherwise used for LRU management.
  95 *
  96 * PageActive 		The slab is frozen and exempt from list processing.
  97 * 			This means that the slab is dedicated to a purpose
  98 * 			such as satisfying allocations for a specific
  99 * 			processor. Objects may be freed in the slab while
 100 * 			it is frozen but slab_free will then skip the usual
 101 * 			list operations. It is up to the processor holding
 102 * 			the slab to integrate the slab into the slab lists
 103 * 			when the slab is no longer needed.
 104 *
 105 * 			One use of this flag is to mark slabs that are
 106 * 			used for allocations. Then such a slab becomes a cpu
 107 * 			slab. The cpu slab may be equipped with an additional
 108 * 			freelist that allows lockless access to
 109 * 			free objects in addition to the regular freelist
 110 * 			that requires the slab lock.
 111 *
 112 * PageError		Slab requires special handling due to debug
 113 * 			options set. This moves	slab handling out of
 114 * 			the fast path and disables lockless freelists.
 115 */
 116
 
 
 
 117static inline int kmem_cache_debug(struct kmem_cache *s)
 118{
 119#ifdef CONFIG_SLUB_DEBUG
 120	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 121#else
 122	return 0;
 123#endif
 124}
 125
 126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 127{
 128#ifdef CONFIG_SLUB_CPU_PARTIAL
 129	return !kmem_cache_debug(s);
 130#else
 131	return false;
 132#endif
 133}
 134
 135/*
 136 * Issues still to be resolved:
 137 *
 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 139 *
 140 * - Variable sizing of the per node arrays
 141 */
 142
 143/* Enable to test recovery from slab corruption on boot */
 144#undef SLUB_RESILIENCY_TEST
 145
 146/* Enable to log cmpxchg failures */
 147#undef SLUB_DEBUG_CMPXCHG
 148
 149/*
 150 * Mininum number of partial slabs. These will be left on the partial
 151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 152 */
 153#define MIN_PARTIAL 5
 154
 155/*
 156 * Maximum number of desirable partial slabs.
 157 * The existence of more partial slabs makes kmem_cache_shrink
 158 * sort the partial list by the number of objects in use.
 159 */
 160#define MAX_PARTIAL 10
 161
 162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 163				SLAB_POISON | SLAB_STORE_USER)
 164
 165/*
 166 * Debugging flags that require metadata to be stored in the slab.  These get
 167 * disabled when slub_debug=O is used and a cache's min order increases with
 168 * metadata.
 169 */
 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 171
 172/*
 173 * Set of flags that will prevent slab merging
 174 */
 175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 176		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 177		SLAB_FAILSLAB)
 178
 179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 180		SLAB_CACHE_DMA | SLAB_NOTRACK)
 181
 182#define OO_SHIFT	16
 183#define OO_MASK		((1 << OO_SHIFT) - 1)
 184#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 185
 186/* Internal SLUB flags */
 187#define __OBJECT_POISON		0x80000000UL /* Poison object */
 188#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 189
 
 
 190#ifdef CONFIG_SMP
 191static struct notifier_block slab_notifier;
 192#endif
 193
 
 
 
 
 
 
 
 
 
 
 
 194/*
 195 * Tracking user of a slab.
 196 */
 197#define TRACK_ADDRS_COUNT 16
 198struct track {
 199	unsigned long addr;	/* Called from address */
 200#ifdef CONFIG_STACKTRACE
 201	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 202#endif
 203	int cpu;		/* Was running on cpu */
 204	int pid;		/* Pid context */
 205	unsigned long when;	/* When did the operation occur */
 206};
 207
 208enum track_item { TRACK_ALLOC, TRACK_FREE };
 209
 210#ifdef CONFIG_SYSFS
 211static int sysfs_slab_add(struct kmem_cache *);
 212static int sysfs_slab_alias(struct kmem_cache *, const char *);
 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 
 214#else
 215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 217							{ return 0; }
 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 
 
 
 
 
 219#endif
 220
 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
 222{
 223#ifdef CONFIG_SLUB_STATS
 224	/*
 225	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 226	 * avoid this_cpu_add()'s irq-disable overhead.
 227	 */
 228	raw_cpu_inc(s->cpu_slab->stat[si]);
 229#endif
 230}
 231
 232/********************************************************************
 233 * 			Core slab cache functions
 234 *******************************************************************/
 235
 
 
 
 
 
 236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 237{
 238	return s->node[node];
 239}
 240
 241/* Verify that a pointer has an address that is valid within a slab page */
 242static inline int check_valid_pointer(struct kmem_cache *s,
 243				struct page *page, const void *object)
 244{
 245	void *base;
 246
 247	if (!object)
 248		return 1;
 249
 250	base = page_address(page);
 251	if (object < base || object >= base + page->objects * s->size ||
 252		(object - base) % s->size) {
 253		return 0;
 254	}
 255
 256	return 1;
 257}
 258
 259static inline void *get_freepointer(struct kmem_cache *s, void *object)
 260{
 261	return *(void **)(object + s->offset);
 262}
 263
 264static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 265{
 266	prefetch(object + s->offset);
 267}
 268
 269static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 270{
 271	void *p;
 272
 273#ifdef CONFIG_DEBUG_PAGEALLOC
 274	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 275#else
 276	p = get_freepointer(s, object);
 277#endif
 278	return p;
 279}
 280
 281static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 282{
 283	*(void **)(object + s->offset) = fp;
 284}
 285
 286/* Loop over all objects in a slab */
 287#define for_each_object(__p, __s, __addr, __objects) \
 288	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 289			__p += (__s)->size)
 290
 291/* Determine object index from a given position */
 292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 293{
 294	return (p - addr) / s->size;
 295}
 296
 297static inline size_t slab_ksize(const struct kmem_cache *s)
 298{
 299#ifdef CONFIG_SLUB_DEBUG
 300	/*
 301	 * Debugging requires use of the padding between object
 302	 * and whatever may come after it.
 303	 */
 304	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 305		return s->object_size;
 306
 307#endif
 308	/*
 309	 * If we have the need to store the freelist pointer
 310	 * back there or track user information then we can
 311	 * only use the space before that information.
 312	 */
 313	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 314		return s->inuse;
 315	/*
 316	 * Else we can use all the padding etc for the allocation
 317	 */
 318	return s->size;
 319}
 320
 321static inline int order_objects(int order, unsigned long size, int reserved)
 322{
 323	return ((PAGE_SIZE << order) - reserved) / size;
 324}
 325
 326static inline struct kmem_cache_order_objects oo_make(int order,
 327		unsigned long size, int reserved)
 328{
 329	struct kmem_cache_order_objects x = {
 330		(order << OO_SHIFT) + order_objects(order, size, reserved)
 331	};
 332
 333	return x;
 334}
 335
 336static inline int oo_order(struct kmem_cache_order_objects x)
 337{
 338	return x.x >> OO_SHIFT;
 339}
 340
 341static inline int oo_objects(struct kmem_cache_order_objects x)
 342{
 343	return x.x & OO_MASK;
 344}
 345
 346/*
 347 * Per slab locking using the pagelock
 348 */
 349static __always_inline void slab_lock(struct page *page)
 350{
 351	bit_spin_lock(PG_locked, &page->flags);
 352}
 353
 354static __always_inline void slab_unlock(struct page *page)
 355{
 356	__bit_spin_unlock(PG_locked, &page->flags);
 357}
 358
 359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 360{
 361	struct page tmp;
 362	tmp.counters = counters_new;
 363	/*
 364	 * page->counters can cover frozen/inuse/objects as well
 365	 * as page->_count.  If we assign to ->counters directly
 366	 * we run the risk of losing updates to page->_count, so
 367	 * be careful and only assign to the fields we need.
 368	 */
 369	page->frozen  = tmp.frozen;
 370	page->inuse   = tmp.inuse;
 371	page->objects = tmp.objects;
 372}
 373
 374/* Interrupts must be disabled (for the fallback code to work right) */
 375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 376		void *freelist_old, unsigned long counters_old,
 377		void *freelist_new, unsigned long counters_new,
 378		const char *n)
 379{
 380	VM_BUG_ON(!irqs_disabled());
 381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 382    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 383	if (s->flags & __CMPXCHG_DOUBLE) {
 384		if (cmpxchg_double(&page->freelist, &page->counters,
 385			freelist_old, counters_old,
 386			freelist_new, counters_new))
 387		return 1;
 388	} else
 389#endif
 390	{
 391		slab_lock(page);
 392		if (page->freelist == freelist_old &&
 393					page->counters == counters_old) {
 394			page->freelist = freelist_new;
 395			set_page_slub_counters(page, counters_new);
 396			slab_unlock(page);
 397			return 1;
 398		}
 399		slab_unlock(page);
 400	}
 401
 402	cpu_relax();
 403	stat(s, CMPXCHG_DOUBLE_FAIL);
 404
 405#ifdef SLUB_DEBUG_CMPXCHG
 406	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 407#endif
 408
 409	return 0;
 410}
 411
 412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 413		void *freelist_old, unsigned long counters_old,
 414		void *freelist_new, unsigned long counters_new,
 415		const char *n)
 416{
 417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 418    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 419	if (s->flags & __CMPXCHG_DOUBLE) {
 420		if (cmpxchg_double(&page->freelist, &page->counters,
 421			freelist_old, counters_old,
 422			freelist_new, counters_new))
 423		return 1;
 424	} else
 425#endif
 426	{
 427		unsigned long flags;
 428
 429		local_irq_save(flags);
 430		slab_lock(page);
 431		if (page->freelist == freelist_old &&
 432					page->counters == counters_old) {
 433			page->freelist = freelist_new;
 434			set_page_slub_counters(page, counters_new);
 435			slab_unlock(page);
 436			local_irq_restore(flags);
 437			return 1;
 438		}
 439		slab_unlock(page);
 440		local_irq_restore(flags);
 441	}
 442
 443	cpu_relax();
 444	stat(s, CMPXCHG_DOUBLE_FAIL);
 445
 446#ifdef SLUB_DEBUG_CMPXCHG
 447	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 448#endif
 449
 450	return 0;
 451}
 452
 453#ifdef CONFIG_SLUB_DEBUG
 454/*
 455 * Determine a map of object in use on a page.
 456 *
 457 * Node listlock must be held to guarantee that the page does
 458 * not vanish from under us.
 459 */
 460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 461{
 462	void *p;
 463	void *addr = page_address(page);
 464
 465	for (p = page->freelist; p; p = get_freepointer(s, p))
 466		set_bit(slab_index(p, s, addr), map);
 467}
 468
 469/*
 470 * Debug settings:
 471 */
 472#ifdef CONFIG_SLUB_DEBUG_ON
 473static int slub_debug = DEBUG_DEFAULT_FLAGS;
 474#else
 475static int slub_debug;
 476#endif
 477
 478static char *slub_debug_slabs;
 479static int disable_higher_order_debug;
 480
 481/*
 482 * Object debugging
 483 */
 484static void print_section(char *text, u8 *addr, unsigned int length)
 485{
 486	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 487			length, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488}
 489
 490static struct track *get_track(struct kmem_cache *s, void *object,
 491	enum track_item alloc)
 492{
 493	struct track *p;
 494
 495	if (s->offset)
 496		p = object + s->offset + sizeof(void *);
 497	else
 498		p = object + s->inuse;
 499
 500	return p + alloc;
 501}
 502
 503static void set_track(struct kmem_cache *s, void *object,
 504			enum track_item alloc, unsigned long addr)
 505{
 506	struct track *p = get_track(s, object, alloc);
 507
 508	if (addr) {
 509#ifdef CONFIG_STACKTRACE
 510		struct stack_trace trace;
 511		int i;
 512
 513		trace.nr_entries = 0;
 514		trace.max_entries = TRACK_ADDRS_COUNT;
 515		trace.entries = p->addrs;
 516		trace.skip = 3;
 517		save_stack_trace(&trace);
 518
 519		/* See rant in lockdep.c */
 520		if (trace.nr_entries != 0 &&
 521		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 522			trace.nr_entries--;
 523
 524		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 525			p->addrs[i] = 0;
 526#endif
 527		p->addr = addr;
 528		p->cpu = smp_processor_id();
 529		p->pid = current->pid;
 530		p->when = jiffies;
 531	} else
 532		memset(p, 0, sizeof(struct track));
 533}
 534
 535static void init_tracking(struct kmem_cache *s, void *object)
 536{
 537	if (!(s->flags & SLAB_STORE_USER))
 538		return;
 539
 540	set_track(s, object, TRACK_FREE, 0UL);
 541	set_track(s, object, TRACK_ALLOC, 0UL);
 542}
 543
 544static void print_track(const char *s, struct track *t)
 545{
 546	if (!t->addr)
 547		return;
 548
 549	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 550		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 551#ifdef CONFIG_STACKTRACE
 552	{
 553		int i;
 554		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 555			if (t->addrs[i])
 556				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
 557			else
 558				break;
 559	}
 560#endif
 561}
 562
 563static void print_tracking(struct kmem_cache *s, void *object)
 564{
 565	if (!(s->flags & SLAB_STORE_USER))
 566		return;
 567
 568	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 569	print_track("Freed", get_track(s, object, TRACK_FREE));
 570}
 571
 572static void print_page_info(struct page *page)
 573{
 574	printk(KERN_ERR
 575	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 576	       page, page->objects, page->inuse, page->freelist, page->flags);
 577
 578}
 579
 580static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 581{
 582	va_list args;
 583	char buf[100];
 584
 585	va_start(args, fmt);
 586	vsnprintf(buf, sizeof(buf), fmt, args);
 587	va_end(args);
 588	printk(KERN_ERR "========================================"
 589			"=====================================\n");
 590	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
 591	printk(KERN_ERR "----------------------------------------"
 592			"-------------------------------------\n\n");
 593
 594	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 595}
 596
 597static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 598{
 599	va_list args;
 600	char buf[100];
 601
 602	va_start(args, fmt);
 603	vsnprintf(buf, sizeof(buf), fmt, args);
 604	va_end(args);
 605	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 606}
 607
 608static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 609{
 610	unsigned int off;	/* Offset of last byte */
 611	u8 *addr = page_address(page);
 612
 613	print_tracking(s, p);
 614
 615	print_page_info(page);
 616
 617	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 618			p, p - addr, get_freepointer(s, p));
 619
 620	if (p > addr + 16)
 621		print_section("Bytes b4 ", p - 16, 16);
 
 
 622
 623	print_section("Object ", p, min_t(unsigned long, s->object_size,
 624				PAGE_SIZE));
 625	if (s->flags & SLAB_RED_ZONE)
 626		print_section("Redzone ", p + s->object_size,
 627			s->inuse - s->object_size);
 628
 629	if (s->offset)
 630		off = s->offset + sizeof(void *);
 631	else
 632		off = s->inuse;
 633
 634	if (s->flags & SLAB_STORE_USER)
 635		off += 2 * sizeof(struct track);
 636
 637	if (off != s->size)
 638		/* Beginning of the filler is the free pointer */
 639		print_section("Padding ", p + off, s->size - off);
 640
 641	dump_stack();
 642}
 643
 644static void object_err(struct kmem_cache *s, struct page *page,
 645			u8 *object, char *reason)
 646{
 647	slab_bug(s, "%s", reason);
 648	print_trailer(s, page, object);
 649}
 650
 651static void slab_err(struct kmem_cache *s, struct page *page,
 652			const char *fmt, ...)
 653{
 654	va_list args;
 655	char buf[100];
 656
 657	va_start(args, fmt);
 658	vsnprintf(buf, sizeof(buf), fmt, args);
 659	va_end(args);
 660	slab_bug(s, "%s", buf);
 661	print_page_info(page);
 662	dump_stack();
 663}
 664
 665static void init_object(struct kmem_cache *s, void *object, u8 val)
 666{
 667	u8 *p = object;
 668
 669	if (s->flags & __OBJECT_POISON) {
 670		memset(p, POISON_FREE, s->object_size - 1);
 671		p[s->object_size - 1] = POISON_END;
 672	}
 673
 674	if (s->flags & SLAB_RED_ZONE)
 675		memset(p + s->object_size, val, s->inuse - s->object_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676}
 677
 678static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 679						void *from, void *to)
 680{
 681	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 682	memset(from, data, to - from);
 683}
 684
 685static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 686			u8 *object, char *what,
 687			u8 *start, unsigned int value, unsigned int bytes)
 688{
 689	u8 *fault;
 690	u8 *end;
 691
 692	fault = memchr_inv(start, value, bytes);
 693	if (!fault)
 694		return 1;
 695
 696	end = start + bytes;
 697	while (end > fault && end[-1] == value)
 698		end--;
 699
 700	slab_bug(s, "%s overwritten", what);
 701	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 702					fault, end - 1, fault[0], value);
 703	print_trailer(s, page, object);
 704
 705	restore_bytes(s, what, value, fault, end);
 706	return 0;
 707}
 708
 709/*
 710 * Object layout:
 711 *
 712 * object address
 713 * 	Bytes of the object to be managed.
 714 * 	If the freepointer may overlay the object then the free
 715 * 	pointer is the first word of the object.
 716 *
 717 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 718 * 	0xa5 (POISON_END)
 719 *
 720 * object + s->object_size
 721 * 	Padding to reach word boundary. This is also used for Redzoning.
 722 * 	Padding is extended by another word if Redzoning is enabled and
 723 * 	object_size == inuse.
 724 *
 725 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 726 * 	0xcc (RED_ACTIVE) for objects in use.
 727 *
 728 * object + s->inuse
 729 * 	Meta data starts here.
 730 *
 731 * 	A. Free pointer (if we cannot overwrite object on free)
 732 * 	B. Tracking data for SLAB_STORE_USER
 733 * 	C. Padding to reach required alignment boundary or at mininum
 734 * 		one word if debugging is on to be able to detect writes
 735 * 		before the word boundary.
 736 *
 737 *	Padding is done using 0x5a (POISON_INUSE)
 738 *
 739 * object + s->size
 740 * 	Nothing is used beyond s->size.
 741 *
 742 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 743 * ignored. And therefore no slab options that rely on these boundaries
 744 * may be used with merged slabcaches.
 745 */
 746
 747static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 748{
 749	unsigned long off = s->inuse;	/* The end of info */
 750
 751	if (s->offset)
 752		/* Freepointer is placed after the object. */
 753		off += sizeof(void *);
 754
 755	if (s->flags & SLAB_STORE_USER)
 756		/* We also have user information there */
 757		off += 2 * sizeof(struct track);
 758
 759	if (s->size == off)
 760		return 1;
 761
 762	return check_bytes_and_report(s, page, p, "Object padding",
 763				p + off, POISON_INUSE, s->size - off);
 764}
 765
 766/* Check the pad bytes at the end of a slab page */
 767static int slab_pad_check(struct kmem_cache *s, struct page *page)
 768{
 769	u8 *start;
 770	u8 *fault;
 771	u8 *end;
 772	int length;
 773	int remainder;
 774
 775	if (!(s->flags & SLAB_POISON))
 776		return 1;
 777
 778	start = page_address(page);
 779	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 780	end = start + length;
 781	remainder = length % s->size;
 782	if (!remainder)
 783		return 1;
 784
 785	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 786	if (!fault)
 787		return 1;
 788	while (end > fault && end[-1] == POISON_INUSE)
 789		end--;
 790
 791	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 792	print_section("Padding ", end - remainder, remainder);
 793
 794	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 795	return 0;
 796}
 797
 798static int check_object(struct kmem_cache *s, struct page *page,
 799					void *object, u8 val)
 800{
 801	u8 *p = object;
 802	u8 *endobject = object + s->object_size;
 803
 804	if (s->flags & SLAB_RED_ZONE) {
 805		if (!check_bytes_and_report(s, page, object, "Redzone",
 806			endobject, val, s->inuse - s->object_size))
 807			return 0;
 808	} else {
 809		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 810			check_bytes_and_report(s, page, p, "Alignment padding",
 811				endobject, POISON_INUSE,
 812				s->inuse - s->object_size);
 813		}
 814	}
 815
 816	if (s->flags & SLAB_POISON) {
 817		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 818			(!check_bytes_and_report(s, page, p, "Poison", p,
 819					POISON_FREE, s->object_size - 1) ||
 820			 !check_bytes_and_report(s, page, p, "Poison",
 821				p + s->object_size - 1, POISON_END, 1)))
 822			return 0;
 823		/*
 824		 * check_pad_bytes cleans up on its own.
 825		 */
 826		check_pad_bytes(s, page, p);
 827	}
 828
 829	if (!s->offset && val == SLUB_RED_ACTIVE)
 830		/*
 831		 * Object and freepointer overlap. Cannot check
 832		 * freepointer while object is allocated.
 833		 */
 834		return 1;
 835
 836	/* Check free pointer validity */
 837	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 838		object_err(s, page, p, "Freepointer corrupt");
 839		/*
 840		 * No choice but to zap it and thus lose the remainder
 841		 * of the free objects in this slab. May cause
 842		 * another error because the object count is now wrong.
 843		 */
 844		set_freepointer(s, p, NULL);
 845		return 0;
 846	}
 847	return 1;
 848}
 849
 850static int check_slab(struct kmem_cache *s, struct page *page)
 851{
 852	int maxobj;
 853
 854	VM_BUG_ON(!irqs_disabled());
 855
 856	if (!PageSlab(page)) {
 857		slab_err(s, page, "Not a valid slab page");
 858		return 0;
 859	}
 860
 861	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 862	if (page->objects > maxobj) {
 863		slab_err(s, page, "objects %u > max %u",
 864			s->name, page->objects, maxobj);
 865		return 0;
 866	}
 867	if (page->inuse > page->objects) {
 868		slab_err(s, page, "inuse %u > max %u",
 869			s->name, page->inuse, page->objects);
 870		return 0;
 871	}
 872	/* Slab_pad_check fixes things up after itself */
 873	slab_pad_check(s, page);
 874	return 1;
 875}
 876
 877/*
 878 * Determine if a certain object on a page is on the freelist. Must hold the
 879 * slab lock to guarantee that the chains are in a consistent state.
 880 */
 881static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 882{
 883	int nr = 0;
 884	void *fp;
 885	void *object = NULL;
 886	unsigned long max_objects;
 887
 888	fp = page->freelist;
 889	while (fp && nr <= page->objects) {
 890		if (fp == search)
 891			return 1;
 892		if (!check_valid_pointer(s, page, fp)) {
 893			if (object) {
 894				object_err(s, page, object,
 895					"Freechain corrupt");
 896				set_freepointer(s, object, NULL);
 
 897			} else {
 898				slab_err(s, page, "Freepointer corrupt");
 899				page->freelist = NULL;
 900				page->inuse = page->objects;
 901				slab_fix(s, "Freelist cleared");
 902				return 0;
 903			}
 904			break;
 905		}
 906		object = fp;
 907		fp = get_freepointer(s, object);
 908		nr++;
 909	}
 910
 911	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 912	if (max_objects > MAX_OBJS_PER_PAGE)
 913		max_objects = MAX_OBJS_PER_PAGE;
 914
 915	if (page->objects != max_objects) {
 916		slab_err(s, page, "Wrong number of objects. Found %d but "
 917			"should be %d", page->objects, max_objects);
 918		page->objects = max_objects;
 919		slab_fix(s, "Number of objects adjusted.");
 920	}
 921	if (page->inuse != page->objects - nr) {
 922		slab_err(s, page, "Wrong object count. Counter is %d but "
 923			"counted were %d", page->inuse, page->objects - nr);
 924		page->inuse = page->objects - nr;
 925		slab_fix(s, "Object count adjusted.");
 926	}
 927	return search == NULL;
 928}
 929
 930static void trace(struct kmem_cache *s, struct page *page, void *object,
 931								int alloc)
 932{
 933	if (s->flags & SLAB_TRACE) {
 934		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 935			s->name,
 936			alloc ? "alloc" : "free",
 937			object, page->inuse,
 938			page->freelist);
 939
 940		if (!alloc)
 941			print_section("Object ", (void *)object,
 942					s->object_size);
 943
 944		dump_stack();
 945	}
 946}
 947
 948/*
 949 * Hooks for other subsystems that check memory allocations. In a typical
 950 * production configuration these hooks all should produce no code at all.
 951 */
 952static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
 953{
 954	kmemleak_alloc(ptr, size, 1, flags);
 955}
 956
 957static inline void kfree_hook(const void *x)
 958{
 959	kmemleak_free(x);
 960}
 961
 962static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
 963{
 964	flags &= gfp_allowed_mask;
 965	lockdep_trace_alloc(flags);
 966	might_sleep_if(flags & __GFP_WAIT);
 967
 968	return should_failslab(s->object_size, flags, s->flags);
 969}
 970
 971static inline void slab_post_alloc_hook(struct kmem_cache *s,
 972					gfp_t flags, void *object)
 973{
 974	flags &= gfp_allowed_mask;
 975	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
 976	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
 977}
 978
 979static inline void slab_free_hook(struct kmem_cache *s, void *x)
 980{
 981	kmemleak_free_recursive(x, s->flags);
 982
 983	/*
 984	 * Trouble is that we may no longer disable interrupts in the fast path
 985	 * So in order to make the debug calls that expect irqs to be
 986	 * disabled we need to disable interrupts temporarily.
 987	 */
 988#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
 989	{
 990		unsigned long flags;
 991
 992		local_irq_save(flags);
 993		kmemcheck_slab_free(s, x, s->object_size);
 994		debug_check_no_locks_freed(x, s->object_size);
 995		local_irq_restore(flags);
 996	}
 997#endif
 998	if (!(s->flags & SLAB_DEBUG_OBJECTS))
 999		debug_check_no_obj_freed(x, s->object_size);
1000}
1001
1002/*
1003 * Tracking of fully allocated slabs for debugging purposes.
 
 
1004 */
1005static void add_full(struct kmem_cache *s,
1006	struct kmem_cache_node *n, struct page *page)
1007{
1008	if (!(s->flags & SLAB_STORE_USER))
1009		return;
1010
1011	lockdep_assert_held(&n->list_lock);
1012	list_add(&page->lru, &n->full);
1013}
1014
1015static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
 
 
 
1016{
1017	if (!(s->flags & SLAB_STORE_USER))
1018		return;
1019
1020	lockdep_assert_held(&n->list_lock);
1021	list_del(&page->lru);
1022}
1023
1024/* Tracking of the number of slabs for debugging purposes */
1025static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1026{
1027	struct kmem_cache_node *n = get_node(s, node);
1028
1029	return atomic_long_read(&n->nr_slabs);
1030}
1031
1032static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1033{
1034	return atomic_long_read(&n->nr_slabs);
1035}
1036
1037static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1038{
1039	struct kmem_cache_node *n = get_node(s, node);
1040
1041	/*
1042	 * May be called early in order to allocate a slab for the
1043	 * kmem_cache_node structure. Solve the chicken-egg
1044	 * dilemma by deferring the increment of the count during
1045	 * bootstrap (see early_kmem_cache_node_alloc).
1046	 */
1047	if (likely(n)) {
1048		atomic_long_inc(&n->nr_slabs);
1049		atomic_long_add(objects, &n->total_objects);
1050	}
1051}
1052static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1053{
1054	struct kmem_cache_node *n = get_node(s, node);
1055
1056	atomic_long_dec(&n->nr_slabs);
1057	atomic_long_sub(objects, &n->total_objects);
1058}
1059
1060/* Object debug checks for alloc/free paths */
1061static void setup_object_debug(struct kmem_cache *s, struct page *page,
1062								void *object)
1063{
1064	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1065		return;
1066
1067	init_object(s, object, SLUB_RED_INACTIVE);
1068	init_tracking(s, object);
1069}
1070
1071static noinline int alloc_debug_processing(struct kmem_cache *s,
1072					struct page *page,
1073					void *object, unsigned long addr)
1074{
1075	if (!check_slab(s, page))
1076		goto bad;
1077
1078	if (!check_valid_pointer(s, page, object)) {
1079		object_err(s, page, object, "Freelist Pointer check fails");
1080		goto bad;
1081	}
1082
1083	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1084		goto bad;
1085
1086	/* Success perform special debug activities for allocs */
1087	if (s->flags & SLAB_STORE_USER)
1088		set_track(s, object, TRACK_ALLOC, addr);
1089	trace(s, page, object, 1);
1090	init_object(s, object, SLUB_RED_ACTIVE);
1091	return 1;
1092
1093bad:
1094	if (PageSlab(page)) {
1095		/*
1096		 * If this is a slab page then lets do the best we can
1097		 * to avoid issues in the future. Marking all objects
1098		 * as used avoids touching the remaining objects.
1099		 */
1100		slab_fix(s, "Marking all objects used");
1101		page->inuse = page->objects;
1102		page->freelist = NULL;
1103	}
1104	return 0;
1105}
1106
1107static noinline struct kmem_cache_node *free_debug_processing(
1108	struct kmem_cache *s, struct page *page, void *object,
1109	unsigned long addr, unsigned long *flags)
1110{
1111	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
 
1112
1113	spin_lock_irqsave(&n->list_lock, *flags);
1114	slab_lock(page);
1115
1116	if (!check_slab(s, page))
1117		goto fail;
1118
1119	if (!check_valid_pointer(s, page, object)) {
1120		slab_err(s, page, "Invalid object pointer 0x%p", object);
1121		goto fail;
1122	}
1123
1124	if (on_freelist(s, page, object)) {
1125		object_err(s, page, object, "Object already free");
1126		goto fail;
1127	}
1128
1129	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1130		goto out;
1131
1132	if (unlikely(s != page->slab_cache)) {
1133		if (!PageSlab(page)) {
1134			slab_err(s, page, "Attempt to free object(0x%p) "
1135				"outside of slab", object);
1136		} else if (!page->slab_cache) {
1137			printk(KERN_ERR
1138				"SLUB <none>: no slab for object 0x%p.\n",
1139						object);
1140			dump_stack();
1141		} else
1142			object_err(s, page, object,
1143					"page slab pointer corrupt.");
1144		goto fail;
1145	}
1146
1147	if (s->flags & SLAB_STORE_USER)
1148		set_track(s, object, TRACK_FREE, addr);
1149	trace(s, page, object, 0);
1150	init_object(s, object, SLUB_RED_INACTIVE);
 
1151out:
1152	slab_unlock(page);
1153	/*
1154	 * Keep node_lock to preserve integrity
1155	 * until the object is actually freed
1156	 */
1157	return n;
1158
1159fail:
1160	slab_unlock(page);
1161	spin_unlock_irqrestore(&n->list_lock, *flags);
1162	slab_fix(s, "Object at 0x%p not freed", object);
1163	return NULL;
1164}
1165
1166static int __init setup_slub_debug(char *str)
1167{
1168	slub_debug = DEBUG_DEFAULT_FLAGS;
1169	if (*str++ != '=' || !*str)
1170		/*
1171		 * No options specified. Switch on full debugging.
1172		 */
1173		goto out;
1174
1175	if (*str == ',')
1176		/*
1177		 * No options but restriction on slabs. This means full
1178		 * debugging for slabs matching a pattern.
1179		 */
1180		goto check_slabs;
1181
1182	if (tolower(*str) == 'o') {
1183		/*
1184		 * Avoid enabling debugging on caches if its minimum order
1185		 * would increase as a result.
1186		 */
1187		disable_higher_order_debug = 1;
1188		goto out;
1189	}
1190
1191	slub_debug = 0;
1192	if (*str == '-')
1193		/*
1194		 * Switch off all debugging measures.
1195		 */
1196		goto out;
1197
1198	/*
1199	 * Determine which debug features should be switched on
1200	 */
1201	for (; *str && *str != ','; str++) {
1202		switch (tolower(*str)) {
1203		case 'f':
1204			slub_debug |= SLAB_DEBUG_FREE;
1205			break;
1206		case 'z':
1207			slub_debug |= SLAB_RED_ZONE;
1208			break;
1209		case 'p':
1210			slub_debug |= SLAB_POISON;
1211			break;
1212		case 'u':
1213			slub_debug |= SLAB_STORE_USER;
1214			break;
1215		case 't':
1216			slub_debug |= SLAB_TRACE;
1217			break;
1218		case 'a':
1219			slub_debug |= SLAB_FAILSLAB;
1220			break;
1221		default:
1222			printk(KERN_ERR "slub_debug option '%c' "
1223				"unknown. skipped\n", *str);
1224		}
1225	}
1226
1227check_slabs:
1228	if (*str == ',')
1229		slub_debug_slabs = str + 1;
1230out:
1231	return 1;
1232}
1233
1234__setup("slub_debug", setup_slub_debug);
1235
1236static unsigned long kmem_cache_flags(unsigned long object_size,
1237	unsigned long flags, const char *name,
1238	void (*ctor)(void *))
1239{
1240	/*
1241	 * Enable debugging if selected on the kernel commandline.
1242	 */
1243	if (slub_debug && (!slub_debug_slabs || (name &&
1244		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1245		flags |= slub_debug;
1246
1247	return flags;
1248}
1249#else
1250static inline void setup_object_debug(struct kmem_cache *s,
1251			struct page *page, void *object) {}
1252
1253static inline int alloc_debug_processing(struct kmem_cache *s,
1254	struct page *page, void *object, unsigned long addr) { return 0; }
1255
1256static inline struct kmem_cache_node *free_debug_processing(
1257	struct kmem_cache *s, struct page *page, void *object,
1258	unsigned long addr, unsigned long *flags) { return NULL; }
1259
1260static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1261			{ return 1; }
1262static inline int check_object(struct kmem_cache *s, struct page *page,
1263			void *object, u8 val) { return 1; }
1264static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265					struct page *page) {}
1266static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1267					struct page *page) {}
1268static inline unsigned long kmem_cache_flags(unsigned long object_size,
1269	unsigned long flags, const char *name,
1270	void (*ctor)(void *))
1271{
1272	return flags;
1273}
1274#define slub_debug 0
1275
1276#define disable_higher_order_debug 0
1277
1278static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1279							{ return 0; }
1280static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1281							{ return 0; }
1282static inline void inc_slabs_node(struct kmem_cache *s, int node,
1283							int objects) {}
1284static inline void dec_slabs_node(struct kmem_cache *s, int node,
1285							int objects) {}
1286
1287static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1288{
1289	kmemleak_alloc(ptr, size, 1, flags);
1290}
1291
1292static inline void kfree_hook(const void *x)
1293{
1294	kmemleak_free(x);
1295}
1296
1297static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1298							{ return 0; }
1299
1300static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1301		void *object)
1302{
1303	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1304		flags & gfp_allowed_mask);
1305}
1306
1307static inline void slab_free_hook(struct kmem_cache *s, void *x)
1308{
1309	kmemleak_free_recursive(x, s->flags);
1310}
1311
1312#endif /* CONFIG_SLUB_DEBUG */
1313
1314/*
1315 * Slab allocation and freeing
1316 */
1317static inline struct page *alloc_slab_page(gfp_t flags, int node,
1318					struct kmem_cache_order_objects oo)
1319{
1320	int order = oo_order(oo);
1321
1322	flags |= __GFP_NOTRACK;
1323
1324	if (node == NUMA_NO_NODE)
1325		return alloc_pages(flags, order);
1326	else
1327		return alloc_pages_exact_node(node, flags, order);
1328}
1329
1330static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1331{
1332	struct page *page;
1333	struct kmem_cache_order_objects oo = s->oo;
1334	gfp_t alloc_gfp;
1335
1336	flags &= gfp_allowed_mask;
1337
1338	if (flags & __GFP_WAIT)
1339		local_irq_enable();
1340
1341	flags |= s->allocflags;
1342
1343	/*
1344	 * Let the initial higher-order allocation fail under memory pressure
1345	 * so we fall-back to the minimum order allocation.
1346	 */
1347	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1348
1349	page = alloc_slab_page(alloc_gfp, node, oo);
1350	if (unlikely(!page)) {
1351		oo = s->min;
1352		alloc_gfp = flags;
1353		/*
1354		 * Allocation may have failed due to fragmentation.
1355		 * Try a lower order alloc if possible
1356		 */
1357		page = alloc_slab_page(alloc_gfp, node, oo);
1358
1359		if (page)
1360			stat(s, ORDER_FALLBACK);
1361	}
1362
1363	if (kmemcheck_enabled && page
 
 
 
 
 
 
1364		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365		int pages = 1 << oo_order(oo);
1366
1367		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1368
1369		/*
1370		 * Objects from caches that have a constructor don't get
1371		 * cleared when they're allocated, so we need to do it here.
1372		 */
1373		if (s->ctor)
1374			kmemcheck_mark_uninitialized_pages(page, pages);
1375		else
1376			kmemcheck_mark_unallocated_pages(page, pages);
1377	}
1378
1379	if (flags & __GFP_WAIT)
1380		local_irq_disable();
1381	if (!page)
1382		return NULL;
1383
1384	page->objects = oo_objects(oo);
1385	mod_zone_page_state(page_zone(page),
1386		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1387		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388		1 << oo_order(oo));
1389
1390	return page;
1391}
1392
1393static void setup_object(struct kmem_cache *s, struct page *page,
1394				void *object)
1395{
1396	setup_object_debug(s, page, object);
1397	if (unlikely(s->ctor))
1398		s->ctor(object);
1399}
1400
1401static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1402{
1403	struct page *page;
1404	void *start;
1405	void *last;
1406	void *p;
1407	int order;
1408
1409	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1410
1411	page = allocate_slab(s,
1412		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1413	if (!page)
1414		goto out;
1415
1416	order = compound_order(page);
1417	inc_slabs_node(s, page_to_nid(page), page->objects);
1418	memcg_bind_pages(s, order);
1419	page->slab_cache = s;
1420	__SetPageSlab(page);
1421	if (page->pfmemalloc)
1422		SetPageSlabPfmemalloc(page);
1423
1424	start = page_address(page);
1425
1426	if (unlikely(s->flags & SLAB_POISON))
1427		memset(start, POISON_INUSE, PAGE_SIZE << order);
1428
1429	last = start;
1430	for_each_object(p, s, start, page->objects) {
1431		setup_object(s, page, last);
1432		set_freepointer(s, last, p);
1433		last = p;
1434	}
1435	setup_object(s, page, last);
1436	set_freepointer(s, last, NULL);
1437
1438	page->freelist = start;
1439	page->inuse = page->objects;
1440	page->frozen = 1;
1441out:
1442	return page;
1443}
1444
1445static void __free_slab(struct kmem_cache *s, struct page *page)
1446{
1447	int order = compound_order(page);
1448	int pages = 1 << order;
1449
1450	if (kmem_cache_debug(s)) {
1451		void *p;
1452
1453		slab_pad_check(s, page);
1454		for_each_object(p, s, page_address(page),
1455						page->objects)
1456			check_object(s, page, p, SLUB_RED_INACTIVE);
1457	}
1458
1459	kmemcheck_free_shadow(page, compound_order(page));
1460
1461	mod_zone_page_state(page_zone(page),
1462		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1463		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1464		-pages);
1465
1466	__ClearPageSlabPfmemalloc(page);
1467	__ClearPageSlab(page);
1468
1469	memcg_release_pages(s, order);
1470	page_mapcount_reset(page);
1471	if (current->reclaim_state)
1472		current->reclaim_state->reclaimed_slab += pages;
1473	__free_memcg_kmem_pages(page, order);
1474}
1475
1476#define need_reserve_slab_rcu						\
1477	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1478
1479static void rcu_free_slab(struct rcu_head *h)
1480{
1481	struct page *page;
1482
1483	if (need_reserve_slab_rcu)
1484		page = virt_to_head_page(h);
1485	else
1486		page = container_of((struct list_head *)h, struct page, lru);
1487
1488	__free_slab(page->slab_cache, page);
1489}
1490
1491static void free_slab(struct kmem_cache *s, struct page *page)
1492{
1493	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494		struct rcu_head *head;
1495
1496		if (need_reserve_slab_rcu) {
1497			int order = compound_order(page);
1498			int offset = (PAGE_SIZE << order) - s->reserved;
1499
1500			VM_BUG_ON(s->reserved != sizeof(*head));
1501			head = page_address(page) + offset;
1502		} else {
1503			/*
1504			 * RCU free overloads the RCU head over the LRU
1505			 */
1506			head = (void *)&page->lru;
1507		}
1508
1509		call_rcu(head, rcu_free_slab);
1510	} else
1511		__free_slab(s, page);
1512}
1513
1514static void discard_slab(struct kmem_cache *s, struct page *page)
1515{
1516	dec_slabs_node(s, page_to_nid(page), page->objects);
1517	free_slab(s, page);
1518}
1519
1520/*
1521 * Management of partially allocated slabs.
 
 
1522 */
1523static inline void
1524__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1525{
1526	n->nr_partial++;
1527	if (tail == DEACTIVATE_TO_TAIL)
1528		list_add_tail(&page->lru, &n->partial);
1529	else
1530		list_add(&page->lru, &n->partial);
1531}
1532
1533static inline void add_partial(struct kmem_cache_node *n,
1534				struct page *page, int tail)
1535{
1536	lockdep_assert_held(&n->list_lock);
1537	__add_partial(n, page, tail);
1538}
1539
1540static inline void
1541__remove_partial(struct kmem_cache_node *n, struct page *page)
1542{
1543	list_del(&page->lru);
1544	n->nr_partial--;
1545}
1546
1547static inline void remove_partial(struct kmem_cache_node *n,
1548					struct page *page)
1549{
1550	lockdep_assert_held(&n->list_lock);
1551	__remove_partial(n, page);
1552}
1553
1554/*
1555 * Remove slab from the partial list, freeze it and
1556 * return the pointer to the freelist.
1557 *
1558 * Returns a list of objects or NULL if it fails.
1559 */
1560static inline void *acquire_slab(struct kmem_cache *s,
1561		struct kmem_cache_node *n, struct page *page,
1562		int mode, int *objects)
1563{
1564	void *freelist;
1565	unsigned long counters;
1566	struct page new;
1567
1568	lockdep_assert_held(&n->list_lock);
1569
1570	/*
1571	 * Zap the freelist and set the frozen bit.
1572	 * The old freelist is the list of objects for the
1573	 * per cpu allocation list.
1574	 */
1575	freelist = page->freelist;
1576	counters = page->counters;
1577	new.counters = counters;
1578	*objects = new.objects - new.inuse;
1579	if (mode) {
1580		new.inuse = page->objects;
1581		new.freelist = NULL;
1582	} else {
1583		new.freelist = freelist;
1584	}
1585
1586	VM_BUG_ON(new.frozen);
1587	new.frozen = 1;
1588
1589	if (!__cmpxchg_double_slab(s, page,
1590			freelist, counters,
1591			new.freelist, new.counters,
1592			"acquire_slab"))
1593		return NULL;
1594
1595	remove_partial(n, page);
1596	WARN_ON(!freelist);
1597	return freelist;
1598}
1599
1600static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1601static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602
1603/*
1604 * Try to allocate a partial slab from a specific node.
1605 */
1606static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1607				struct kmem_cache_cpu *c, gfp_t flags)
1608{
1609	struct page *page, *page2;
1610	void *object = NULL;
1611	int available = 0;
1612	int objects;
1613
1614	/*
1615	 * Racy check. If we mistakenly see no partial slabs then we
1616	 * just allocate an empty slab. If we mistakenly try to get a
1617	 * partial slab and there is none available then get_partials()
1618	 * will return NULL.
1619	 */
1620	if (!n || !n->nr_partial)
1621		return NULL;
1622
1623	spin_lock(&n->list_lock);
1624	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1625		void *t;
1626
1627		if (!pfmemalloc_match(page, flags))
1628			continue;
1629
1630		t = acquire_slab(s, n, page, object == NULL, &objects);
1631		if (!t)
1632			break;
1633
1634		available += objects;
1635		if (!object) {
1636			c->page = page;
1637			stat(s, ALLOC_FROM_PARTIAL);
1638			object = t;
1639		} else {
1640			put_cpu_partial(s, page, 0);
1641			stat(s, CPU_PARTIAL_NODE);
1642		}
1643		if (!kmem_cache_has_cpu_partial(s)
1644			|| available > s->cpu_partial / 2)
1645			break;
1646
1647	}
1648	spin_unlock(&n->list_lock);
1649	return object;
1650}
1651
1652/*
1653 * Get a page from somewhere. Search in increasing NUMA distances.
1654 */
1655static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1656		struct kmem_cache_cpu *c)
1657{
1658#ifdef CONFIG_NUMA
1659	struct zonelist *zonelist;
1660	struct zoneref *z;
1661	struct zone *zone;
1662	enum zone_type high_zoneidx = gfp_zone(flags);
1663	void *object;
1664	unsigned int cpuset_mems_cookie;
1665
1666	/*
1667	 * The defrag ratio allows a configuration of the tradeoffs between
1668	 * inter node defragmentation and node local allocations. A lower
1669	 * defrag_ratio increases the tendency to do local allocations
1670	 * instead of attempting to obtain partial slabs from other nodes.
1671	 *
1672	 * If the defrag_ratio is set to 0 then kmalloc() always
1673	 * returns node local objects. If the ratio is higher then kmalloc()
1674	 * may return off node objects because partial slabs are obtained
1675	 * from other nodes and filled up.
1676	 *
1677	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1678	 * defrag_ratio = 1000) then every (well almost) allocation will
1679	 * first attempt to defrag slab caches on other nodes. This means
1680	 * scanning over all nodes to look for partial slabs which may be
1681	 * expensive if we do it every time we are trying to find a slab
1682	 * with available objects.
1683	 */
1684	if (!s->remote_node_defrag_ratio ||
1685			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1686		return NULL;
1687
1688	do {
1689		cpuset_mems_cookie = read_mems_allowed_begin();
1690		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1691		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1692			struct kmem_cache_node *n;
1693
1694			n = get_node(s, zone_to_nid(zone));
1695
1696			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1697					n->nr_partial > s->min_partial) {
1698				object = get_partial_node(s, n, c, flags);
1699				if (object) {
1700					/*
1701					 * Don't check read_mems_allowed_retry()
1702					 * here - if mems_allowed was updated in
1703					 * parallel, that was a harmless race
1704					 * between allocation and the cpuset
1705					 * update
1706					 */
1707					return object;
1708				}
1709			}
1710		}
1711	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 
1712#endif
1713	return NULL;
1714}
1715
1716/*
1717 * Get a partial page, lock it and return it.
1718 */
1719static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1720		struct kmem_cache_cpu *c)
1721{
1722	void *object;
1723	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1724
1725	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1726	if (object || node != NUMA_NO_NODE)
1727		return object;
1728
1729	return get_any_partial(s, flags, c);
1730}
1731
1732#ifdef CONFIG_PREEMPT
1733/*
1734 * Calculate the next globally unique transaction for disambiguiation
1735 * during cmpxchg. The transactions start with the cpu number and are then
1736 * incremented by CONFIG_NR_CPUS.
1737 */
1738#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1739#else
1740/*
1741 * No preemption supported therefore also no need to check for
1742 * different cpus.
1743 */
1744#define TID_STEP 1
1745#endif
1746
1747static inline unsigned long next_tid(unsigned long tid)
1748{
1749	return tid + TID_STEP;
1750}
1751
1752static inline unsigned int tid_to_cpu(unsigned long tid)
1753{
1754	return tid % TID_STEP;
1755}
1756
1757static inline unsigned long tid_to_event(unsigned long tid)
1758{
1759	return tid / TID_STEP;
1760}
1761
1762static inline unsigned int init_tid(int cpu)
1763{
1764	return cpu;
1765}
1766
1767static inline void note_cmpxchg_failure(const char *n,
1768		const struct kmem_cache *s, unsigned long tid)
1769{
1770#ifdef SLUB_DEBUG_CMPXCHG
1771	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1772
1773	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1774
1775#ifdef CONFIG_PREEMPT
1776	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1777		printk("due to cpu change %d -> %d\n",
1778			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1779	else
1780#endif
1781	if (tid_to_event(tid) != tid_to_event(actual_tid))
1782		printk("due to cpu running other code. Event %ld->%ld\n",
1783			tid_to_event(tid), tid_to_event(actual_tid));
1784	else
1785		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786			actual_tid, tid, next_tid(tid));
1787#endif
1788	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1789}
1790
1791static void init_kmem_cache_cpus(struct kmem_cache *s)
1792{
1793	int cpu;
1794
1795	for_each_possible_cpu(cpu)
1796		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1797}
 
 
 
1798
1799/*
1800 * Remove the cpu slab
1801 */
1802static void deactivate_slab(struct kmem_cache *s, struct page *page,
1803				void *freelist)
1804{
1805	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
 
1806	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1807	int lock = 0;
1808	enum slab_modes l = M_NONE, m = M_NONE;
 
1809	void *nextfree;
1810	int tail = DEACTIVATE_TO_HEAD;
1811	struct page new;
1812	struct page old;
1813
1814	if (page->freelist) {
1815		stat(s, DEACTIVATE_REMOTE_FREES);
1816		tail = DEACTIVATE_TO_TAIL;
1817	}
1818
 
 
 
 
 
1819	/*
1820	 * Stage one: Free all available per cpu objects back
1821	 * to the page freelist while it is still frozen. Leave the
1822	 * last one.
1823	 *
1824	 * There is no need to take the list->lock because the page
1825	 * is still frozen.
1826	 */
1827	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1828		void *prior;
1829		unsigned long counters;
1830
1831		do {
1832			prior = page->freelist;
1833			counters = page->counters;
1834			set_freepointer(s, freelist, prior);
1835			new.counters = counters;
1836			new.inuse--;
1837			VM_BUG_ON(!new.frozen);
1838
1839		} while (!__cmpxchg_double_slab(s, page,
1840			prior, counters,
1841			freelist, new.counters,
1842			"drain percpu freelist"));
1843
1844		freelist = nextfree;
1845	}
1846
1847	/*
1848	 * Stage two: Ensure that the page is unfrozen while the
1849	 * list presence reflects the actual number of objects
1850	 * during unfreeze.
1851	 *
1852	 * We setup the list membership and then perform a cmpxchg
1853	 * with the count. If there is a mismatch then the page
1854	 * is not unfrozen but the page is on the wrong list.
1855	 *
1856	 * Then we restart the process which may have to remove
1857	 * the page from the list that we just put it on again
1858	 * because the number of objects in the slab may have
1859	 * changed.
1860	 */
1861redo:
1862
1863	old.freelist = page->freelist;
1864	old.counters = page->counters;
1865	VM_BUG_ON(!old.frozen);
1866
1867	/* Determine target state of the slab */
1868	new.counters = old.counters;
1869	if (freelist) {
1870		new.inuse--;
1871		set_freepointer(s, freelist, old.freelist);
1872		new.freelist = freelist;
1873	} else
1874		new.freelist = old.freelist;
1875
1876	new.frozen = 0;
1877
1878	if (!new.inuse && n->nr_partial > s->min_partial)
1879		m = M_FREE;
1880	else if (new.freelist) {
1881		m = M_PARTIAL;
1882		if (!lock) {
1883			lock = 1;
1884			/*
1885			 * Taking the spinlock removes the possiblity
1886			 * that acquire_slab() will see a slab page that
1887			 * is frozen
1888			 */
1889			spin_lock(&n->list_lock);
1890		}
1891	} else {
1892		m = M_FULL;
1893		if (kmem_cache_debug(s) && !lock) {
1894			lock = 1;
1895			/*
1896			 * This also ensures that the scanning of full
1897			 * slabs from diagnostic functions will not see
1898			 * any frozen slabs.
1899			 */
1900			spin_lock(&n->list_lock);
1901		}
1902	}
1903
1904	if (l != m) {
1905
1906		if (l == M_PARTIAL)
1907
1908			remove_partial(n, page);
1909
1910		else if (l == M_FULL)
1911
1912			remove_full(s, n, page);
1913
1914		if (m == M_PARTIAL) {
1915
1916			add_partial(n, page, tail);
1917			stat(s, tail);
1918
1919		} else if (m == M_FULL) {
1920
1921			stat(s, DEACTIVATE_FULL);
1922			add_full(s, n, page);
1923
1924		}
1925	}
1926
1927	l = m;
1928	if (!__cmpxchg_double_slab(s, page,
1929				old.freelist, old.counters,
1930				new.freelist, new.counters,
1931				"unfreezing slab"))
1932		goto redo;
1933
1934	if (lock)
1935		spin_unlock(&n->list_lock);
1936
1937	if (m == M_FREE) {
1938		stat(s, DEACTIVATE_EMPTY);
1939		discard_slab(s, page);
1940		stat(s, FREE_SLAB);
1941	}
1942}
1943
1944/*
1945 * Unfreeze all the cpu partial slabs.
1946 *
1947 * This function must be called with interrupts disabled
1948 * for the cpu using c (or some other guarantee must be there
1949 * to guarantee no concurrent accesses).
1950 */
1951static void unfreeze_partials(struct kmem_cache *s,
1952		struct kmem_cache_cpu *c)
1953{
1954#ifdef CONFIG_SLUB_CPU_PARTIAL
1955	struct kmem_cache_node *n = NULL, *n2 = NULL;
1956	struct page *page, *discard_page = NULL;
1957
1958	while ((page = c->partial)) {
1959		struct page new;
1960		struct page old;
1961
1962		c->partial = page->next;
1963
1964		n2 = get_node(s, page_to_nid(page));
1965		if (n != n2) {
1966			if (n)
1967				spin_unlock(&n->list_lock);
1968
1969			n = n2;
1970			spin_lock(&n->list_lock);
1971		}
1972
1973		do {
1974
1975			old.freelist = page->freelist;
1976			old.counters = page->counters;
1977			VM_BUG_ON(!old.frozen);
1978
1979			new.counters = old.counters;
1980			new.freelist = old.freelist;
1981
1982			new.frozen = 0;
1983
1984		} while (!__cmpxchg_double_slab(s, page,
1985				old.freelist, old.counters,
1986				new.freelist, new.counters,
1987				"unfreezing slab"));
1988
1989		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1990			page->next = discard_page;
1991			discard_page = page;
1992		} else {
1993			add_partial(n, page, DEACTIVATE_TO_TAIL);
1994			stat(s, FREE_ADD_PARTIAL);
1995		}
1996	}
1997
1998	if (n)
1999		spin_unlock(&n->list_lock);
2000
2001	while (discard_page) {
2002		page = discard_page;
2003		discard_page = discard_page->next;
2004
2005		stat(s, DEACTIVATE_EMPTY);
2006		discard_slab(s, page);
2007		stat(s, FREE_SLAB);
2008	}
2009#endif
2010}
2011
2012/*
2013 * Put a page that was just frozen (in __slab_free) into a partial page
2014 * slot if available. This is done without interrupts disabled and without
2015 * preemption disabled. The cmpxchg is racy and may put the partial page
2016 * onto a random cpus partial slot.
2017 *
2018 * If we did not find a slot then simply move all the partials to the
2019 * per node partial list.
2020 */
2021static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2022{
2023#ifdef CONFIG_SLUB_CPU_PARTIAL
2024	struct page *oldpage;
2025	int pages;
2026	int pobjects;
2027
2028	do {
2029		pages = 0;
2030		pobjects = 0;
2031		oldpage = this_cpu_read(s->cpu_slab->partial);
2032
2033		if (oldpage) {
2034			pobjects = oldpage->pobjects;
2035			pages = oldpage->pages;
2036			if (drain && pobjects > s->cpu_partial) {
2037				unsigned long flags;
2038				/*
2039				 * partial array is full. Move the existing
2040				 * set to the per node partial list.
2041				 */
2042				local_irq_save(flags);
2043				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2044				local_irq_restore(flags);
2045				oldpage = NULL;
2046				pobjects = 0;
2047				pages = 0;
2048				stat(s, CPU_PARTIAL_DRAIN);
2049			}
2050		}
2051
2052		pages++;
2053		pobjects += page->objects - page->inuse;
2054
2055		page->pages = pages;
2056		page->pobjects = pobjects;
2057		page->next = oldpage;
2058
2059	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2060								!= oldpage);
2061#endif
2062}
2063
2064static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2065{
2066	stat(s, CPUSLAB_FLUSH);
2067	deactivate_slab(s, c->page, c->freelist);
2068
2069	c->tid = next_tid(c->tid);
2070	c->page = NULL;
2071	c->freelist = NULL;
2072}
2073
2074/*
2075 * Flush cpu slab.
2076 *
2077 * Called from IPI handler with interrupts disabled.
2078 */
2079static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2080{
2081	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2082
2083	if (likely(c)) {
2084		if (c->page)
2085			flush_slab(s, c);
2086
2087		unfreeze_partials(s, c);
2088	}
2089}
2090
2091static void flush_cpu_slab(void *d)
2092{
2093	struct kmem_cache *s = d;
2094
2095	__flush_cpu_slab(s, smp_processor_id());
2096}
2097
2098static bool has_cpu_slab(int cpu, void *info)
2099{
2100	struct kmem_cache *s = info;
2101	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2102
2103	return c->page || c->partial;
2104}
2105
2106static void flush_all(struct kmem_cache *s)
2107{
2108	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2109}
2110
2111/*
2112 * Check if the objects in a per cpu structure fit numa
2113 * locality expectations.
2114 */
2115static inline int node_match(struct page *page, int node)
2116{
2117#ifdef CONFIG_NUMA
2118	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2119		return 0;
2120#endif
2121	return 1;
2122}
2123
2124static int count_free(struct page *page)
2125{
2126	return page->objects - page->inuse;
2127}
2128
2129static unsigned long count_partial(struct kmem_cache_node *n,
2130					int (*get_count)(struct page *))
2131{
2132	unsigned long flags;
2133	unsigned long x = 0;
2134	struct page *page;
2135
2136	spin_lock_irqsave(&n->list_lock, flags);
2137	list_for_each_entry(page, &n->partial, lru)
2138		x += get_count(page);
2139	spin_unlock_irqrestore(&n->list_lock, flags);
2140	return x;
2141}
2142
2143static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2144{
2145#ifdef CONFIG_SLUB_DEBUG
2146	return atomic_long_read(&n->total_objects);
2147#else
2148	return 0;
2149#endif
2150}
2151
2152static noinline void
2153slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2154{
2155	int node;
2156
2157	printk(KERN_WARNING
2158		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2159		nid, gfpflags);
2160	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2161		"default order: %d, min order: %d\n", s->name, s->object_size,
2162		s->size, oo_order(s->oo), oo_order(s->min));
2163
2164	if (oo_order(s->min) > get_order(s->object_size))
2165		printk(KERN_WARNING "  %s debugging increased min order, use "
2166		       "slub_debug=O to disable.\n", s->name);
2167
2168	for_each_online_node(node) {
2169		struct kmem_cache_node *n = get_node(s, node);
2170		unsigned long nr_slabs;
2171		unsigned long nr_objs;
2172		unsigned long nr_free;
2173
2174		if (!n)
2175			continue;
2176
2177		nr_free  = count_partial(n, count_free);
2178		nr_slabs = node_nr_slabs(n);
2179		nr_objs  = node_nr_objs(n);
2180
2181		printk(KERN_WARNING
2182			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2183			node, nr_slabs, nr_objs, nr_free);
2184	}
2185}
2186
2187static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2188			int node, struct kmem_cache_cpu **pc)
2189{
2190	void *freelist;
2191	struct kmem_cache_cpu *c = *pc;
2192	struct page *page;
2193
2194	freelist = get_partial(s, flags, node, c);
2195
2196	if (freelist)
2197		return freelist;
2198
2199	page = new_slab(s, flags, node);
2200	if (page) {
2201		c = __this_cpu_ptr(s->cpu_slab);
2202		if (c->page)
2203			flush_slab(s, c);
2204
2205		/*
2206		 * No other reference to the page yet so we can
2207		 * muck around with it freely without cmpxchg
2208		 */
2209		freelist = page->freelist;
2210		page->freelist = NULL;
2211
2212		stat(s, ALLOC_SLAB);
2213		c->page = page;
2214		*pc = c;
2215	} else
2216		freelist = NULL;
2217
2218	return freelist;
2219}
2220
2221static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2222{
2223	if (unlikely(PageSlabPfmemalloc(page)))
2224		return gfp_pfmemalloc_allowed(gfpflags);
2225
2226	return true;
2227}
2228
2229/*
2230 * Check the page->freelist of a page and either transfer the freelist to the
2231 * per cpu freelist or deactivate the page.
2232 *
2233 * The page is still frozen if the return value is not NULL.
2234 *
2235 * If this function returns NULL then the page has been unfrozen.
2236 *
2237 * This function must be called with interrupt disabled.
2238 */
2239static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2240{
2241	struct page new;
2242	unsigned long counters;
2243	void *freelist;
2244
2245	do {
2246		freelist = page->freelist;
2247		counters = page->counters;
2248
2249		new.counters = counters;
2250		VM_BUG_ON(!new.frozen);
2251
2252		new.inuse = page->objects;
2253		new.frozen = freelist != NULL;
2254
2255	} while (!__cmpxchg_double_slab(s, page,
2256		freelist, counters,
2257		NULL, new.counters,
2258		"get_freelist"));
2259
2260	return freelist;
2261}
2262
2263/*
2264 * Slow path. The lockless freelist is empty or we need to perform
2265 * debugging duties.
2266 *
 
 
2267 * Processing is still very fast if new objects have been freed to the
2268 * regular freelist. In that case we simply take over the regular freelist
2269 * as the lockless freelist and zap the regular freelist.
2270 *
2271 * If that is not working then we fall back to the partial lists. We take the
2272 * first element of the freelist as the object to allocate now and move the
2273 * rest of the freelist to the lockless freelist.
2274 *
2275 * And if we were unable to get a new slab from the partial slab lists then
2276 * we need to allocate a new slab. This is the slowest path since it involves
2277 * a call to the page allocator and the setup of a new slab.
2278 */
2279static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2280			  unsigned long addr, struct kmem_cache_cpu *c)
2281{
2282	void *freelist;
2283	struct page *page;
2284	unsigned long flags;
 
 
2285
2286	local_irq_save(flags);
2287#ifdef CONFIG_PREEMPT
2288	/*
2289	 * We may have been preempted and rescheduled on a different
2290	 * cpu before disabling interrupts. Need to reload cpu area
2291	 * pointer.
2292	 */
2293	c = this_cpu_ptr(s->cpu_slab);
2294#endif
2295
 
 
 
2296	page = c->page;
2297	if (!page)
2298		goto new_slab;
2299redo:
2300
2301	if (unlikely(!node_match(page, node))) {
2302		stat(s, ALLOC_NODE_MISMATCH);
2303		deactivate_slab(s, page, c->freelist);
2304		c->page = NULL;
2305		c->freelist = NULL;
2306		goto new_slab;
2307	}
2308
2309	/*
2310	 * By rights, we should be searching for a slab page that was
2311	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312	 * information when the page leaves the per-cpu allocator
2313	 */
2314	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2315		deactivate_slab(s, page, c->freelist);
2316		c->page = NULL;
2317		c->freelist = NULL;
2318		goto new_slab;
2319	}
2320
2321	/* must check again c->freelist in case of cpu migration or IRQ */
2322	freelist = c->freelist;
2323	if (freelist)
2324		goto load_freelist;
 
2325
2326	stat(s, ALLOC_SLOWPATH);
 
 
 
 
 
 
 
 
2327
2328	freelist = get_freelist(s, page);
 
 
 
 
 
 
2329
2330	if (!freelist) {
2331		c->page = NULL;
2332		stat(s, DEACTIVATE_BYPASS);
2333		goto new_slab;
2334	}
2335
2336	stat(s, ALLOC_REFILL);
2337
2338load_freelist:
2339	/*
2340	 * freelist is pointing to the list of objects to be used.
2341	 * page is pointing to the page from which the objects are obtained.
2342	 * That page must be frozen for per cpu allocations to work.
2343	 */
2344	VM_BUG_ON(!c->page->frozen);
2345	c->freelist = get_freepointer(s, freelist);
2346	c->tid = next_tid(c->tid);
2347	local_irq_restore(flags);
2348	return freelist;
2349
2350new_slab:
 
 
 
 
2351
2352	if (c->partial) {
2353		page = c->page = c->partial;
2354		c->partial = page->next;
2355		stat(s, CPU_PARTIAL_ALLOC);
2356		c->freelist = NULL;
2357		goto redo;
2358	}
2359
2360	freelist = new_slab_objects(s, gfpflags, node, &c);
2361
2362	if (unlikely(!freelist)) {
2363		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2364			slab_out_of_memory(s, gfpflags, node);
 
2365
2366		local_irq_restore(flags);
2367		return NULL;
2368	}
 
 
 
 
2369
2370	page = c->page;
2371	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
 
 
 
 
2372		goto load_freelist;
 
 
 
 
 
2373
2374	/* Only entered in the debug case */
2375	if (kmem_cache_debug(s) &&
2376			!alloc_debug_processing(s, page, freelist, addr))
2377		goto new_slab;	/* Slab failed checks. Next slab needed */
2378
2379	deactivate_slab(s, page, get_freepointer(s, freelist));
 
2380	c->page = NULL;
2381	c->freelist = NULL;
2382	local_irq_restore(flags);
2383	return freelist;
2384}
2385
2386/*
2387 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2388 * have the fastpath folded into their functions. So no function call
2389 * overhead for requests that can be satisfied on the fastpath.
2390 *
2391 * The fastpath works by first checking if the lockless freelist can be used.
2392 * If not then __slab_alloc is called for slow processing.
2393 *
2394 * Otherwise we can simply pick the next object from the lockless free list.
2395 */
2396static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2397		gfp_t gfpflags, int node, unsigned long addr)
2398{
2399	void **object;
2400	struct kmem_cache_cpu *c;
2401	struct page *page;
2402	unsigned long tid;
2403
2404	if (slab_pre_alloc_hook(s, gfpflags))
2405		return NULL;
2406
2407	s = memcg_kmem_get_cache(s, gfpflags);
2408redo:
 
2409	/*
2410	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2411	 * enabled. We may switch back and forth between cpus while
2412	 * reading from one cpu area. That does not matter as long
2413	 * as we end up on the original cpu again when doing the cmpxchg.
2414	 *
2415	 * Preemption is disabled for the retrieval of the tid because that
2416	 * must occur from the current processor. We cannot allow rescheduling
2417	 * on a different processor between the determination of the pointer
2418	 * and the retrieval of the tid.
2419	 */
2420	preempt_disable();
2421	c = __this_cpu_ptr(s->cpu_slab);
2422
2423	/*
2424	 * The transaction ids are globally unique per cpu and per operation on
2425	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2426	 * occurs on the right processor and that there was no operation on the
2427	 * linked list in between.
2428	 */
2429	tid = c->tid;
2430	preempt_enable();
2431
2432	object = c->freelist;
2433	page = c->page;
2434	if (unlikely(!object || !node_match(page, node)))
2435		object = __slab_alloc(s, gfpflags, node, addr, c);
2436
2437	else {
2438		void *next_object = get_freepointer_safe(s, object);
2439
2440		/*
2441		 * The cmpxchg will only match if there was no additional
2442		 * operation and if we are on the right processor.
2443		 *
2444		 * The cmpxchg does the following atomically (without lock
2445		 * semantics!)
2446		 * 1. Relocate first pointer to the current per cpu area.
2447		 * 2. Verify that tid and freelist have not been changed
2448		 * 3. If they were not changed replace tid and freelist
2449		 *
2450		 * Since this is without lock semantics the protection is only
2451		 * against code executing on this cpu *not* from access by
2452		 * other cpus.
2453		 */
2454		if (unlikely(!this_cpu_cmpxchg_double(
2455				s->cpu_slab->freelist, s->cpu_slab->tid,
2456				object, tid,
2457				next_object, next_tid(tid)))) {
2458
2459			note_cmpxchg_failure("slab_alloc", s, tid);
2460			goto redo;
2461		}
2462		prefetch_freepointer(s, next_object);
2463		stat(s, ALLOC_FASTPATH);
2464	}
2465
2466	if (unlikely(gfpflags & __GFP_ZERO) && object)
2467		memset(object, 0, s->object_size);
2468
2469	slab_post_alloc_hook(s, gfpflags, object);
2470
2471	return object;
2472}
2473
2474static __always_inline void *slab_alloc(struct kmem_cache *s,
2475		gfp_t gfpflags, unsigned long addr)
2476{
2477	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2478}
2479
2480void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2481{
2482	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2483
2484	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2485				s->size, gfpflags);
2486
2487	return ret;
2488}
2489EXPORT_SYMBOL(kmem_cache_alloc);
2490
2491#ifdef CONFIG_TRACING
2492void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2493{
2494	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2495	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2496	return ret;
2497}
2498EXPORT_SYMBOL(kmem_cache_alloc_trace);
 
 
 
 
 
 
 
 
2499#endif
2500
2501#ifdef CONFIG_NUMA
2502void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2503{
2504	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2505
2506	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2507				    s->object_size, s->size, gfpflags, node);
2508
2509	return ret;
2510}
2511EXPORT_SYMBOL(kmem_cache_alloc_node);
2512
2513#ifdef CONFIG_TRACING
2514void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2515				    gfp_t gfpflags,
2516				    int node, size_t size)
2517{
2518	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2519
2520	trace_kmalloc_node(_RET_IP_, ret,
2521			   size, s->size, gfpflags, node);
2522	return ret;
2523}
2524EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2525#endif
2526#endif
2527
2528/*
2529 * Slow patch handling. This may still be called frequently since objects
2530 * have a longer lifetime than the cpu slabs in most processing loads.
2531 *
2532 * So we still attempt to reduce cache line usage. Just take the slab
2533 * lock and free the item. If there is no additional partial page
2534 * handling required then we can return immediately.
2535 */
2536static void __slab_free(struct kmem_cache *s, struct page *page,
2537			void *x, unsigned long addr)
2538{
2539	void *prior;
2540	void **object = (void *)x;
2541	int was_frozen;
 
2542	struct page new;
2543	unsigned long counters;
2544	struct kmem_cache_node *n = NULL;
2545	unsigned long uninitialized_var(flags);
2546
2547	stat(s, FREE_SLOWPATH);
2548
2549	if (kmem_cache_debug(s) &&
2550		!(n = free_debug_processing(s, page, x, addr, &flags)))
2551		return;
2552
2553	do {
2554		if (unlikely(n)) {
2555			spin_unlock_irqrestore(&n->list_lock, flags);
2556			n = NULL;
2557		}
2558		prior = page->freelist;
2559		counters = page->counters;
2560		set_freepointer(s, object, prior);
2561		new.counters = counters;
2562		was_frozen = new.frozen;
2563		new.inuse--;
2564		if ((!new.inuse || !prior) && !was_frozen) {
2565
2566			if (kmem_cache_has_cpu_partial(s) && !prior) {
2567
2568				/*
2569				 * Slab was on no list before and will be
2570				 * partially empty
2571				 * We can defer the list move and instead
2572				 * freeze it.
2573				 */
2574				new.frozen = 1;
2575
2576			} else { /* Needs to be taken off a list */
2577
2578	                        n = get_node(s, page_to_nid(page));
2579				/*
2580				 * Speculatively acquire the list_lock.
2581				 * If the cmpxchg does not succeed then we may
2582				 * drop the list_lock without any processing.
2583				 *
2584				 * Otherwise the list_lock will synchronize with
2585				 * other processors updating the list of slabs.
2586				 */
2587				spin_lock_irqsave(&n->list_lock, flags);
2588
2589			}
2590		}
 
2591
2592	} while (!cmpxchg_double_slab(s, page,
2593		prior, counters,
2594		object, new.counters,
2595		"__slab_free"));
2596
2597	if (likely(!n)) {
2598
2599		/*
2600		 * If we just froze the page then put it onto the
2601		 * per cpu partial list.
2602		 */
2603		if (new.frozen && !was_frozen) {
2604			put_cpu_partial(s, page, 1);
2605			stat(s, CPU_PARTIAL_FREE);
2606		}
2607		/*
2608		 * The list lock was not taken therefore no list
2609		 * activity can be necessary.
2610		 */
2611                if (was_frozen)
2612                        stat(s, FREE_FROZEN);
2613                return;
2614        }
2615
2616	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2617		goto slab_empty;
2618
2619	/*
2620	 * Objects left in the slab. If it was not on the partial list before
2621	 * then add it.
2622	 */
2623	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2624		if (kmem_cache_debug(s))
2625			remove_full(s, n, page);
2626		add_partial(n, page, DEACTIVATE_TO_TAIL);
2627		stat(s, FREE_ADD_PARTIAL);
 
 
 
 
 
 
 
 
 
 
2628	}
2629	spin_unlock_irqrestore(&n->list_lock, flags);
2630	return;
2631
2632slab_empty:
2633	if (prior) {
2634		/*
2635		 * Slab on the partial list.
2636		 */
2637		remove_partial(n, page);
2638		stat(s, FREE_REMOVE_PARTIAL);
2639	} else {
2640		/* Slab must be on the full list */
2641		remove_full(s, n, page);
2642	}
2643
2644	spin_unlock_irqrestore(&n->list_lock, flags);
2645	stat(s, FREE_SLAB);
2646	discard_slab(s, page);
2647}
2648
2649/*
2650 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2651 * can perform fastpath freeing without additional function calls.
2652 *
2653 * The fastpath is only possible if we are freeing to the current cpu slab
2654 * of this processor. This typically the case if we have just allocated
2655 * the item before.
2656 *
2657 * If fastpath is not possible then fall back to __slab_free where we deal
2658 * with all sorts of special processing.
2659 */
2660static __always_inline void slab_free(struct kmem_cache *s,
2661			struct page *page, void *x, unsigned long addr)
2662{
2663	void **object = (void *)x;
2664	struct kmem_cache_cpu *c;
2665	unsigned long tid;
2666
2667	slab_free_hook(s, x);
2668
2669redo:
 
2670	/*
2671	 * Determine the currently cpus per cpu slab.
2672	 * The cpu may change afterward. However that does not matter since
2673	 * data is retrieved via this pointer. If we are on the same cpu
2674	 * during the cmpxchg then the free will succedd.
2675	 */
2676	preempt_disable();
2677	c = __this_cpu_ptr(s->cpu_slab);
2678
2679	tid = c->tid;
2680	preempt_enable();
2681
2682	if (likely(page == c->page)) {
2683		set_freepointer(s, object, c->freelist);
2684
2685		if (unlikely(!this_cpu_cmpxchg_double(
2686				s->cpu_slab->freelist, s->cpu_slab->tid,
2687				c->freelist, tid,
2688				object, next_tid(tid)))) {
2689
2690			note_cmpxchg_failure("slab_free", s, tid);
2691			goto redo;
2692		}
2693		stat(s, FREE_FASTPATH);
2694	} else
2695		__slab_free(s, page, x, addr);
2696
2697}
2698
2699void kmem_cache_free(struct kmem_cache *s, void *x)
2700{
2701	s = cache_from_obj(s, x);
2702	if (!s)
2703		return;
2704	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
 
 
2705	trace_kmem_cache_free(_RET_IP_, x);
2706}
2707EXPORT_SYMBOL(kmem_cache_free);
2708
2709/*
2710 * Object placement in a slab is made very easy because we always start at
2711 * offset 0. If we tune the size of the object to the alignment then we can
2712 * get the required alignment by putting one properly sized object after
2713 * another.
2714 *
2715 * Notice that the allocation order determines the sizes of the per cpu
2716 * caches. Each processor has always one slab available for allocations.
2717 * Increasing the allocation order reduces the number of times that slabs
2718 * must be moved on and off the partial lists and is therefore a factor in
2719 * locking overhead.
2720 */
2721
2722/*
2723 * Mininum / Maximum order of slab pages. This influences locking overhead
2724 * and slab fragmentation. A higher order reduces the number of partial slabs
2725 * and increases the number of allocations possible without having to
2726 * take the list_lock.
2727 */
2728static int slub_min_order;
2729static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2730static int slub_min_objects;
2731
2732/*
2733 * Merge control. If this is set then no merging of slab caches will occur.
2734 * (Could be removed. This was introduced to pacify the merge skeptics.)
2735 */
2736static int slub_nomerge;
2737
2738/*
2739 * Calculate the order of allocation given an slab object size.
2740 *
2741 * The order of allocation has significant impact on performance and other
2742 * system components. Generally order 0 allocations should be preferred since
2743 * order 0 does not cause fragmentation in the page allocator. Larger objects
2744 * be problematic to put into order 0 slabs because there may be too much
2745 * unused space left. We go to a higher order if more than 1/16th of the slab
2746 * would be wasted.
2747 *
2748 * In order to reach satisfactory performance we must ensure that a minimum
2749 * number of objects is in one slab. Otherwise we may generate too much
2750 * activity on the partial lists which requires taking the list_lock. This is
2751 * less a concern for large slabs though which are rarely used.
2752 *
2753 * slub_max_order specifies the order where we begin to stop considering the
2754 * number of objects in a slab as critical. If we reach slub_max_order then
2755 * we try to keep the page order as low as possible. So we accept more waste
2756 * of space in favor of a small page order.
2757 *
2758 * Higher order allocations also allow the placement of more objects in a
2759 * slab and thereby reduce object handling overhead. If the user has
2760 * requested a higher mininum order then we start with that one instead of
2761 * the smallest order which will fit the object.
2762 */
2763static inline int slab_order(int size, int min_objects,
2764				int max_order, int fract_leftover, int reserved)
2765{
2766	int order;
2767	int rem;
2768	int min_order = slub_min_order;
2769
2770	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772
2773	for (order = max(min_order,
2774				fls(min_objects * size - 1) - PAGE_SHIFT);
2775			order <= max_order; order++) {
2776
2777		unsigned long slab_size = PAGE_SIZE << order;
2778
2779		if (slab_size < min_objects * size + reserved)
2780			continue;
2781
2782		rem = (slab_size - reserved) % size;
2783
2784		if (rem <= slab_size / fract_leftover)
2785			break;
2786
2787	}
2788
2789	return order;
2790}
2791
2792static inline int calculate_order(int size, int reserved)
2793{
2794	int order;
2795	int min_objects;
2796	int fraction;
2797	int max_objects;
2798
2799	/*
2800	 * Attempt to find best configuration for a slab. This
2801	 * works by first attempting to generate a layout with
2802	 * the best configuration and backing off gradually.
2803	 *
2804	 * First we reduce the acceptable waste in a slab. Then
2805	 * we reduce the minimum objects required in a slab.
2806	 */
2807	min_objects = slub_min_objects;
2808	if (!min_objects)
2809		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810	max_objects = order_objects(slub_max_order, size, reserved);
2811	min_objects = min(min_objects, max_objects);
2812
2813	while (min_objects > 1) {
2814		fraction = 16;
2815		while (fraction >= 4) {
2816			order = slab_order(size, min_objects,
2817					slub_max_order, fraction, reserved);
2818			if (order <= slub_max_order)
2819				return order;
2820			fraction /= 2;
2821		}
2822		min_objects--;
2823	}
2824
2825	/*
2826	 * We were unable to place multiple objects in a slab. Now
2827	 * lets see if we can place a single object there.
2828	 */
2829	order = slab_order(size, 1, slub_max_order, 1, reserved);
2830	if (order <= slub_max_order)
2831		return order;
2832
2833	/*
2834	 * Doh this slab cannot be placed using slub_max_order.
2835	 */
2836	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2837	if (order < MAX_ORDER)
2838		return order;
2839	return -ENOSYS;
2840}
2841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842static void
2843init_kmem_cache_node(struct kmem_cache_node *n)
2844{
2845	n->nr_partial = 0;
2846	spin_lock_init(&n->list_lock);
2847	INIT_LIST_HEAD(&n->partial);
2848#ifdef CONFIG_SLUB_DEBUG
2849	atomic_long_set(&n->nr_slabs, 0);
2850	atomic_long_set(&n->total_objects, 0);
2851	INIT_LIST_HEAD(&n->full);
2852#endif
2853}
2854
2855static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856{
2857	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2859
2860	/*
2861	 * Must align to double word boundary for the double cmpxchg
2862	 * instructions to work; see __pcpu_double_call_return_bool().
2863	 */
2864	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2865				     2 * sizeof(void *));
2866
2867	if (!s->cpu_slab)
2868		return 0;
2869
2870	init_kmem_cache_cpus(s);
2871
2872	return 1;
2873}
2874
2875static struct kmem_cache *kmem_cache_node;
2876
2877/*
2878 * No kmalloc_node yet so do it by hand. We know that this is the first
2879 * slab on the node for this slabcache. There are no concurrent accesses
2880 * possible.
2881 *
2882 * Note that this function only works on the kmem_cache_node
2883 * when allocating for the kmem_cache_node. This is used for bootstrapping
2884 * memory on a fresh node that has no slab structures yet.
2885 */
2886static void early_kmem_cache_node_alloc(int node)
2887{
2888	struct page *page;
2889	struct kmem_cache_node *n;
2890
2891	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2892
2893	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2894
2895	BUG_ON(!page);
2896	if (page_to_nid(page) != node) {
2897		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2898				"node %d\n", node);
2899		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2900				"in order to be able to continue\n");
2901	}
2902
2903	n = page->freelist;
2904	BUG_ON(!n);
2905	page->freelist = get_freepointer(kmem_cache_node, n);
2906	page->inuse = 1;
2907	page->frozen = 0;
2908	kmem_cache_node->node[node] = n;
2909#ifdef CONFIG_SLUB_DEBUG
2910	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2911	init_tracking(kmem_cache_node, n);
2912#endif
2913	init_kmem_cache_node(n);
2914	inc_slabs_node(kmem_cache_node, node, page->objects);
2915
2916	/*
2917	 * No locks need to be taken here as it has just been
2918	 * initialized and there is no concurrent access.
2919	 */
2920	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2921}
2922
2923static void free_kmem_cache_nodes(struct kmem_cache *s)
2924{
2925	int node;
2926
2927	for_each_node_state(node, N_NORMAL_MEMORY) {
2928		struct kmem_cache_node *n = s->node[node];
2929
2930		if (n)
2931			kmem_cache_free(kmem_cache_node, n);
2932
2933		s->node[node] = NULL;
2934	}
2935}
2936
2937static int init_kmem_cache_nodes(struct kmem_cache *s)
2938{
2939	int node;
2940
2941	for_each_node_state(node, N_NORMAL_MEMORY) {
2942		struct kmem_cache_node *n;
2943
2944		if (slab_state == DOWN) {
2945			early_kmem_cache_node_alloc(node);
2946			continue;
2947		}
2948		n = kmem_cache_alloc_node(kmem_cache_node,
2949						GFP_KERNEL, node);
2950
2951		if (!n) {
2952			free_kmem_cache_nodes(s);
2953			return 0;
2954		}
2955
2956		s->node[node] = n;
2957		init_kmem_cache_node(n);
2958	}
2959	return 1;
2960}
2961
2962static void set_min_partial(struct kmem_cache *s, unsigned long min)
2963{
2964	if (min < MIN_PARTIAL)
2965		min = MIN_PARTIAL;
2966	else if (min > MAX_PARTIAL)
2967		min = MAX_PARTIAL;
2968	s->min_partial = min;
2969}
2970
2971/*
2972 * calculate_sizes() determines the order and the distribution of data within
2973 * a slab object.
2974 */
2975static int calculate_sizes(struct kmem_cache *s, int forced_order)
2976{
2977	unsigned long flags = s->flags;
2978	unsigned long size = s->object_size;
 
2979	int order;
2980
2981	/*
2982	 * Round up object size to the next word boundary. We can only
2983	 * place the free pointer at word boundaries and this determines
2984	 * the possible location of the free pointer.
2985	 */
2986	size = ALIGN(size, sizeof(void *));
2987
2988#ifdef CONFIG_SLUB_DEBUG
2989	/*
2990	 * Determine if we can poison the object itself. If the user of
2991	 * the slab may touch the object after free or before allocation
2992	 * then we should never poison the object itself.
2993	 */
2994	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2995			!s->ctor)
2996		s->flags |= __OBJECT_POISON;
2997	else
2998		s->flags &= ~__OBJECT_POISON;
2999
3000
3001	/*
3002	 * If we are Redzoning then check if there is some space between the
3003	 * end of the object and the free pointer. If not then add an
3004	 * additional word to have some bytes to store Redzone information.
3005	 */
3006	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3007		size += sizeof(void *);
3008#endif
3009
3010	/*
3011	 * With that we have determined the number of bytes in actual use
3012	 * by the object. This is the potential offset to the free pointer.
3013	 */
3014	s->inuse = size;
3015
3016	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3017		s->ctor)) {
3018		/*
3019		 * Relocate free pointer after the object if it is not
3020		 * permitted to overwrite the first word of the object on
3021		 * kmem_cache_free.
3022		 *
3023		 * This is the case if we do RCU, have a constructor or
3024		 * destructor or are poisoning the objects.
3025		 */
3026		s->offset = size;
3027		size += sizeof(void *);
3028	}
3029
3030#ifdef CONFIG_SLUB_DEBUG
3031	if (flags & SLAB_STORE_USER)
3032		/*
3033		 * Need to store information about allocs and frees after
3034		 * the object.
3035		 */
3036		size += 2 * sizeof(struct track);
3037
3038	if (flags & SLAB_RED_ZONE)
3039		/*
3040		 * Add some empty padding so that we can catch
3041		 * overwrites from earlier objects rather than let
3042		 * tracking information or the free pointer be
3043		 * corrupted if a user writes before the start
3044		 * of the object.
3045		 */
3046		size += sizeof(void *);
3047#endif
3048
3049	/*
 
 
 
 
 
 
 
 
3050	 * SLUB stores one object immediately after another beginning from
3051	 * offset 0. In order to align the objects we have to simply size
3052	 * each object to conform to the alignment.
3053	 */
3054	size = ALIGN(size, s->align);
3055	s->size = size;
3056	if (forced_order >= 0)
3057		order = forced_order;
3058	else
3059		order = calculate_order(size, s->reserved);
3060
3061	if (order < 0)
3062		return 0;
3063
3064	s->allocflags = 0;
3065	if (order)
3066		s->allocflags |= __GFP_COMP;
3067
3068	if (s->flags & SLAB_CACHE_DMA)
3069		s->allocflags |= GFP_DMA;
3070
3071	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3072		s->allocflags |= __GFP_RECLAIMABLE;
3073
3074	/*
3075	 * Determine the number of objects per slab
3076	 */
3077	s->oo = oo_make(order, size, s->reserved);
3078	s->min = oo_make(get_order(size), size, s->reserved);
3079	if (oo_objects(s->oo) > oo_objects(s->max))
3080		s->max = s->oo;
3081
3082	return !!oo_objects(s->oo);
 
3083}
3084
3085static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3086{
3087	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
 
 
 
 
 
 
 
 
3088	s->reserved = 0;
3089
3090	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3091		s->reserved = sizeof(struct rcu_head);
3092
3093	if (!calculate_sizes(s, -1))
3094		goto error;
3095	if (disable_higher_order_debug) {
3096		/*
3097		 * Disable debugging flags that store metadata if the min slab
3098		 * order increased.
3099		 */
3100		if (get_order(s->size) > get_order(s->object_size)) {
3101			s->flags &= ~DEBUG_METADATA_FLAGS;
3102			s->offset = 0;
3103			if (!calculate_sizes(s, -1))
3104				goto error;
3105		}
3106	}
3107
3108#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3109    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3110	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3111		/* Enable fast mode */
3112		s->flags |= __CMPXCHG_DOUBLE;
3113#endif
3114
3115	/*
3116	 * The larger the object size is, the more pages we want on the partial
3117	 * list to avoid pounding the page allocator excessively.
3118	 */
3119	set_min_partial(s, ilog2(s->size) / 2);
3120
3121	/*
3122	 * cpu_partial determined the maximum number of objects kept in the
3123	 * per cpu partial lists of a processor.
3124	 *
3125	 * Per cpu partial lists mainly contain slabs that just have one
3126	 * object freed. If they are used for allocation then they can be
3127	 * filled up again with minimal effort. The slab will never hit the
3128	 * per node partial lists and therefore no locking will be required.
3129	 *
3130	 * This setting also determines
3131	 *
3132	 * A) The number of objects from per cpu partial slabs dumped to the
3133	 *    per node list when we reach the limit.
3134	 * B) The number of objects in cpu partial slabs to extract from the
3135	 *    per node list when we run out of per cpu objects. We only fetch
3136	 *    50% to keep some capacity around for frees.
3137	 */
3138	if (!kmem_cache_has_cpu_partial(s))
3139		s->cpu_partial = 0;
3140	else if (s->size >= PAGE_SIZE)
3141		s->cpu_partial = 2;
3142	else if (s->size >= 1024)
3143		s->cpu_partial = 6;
3144	else if (s->size >= 256)
3145		s->cpu_partial = 13;
3146	else
3147		s->cpu_partial = 30;
3148
3149#ifdef CONFIG_NUMA
3150	s->remote_node_defrag_ratio = 1000;
3151#endif
3152	if (!init_kmem_cache_nodes(s))
3153		goto error;
3154
3155	if (alloc_kmem_cache_cpus(s))
3156		return 0;
3157
3158	free_kmem_cache_nodes(s);
3159error:
3160	if (flags & SLAB_PANIC)
3161		panic("Cannot create slab %s size=%lu realsize=%u "
3162			"order=%u offset=%u flags=%lx\n",
3163			s->name, (unsigned long)s->size, s->size,
3164			oo_order(s->oo), s->offset, flags);
3165	return -EINVAL;
3166}
3167
 
 
 
 
 
 
 
 
 
3168static void list_slab_objects(struct kmem_cache *s, struct page *page,
3169							const char *text)
3170{
3171#ifdef CONFIG_SLUB_DEBUG
3172	void *addr = page_address(page);
3173	void *p;
3174	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3175				     sizeof(long), GFP_ATOMIC);
3176	if (!map)
3177		return;
3178	slab_err(s, page, text, s->name);
3179	slab_lock(page);
3180
3181	get_map(s, page, map);
3182	for_each_object(p, s, addr, page->objects) {
3183
3184		if (!test_bit(slab_index(p, s, addr), map)) {
3185			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3186							p, p - addr);
3187			print_tracking(s, p);
3188		}
3189	}
3190	slab_unlock(page);
3191	kfree(map);
3192#endif
3193}
3194
3195/*
3196 * Attempt to free all partial slabs on a node.
3197 * This is called from kmem_cache_close(). We must be the last thread
3198 * using the cache and therefore we do not need to lock anymore.
3199 */
3200static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3201{
 
3202	struct page *page, *h;
3203
 
3204	list_for_each_entry_safe(page, h, &n->partial, lru) {
3205		if (!page->inuse) {
3206			__remove_partial(n, page);
3207			discard_slab(s, page);
3208		} else {
3209			list_slab_objects(s, page,
3210			"Objects remaining in %s on kmem_cache_close()");
3211		}
3212	}
 
3213}
3214
3215/*
3216 * Release all resources used by a slab cache.
3217 */
3218static inline int kmem_cache_close(struct kmem_cache *s)
3219{
3220	int node;
3221
3222	flush_all(s);
 
3223	/* Attempt to free all objects */
3224	for_each_node_state(node, N_NORMAL_MEMORY) {
3225		struct kmem_cache_node *n = get_node(s, node);
3226
3227		free_partial(s, n);
3228		if (n->nr_partial || slabs_node(s, node))
3229			return 1;
3230	}
3231	free_percpu(s->cpu_slab);
3232	free_kmem_cache_nodes(s);
3233	return 0;
3234}
3235
3236int __kmem_cache_shutdown(struct kmem_cache *s)
 
 
 
 
3237{
3238	return kmem_cache_close(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
3239}
 
3240
3241/********************************************************************
3242 *		Kmalloc subsystem
3243 *******************************************************************/
3244
 
 
 
 
 
 
 
 
 
3245static int __init setup_slub_min_order(char *str)
3246{
3247	get_option(&str, &slub_min_order);
3248
3249	return 1;
3250}
3251
3252__setup("slub_min_order=", setup_slub_min_order);
3253
3254static int __init setup_slub_max_order(char *str)
3255{
3256	get_option(&str, &slub_max_order);
3257	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3258
3259	return 1;
3260}
3261
3262__setup("slub_max_order=", setup_slub_max_order);
3263
3264static int __init setup_slub_min_objects(char *str)
3265{
3266	get_option(&str, &slub_min_objects);
3267
3268	return 1;
3269}
3270
3271__setup("slub_min_objects=", setup_slub_min_objects);
3272
3273static int __init setup_slub_nomerge(char *str)
3274{
3275	slub_nomerge = 1;
3276	return 1;
3277}
3278
3279__setup("slub_nomerge", setup_slub_nomerge);
3280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3281void *__kmalloc(size_t size, gfp_t flags)
3282{
3283	struct kmem_cache *s;
3284	void *ret;
3285
3286	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3287		return kmalloc_large(size, flags);
3288
3289	s = kmalloc_slab(size, flags);
3290
3291	if (unlikely(ZERO_OR_NULL_PTR(s)))
3292		return s;
3293
3294	ret = slab_alloc(s, flags, _RET_IP_);
3295
3296	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3297
3298	return ret;
3299}
3300EXPORT_SYMBOL(__kmalloc);
3301
3302#ifdef CONFIG_NUMA
3303static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3304{
3305	struct page *page;
3306	void *ptr = NULL;
3307
3308	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3309	page = alloc_pages_node(node, flags, get_order(size));
3310	if (page)
3311		ptr = page_address(page);
3312
3313	kmalloc_large_node_hook(ptr, size, flags);
3314	return ptr;
3315}
3316
3317void *__kmalloc_node(size_t size, gfp_t flags, int node)
3318{
3319	struct kmem_cache *s;
3320	void *ret;
3321
3322	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3323		ret = kmalloc_large_node(size, flags, node);
3324
3325		trace_kmalloc_node(_RET_IP_, ret,
3326				   size, PAGE_SIZE << get_order(size),
3327				   flags, node);
3328
3329		return ret;
3330	}
3331
3332	s = kmalloc_slab(size, flags);
3333
3334	if (unlikely(ZERO_OR_NULL_PTR(s)))
3335		return s;
3336
3337	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3338
3339	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3340
3341	return ret;
3342}
3343EXPORT_SYMBOL(__kmalloc_node);
3344#endif
3345
3346size_t ksize(const void *object)
3347{
3348	struct page *page;
3349
3350	if (unlikely(object == ZERO_SIZE_PTR))
3351		return 0;
3352
3353	page = virt_to_head_page(object);
3354
3355	if (unlikely(!PageSlab(page))) {
3356		WARN_ON(!PageCompound(page));
3357		return PAGE_SIZE << compound_order(page);
3358	}
3359
3360	return slab_ksize(page->slab_cache);
3361}
3362EXPORT_SYMBOL(ksize);
3363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3364void kfree(const void *x)
3365{
3366	struct page *page;
3367	void *object = (void *)x;
3368
3369	trace_kfree(_RET_IP_, x);
3370
3371	if (unlikely(ZERO_OR_NULL_PTR(x)))
3372		return;
3373
3374	page = virt_to_head_page(x);
3375	if (unlikely(!PageSlab(page))) {
3376		BUG_ON(!PageCompound(page));
3377		kfree_hook(x);
3378		__free_memcg_kmem_pages(page, compound_order(page));
3379		return;
3380	}
3381	slab_free(page->slab_cache, page, object, _RET_IP_);
3382}
3383EXPORT_SYMBOL(kfree);
3384
3385/*
3386 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3387 * the remaining slabs by the number of items in use. The slabs with the
3388 * most items in use come first. New allocations will then fill those up
3389 * and thus they can be removed from the partial lists.
3390 *
3391 * The slabs with the least items are placed last. This results in them
3392 * being allocated from last increasing the chance that the last objects
3393 * are freed in them.
3394 */
3395int kmem_cache_shrink(struct kmem_cache *s)
3396{
3397	int node;
3398	int i;
3399	struct kmem_cache_node *n;
3400	struct page *page;
3401	struct page *t;
3402	int objects = oo_objects(s->max);
3403	struct list_head *slabs_by_inuse =
3404		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3405	unsigned long flags;
3406
3407	if (!slabs_by_inuse)
3408		return -ENOMEM;
3409
3410	flush_all(s);
3411	for_each_node_state(node, N_NORMAL_MEMORY) {
3412		n = get_node(s, node);
3413
3414		if (!n->nr_partial)
3415			continue;
3416
3417		for (i = 0; i < objects; i++)
3418			INIT_LIST_HEAD(slabs_by_inuse + i);
3419
3420		spin_lock_irqsave(&n->list_lock, flags);
3421
3422		/*
3423		 * Build lists indexed by the items in use in each slab.
3424		 *
3425		 * Note that concurrent frees may occur while we hold the
3426		 * list_lock. page->inuse here is the upper limit.
3427		 */
3428		list_for_each_entry_safe(page, t, &n->partial, lru) {
3429			list_move(&page->lru, slabs_by_inuse + page->inuse);
3430			if (!page->inuse)
3431				n->nr_partial--;
 
 
 
 
3432		}
3433
3434		/*
3435		 * Rebuild the partial list with the slabs filled up most
3436		 * first and the least used slabs at the end.
3437		 */
3438		for (i = objects - 1; i > 0; i--)
3439			list_splice(slabs_by_inuse + i, n->partial.prev);
3440
3441		spin_unlock_irqrestore(&n->list_lock, flags);
3442
3443		/* Release empty slabs */
3444		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3445			discard_slab(s, page);
3446	}
3447
3448	kfree(slabs_by_inuse);
3449	return 0;
3450}
3451EXPORT_SYMBOL(kmem_cache_shrink);
3452
 
3453static int slab_mem_going_offline_callback(void *arg)
3454{
3455	struct kmem_cache *s;
3456
3457	mutex_lock(&slab_mutex);
3458	list_for_each_entry(s, &slab_caches, list)
3459		kmem_cache_shrink(s);
3460	mutex_unlock(&slab_mutex);
3461
3462	return 0;
3463}
3464
3465static void slab_mem_offline_callback(void *arg)
3466{
3467	struct kmem_cache_node *n;
3468	struct kmem_cache *s;
3469	struct memory_notify *marg = arg;
3470	int offline_node;
3471
3472	offline_node = marg->status_change_nid_normal;
3473
3474	/*
3475	 * If the node still has available memory. we need kmem_cache_node
3476	 * for it yet.
3477	 */
3478	if (offline_node < 0)
3479		return;
3480
3481	mutex_lock(&slab_mutex);
3482	list_for_each_entry(s, &slab_caches, list) {
3483		n = get_node(s, offline_node);
3484		if (n) {
3485			/*
3486			 * if n->nr_slabs > 0, slabs still exist on the node
3487			 * that is going down. We were unable to free them,
3488			 * and offline_pages() function shouldn't call this
3489			 * callback. So, we must fail.
3490			 */
3491			BUG_ON(slabs_node(s, offline_node));
3492
3493			s->node[offline_node] = NULL;
3494			kmem_cache_free(kmem_cache_node, n);
3495		}
3496	}
3497	mutex_unlock(&slab_mutex);
3498}
3499
3500static int slab_mem_going_online_callback(void *arg)
3501{
3502	struct kmem_cache_node *n;
3503	struct kmem_cache *s;
3504	struct memory_notify *marg = arg;
3505	int nid = marg->status_change_nid_normal;
3506	int ret = 0;
3507
3508	/*
3509	 * If the node's memory is already available, then kmem_cache_node is
3510	 * already created. Nothing to do.
3511	 */
3512	if (nid < 0)
3513		return 0;
3514
3515	/*
3516	 * We are bringing a node online. No memory is available yet. We must
3517	 * allocate a kmem_cache_node structure in order to bring the node
3518	 * online.
3519	 */
3520	mutex_lock(&slab_mutex);
3521	list_for_each_entry(s, &slab_caches, list) {
3522		/*
3523		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3524		 *      since memory is not yet available from the node that
3525		 *      is brought up.
3526		 */
3527		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3528		if (!n) {
3529			ret = -ENOMEM;
3530			goto out;
3531		}
3532		init_kmem_cache_node(n);
3533		s->node[nid] = n;
3534	}
3535out:
3536	mutex_unlock(&slab_mutex);
3537	return ret;
3538}
3539
3540static int slab_memory_callback(struct notifier_block *self,
3541				unsigned long action, void *arg)
3542{
3543	int ret = 0;
3544
3545	switch (action) {
3546	case MEM_GOING_ONLINE:
3547		ret = slab_mem_going_online_callback(arg);
3548		break;
3549	case MEM_GOING_OFFLINE:
3550		ret = slab_mem_going_offline_callback(arg);
3551		break;
3552	case MEM_OFFLINE:
3553	case MEM_CANCEL_ONLINE:
3554		slab_mem_offline_callback(arg);
3555		break;
3556	case MEM_ONLINE:
3557	case MEM_CANCEL_OFFLINE:
3558		break;
3559	}
3560	if (ret)
3561		ret = notifier_from_errno(ret);
3562	else
3563		ret = NOTIFY_OK;
3564	return ret;
3565}
3566
3567static struct notifier_block slab_memory_callback_nb = {
3568	.notifier_call = slab_memory_callback,
3569	.priority = SLAB_CALLBACK_PRI,
3570};
3571
3572/********************************************************************
3573 *			Basic setup of slabs
3574 *******************************************************************/
3575
3576/*
3577 * Used for early kmem_cache structures that were allocated using
3578 * the page allocator. Allocate them properly then fix up the pointers
3579 * that may be pointing to the wrong kmem_cache structure.
3580 */
3581
3582static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3583{
3584	int node;
3585	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3586
3587	memcpy(s, static_cache, kmem_cache->object_size);
 
3588
3589	/*
3590	 * This runs very early, and only the boot processor is supposed to be
3591	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3592	 * IPIs around.
3593	 */
3594	__flush_cpu_slab(s, smp_processor_id());
3595	for_each_node_state(node, N_NORMAL_MEMORY) {
3596		struct kmem_cache_node *n = get_node(s, node);
3597		struct page *p;
3598
3599		if (n) {
3600			list_for_each_entry(p, &n->partial, lru)
3601				p->slab_cache = s;
3602
3603#ifdef CONFIG_SLUB_DEBUG
3604			list_for_each_entry(p, &n->full, lru)
3605				p->slab_cache = s;
3606#endif
3607		}
3608	}
3609	list_add(&s->list, &slab_caches);
3610	return s;
3611}
3612
3613void __init kmem_cache_init(void)
3614{
3615	static __initdata struct kmem_cache boot_kmem_cache,
3616		boot_kmem_cache_node;
 
 
 
 
3617
3618	if (debug_guardpage_minorder())
3619		slub_max_order = 0;
3620
3621	kmem_cache_node = &boot_kmem_cache_node;
3622	kmem_cache = &boot_kmem_cache;
 
 
3623
3624	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3625		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
 
 
 
 
 
 
 
 
3626
3627	register_hotmemory_notifier(&slab_memory_callback_nb);
3628
3629	/* Able to allocate the per node structures */
3630	slab_state = PARTIAL;
3631
3632	create_boot_cache(kmem_cache, "kmem_cache",
3633			offsetof(struct kmem_cache, node) +
3634				nr_node_ids * sizeof(struct kmem_cache_node *),
3635		       SLAB_HWCACHE_ALIGN);
3636
3637	kmem_cache = bootstrap(&boot_kmem_cache);
3638
3639	/*
3640	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3641	 * kmem_cache_node is separately allocated so no need to
3642	 * update any list pointers.
3643	 */
3644	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
 
 
 
 
 
 
 
 
 
 
 
3645
3646	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3647	create_kmalloc_caches(0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3648
3649#ifdef CONFIG_SMP
3650	register_cpu_notifier(&slab_notifier);
3651#endif
3652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3653	printk(KERN_INFO
3654		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3655		" CPUs=%d, Nodes=%d\n",
3656		cache_line_size(),
3657		slub_min_order, slub_max_order, slub_min_objects,
3658		nr_cpu_ids, nr_node_ids);
3659}
3660
3661void __init kmem_cache_init_late(void)
3662{
3663}
3664
3665/*
3666 * Find a mergeable slab cache
3667 */
3668static int slab_unmergeable(struct kmem_cache *s)
3669{
3670	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3671		return 1;
3672
3673	if (!is_root_cache(s))
3674		return 1;
3675
3676	if (s->ctor)
3677		return 1;
3678
3679	/*
3680	 * We may have set a slab to be unmergeable during bootstrap.
3681	 */
3682	if (s->refcount < 0)
3683		return 1;
3684
3685	return 0;
3686}
3687
3688static struct kmem_cache *find_mergeable(size_t size, size_t align,
3689		unsigned long flags, const char *name, void (*ctor)(void *))
 
3690{
3691	struct kmem_cache *s;
3692
3693	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3694		return NULL;
3695
3696	if (ctor)
3697		return NULL;
3698
3699	size = ALIGN(size, sizeof(void *));
3700	align = calculate_alignment(flags, align, size);
3701	size = ALIGN(size, align);
3702	flags = kmem_cache_flags(size, flags, name, NULL);
3703
3704	list_for_each_entry(s, &slab_caches, list) {
3705		if (slab_unmergeable(s))
3706			continue;
3707
3708		if (size > s->size)
3709			continue;
3710
3711		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3712			continue;
3713		/*
3714		 * Check if alignment is compatible.
3715		 * Courtesy of Adrian Drzewiecki
3716		 */
3717		if ((s->size & ~(align - 1)) != s->size)
3718			continue;
3719
3720		if (s->size - size >= sizeof(void *))
3721			continue;
3722
3723		return s;
3724	}
3725	return NULL;
3726}
3727
3728struct kmem_cache *
3729__kmem_cache_alias(const char *name, size_t size, size_t align,
3730		   unsigned long flags, void (*ctor)(void *))
3731{
3732	struct kmem_cache *s;
 
 
 
 
3733
 
3734	s = find_mergeable(size, align, flags, name, ctor);
3735	if (s) {
3736		int i;
3737		struct kmem_cache *c;
3738
3739		s->refcount++;
3740
3741		/*
3742		 * Adjust the object sizes so that we clear
3743		 * the complete object on kzalloc.
3744		 */
3745		s->object_size = max(s->object_size, (int)size);
3746		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3747
3748		for_each_memcg_cache_index(i) {
3749			c = cache_from_memcg_idx(s, i);
3750			if (!c)
3751				continue;
3752			c->object_size = s->object_size;
3753			c->inuse = max_t(int, c->inuse,
3754					 ALIGN(size, sizeof(void *)));
3755		}
3756
3757		if (sysfs_slab_alias(s, name)) {
3758			s->refcount--;
3759			s = NULL;
3760		}
 
 
3761	}
3762
3763	return s;
3764}
3765
3766int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3767{
3768	int err;
3769
3770	err = kmem_cache_open(s, flags);
3771	if (err)
3772		return err;
3773
3774	/* Mutex is not taken during early boot */
3775	if (slab_state <= UP)
3776		return 0;
3777
3778	memcg_propagate_slab_attrs(s);
3779	err = sysfs_slab_add(s);
3780	if (err)
3781		kmem_cache_close(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3782
3783	return err;
 
 
 
 
3784}
 
3785
3786#ifdef CONFIG_SMP
3787/*
3788 * Use the cpu notifier to insure that the cpu slabs are flushed when
3789 * necessary.
3790 */
3791static int slab_cpuup_callback(struct notifier_block *nfb,
3792		unsigned long action, void *hcpu)
3793{
3794	long cpu = (long)hcpu;
3795	struct kmem_cache *s;
3796	unsigned long flags;
3797
3798	switch (action) {
3799	case CPU_UP_CANCELED:
3800	case CPU_UP_CANCELED_FROZEN:
3801	case CPU_DEAD:
3802	case CPU_DEAD_FROZEN:
3803		mutex_lock(&slab_mutex);
3804		list_for_each_entry(s, &slab_caches, list) {
3805			local_irq_save(flags);
3806			__flush_cpu_slab(s, cpu);
3807			local_irq_restore(flags);
3808		}
3809		mutex_unlock(&slab_mutex);
3810		break;
3811	default:
3812		break;
3813	}
3814	return NOTIFY_OK;
3815}
3816
3817static struct notifier_block slab_notifier = {
3818	.notifier_call = slab_cpuup_callback
3819};
3820
3821#endif
3822
3823void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3824{
3825	struct kmem_cache *s;
3826	void *ret;
3827
3828	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3829		return kmalloc_large(size, gfpflags);
3830
3831	s = kmalloc_slab(size, gfpflags);
3832
3833	if (unlikely(ZERO_OR_NULL_PTR(s)))
3834		return s;
3835
3836	ret = slab_alloc(s, gfpflags, caller);
3837
3838	/* Honor the call site pointer we received. */
3839	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3840
3841	return ret;
3842}
3843
3844#ifdef CONFIG_NUMA
3845void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3846					int node, unsigned long caller)
3847{
3848	struct kmem_cache *s;
3849	void *ret;
3850
3851	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852		ret = kmalloc_large_node(size, gfpflags, node);
3853
3854		trace_kmalloc_node(caller, ret,
3855				   size, PAGE_SIZE << get_order(size),
3856				   gfpflags, node);
3857
3858		return ret;
3859	}
3860
3861	s = kmalloc_slab(size, gfpflags);
3862
3863	if (unlikely(ZERO_OR_NULL_PTR(s)))
3864		return s;
3865
3866	ret = slab_alloc_node(s, gfpflags, node, caller);
3867
3868	/* Honor the call site pointer we received. */
3869	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3870
3871	return ret;
3872}
3873#endif
3874
3875#ifdef CONFIG_SYSFS
3876static int count_inuse(struct page *page)
3877{
3878	return page->inuse;
3879}
3880
3881static int count_total(struct page *page)
3882{
3883	return page->objects;
3884}
3885#endif
3886
3887#ifdef CONFIG_SLUB_DEBUG
3888static int validate_slab(struct kmem_cache *s, struct page *page,
3889						unsigned long *map)
3890{
3891	void *p;
3892	void *addr = page_address(page);
3893
3894	if (!check_slab(s, page) ||
3895			!on_freelist(s, page, NULL))
3896		return 0;
3897
3898	/* Now we know that a valid freelist exists */
3899	bitmap_zero(map, page->objects);
3900
3901	get_map(s, page, map);
3902	for_each_object(p, s, addr, page->objects) {
3903		if (test_bit(slab_index(p, s, addr), map))
3904			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3905				return 0;
3906	}
3907
3908	for_each_object(p, s, addr, page->objects)
3909		if (!test_bit(slab_index(p, s, addr), map))
3910			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3911				return 0;
3912	return 1;
3913}
3914
3915static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3916						unsigned long *map)
3917{
3918	slab_lock(page);
3919	validate_slab(s, page, map);
3920	slab_unlock(page);
3921}
3922
3923static int validate_slab_node(struct kmem_cache *s,
3924		struct kmem_cache_node *n, unsigned long *map)
3925{
3926	unsigned long count = 0;
3927	struct page *page;
3928	unsigned long flags;
3929
3930	spin_lock_irqsave(&n->list_lock, flags);
3931
3932	list_for_each_entry(page, &n->partial, lru) {
3933		validate_slab_slab(s, page, map);
3934		count++;
3935	}
3936	if (count != n->nr_partial)
3937		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3938			"counter=%ld\n", s->name, count, n->nr_partial);
3939
3940	if (!(s->flags & SLAB_STORE_USER))
3941		goto out;
3942
3943	list_for_each_entry(page, &n->full, lru) {
3944		validate_slab_slab(s, page, map);
3945		count++;
3946	}
3947	if (count != atomic_long_read(&n->nr_slabs))
3948		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3949			"counter=%ld\n", s->name, count,
3950			atomic_long_read(&n->nr_slabs));
3951
3952out:
3953	spin_unlock_irqrestore(&n->list_lock, flags);
3954	return count;
3955}
3956
3957static long validate_slab_cache(struct kmem_cache *s)
3958{
3959	int node;
3960	unsigned long count = 0;
3961	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962				sizeof(unsigned long), GFP_KERNEL);
3963
3964	if (!map)
3965		return -ENOMEM;
3966
3967	flush_all(s);
3968	for_each_node_state(node, N_NORMAL_MEMORY) {
3969		struct kmem_cache_node *n = get_node(s, node);
3970
3971		count += validate_slab_node(s, n, map);
3972	}
3973	kfree(map);
3974	return count;
3975}
3976/*
3977 * Generate lists of code addresses where slabcache objects are allocated
3978 * and freed.
3979 */
3980
3981struct location {
3982	unsigned long count;
3983	unsigned long addr;
3984	long long sum_time;
3985	long min_time;
3986	long max_time;
3987	long min_pid;
3988	long max_pid;
3989	DECLARE_BITMAP(cpus, NR_CPUS);
3990	nodemask_t nodes;
3991};
3992
3993struct loc_track {
3994	unsigned long max;
3995	unsigned long count;
3996	struct location *loc;
3997};
3998
3999static void free_loc_track(struct loc_track *t)
4000{
4001	if (t->max)
4002		free_pages((unsigned long)t->loc,
4003			get_order(sizeof(struct location) * t->max));
4004}
4005
4006static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007{
4008	struct location *l;
4009	int order;
4010
4011	order = get_order(sizeof(struct location) * max);
4012
4013	l = (void *)__get_free_pages(flags, order);
4014	if (!l)
4015		return 0;
4016
4017	if (t->count) {
4018		memcpy(l, t->loc, sizeof(struct location) * t->count);
4019		free_loc_track(t);
4020	}
4021	t->max = max;
4022	t->loc = l;
4023	return 1;
4024}
4025
4026static int add_location(struct loc_track *t, struct kmem_cache *s,
4027				const struct track *track)
4028{
4029	long start, end, pos;
4030	struct location *l;
4031	unsigned long caddr;
4032	unsigned long age = jiffies - track->when;
4033
4034	start = -1;
4035	end = t->count;
4036
4037	for ( ; ; ) {
4038		pos = start + (end - start + 1) / 2;
4039
4040		/*
4041		 * There is nothing at "end". If we end up there
4042		 * we need to add something to before end.
4043		 */
4044		if (pos == end)
4045			break;
4046
4047		caddr = t->loc[pos].addr;
4048		if (track->addr == caddr) {
4049
4050			l = &t->loc[pos];
4051			l->count++;
4052			if (track->when) {
4053				l->sum_time += age;
4054				if (age < l->min_time)
4055					l->min_time = age;
4056				if (age > l->max_time)
4057					l->max_time = age;
4058
4059				if (track->pid < l->min_pid)
4060					l->min_pid = track->pid;
4061				if (track->pid > l->max_pid)
4062					l->max_pid = track->pid;
4063
4064				cpumask_set_cpu(track->cpu,
4065						to_cpumask(l->cpus));
4066			}
4067			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068			return 1;
4069		}
4070
4071		if (track->addr < caddr)
4072			end = pos;
4073		else
4074			start = pos;
4075	}
4076
4077	/*
4078	 * Not found. Insert new tracking element.
4079	 */
4080	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081		return 0;
4082
4083	l = t->loc + pos;
4084	if (pos < t->count)
4085		memmove(l + 1, l,
4086			(t->count - pos) * sizeof(struct location));
4087	t->count++;
4088	l->count = 1;
4089	l->addr = track->addr;
4090	l->sum_time = age;
4091	l->min_time = age;
4092	l->max_time = age;
4093	l->min_pid = track->pid;
4094	l->max_pid = track->pid;
4095	cpumask_clear(to_cpumask(l->cpus));
4096	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097	nodes_clear(l->nodes);
4098	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099	return 1;
4100}
4101
4102static void process_slab(struct loc_track *t, struct kmem_cache *s,
4103		struct page *page, enum track_item alloc,
4104		unsigned long *map)
4105{
4106	void *addr = page_address(page);
4107	void *p;
4108
4109	bitmap_zero(map, page->objects);
4110	get_map(s, page, map);
4111
4112	for_each_object(p, s, addr, page->objects)
4113		if (!test_bit(slab_index(p, s, addr), map))
4114			add_location(t, s, get_track(s, p, alloc));
4115}
4116
4117static int list_locations(struct kmem_cache *s, char *buf,
4118					enum track_item alloc)
4119{
4120	int len = 0;
4121	unsigned long i;
4122	struct loc_track t = { 0, 0, NULL };
4123	int node;
4124	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4125				     sizeof(unsigned long), GFP_KERNEL);
4126
4127	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4128				     GFP_TEMPORARY)) {
4129		kfree(map);
4130		return sprintf(buf, "Out of memory\n");
4131	}
4132	/* Push back cpu slabs */
4133	flush_all(s);
4134
4135	for_each_node_state(node, N_NORMAL_MEMORY) {
4136		struct kmem_cache_node *n = get_node(s, node);
4137		unsigned long flags;
4138		struct page *page;
4139
4140		if (!atomic_long_read(&n->nr_slabs))
4141			continue;
4142
4143		spin_lock_irqsave(&n->list_lock, flags);
4144		list_for_each_entry(page, &n->partial, lru)
4145			process_slab(&t, s, page, alloc, map);
4146		list_for_each_entry(page, &n->full, lru)
4147			process_slab(&t, s, page, alloc, map);
4148		spin_unlock_irqrestore(&n->list_lock, flags);
4149	}
4150
4151	for (i = 0; i < t.count; i++) {
4152		struct location *l = &t.loc[i];
4153
4154		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155			break;
4156		len += sprintf(buf + len, "%7ld ", l->count);
4157
4158		if (l->addr)
4159			len += sprintf(buf + len, "%pS", (void *)l->addr);
4160		else
4161			len += sprintf(buf + len, "<not-available>");
4162
4163		if (l->sum_time != l->min_time) {
4164			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4165				l->min_time,
4166				(long)div_u64(l->sum_time, l->count),
4167				l->max_time);
4168		} else
4169			len += sprintf(buf + len, " age=%ld",
4170				l->min_time);
4171
4172		if (l->min_pid != l->max_pid)
4173			len += sprintf(buf + len, " pid=%ld-%ld",
4174				l->min_pid, l->max_pid);
4175		else
4176			len += sprintf(buf + len, " pid=%ld",
4177				l->min_pid);
4178
4179		if (num_online_cpus() > 1 &&
4180				!cpumask_empty(to_cpumask(l->cpus)) &&
4181				len < PAGE_SIZE - 60) {
4182			len += sprintf(buf + len, " cpus=");
4183			len += cpulist_scnprintf(buf + len,
4184						 PAGE_SIZE - len - 50,
4185						 to_cpumask(l->cpus));
4186		}
4187
4188		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189				len < PAGE_SIZE - 60) {
4190			len += sprintf(buf + len, " nodes=");
4191			len += nodelist_scnprintf(buf + len,
4192						  PAGE_SIZE - len - 50,
4193						  l->nodes);
4194		}
4195
4196		len += sprintf(buf + len, "\n");
4197	}
4198
4199	free_loc_track(&t);
4200	kfree(map);
4201	if (!t.count)
4202		len += sprintf(buf, "No data\n");
4203	return len;
4204}
4205#endif
4206
4207#ifdef SLUB_RESILIENCY_TEST
4208static void resiliency_test(void)
4209{
4210	u8 *p;
4211
4212	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213
4214	printk(KERN_ERR "SLUB resiliency testing\n");
4215	printk(KERN_ERR "-----------------------\n");
4216	printk(KERN_ERR "A. Corruption after allocation\n");
4217
4218	p = kzalloc(16, GFP_KERNEL);
4219	p[16] = 0x12;
4220	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4221			" 0x12->0x%p\n\n", p + 16);
4222
4223	validate_slab_cache(kmalloc_caches[4]);
4224
4225	/* Hmmm... The next two are dangerous */
4226	p = kzalloc(32, GFP_KERNEL);
4227	p[32 + sizeof(void *)] = 0x34;
4228	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4229			" 0x34 -> -0x%p\n", p);
4230	printk(KERN_ERR
4231		"If allocated object is overwritten then not detectable\n\n");
4232
4233	validate_slab_cache(kmalloc_caches[5]);
4234	p = kzalloc(64, GFP_KERNEL);
4235	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4236	*p = 0x56;
4237	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4238									p);
4239	printk(KERN_ERR
4240		"If allocated object is overwritten then not detectable\n\n");
4241	validate_slab_cache(kmalloc_caches[6]);
4242
4243	printk(KERN_ERR "\nB. Corruption after free\n");
4244	p = kzalloc(128, GFP_KERNEL);
4245	kfree(p);
4246	*p = 0x78;
4247	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4248	validate_slab_cache(kmalloc_caches[7]);
4249
4250	p = kzalloc(256, GFP_KERNEL);
4251	kfree(p);
4252	p[50] = 0x9a;
4253	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4254			p);
4255	validate_slab_cache(kmalloc_caches[8]);
4256
4257	p = kzalloc(512, GFP_KERNEL);
4258	kfree(p);
4259	p[512] = 0xab;
4260	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4261	validate_slab_cache(kmalloc_caches[9]);
4262}
4263#else
4264#ifdef CONFIG_SYSFS
4265static void resiliency_test(void) {};
4266#endif
4267#endif
4268
4269#ifdef CONFIG_SYSFS
4270enum slab_stat_type {
4271	SL_ALL,			/* All slabs */
4272	SL_PARTIAL,		/* Only partially allocated slabs */
4273	SL_CPU,			/* Only slabs used for cpu caches */
4274	SL_OBJECTS,		/* Determine allocated objects not slabs */
4275	SL_TOTAL		/* Determine object capacity not slabs */
4276};
4277
4278#define SO_ALL		(1 << SL_ALL)
4279#define SO_PARTIAL	(1 << SL_PARTIAL)
4280#define SO_CPU		(1 << SL_CPU)
4281#define SO_OBJECTS	(1 << SL_OBJECTS)
4282#define SO_TOTAL	(1 << SL_TOTAL)
4283
4284static ssize_t show_slab_objects(struct kmem_cache *s,
4285			    char *buf, unsigned long flags)
4286{
4287	unsigned long total = 0;
4288	int node;
4289	int x;
4290	unsigned long *nodes;
 
4291
4292	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4293	if (!nodes)
4294		return -ENOMEM;
 
4295
4296	if (flags & SO_CPU) {
4297		int cpu;
4298
4299		for_each_possible_cpu(cpu) {
4300			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4301							       cpu);
4302			int node;
4303			struct page *page;
4304
4305			page = ACCESS_ONCE(c->page);
4306			if (!page)
4307				continue;
4308
4309			node = page_to_nid(page);
4310			if (flags & SO_TOTAL)
4311				x = page->objects;
4312			else if (flags & SO_OBJECTS)
4313				x = page->inuse;
4314			else
4315				x = 1;
4316
4317			total += x;
4318			nodes[node] += x;
4319
4320			page = ACCESS_ONCE(c->partial);
4321			if (page) {
4322				node = page_to_nid(page);
4323				if (flags & SO_TOTAL)
4324					WARN_ON_ONCE(1);
4325				else if (flags & SO_OBJECTS)
4326					WARN_ON_ONCE(1);
4327				else
4328					x = page->pages;
 
4329				total += x;
4330				nodes[node] += x;
4331			}
 
4332		}
4333	}
4334
4335	lock_memory_hotplug();
4336#ifdef CONFIG_SLUB_DEBUG
4337	if (flags & SO_ALL) {
4338		for_each_node_state(node, N_NORMAL_MEMORY) {
4339			struct kmem_cache_node *n = get_node(s, node);
4340
4341			if (flags & SO_TOTAL)
4342				x = atomic_long_read(&n->total_objects);
4343			else if (flags & SO_OBJECTS)
4344				x = atomic_long_read(&n->total_objects) -
4345					count_partial(n, count_free);
 
4346			else
4347				x = atomic_long_read(&n->nr_slabs);
4348			total += x;
4349			nodes[node] += x;
4350		}
4351
4352	} else
4353#endif
4354	if (flags & SO_PARTIAL) {
4355		for_each_node_state(node, N_NORMAL_MEMORY) {
4356			struct kmem_cache_node *n = get_node(s, node);
4357
4358			if (flags & SO_TOTAL)
4359				x = count_partial(n, count_total);
4360			else if (flags & SO_OBJECTS)
4361				x = count_partial(n, count_inuse);
4362			else
4363				x = n->nr_partial;
4364			total += x;
4365			nodes[node] += x;
4366		}
4367	}
4368	x = sprintf(buf, "%lu", total);
4369#ifdef CONFIG_NUMA
4370	for_each_node_state(node, N_NORMAL_MEMORY)
4371		if (nodes[node])
4372			x += sprintf(buf + x, " N%d=%lu",
4373					node, nodes[node]);
4374#endif
4375	unlock_memory_hotplug();
4376	kfree(nodes);
4377	return x + sprintf(buf + x, "\n");
4378}
4379
4380#ifdef CONFIG_SLUB_DEBUG
4381static int any_slab_objects(struct kmem_cache *s)
4382{
4383	int node;
4384
4385	for_each_online_node(node) {
4386		struct kmem_cache_node *n = get_node(s, node);
4387
4388		if (!n)
4389			continue;
4390
4391		if (atomic_long_read(&n->total_objects))
4392			return 1;
4393	}
4394	return 0;
4395}
4396#endif
4397
4398#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4399#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4400
4401struct slab_attribute {
4402	struct attribute attr;
4403	ssize_t (*show)(struct kmem_cache *s, char *buf);
4404	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4405};
4406
4407#define SLAB_ATTR_RO(_name) \
4408	static struct slab_attribute _name##_attr = \
4409	__ATTR(_name, 0400, _name##_show, NULL)
4410
4411#define SLAB_ATTR(_name) \
4412	static struct slab_attribute _name##_attr =  \
4413	__ATTR(_name, 0600, _name##_show, _name##_store)
4414
4415static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4416{
4417	return sprintf(buf, "%d\n", s->size);
4418}
4419SLAB_ATTR_RO(slab_size);
4420
4421static ssize_t align_show(struct kmem_cache *s, char *buf)
4422{
4423	return sprintf(buf, "%d\n", s->align);
4424}
4425SLAB_ATTR_RO(align);
4426
4427static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4428{
4429	return sprintf(buf, "%d\n", s->object_size);
4430}
4431SLAB_ATTR_RO(object_size);
4432
4433static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4434{
4435	return sprintf(buf, "%d\n", oo_objects(s->oo));
4436}
4437SLAB_ATTR_RO(objs_per_slab);
4438
4439static ssize_t order_store(struct kmem_cache *s,
4440				const char *buf, size_t length)
4441{
4442	unsigned long order;
4443	int err;
4444
4445	err = kstrtoul(buf, 10, &order);
4446	if (err)
4447		return err;
4448
4449	if (order > slub_max_order || order < slub_min_order)
4450		return -EINVAL;
4451
4452	calculate_sizes(s, order);
4453	return length;
4454}
4455
4456static ssize_t order_show(struct kmem_cache *s, char *buf)
4457{
4458	return sprintf(buf, "%d\n", oo_order(s->oo));
4459}
4460SLAB_ATTR(order);
4461
4462static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4463{
4464	return sprintf(buf, "%lu\n", s->min_partial);
4465}
4466
4467static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4468				 size_t length)
4469{
4470	unsigned long min;
4471	int err;
4472
4473	err = kstrtoul(buf, 10, &min);
4474	if (err)
4475		return err;
4476
4477	set_min_partial(s, min);
4478	return length;
4479}
4480SLAB_ATTR(min_partial);
4481
4482static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4483{
4484	return sprintf(buf, "%u\n", s->cpu_partial);
4485}
4486
4487static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4488				 size_t length)
4489{
4490	unsigned long objects;
4491	int err;
4492
4493	err = kstrtoul(buf, 10, &objects);
4494	if (err)
4495		return err;
4496	if (objects && !kmem_cache_has_cpu_partial(s))
4497		return -EINVAL;
4498
4499	s->cpu_partial = objects;
4500	flush_all(s);
4501	return length;
4502}
4503SLAB_ATTR(cpu_partial);
4504
4505static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4506{
4507	if (!s->ctor)
4508		return 0;
4509	return sprintf(buf, "%pS\n", s->ctor);
4510}
4511SLAB_ATTR_RO(ctor);
4512
4513static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4514{
4515	return sprintf(buf, "%d\n", s->refcount - 1);
4516}
4517SLAB_ATTR_RO(aliases);
4518
4519static ssize_t partial_show(struct kmem_cache *s, char *buf)
4520{
4521	return show_slab_objects(s, buf, SO_PARTIAL);
4522}
4523SLAB_ATTR_RO(partial);
4524
4525static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4526{
4527	return show_slab_objects(s, buf, SO_CPU);
4528}
4529SLAB_ATTR_RO(cpu_slabs);
4530
4531static ssize_t objects_show(struct kmem_cache *s, char *buf)
4532{
4533	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4534}
4535SLAB_ATTR_RO(objects);
4536
4537static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4538{
4539	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4540}
4541SLAB_ATTR_RO(objects_partial);
4542
4543static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4544{
4545	int objects = 0;
4546	int pages = 0;
4547	int cpu;
4548	int len;
4549
4550	for_each_online_cpu(cpu) {
4551		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4552
4553		if (page) {
4554			pages += page->pages;
4555			objects += page->pobjects;
4556		}
4557	}
4558
4559	len = sprintf(buf, "%d(%d)", objects, pages);
4560
4561#ifdef CONFIG_SMP
4562	for_each_online_cpu(cpu) {
4563		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4564
4565		if (page && len < PAGE_SIZE - 20)
4566			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4567				page->pobjects, page->pages);
4568	}
4569#endif
4570	return len + sprintf(buf + len, "\n");
4571}
4572SLAB_ATTR_RO(slabs_cpu_partial);
4573
4574static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4575{
4576	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4577}
4578
4579static ssize_t reclaim_account_store(struct kmem_cache *s,
4580				const char *buf, size_t length)
4581{
4582	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4583	if (buf[0] == '1')
4584		s->flags |= SLAB_RECLAIM_ACCOUNT;
4585	return length;
4586}
4587SLAB_ATTR(reclaim_account);
4588
4589static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4590{
4591	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4592}
4593SLAB_ATTR_RO(hwcache_align);
4594
4595#ifdef CONFIG_ZONE_DMA
4596static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4597{
4598	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4599}
4600SLAB_ATTR_RO(cache_dma);
4601#endif
4602
4603static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4604{
4605	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4606}
4607SLAB_ATTR_RO(destroy_by_rcu);
4608
4609static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4610{
4611	return sprintf(buf, "%d\n", s->reserved);
4612}
4613SLAB_ATTR_RO(reserved);
4614
4615#ifdef CONFIG_SLUB_DEBUG
4616static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4617{
4618	return show_slab_objects(s, buf, SO_ALL);
4619}
4620SLAB_ATTR_RO(slabs);
4621
4622static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4623{
4624	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4625}
4626SLAB_ATTR_RO(total_objects);
4627
4628static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4629{
4630	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4631}
4632
4633static ssize_t sanity_checks_store(struct kmem_cache *s,
4634				const char *buf, size_t length)
4635{
4636	s->flags &= ~SLAB_DEBUG_FREE;
4637	if (buf[0] == '1') {
4638		s->flags &= ~__CMPXCHG_DOUBLE;
4639		s->flags |= SLAB_DEBUG_FREE;
4640	}
4641	return length;
4642}
4643SLAB_ATTR(sanity_checks);
4644
4645static ssize_t trace_show(struct kmem_cache *s, char *buf)
4646{
4647	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4648}
4649
4650static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4651							size_t length)
4652{
4653	s->flags &= ~SLAB_TRACE;
4654	if (buf[0] == '1') {
4655		s->flags &= ~__CMPXCHG_DOUBLE;
4656		s->flags |= SLAB_TRACE;
4657	}
4658	return length;
4659}
4660SLAB_ATTR(trace);
4661
4662static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4663{
4664	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4665}
4666
4667static ssize_t red_zone_store(struct kmem_cache *s,
4668				const char *buf, size_t length)
4669{
4670	if (any_slab_objects(s))
4671		return -EBUSY;
4672
4673	s->flags &= ~SLAB_RED_ZONE;
4674	if (buf[0] == '1') {
4675		s->flags &= ~__CMPXCHG_DOUBLE;
4676		s->flags |= SLAB_RED_ZONE;
4677	}
4678	calculate_sizes(s, -1);
4679	return length;
4680}
4681SLAB_ATTR(red_zone);
4682
4683static ssize_t poison_show(struct kmem_cache *s, char *buf)
4684{
4685	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4686}
4687
4688static ssize_t poison_store(struct kmem_cache *s,
4689				const char *buf, size_t length)
4690{
4691	if (any_slab_objects(s))
4692		return -EBUSY;
4693
4694	s->flags &= ~SLAB_POISON;
4695	if (buf[0] == '1') {
4696		s->flags &= ~__CMPXCHG_DOUBLE;
4697		s->flags |= SLAB_POISON;
4698	}
4699	calculate_sizes(s, -1);
4700	return length;
4701}
4702SLAB_ATTR(poison);
4703
4704static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4705{
4706	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4707}
4708
4709static ssize_t store_user_store(struct kmem_cache *s,
4710				const char *buf, size_t length)
4711{
4712	if (any_slab_objects(s))
4713		return -EBUSY;
4714
4715	s->flags &= ~SLAB_STORE_USER;
4716	if (buf[0] == '1') {
4717		s->flags &= ~__CMPXCHG_DOUBLE;
4718		s->flags |= SLAB_STORE_USER;
4719	}
4720	calculate_sizes(s, -1);
4721	return length;
4722}
4723SLAB_ATTR(store_user);
4724
4725static ssize_t validate_show(struct kmem_cache *s, char *buf)
4726{
4727	return 0;
4728}
4729
4730static ssize_t validate_store(struct kmem_cache *s,
4731			const char *buf, size_t length)
4732{
4733	int ret = -EINVAL;
4734
4735	if (buf[0] == '1') {
4736		ret = validate_slab_cache(s);
4737		if (ret >= 0)
4738			ret = length;
4739	}
4740	return ret;
4741}
4742SLAB_ATTR(validate);
4743
4744static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4745{
4746	if (!(s->flags & SLAB_STORE_USER))
4747		return -ENOSYS;
4748	return list_locations(s, buf, TRACK_ALLOC);
4749}
4750SLAB_ATTR_RO(alloc_calls);
4751
4752static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4753{
4754	if (!(s->flags & SLAB_STORE_USER))
4755		return -ENOSYS;
4756	return list_locations(s, buf, TRACK_FREE);
4757}
4758SLAB_ATTR_RO(free_calls);
4759#endif /* CONFIG_SLUB_DEBUG */
4760
4761#ifdef CONFIG_FAILSLAB
4762static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4763{
4764	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4765}
4766
4767static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4768							size_t length)
4769{
4770	s->flags &= ~SLAB_FAILSLAB;
4771	if (buf[0] == '1')
4772		s->flags |= SLAB_FAILSLAB;
4773	return length;
4774}
4775SLAB_ATTR(failslab);
4776#endif
4777
4778static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4779{
4780	return 0;
4781}
4782
4783static ssize_t shrink_store(struct kmem_cache *s,
4784			const char *buf, size_t length)
4785{
4786	if (buf[0] == '1') {
4787		int rc = kmem_cache_shrink(s);
4788
4789		if (rc)
4790			return rc;
4791	} else
4792		return -EINVAL;
4793	return length;
4794}
4795SLAB_ATTR(shrink);
4796
4797#ifdef CONFIG_NUMA
4798static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4799{
4800	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4801}
4802
4803static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4804				const char *buf, size_t length)
4805{
4806	unsigned long ratio;
4807	int err;
4808
4809	err = kstrtoul(buf, 10, &ratio);
4810	if (err)
4811		return err;
4812
4813	if (ratio <= 100)
4814		s->remote_node_defrag_ratio = ratio * 10;
4815
4816	return length;
4817}
4818SLAB_ATTR(remote_node_defrag_ratio);
4819#endif
4820
4821#ifdef CONFIG_SLUB_STATS
4822static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4823{
4824	unsigned long sum  = 0;
4825	int cpu;
4826	int len;
4827	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4828
4829	if (!data)
4830		return -ENOMEM;
4831
4832	for_each_online_cpu(cpu) {
4833		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4834
4835		data[cpu] = x;
4836		sum += x;
4837	}
4838
4839	len = sprintf(buf, "%lu", sum);
4840
4841#ifdef CONFIG_SMP
4842	for_each_online_cpu(cpu) {
4843		if (data[cpu] && len < PAGE_SIZE - 20)
4844			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4845	}
4846#endif
4847	kfree(data);
4848	return len + sprintf(buf + len, "\n");
4849}
4850
4851static void clear_stat(struct kmem_cache *s, enum stat_item si)
4852{
4853	int cpu;
4854
4855	for_each_online_cpu(cpu)
4856		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4857}
4858
4859#define STAT_ATTR(si, text) 					\
4860static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4861{								\
4862	return show_stat(s, buf, si);				\
4863}								\
4864static ssize_t text##_store(struct kmem_cache *s,		\
4865				const char *buf, size_t length)	\
4866{								\
4867	if (buf[0] != '0')					\
4868		return -EINVAL;					\
4869	clear_stat(s, si);					\
4870	return length;						\
4871}								\
4872SLAB_ATTR(text);						\
4873
4874STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4875STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4876STAT_ATTR(FREE_FASTPATH, free_fastpath);
4877STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4878STAT_ATTR(FREE_FROZEN, free_frozen);
4879STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4880STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4881STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4882STAT_ATTR(ALLOC_SLAB, alloc_slab);
4883STAT_ATTR(ALLOC_REFILL, alloc_refill);
4884STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4885STAT_ATTR(FREE_SLAB, free_slab);
4886STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4887STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4888STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4889STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4890STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4891STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4892STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4893STAT_ATTR(ORDER_FALLBACK, order_fallback);
4894STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4895STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4896STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4897STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4898STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4899STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4900#endif
4901
4902static struct attribute *slab_attrs[] = {
4903	&slab_size_attr.attr,
4904	&object_size_attr.attr,
4905	&objs_per_slab_attr.attr,
4906	&order_attr.attr,
4907	&min_partial_attr.attr,
4908	&cpu_partial_attr.attr,
4909	&objects_attr.attr,
4910	&objects_partial_attr.attr,
4911	&partial_attr.attr,
4912	&cpu_slabs_attr.attr,
4913	&ctor_attr.attr,
4914	&aliases_attr.attr,
4915	&align_attr.attr,
4916	&hwcache_align_attr.attr,
4917	&reclaim_account_attr.attr,
4918	&destroy_by_rcu_attr.attr,
4919	&shrink_attr.attr,
4920	&reserved_attr.attr,
4921	&slabs_cpu_partial_attr.attr,
4922#ifdef CONFIG_SLUB_DEBUG
4923	&total_objects_attr.attr,
4924	&slabs_attr.attr,
4925	&sanity_checks_attr.attr,
4926	&trace_attr.attr,
4927	&red_zone_attr.attr,
4928	&poison_attr.attr,
4929	&store_user_attr.attr,
4930	&validate_attr.attr,
4931	&alloc_calls_attr.attr,
4932	&free_calls_attr.attr,
4933#endif
4934#ifdef CONFIG_ZONE_DMA
4935	&cache_dma_attr.attr,
4936#endif
4937#ifdef CONFIG_NUMA
4938	&remote_node_defrag_ratio_attr.attr,
4939#endif
4940#ifdef CONFIG_SLUB_STATS
4941	&alloc_fastpath_attr.attr,
4942	&alloc_slowpath_attr.attr,
4943	&free_fastpath_attr.attr,
4944	&free_slowpath_attr.attr,
4945	&free_frozen_attr.attr,
4946	&free_add_partial_attr.attr,
4947	&free_remove_partial_attr.attr,
4948	&alloc_from_partial_attr.attr,
4949	&alloc_slab_attr.attr,
4950	&alloc_refill_attr.attr,
4951	&alloc_node_mismatch_attr.attr,
4952	&free_slab_attr.attr,
4953	&cpuslab_flush_attr.attr,
4954	&deactivate_full_attr.attr,
4955	&deactivate_empty_attr.attr,
4956	&deactivate_to_head_attr.attr,
4957	&deactivate_to_tail_attr.attr,
4958	&deactivate_remote_frees_attr.attr,
4959	&deactivate_bypass_attr.attr,
4960	&order_fallback_attr.attr,
4961	&cmpxchg_double_fail_attr.attr,
4962	&cmpxchg_double_cpu_fail_attr.attr,
4963	&cpu_partial_alloc_attr.attr,
4964	&cpu_partial_free_attr.attr,
4965	&cpu_partial_node_attr.attr,
4966	&cpu_partial_drain_attr.attr,
4967#endif
4968#ifdef CONFIG_FAILSLAB
4969	&failslab_attr.attr,
4970#endif
4971
4972	NULL
4973};
4974
4975static struct attribute_group slab_attr_group = {
4976	.attrs = slab_attrs,
4977};
4978
4979static ssize_t slab_attr_show(struct kobject *kobj,
4980				struct attribute *attr,
4981				char *buf)
4982{
4983	struct slab_attribute *attribute;
4984	struct kmem_cache *s;
4985	int err;
4986
4987	attribute = to_slab_attr(attr);
4988	s = to_slab(kobj);
4989
4990	if (!attribute->show)
4991		return -EIO;
4992
4993	err = attribute->show(s, buf);
4994
4995	return err;
4996}
4997
4998static ssize_t slab_attr_store(struct kobject *kobj,
4999				struct attribute *attr,
5000				const char *buf, size_t len)
5001{
5002	struct slab_attribute *attribute;
5003	struct kmem_cache *s;
5004	int err;
5005
5006	attribute = to_slab_attr(attr);
5007	s = to_slab(kobj);
5008
5009	if (!attribute->store)
5010		return -EIO;
5011
5012	err = attribute->store(s, buf, len);
5013#ifdef CONFIG_MEMCG_KMEM
5014	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5015		int i;
5016
5017		mutex_lock(&slab_mutex);
5018		if (s->max_attr_size < len)
5019			s->max_attr_size = len;
5020
5021		/*
5022		 * This is a best effort propagation, so this function's return
5023		 * value will be determined by the parent cache only. This is
5024		 * basically because not all attributes will have a well
5025		 * defined semantics for rollbacks - most of the actions will
5026		 * have permanent effects.
5027		 *
5028		 * Returning the error value of any of the children that fail
5029		 * is not 100 % defined, in the sense that users seeing the
5030		 * error code won't be able to know anything about the state of
5031		 * the cache.
5032		 *
5033		 * Only returning the error code for the parent cache at least
5034		 * has well defined semantics. The cache being written to
5035		 * directly either failed or succeeded, in which case we loop
5036		 * through the descendants with best-effort propagation.
5037		 */
5038		for_each_memcg_cache_index(i) {
5039			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5040			if (c)
5041				attribute->store(c, buf, len);
5042		}
5043		mutex_unlock(&slab_mutex);
5044	}
5045#endif
5046	return err;
5047}
5048
5049static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5050{
5051#ifdef CONFIG_MEMCG_KMEM
5052	int i;
5053	char *buffer = NULL;
5054	struct kmem_cache *root_cache;
5055
5056	if (is_root_cache(s))
5057		return;
5058
5059	root_cache = s->memcg_params->root_cache;
5060
5061	/*
5062	 * This mean this cache had no attribute written. Therefore, no point
5063	 * in copying default values around
5064	 */
5065	if (!root_cache->max_attr_size)
5066		return;
5067
5068	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5069		char mbuf[64];
5070		char *buf;
5071		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5072
5073		if (!attr || !attr->store || !attr->show)
5074			continue;
5075
5076		/*
5077		 * It is really bad that we have to allocate here, so we will
5078		 * do it only as a fallback. If we actually allocate, though,
5079		 * we can just use the allocated buffer until the end.
5080		 *
5081		 * Most of the slub attributes will tend to be very small in
5082		 * size, but sysfs allows buffers up to a page, so they can
5083		 * theoretically happen.
5084		 */
5085		if (buffer)
5086			buf = buffer;
5087		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5088			buf = mbuf;
5089		else {
5090			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5091			if (WARN_ON(!buffer))
5092				continue;
5093			buf = buffer;
5094		}
5095
5096		attr->show(root_cache, buf);
5097		attr->store(s, buf, strlen(buf));
5098	}
5099
5100	if (buffer)
5101		free_page((unsigned long)buffer);
5102#endif
5103}
5104
5105static void kmem_cache_release(struct kobject *k)
5106{
5107	slab_kmem_cache_release(to_slab(k));
5108}
5109
5110static const struct sysfs_ops slab_sysfs_ops = {
5111	.show = slab_attr_show,
5112	.store = slab_attr_store,
5113};
5114
5115static struct kobj_type slab_ktype = {
5116	.sysfs_ops = &slab_sysfs_ops,
5117	.release = kmem_cache_release,
5118};
5119
5120static int uevent_filter(struct kset *kset, struct kobject *kobj)
5121{
5122	struct kobj_type *ktype = get_ktype(kobj);
5123
5124	if (ktype == &slab_ktype)
5125		return 1;
5126	return 0;
5127}
5128
5129static const struct kset_uevent_ops slab_uevent_ops = {
5130	.filter = uevent_filter,
5131};
5132
5133static struct kset *slab_kset;
5134
5135static inline struct kset *cache_kset(struct kmem_cache *s)
5136{
5137#ifdef CONFIG_MEMCG_KMEM
5138	if (!is_root_cache(s))
5139		return s->memcg_params->root_cache->memcg_kset;
5140#endif
5141	return slab_kset;
5142}
5143
5144#define ID_STR_LENGTH 64
5145
5146/* Create a unique string id for a slab cache:
5147 *
5148 * Format	:[flags-]size
5149 */
5150static char *create_unique_id(struct kmem_cache *s)
5151{
5152	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5153	char *p = name;
5154
5155	BUG_ON(!name);
5156
5157	*p++ = ':';
5158	/*
5159	 * First flags affecting slabcache operations. We will only
5160	 * get here for aliasable slabs so we do not need to support
5161	 * too many flags. The flags here must cover all flags that
5162	 * are matched during merging to guarantee that the id is
5163	 * unique.
5164	 */
5165	if (s->flags & SLAB_CACHE_DMA)
5166		*p++ = 'd';
5167	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5168		*p++ = 'a';
5169	if (s->flags & SLAB_DEBUG_FREE)
5170		*p++ = 'F';
5171	if (!(s->flags & SLAB_NOTRACK))
5172		*p++ = 't';
5173	if (p != name + 1)
5174		*p++ = '-';
5175	p += sprintf(p, "%07d", s->size);
5176
5177#ifdef CONFIG_MEMCG_KMEM
5178	if (!is_root_cache(s))
5179		p += sprintf(p, "-%08d",
5180				memcg_cache_id(s->memcg_params->memcg));
5181#endif
5182
5183	BUG_ON(p > name + ID_STR_LENGTH - 1);
5184	return name;
5185}
5186
5187static int sysfs_slab_add(struct kmem_cache *s)
5188{
5189	int err;
5190	const char *name;
5191	int unmergeable = slab_unmergeable(s);
5192
 
 
 
 
 
5193	if (unmergeable) {
5194		/*
5195		 * Slabcache can never be merged so we can use the name proper.
5196		 * This is typically the case for debug situations. In that
5197		 * case we can catch duplicate names easily.
5198		 */
5199		sysfs_remove_link(&slab_kset->kobj, s->name);
5200		name = s->name;
5201	} else {
5202		/*
5203		 * Create a unique name for the slab as a target
5204		 * for the symlinks.
5205		 */
5206		name = create_unique_id(s);
5207	}
5208
5209	s->kobj.kset = cache_kset(s);
5210	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5211	if (err)
5212		goto out_put_kobj;
 
 
5213
5214	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5215	if (err)
5216		goto out_del_kobj;
5217
5218#ifdef CONFIG_MEMCG_KMEM
5219	if (is_root_cache(s)) {
5220		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5221		if (!s->memcg_kset) {
5222			err = -ENOMEM;
5223			goto out_del_kobj;
5224		}
5225	}
5226#endif
5227
5228	kobject_uevent(&s->kobj, KOBJ_ADD);
5229	if (!unmergeable) {
5230		/* Setup first alias */
5231		sysfs_slab_alias(s, s->name);
5232	}
5233out:
5234	if (!unmergeable)
5235		kfree(name);
5236	return err;
5237out_del_kobj:
5238	kobject_del(&s->kobj);
5239out_put_kobj:
5240	kobject_put(&s->kobj);
5241	goto out;
5242}
5243
5244void sysfs_slab_remove(struct kmem_cache *s)
5245{
5246	if (slab_state < FULL)
5247		/*
5248		 * Sysfs has not been setup yet so no need to remove the
5249		 * cache from sysfs.
5250		 */
5251		return;
5252
5253#ifdef CONFIG_MEMCG_KMEM
5254	kset_unregister(s->memcg_kset);
5255#endif
5256	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5257	kobject_del(&s->kobj);
5258	kobject_put(&s->kobj);
5259}
5260
5261/*
5262 * Need to buffer aliases during bootup until sysfs becomes
5263 * available lest we lose that information.
5264 */
5265struct saved_alias {
5266	struct kmem_cache *s;
5267	const char *name;
5268	struct saved_alias *next;
5269};
5270
5271static struct saved_alias *alias_list;
5272
5273static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5274{
5275	struct saved_alias *al;
5276
5277	if (slab_state == FULL) {
5278		/*
5279		 * If we have a leftover link then remove it.
5280		 */
5281		sysfs_remove_link(&slab_kset->kobj, name);
5282		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5283	}
5284
5285	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5286	if (!al)
5287		return -ENOMEM;
5288
5289	al->s = s;
5290	al->name = name;
5291	al->next = alias_list;
5292	alias_list = al;
5293	return 0;
5294}
5295
5296static int __init slab_sysfs_init(void)
5297{
5298	struct kmem_cache *s;
5299	int err;
5300
5301	mutex_lock(&slab_mutex);
5302
5303	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5304	if (!slab_kset) {
5305		mutex_unlock(&slab_mutex);
5306		printk(KERN_ERR "Cannot register slab subsystem.\n");
5307		return -ENOSYS;
5308	}
5309
5310	slab_state = FULL;
5311
5312	list_for_each_entry(s, &slab_caches, list) {
5313		err = sysfs_slab_add(s);
5314		if (err)
5315			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5316						" to sysfs\n", s->name);
5317	}
5318
5319	while (alias_list) {
5320		struct saved_alias *al = alias_list;
5321
5322		alias_list = alias_list->next;
5323		err = sysfs_slab_alias(al->s, al->name);
5324		if (err)
5325			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5326					" %s to sysfs\n", al->name);
5327		kfree(al);
5328	}
5329
5330	mutex_unlock(&slab_mutex);
5331	resiliency_test();
5332	return 0;
5333}
5334
5335__initcall(slab_sysfs_init);
5336#endif /* CONFIG_SYSFS */
5337
5338/*
5339 * The /proc/slabinfo ABI
5340 */
5341#ifdef CONFIG_SLABINFO
5342void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5343{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5344	unsigned long nr_slabs = 0;
 
5345	unsigned long nr_objs = 0;
5346	unsigned long nr_free = 0;
 
5347	int node;
5348
 
 
5349	for_each_online_node(node) {
5350		struct kmem_cache_node *n = get_node(s, node);
5351
5352		if (!n)
5353			continue;
5354
5355		nr_slabs += node_nr_slabs(n);
5356		nr_objs += node_nr_objs(n);
 
5357		nr_free += count_partial(n, count_free);
5358	}
5359
5360	sinfo->active_objs = nr_objs - nr_free;
5361	sinfo->num_objs = nr_objs;
5362	sinfo->active_slabs = nr_slabs;
5363	sinfo->num_slabs = nr_slabs;
5364	sinfo->objects_per_slab = oo_objects(s->oo);
5365	sinfo->cache_order = oo_order(s->oo);
 
 
 
 
5366}
5367
5368void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
 
 
 
 
 
 
 
5369{
 
5370}
5371
5372ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5373		       size_t count, loff_t *ppos)
 
 
 
 
 
 
5374{
5375	return -EIO;
 
5376}
 
5377#endif /* CONFIG_SLABINFO */
v3.1
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
 
  19#include <linux/proc_fs.h>
 
  20#include <linux/seq_file.h>
  21#include <linux/kmemcheck.h>
  22#include <linux/cpu.h>
  23#include <linux/cpuset.h>
  24#include <linux/mempolicy.h>
  25#include <linux/ctype.h>
  26#include <linux/debugobjects.h>
  27#include <linux/kallsyms.h>
  28#include <linux/memory.h>
  29#include <linux/math64.h>
  30#include <linux/fault-inject.h>
  31#include <linux/stacktrace.h>
 
 
  32
  33#include <trace/events/kmem.h>
  34
 
 
  35/*
  36 * Lock order:
  37 *   1. slub_lock (Global Semaphore)
  38 *   2. node->list_lock
  39 *   3. slab_lock(page) (Only on some arches and for debugging)
  40 *
  41 *   slub_lock
  42 *
  43 *   The role of the slub_lock is to protect the list of all the slabs
  44 *   and to synchronize major metadata changes to slab cache structures.
  45 *
  46 *   The slab_lock is only used for debugging and on arches that do not
  47 *   have the ability to do a cmpxchg_double. It only protects the second
  48 *   double word in the page struct. Meaning
  49 *	A. page->freelist	-> List of object free in a page
  50 *	B. page->counters	-> Counters of objects
  51 *	C. page->frozen		-> frozen state
  52 *
  53 *   If a slab is frozen then it is exempt from list management. It is not
  54 *   on any list. The processor that froze the slab is the one who can
  55 *   perform list operations on the page. Other processors may put objects
  56 *   onto the freelist but the processor that froze the slab is the only
  57 *   one that can retrieve the objects from the page's freelist.
  58 *
  59 *   The list_lock protects the partial and full list on each node and
  60 *   the partial slab counter. If taken then no new slabs may be added or
  61 *   removed from the lists nor make the number of partial slabs be modified.
  62 *   (Note that the total number of slabs is an atomic value that may be
  63 *   modified without taking the list lock).
  64 *
  65 *   The list_lock is a centralized lock and thus we avoid taking it as
  66 *   much as possible. As long as SLUB does not have to handle partial
  67 *   slabs, operations can continue without any centralized lock. F.e.
  68 *   allocating a long series of objects that fill up slabs does not require
  69 *   the list lock.
  70 *   Interrupts are disabled during allocation and deallocation in order to
  71 *   make the slab allocator safe to use in the context of an irq. In addition
  72 *   interrupts are disabled to ensure that the processor does not change
  73 *   while handling per_cpu slabs, due to kernel preemption.
  74 *
  75 * SLUB assigns one slab for allocation to each processor.
  76 * Allocations only occur from these slabs called cpu slabs.
  77 *
  78 * Slabs with free elements are kept on a partial list and during regular
  79 * operations no list for full slabs is used. If an object in a full slab is
  80 * freed then the slab will show up again on the partial lists.
  81 * We track full slabs for debugging purposes though because otherwise we
  82 * cannot scan all objects.
  83 *
  84 * Slabs are freed when they become empty. Teardown and setup is
  85 * minimal so we rely on the page allocators per cpu caches for
  86 * fast frees and allocs.
  87 *
  88 * Overloading of page flags that are otherwise used for LRU management.
  89 *
  90 * PageActive 		The slab is frozen and exempt from list processing.
  91 * 			This means that the slab is dedicated to a purpose
  92 * 			such as satisfying allocations for a specific
  93 * 			processor. Objects may be freed in the slab while
  94 * 			it is frozen but slab_free will then skip the usual
  95 * 			list operations. It is up to the processor holding
  96 * 			the slab to integrate the slab into the slab lists
  97 * 			when the slab is no longer needed.
  98 *
  99 * 			One use of this flag is to mark slabs that are
 100 * 			used for allocations. Then such a slab becomes a cpu
 101 * 			slab. The cpu slab may be equipped with an additional
 102 * 			freelist that allows lockless access to
 103 * 			free objects in addition to the regular freelist
 104 * 			that requires the slab lock.
 105 *
 106 * PageError		Slab requires special handling due to debug
 107 * 			options set. This moves	slab handling out of
 108 * 			the fast path and disables lockless freelists.
 109 */
 110
 111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 112		SLAB_TRACE | SLAB_DEBUG_FREE)
 113
 114static inline int kmem_cache_debug(struct kmem_cache *s)
 115{
 116#ifdef CONFIG_SLUB_DEBUG
 117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 118#else
 119	return 0;
 120#endif
 121}
 122
 
 
 
 
 
 
 
 
 
 123/*
 124 * Issues still to be resolved:
 125 *
 126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 127 *
 128 * - Variable sizing of the per node arrays
 129 */
 130
 131/* Enable to test recovery from slab corruption on boot */
 132#undef SLUB_RESILIENCY_TEST
 133
 134/* Enable to log cmpxchg failures */
 135#undef SLUB_DEBUG_CMPXCHG
 136
 137/*
 138 * Mininum number of partial slabs. These will be left on the partial
 139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 140 */
 141#define MIN_PARTIAL 5
 142
 143/*
 144 * Maximum number of desirable partial slabs.
 145 * The existence of more partial slabs makes kmem_cache_shrink
 146 * sort the partial list by the number of objects in the.
 147 */
 148#define MAX_PARTIAL 10
 149
 150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 151				SLAB_POISON | SLAB_STORE_USER)
 152
 153/*
 154 * Debugging flags that require metadata to be stored in the slab.  These get
 155 * disabled when slub_debug=O is used and a cache's min order increases with
 156 * metadata.
 157 */
 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 159
 160/*
 161 * Set of flags that will prevent slab merging
 162 */
 163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 164		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 165		SLAB_FAILSLAB)
 166
 167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 168		SLAB_CACHE_DMA | SLAB_NOTRACK)
 169
 170#define OO_SHIFT	16
 171#define OO_MASK		((1 << OO_SHIFT) - 1)
 172#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 173
 174/* Internal SLUB flags */
 175#define __OBJECT_POISON		0x80000000UL /* Poison object */
 176#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 177
 178static int kmem_size = sizeof(struct kmem_cache);
 179
 180#ifdef CONFIG_SMP
 181static struct notifier_block slab_notifier;
 182#endif
 183
 184static enum {
 185	DOWN,		/* No slab functionality available */
 186	PARTIAL,	/* Kmem_cache_node works */
 187	UP,		/* Everything works but does not show up in sysfs */
 188	SYSFS		/* Sysfs up */
 189} slab_state = DOWN;
 190
 191/* A list of all slab caches on the system */
 192static DECLARE_RWSEM(slub_lock);
 193static LIST_HEAD(slab_caches);
 194
 195/*
 196 * Tracking user of a slab.
 197 */
 198#define TRACK_ADDRS_COUNT 16
 199struct track {
 200	unsigned long addr;	/* Called from address */
 201#ifdef CONFIG_STACKTRACE
 202	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 203#endif
 204	int cpu;		/* Was running on cpu */
 205	int pid;		/* Pid context */
 206	unsigned long when;	/* When did the operation occur */
 207};
 208
 209enum track_item { TRACK_ALLOC, TRACK_FREE };
 210
 211#ifdef CONFIG_SYSFS
 212static int sysfs_slab_add(struct kmem_cache *);
 213static int sysfs_slab_alias(struct kmem_cache *, const char *);
 214static void sysfs_slab_remove(struct kmem_cache *);
 215
 216#else
 217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 219							{ return 0; }
 220static inline void sysfs_slab_remove(struct kmem_cache *s)
 221{
 222	kfree(s->name);
 223	kfree(s);
 224}
 225
 226#endif
 227
 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
 229{
 230#ifdef CONFIG_SLUB_STATS
 231	__this_cpu_inc(s->cpu_slab->stat[si]);
 
 
 
 
 232#endif
 233}
 234
 235/********************************************************************
 236 * 			Core slab cache functions
 237 *******************************************************************/
 238
 239int slab_is_available(void)
 240{
 241	return slab_state >= UP;
 242}
 243
 244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 245{
 246	return s->node[node];
 247}
 248
 249/* Verify that a pointer has an address that is valid within a slab page */
 250static inline int check_valid_pointer(struct kmem_cache *s,
 251				struct page *page, const void *object)
 252{
 253	void *base;
 254
 255	if (!object)
 256		return 1;
 257
 258	base = page_address(page);
 259	if (object < base || object >= base + page->objects * s->size ||
 260		(object - base) % s->size) {
 261		return 0;
 262	}
 263
 264	return 1;
 265}
 266
 267static inline void *get_freepointer(struct kmem_cache *s, void *object)
 268{
 269	return *(void **)(object + s->offset);
 270}
 271
 
 
 
 
 
 272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 273{
 274	void *p;
 275
 276#ifdef CONFIG_DEBUG_PAGEALLOC
 277	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 278#else
 279	p = get_freepointer(s, object);
 280#endif
 281	return p;
 282}
 283
 284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 285{
 286	*(void **)(object + s->offset) = fp;
 287}
 288
 289/* Loop over all objects in a slab */
 290#define for_each_object(__p, __s, __addr, __objects) \
 291	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 292			__p += (__s)->size)
 293
 294/* Determine object index from a given position */
 295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 296{
 297	return (p - addr) / s->size;
 298}
 299
 300static inline size_t slab_ksize(const struct kmem_cache *s)
 301{
 302#ifdef CONFIG_SLUB_DEBUG
 303	/*
 304	 * Debugging requires use of the padding between object
 305	 * and whatever may come after it.
 306	 */
 307	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 308		return s->objsize;
 309
 310#endif
 311	/*
 312	 * If we have the need to store the freelist pointer
 313	 * back there or track user information then we can
 314	 * only use the space before that information.
 315	 */
 316	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 317		return s->inuse;
 318	/*
 319	 * Else we can use all the padding etc for the allocation
 320	 */
 321	return s->size;
 322}
 323
 324static inline int order_objects(int order, unsigned long size, int reserved)
 325{
 326	return ((PAGE_SIZE << order) - reserved) / size;
 327}
 328
 329static inline struct kmem_cache_order_objects oo_make(int order,
 330		unsigned long size, int reserved)
 331{
 332	struct kmem_cache_order_objects x = {
 333		(order << OO_SHIFT) + order_objects(order, size, reserved)
 334	};
 335
 336	return x;
 337}
 338
 339static inline int oo_order(struct kmem_cache_order_objects x)
 340{
 341	return x.x >> OO_SHIFT;
 342}
 343
 344static inline int oo_objects(struct kmem_cache_order_objects x)
 345{
 346	return x.x & OO_MASK;
 347}
 348
 349/*
 350 * Per slab locking using the pagelock
 351 */
 352static __always_inline void slab_lock(struct page *page)
 353{
 354	bit_spin_lock(PG_locked, &page->flags);
 355}
 356
 357static __always_inline void slab_unlock(struct page *page)
 358{
 359	__bit_spin_unlock(PG_locked, &page->flags);
 360}
 361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362/* Interrupts must be disabled (for the fallback code to work right) */
 363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 364		void *freelist_old, unsigned long counters_old,
 365		void *freelist_new, unsigned long counters_new,
 366		const char *n)
 367{
 368	VM_BUG_ON(!irqs_disabled());
 369#ifdef CONFIG_CMPXCHG_DOUBLE
 
 370	if (s->flags & __CMPXCHG_DOUBLE) {
 371		if (cmpxchg_double(&page->freelist,
 372			freelist_old, counters_old,
 373			freelist_new, counters_new))
 374		return 1;
 375	} else
 376#endif
 377	{
 378		slab_lock(page);
 379		if (page->freelist == freelist_old && page->counters == counters_old) {
 
 380			page->freelist = freelist_new;
 381			page->counters = counters_new;
 382			slab_unlock(page);
 383			return 1;
 384		}
 385		slab_unlock(page);
 386	}
 387
 388	cpu_relax();
 389	stat(s, CMPXCHG_DOUBLE_FAIL);
 390
 391#ifdef SLUB_DEBUG_CMPXCHG
 392	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 393#endif
 394
 395	return 0;
 396}
 397
 398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 399		void *freelist_old, unsigned long counters_old,
 400		void *freelist_new, unsigned long counters_new,
 401		const char *n)
 402{
 403#ifdef CONFIG_CMPXCHG_DOUBLE
 
 404	if (s->flags & __CMPXCHG_DOUBLE) {
 405		if (cmpxchg_double(&page->freelist,
 406			freelist_old, counters_old,
 407			freelist_new, counters_new))
 408		return 1;
 409	} else
 410#endif
 411	{
 412		unsigned long flags;
 413
 414		local_irq_save(flags);
 415		slab_lock(page);
 416		if (page->freelist == freelist_old && page->counters == counters_old) {
 
 417			page->freelist = freelist_new;
 418			page->counters = counters_new;
 419			slab_unlock(page);
 420			local_irq_restore(flags);
 421			return 1;
 422		}
 423		slab_unlock(page);
 424		local_irq_restore(flags);
 425	}
 426
 427	cpu_relax();
 428	stat(s, CMPXCHG_DOUBLE_FAIL);
 429
 430#ifdef SLUB_DEBUG_CMPXCHG
 431	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 432#endif
 433
 434	return 0;
 435}
 436
 437#ifdef CONFIG_SLUB_DEBUG
 438/*
 439 * Determine a map of object in use on a page.
 440 *
 441 * Node listlock must be held to guarantee that the page does
 442 * not vanish from under us.
 443 */
 444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 445{
 446	void *p;
 447	void *addr = page_address(page);
 448
 449	for (p = page->freelist; p; p = get_freepointer(s, p))
 450		set_bit(slab_index(p, s, addr), map);
 451}
 452
 453/*
 454 * Debug settings:
 455 */
 456#ifdef CONFIG_SLUB_DEBUG_ON
 457static int slub_debug = DEBUG_DEFAULT_FLAGS;
 458#else
 459static int slub_debug;
 460#endif
 461
 462static char *slub_debug_slabs;
 463static int disable_higher_order_debug;
 464
 465/*
 466 * Object debugging
 467 */
 468static void print_section(char *text, u8 *addr, unsigned int length)
 469{
 470	int i, offset;
 471	int newline = 1;
 472	char ascii[17];
 473
 474	ascii[16] = 0;
 475
 476	for (i = 0; i < length; i++) {
 477		if (newline) {
 478			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
 479			newline = 0;
 480		}
 481		printk(KERN_CONT " %02x", addr[i]);
 482		offset = i % 16;
 483		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
 484		if (offset == 15) {
 485			printk(KERN_CONT " %s\n", ascii);
 486			newline = 1;
 487		}
 488	}
 489	if (!newline) {
 490		i %= 16;
 491		while (i < 16) {
 492			printk(KERN_CONT "   ");
 493			ascii[i] = ' ';
 494			i++;
 495		}
 496		printk(KERN_CONT " %s\n", ascii);
 497	}
 498}
 499
 500static struct track *get_track(struct kmem_cache *s, void *object,
 501	enum track_item alloc)
 502{
 503	struct track *p;
 504
 505	if (s->offset)
 506		p = object + s->offset + sizeof(void *);
 507	else
 508		p = object + s->inuse;
 509
 510	return p + alloc;
 511}
 512
 513static void set_track(struct kmem_cache *s, void *object,
 514			enum track_item alloc, unsigned long addr)
 515{
 516	struct track *p = get_track(s, object, alloc);
 517
 518	if (addr) {
 519#ifdef CONFIG_STACKTRACE
 520		struct stack_trace trace;
 521		int i;
 522
 523		trace.nr_entries = 0;
 524		trace.max_entries = TRACK_ADDRS_COUNT;
 525		trace.entries = p->addrs;
 526		trace.skip = 3;
 527		save_stack_trace(&trace);
 528
 529		/* See rant in lockdep.c */
 530		if (trace.nr_entries != 0 &&
 531		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 532			trace.nr_entries--;
 533
 534		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 535			p->addrs[i] = 0;
 536#endif
 537		p->addr = addr;
 538		p->cpu = smp_processor_id();
 539		p->pid = current->pid;
 540		p->when = jiffies;
 541	} else
 542		memset(p, 0, sizeof(struct track));
 543}
 544
 545static void init_tracking(struct kmem_cache *s, void *object)
 546{
 547	if (!(s->flags & SLAB_STORE_USER))
 548		return;
 549
 550	set_track(s, object, TRACK_FREE, 0UL);
 551	set_track(s, object, TRACK_ALLOC, 0UL);
 552}
 553
 554static void print_track(const char *s, struct track *t)
 555{
 556	if (!t->addr)
 557		return;
 558
 559	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 560		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 561#ifdef CONFIG_STACKTRACE
 562	{
 563		int i;
 564		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 565			if (t->addrs[i])
 566				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
 567			else
 568				break;
 569	}
 570#endif
 571}
 572
 573static void print_tracking(struct kmem_cache *s, void *object)
 574{
 575	if (!(s->flags & SLAB_STORE_USER))
 576		return;
 577
 578	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 579	print_track("Freed", get_track(s, object, TRACK_FREE));
 580}
 581
 582static void print_page_info(struct page *page)
 583{
 584	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 585		page, page->objects, page->inuse, page->freelist, page->flags);
 
 586
 587}
 588
 589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 590{
 591	va_list args;
 592	char buf[100];
 593
 594	va_start(args, fmt);
 595	vsnprintf(buf, sizeof(buf), fmt, args);
 596	va_end(args);
 597	printk(KERN_ERR "========================================"
 598			"=====================================\n");
 599	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
 600	printk(KERN_ERR "----------------------------------------"
 601			"-------------------------------------\n\n");
 
 
 602}
 603
 604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 605{
 606	va_list args;
 607	char buf[100];
 608
 609	va_start(args, fmt);
 610	vsnprintf(buf, sizeof(buf), fmt, args);
 611	va_end(args);
 612	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 613}
 614
 615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 616{
 617	unsigned int off;	/* Offset of last byte */
 618	u8 *addr = page_address(page);
 619
 620	print_tracking(s, p);
 621
 622	print_page_info(page);
 623
 624	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 625			p, p - addr, get_freepointer(s, p));
 626
 627	if (p > addr + 16)
 628		print_section("Bytes b4", p - 16, 16);
 629
 630	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
 631
 
 
 632	if (s->flags & SLAB_RED_ZONE)
 633		print_section("Redzone", p + s->objsize,
 634			s->inuse - s->objsize);
 635
 636	if (s->offset)
 637		off = s->offset + sizeof(void *);
 638	else
 639		off = s->inuse;
 640
 641	if (s->flags & SLAB_STORE_USER)
 642		off += 2 * sizeof(struct track);
 643
 644	if (off != s->size)
 645		/* Beginning of the filler is the free pointer */
 646		print_section("Padding", p + off, s->size - off);
 647
 648	dump_stack();
 649}
 650
 651static void object_err(struct kmem_cache *s, struct page *page,
 652			u8 *object, char *reason)
 653{
 654	slab_bug(s, "%s", reason);
 655	print_trailer(s, page, object);
 656}
 657
 658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
 
 659{
 660	va_list args;
 661	char buf[100];
 662
 663	va_start(args, fmt);
 664	vsnprintf(buf, sizeof(buf), fmt, args);
 665	va_end(args);
 666	slab_bug(s, "%s", buf);
 667	print_page_info(page);
 668	dump_stack();
 669}
 670
 671static void init_object(struct kmem_cache *s, void *object, u8 val)
 672{
 673	u8 *p = object;
 674
 675	if (s->flags & __OBJECT_POISON) {
 676		memset(p, POISON_FREE, s->objsize - 1);
 677		p[s->objsize - 1] = POISON_END;
 678	}
 679
 680	if (s->flags & SLAB_RED_ZONE)
 681		memset(p + s->objsize, val, s->inuse - s->objsize);
 682}
 683
 684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
 685{
 686	while (bytes) {
 687		if (*start != value)
 688			return start;
 689		start++;
 690		bytes--;
 691	}
 692	return NULL;
 693}
 694
 695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
 696{
 697	u64 value64;
 698	unsigned int words, prefix;
 699
 700	if (bytes <= 16)
 701		return check_bytes8(start, value, bytes);
 702
 703	value64 = value | value << 8 | value << 16 | value << 24;
 704	value64 = (value64 & 0xffffffff) | value64 << 32;
 705	prefix = 8 - ((unsigned long)start) % 8;
 706
 707	if (prefix) {
 708		u8 *r = check_bytes8(start, value, prefix);
 709		if (r)
 710			return r;
 711		start += prefix;
 712		bytes -= prefix;
 713	}
 714
 715	words = bytes / 8;
 716
 717	while (words) {
 718		if (*(u64 *)start != value64)
 719			return check_bytes8(start, value, 8);
 720		start += 8;
 721		words--;
 722	}
 723
 724	return check_bytes8(start, value, bytes % 8);
 725}
 726
 727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 728						void *from, void *to)
 729{
 730	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 731	memset(from, data, to - from);
 732}
 733
 734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 735			u8 *object, char *what,
 736			u8 *start, unsigned int value, unsigned int bytes)
 737{
 738	u8 *fault;
 739	u8 *end;
 740
 741	fault = check_bytes(start, value, bytes);
 742	if (!fault)
 743		return 1;
 744
 745	end = start + bytes;
 746	while (end > fault && end[-1] == value)
 747		end--;
 748
 749	slab_bug(s, "%s overwritten", what);
 750	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 751					fault, end - 1, fault[0], value);
 752	print_trailer(s, page, object);
 753
 754	restore_bytes(s, what, value, fault, end);
 755	return 0;
 756}
 757
 758/*
 759 * Object layout:
 760 *
 761 * object address
 762 * 	Bytes of the object to be managed.
 763 * 	If the freepointer may overlay the object then the free
 764 * 	pointer is the first word of the object.
 765 *
 766 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 767 * 	0xa5 (POISON_END)
 768 *
 769 * object + s->objsize
 770 * 	Padding to reach word boundary. This is also used for Redzoning.
 771 * 	Padding is extended by another word if Redzoning is enabled and
 772 * 	objsize == inuse.
 773 *
 774 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 775 * 	0xcc (RED_ACTIVE) for objects in use.
 776 *
 777 * object + s->inuse
 778 * 	Meta data starts here.
 779 *
 780 * 	A. Free pointer (if we cannot overwrite object on free)
 781 * 	B. Tracking data for SLAB_STORE_USER
 782 * 	C. Padding to reach required alignment boundary or at mininum
 783 * 		one word if debugging is on to be able to detect writes
 784 * 		before the word boundary.
 785 *
 786 *	Padding is done using 0x5a (POISON_INUSE)
 787 *
 788 * object + s->size
 789 * 	Nothing is used beyond s->size.
 790 *
 791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 792 * ignored. And therefore no slab options that rely on these boundaries
 793 * may be used with merged slabcaches.
 794 */
 795
 796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 797{
 798	unsigned long off = s->inuse;	/* The end of info */
 799
 800	if (s->offset)
 801		/* Freepointer is placed after the object. */
 802		off += sizeof(void *);
 803
 804	if (s->flags & SLAB_STORE_USER)
 805		/* We also have user information there */
 806		off += 2 * sizeof(struct track);
 807
 808	if (s->size == off)
 809		return 1;
 810
 811	return check_bytes_and_report(s, page, p, "Object padding",
 812				p + off, POISON_INUSE, s->size - off);
 813}
 814
 815/* Check the pad bytes at the end of a slab page */
 816static int slab_pad_check(struct kmem_cache *s, struct page *page)
 817{
 818	u8 *start;
 819	u8 *fault;
 820	u8 *end;
 821	int length;
 822	int remainder;
 823
 824	if (!(s->flags & SLAB_POISON))
 825		return 1;
 826
 827	start = page_address(page);
 828	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 829	end = start + length;
 830	remainder = length % s->size;
 831	if (!remainder)
 832		return 1;
 833
 834	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
 835	if (!fault)
 836		return 1;
 837	while (end > fault && end[-1] == POISON_INUSE)
 838		end--;
 839
 840	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 841	print_section("Padding", end - remainder, remainder);
 842
 843	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 844	return 0;
 845}
 846
 847static int check_object(struct kmem_cache *s, struct page *page,
 848					void *object, u8 val)
 849{
 850	u8 *p = object;
 851	u8 *endobject = object + s->objsize;
 852
 853	if (s->flags & SLAB_RED_ZONE) {
 854		if (!check_bytes_and_report(s, page, object, "Redzone",
 855			endobject, val, s->inuse - s->objsize))
 856			return 0;
 857	} else {
 858		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
 859			check_bytes_and_report(s, page, p, "Alignment padding",
 860				endobject, POISON_INUSE, s->inuse - s->objsize);
 
 861		}
 862	}
 863
 864	if (s->flags & SLAB_POISON) {
 865		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 866			(!check_bytes_and_report(s, page, p, "Poison", p,
 867					POISON_FREE, s->objsize - 1) ||
 868			 !check_bytes_and_report(s, page, p, "Poison",
 869				p + s->objsize - 1, POISON_END, 1)))
 870			return 0;
 871		/*
 872		 * check_pad_bytes cleans up on its own.
 873		 */
 874		check_pad_bytes(s, page, p);
 875	}
 876
 877	if (!s->offset && val == SLUB_RED_ACTIVE)
 878		/*
 879		 * Object and freepointer overlap. Cannot check
 880		 * freepointer while object is allocated.
 881		 */
 882		return 1;
 883
 884	/* Check free pointer validity */
 885	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 886		object_err(s, page, p, "Freepointer corrupt");
 887		/*
 888		 * No choice but to zap it and thus lose the remainder
 889		 * of the free objects in this slab. May cause
 890		 * another error because the object count is now wrong.
 891		 */
 892		set_freepointer(s, p, NULL);
 893		return 0;
 894	}
 895	return 1;
 896}
 897
 898static int check_slab(struct kmem_cache *s, struct page *page)
 899{
 900	int maxobj;
 901
 902	VM_BUG_ON(!irqs_disabled());
 903
 904	if (!PageSlab(page)) {
 905		slab_err(s, page, "Not a valid slab page");
 906		return 0;
 907	}
 908
 909	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 910	if (page->objects > maxobj) {
 911		slab_err(s, page, "objects %u > max %u",
 912			s->name, page->objects, maxobj);
 913		return 0;
 914	}
 915	if (page->inuse > page->objects) {
 916		slab_err(s, page, "inuse %u > max %u",
 917			s->name, page->inuse, page->objects);
 918		return 0;
 919	}
 920	/* Slab_pad_check fixes things up after itself */
 921	slab_pad_check(s, page);
 922	return 1;
 923}
 924
 925/*
 926 * Determine if a certain object on a page is on the freelist. Must hold the
 927 * slab lock to guarantee that the chains are in a consistent state.
 928 */
 929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 930{
 931	int nr = 0;
 932	void *fp;
 933	void *object = NULL;
 934	unsigned long max_objects;
 935
 936	fp = page->freelist;
 937	while (fp && nr <= page->objects) {
 938		if (fp == search)
 939			return 1;
 940		if (!check_valid_pointer(s, page, fp)) {
 941			if (object) {
 942				object_err(s, page, object,
 943					"Freechain corrupt");
 944				set_freepointer(s, object, NULL);
 945				break;
 946			} else {
 947				slab_err(s, page, "Freepointer corrupt");
 948				page->freelist = NULL;
 949				page->inuse = page->objects;
 950				slab_fix(s, "Freelist cleared");
 951				return 0;
 952			}
 953			break;
 954		}
 955		object = fp;
 956		fp = get_freepointer(s, object);
 957		nr++;
 958	}
 959
 960	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 961	if (max_objects > MAX_OBJS_PER_PAGE)
 962		max_objects = MAX_OBJS_PER_PAGE;
 963
 964	if (page->objects != max_objects) {
 965		slab_err(s, page, "Wrong number of objects. Found %d but "
 966			"should be %d", page->objects, max_objects);
 967		page->objects = max_objects;
 968		slab_fix(s, "Number of objects adjusted.");
 969	}
 970	if (page->inuse != page->objects - nr) {
 971		slab_err(s, page, "Wrong object count. Counter is %d but "
 972			"counted were %d", page->inuse, page->objects - nr);
 973		page->inuse = page->objects - nr;
 974		slab_fix(s, "Object count adjusted.");
 975	}
 976	return search == NULL;
 977}
 978
 979static void trace(struct kmem_cache *s, struct page *page, void *object,
 980								int alloc)
 981{
 982	if (s->flags & SLAB_TRACE) {
 983		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 984			s->name,
 985			alloc ? "alloc" : "free",
 986			object, page->inuse,
 987			page->freelist);
 988
 989		if (!alloc)
 990			print_section("Object", (void *)object, s->objsize);
 
 991
 992		dump_stack();
 993	}
 994}
 995
 996/*
 997 * Hooks for other subsystems that check memory allocations. In a typical
 998 * production configuration these hooks all should produce no code at all.
 999 */
 
 
 
 
 
 
 
 
 
 
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
1002	flags &= gfp_allowed_mask;
1003	lockdep_trace_alloc(flags);
1004	might_sleep_if(flags & __GFP_WAIT);
1005
1006	return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
 
1010{
1011	flags &= gfp_allowed_mask;
1012	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1013	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018	kmemleak_free_recursive(x, s->flags);
1019
1020	/*
1021	 * Trouble is that we may no longer disable interupts in the fast path
1022	 * So in order to make the debug calls that expect irqs to be
1023	 * disabled we need to disable interrupts temporarily.
1024	 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026	{
1027		unsigned long flags;
1028
1029		local_irq_save(flags);
1030		kmemcheck_slab_free(s, x, s->objsize);
1031		debug_check_no_locks_freed(x, s->objsize);
1032		local_irq_restore(flags);
1033	}
1034#endif
1035	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036		debug_check_no_obj_freed(x, s->objsize);
1037}
1038
1039/*
1040 * Tracking of fully allocated slabs for debugging purposes.
1041 *
1042 * list_lock must be held.
1043 */
1044static void add_full(struct kmem_cache *s,
1045	struct kmem_cache_node *n, struct page *page)
1046{
1047	if (!(s->flags & SLAB_STORE_USER))
1048		return;
1049
 
1050	list_add(&page->lru, &n->full);
1051}
1052
1053/*
1054 * list_lock must be held.
1055 */
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
1058	if (!(s->flags & SLAB_STORE_USER))
1059		return;
1060
 
1061	list_del(&page->lru);
1062}
1063
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067	struct kmem_cache_node *n = get_node(s, node);
1068
1069	return atomic_long_read(&n->nr_slabs);
1070}
1071
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074	return atomic_long_read(&n->nr_slabs);
1075}
1076
1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1078{
1079	struct kmem_cache_node *n = get_node(s, node);
1080
1081	/*
1082	 * May be called early in order to allocate a slab for the
1083	 * kmem_cache_node structure. Solve the chicken-egg
1084	 * dilemma by deferring the increment of the count during
1085	 * bootstrap (see early_kmem_cache_node_alloc).
1086	 */
1087	if (n) {
1088		atomic_long_inc(&n->nr_slabs);
1089		atomic_long_add(objects, &n->total_objects);
1090	}
1091}
1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1093{
1094	struct kmem_cache_node *n = get_node(s, node);
1095
1096	atomic_long_dec(&n->nr_slabs);
1097	atomic_long_sub(objects, &n->total_objects);
1098}
1099
1100/* Object debug checks for alloc/free paths */
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102								void *object)
1103{
1104	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105		return;
1106
1107	init_object(s, object, SLUB_RED_INACTIVE);
1108	init_tracking(s, object);
1109}
1110
1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
 
1112					void *object, unsigned long addr)
1113{
1114	if (!check_slab(s, page))
1115		goto bad;
1116
1117	if (!check_valid_pointer(s, page, object)) {
1118		object_err(s, page, object, "Freelist Pointer check fails");
1119		goto bad;
1120	}
1121
1122	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1123		goto bad;
1124
1125	/* Success perform special debug activities for allocs */
1126	if (s->flags & SLAB_STORE_USER)
1127		set_track(s, object, TRACK_ALLOC, addr);
1128	trace(s, page, object, 1);
1129	init_object(s, object, SLUB_RED_ACTIVE);
1130	return 1;
1131
1132bad:
1133	if (PageSlab(page)) {
1134		/*
1135		 * If this is a slab page then lets do the best we can
1136		 * to avoid issues in the future. Marking all objects
1137		 * as used avoids touching the remaining objects.
1138		 */
1139		slab_fix(s, "Marking all objects used");
1140		page->inuse = page->objects;
1141		page->freelist = NULL;
1142	}
1143	return 0;
1144}
1145
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147		 struct page *page, void *object, unsigned long addr)
 
1148{
1149	unsigned long flags;
1150	int rc = 0;
1151
1152	local_irq_save(flags);
1153	slab_lock(page);
1154
1155	if (!check_slab(s, page))
1156		goto fail;
1157
1158	if (!check_valid_pointer(s, page, object)) {
1159		slab_err(s, page, "Invalid object pointer 0x%p", object);
1160		goto fail;
1161	}
1162
1163	if (on_freelist(s, page, object)) {
1164		object_err(s, page, object, "Object already free");
1165		goto fail;
1166	}
1167
1168	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169		goto out;
1170
1171	if (unlikely(s != page->slab)) {
1172		if (!PageSlab(page)) {
1173			slab_err(s, page, "Attempt to free object(0x%p) "
1174				"outside of slab", object);
1175		} else if (!page->slab) {
1176			printk(KERN_ERR
1177				"SLUB <none>: no slab for object 0x%p.\n",
1178						object);
1179			dump_stack();
1180		} else
1181			object_err(s, page, object,
1182					"page slab pointer corrupt.");
1183		goto fail;
1184	}
1185
1186	if (s->flags & SLAB_STORE_USER)
1187		set_track(s, object, TRACK_FREE, addr);
1188	trace(s, page, object, 0);
1189	init_object(s, object, SLUB_RED_INACTIVE);
1190	rc = 1;
1191out:
1192	slab_unlock(page);
1193	local_irq_restore(flags);
1194	return rc;
 
 
 
1195
1196fail:
 
 
1197	slab_fix(s, "Object at 0x%p not freed", object);
1198	goto out;
1199}
1200
1201static int __init setup_slub_debug(char *str)
1202{
1203	slub_debug = DEBUG_DEFAULT_FLAGS;
1204	if (*str++ != '=' || !*str)
1205		/*
1206		 * No options specified. Switch on full debugging.
1207		 */
1208		goto out;
1209
1210	if (*str == ',')
1211		/*
1212		 * No options but restriction on slabs. This means full
1213		 * debugging for slabs matching a pattern.
1214		 */
1215		goto check_slabs;
1216
1217	if (tolower(*str) == 'o') {
1218		/*
1219		 * Avoid enabling debugging on caches if its minimum order
1220		 * would increase as a result.
1221		 */
1222		disable_higher_order_debug = 1;
1223		goto out;
1224	}
1225
1226	slub_debug = 0;
1227	if (*str == '-')
1228		/*
1229		 * Switch off all debugging measures.
1230		 */
1231		goto out;
1232
1233	/*
1234	 * Determine which debug features should be switched on
1235	 */
1236	for (; *str && *str != ','; str++) {
1237		switch (tolower(*str)) {
1238		case 'f':
1239			slub_debug |= SLAB_DEBUG_FREE;
1240			break;
1241		case 'z':
1242			slub_debug |= SLAB_RED_ZONE;
1243			break;
1244		case 'p':
1245			slub_debug |= SLAB_POISON;
1246			break;
1247		case 'u':
1248			slub_debug |= SLAB_STORE_USER;
1249			break;
1250		case 't':
1251			slub_debug |= SLAB_TRACE;
1252			break;
1253		case 'a':
1254			slub_debug |= SLAB_FAILSLAB;
1255			break;
1256		default:
1257			printk(KERN_ERR "slub_debug option '%c' "
1258				"unknown. skipped\n", *str);
1259		}
1260	}
1261
1262check_slabs:
1263	if (*str == ',')
1264		slub_debug_slabs = str + 1;
1265out:
1266	return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272	unsigned long flags, const char *name,
1273	void (*ctor)(void *))
1274{
1275	/*
1276	 * Enable debugging if selected on the kernel commandline.
1277	 */
1278	if (slub_debug && (!slub_debug_slabs ||
1279		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280		flags |= slub_debug;
1281
1282	return flags;
1283}
1284#else
1285static inline void setup_object_debug(struct kmem_cache *s,
1286			struct page *page, void *object) {}
1287
1288static inline int alloc_debug_processing(struct kmem_cache *s,
1289	struct page *page, void *object, unsigned long addr) { return 0; }
1290
1291static inline int free_debug_processing(struct kmem_cache *s,
1292	struct page *page, void *object, unsigned long addr) { return 0; }
 
1293
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295			{ return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
1297			void *object, u8 val) { return 1; }
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299					struct page *page) {}
1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
 
1302	unsigned long flags, const char *name,
1303	void (*ctor)(void *))
1304{
1305	return flags;
1306}
1307#define slub_debug 0
1308
1309#define disable_higher_order_debug 0
1310
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312							{ return 0; }
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314							{ return 0; }
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316							int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318							int objects) {}
1319
 
 
 
 
 
 
 
 
 
 
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321							{ return 0; }
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324		void *object) {}
 
 
 
 
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
 
 
 
1327
1328#endif /* CONFIG_SLUB_DEBUG */
1329
1330/*
1331 * Slab allocation and freeing
1332 */
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334					struct kmem_cache_order_objects oo)
1335{
1336	int order = oo_order(oo);
1337
1338	flags |= __GFP_NOTRACK;
1339
1340	if (node == NUMA_NO_NODE)
1341		return alloc_pages(flags, order);
1342	else
1343		return alloc_pages_exact_node(node, flags, order);
1344}
1345
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
1348	struct page *page;
1349	struct kmem_cache_order_objects oo = s->oo;
1350	gfp_t alloc_gfp;
1351
1352	flags &= gfp_allowed_mask;
1353
1354	if (flags & __GFP_WAIT)
1355		local_irq_enable();
1356
1357	flags |= s->allocflags;
1358
1359	/*
1360	 * Let the initial higher-order allocation fail under memory pressure
1361	 * so we fall-back to the minimum order allocation.
1362	 */
1363	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364
1365	page = alloc_slab_page(alloc_gfp, node, oo);
1366	if (unlikely(!page)) {
1367		oo = s->min;
 
1368		/*
1369		 * Allocation may have failed due to fragmentation.
1370		 * Try a lower order alloc if possible
1371		 */
1372		page = alloc_slab_page(flags, node, oo);
1373
1374		if (page)
1375			stat(s, ORDER_FALLBACK);
1376	}
1377
1378	if (flags & __GFP_WAIT)
1379		local_irq_disable();
1380
1381	if (!page)
1382		return NULL;
1383
1384	if (kmemcheck_enabled
1385		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1386		int pages = 1 << oo_order(oo);
1387
1388		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390		/*
1391		 * Objects from caches that have a constructor don't get
1392		 * cleared when they're allocated, so we need to do it here.
1393		 */
1394		if (s->ctor)
1395			kmemcheck_mark_uninitialized_pages(page, pages);
1396		else
1397			kmemcheck_mark_unallocated_pages(page, pages);
1398	}
1399
 
 
 
 
 
1400	page->objects = oo_objects(oo);
1401	mod_zone_page_state(page_zone(page),
1402		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1404		1 << oo_order(oo));
1405
1406	return page;
1407}
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410				void *object)
1411{
1412	setup_object_debug(s, page, object);
1413	if (unlikely(s->ctor))
1414		s->ctor(object);
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419	struct page *page;
1420	void *start;
1421	void *last;
1422	void *p;
 
1423
1424	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1425
1426	page = allocate_slab(s,
1427		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1428	if (!page)
1429		goto out;
1430
 
1431	inc_slabs_node(s, page_to_nid(page), page->objects);
1432	page->slab = s;
1433	page->flags |= 1 << PG_slab;
 
 
 
1434
1435	start = page_address(page);
1436
1437	if (unlikely(s->flags & SLAB_POISON))
1438		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1439
1440	last = start;
1441	for_each_object(p, s, start, page->objects) {
1442		setup_object(s, page, last);
1443		set_freepointer(s, last, p);
1444		last = p;
1445	}
1446	setup_object(s, page, last);
1447	set_freepointer(s, last, NULL);
1448
1449	page->freelist = start;
1450	page->inuse = 0;
1451	page->frozen = 1;
1452out:
1453	return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
1458	int order = compound_order(page);
1459	int pages = 1 << order;
1460
1461	if (kmem_cache_debug(s)) {
1462		void *p;
1463
1464		slab_pad_check(s, page);
1465		for_each_object(p, s, page_address(page),
1466						page->objects)
1467			check_object(s, page, p, SLUB_RED_INACTIVE);
1468	}
1469
1470	kmemcheck_free_shadow(page, compound_order(page));
1471
1472	mod_zone_page_state(page_zone(page),
1473		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1475		-pages);
1476
 
1477	__ClearPageSlab(page);
1478	reset_page_mapcount(page);
 
 
1479	if (current->reclaim_state)
1480		current->reclaim_state->reclaimed_slab += pages;
1481	__free_pages(page, order);
1482}
1483
1484#define need_reserve_slab_rcu						\
1485	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489	struct page *page;
1490
1491	if (need_reserve_slab_rcu)
1492		page = virt_to_head_page(h);
1493	else
1494		page = container_of((struct list_head *)h, struct page, lru);
1495
1496	__free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502		struct rcu_head *head;
1503
1504		if (need_reserve_slab_rcu) {
1505			int order = compound_order(page);
1506			int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508			VM_BUG_ON(s->reserved != sizeof(*head));
1509			head = page_address(page) + offset;
1510		} else {
1511			/*
1512			 * RCU free overloads the RCU head over the LRU
1513			 */
1514			head = (void *)&page->lru;
1515		}
1516
1517		call_rcu(head, rcu_free_slab);
1518	} else
1519		__free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
1524	dec_slabs_node(s, page_to_nid(page), page->objects);
1525	free_slab(s, page);
1526}
1527
1528/*
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
1532 */
1533static inline void add_partial(struct kmem_cache_node *n,
1534				struct page *page, int tail)
1535{
1536	n->nr_partial++;
1537	if (tail)
1538		list_add_tail(&page->lru, &n->partial);
1539	else
1540		list_add(&page->lru, &n->partial);
1541}
1542
1543/*
1544 * list_lock must be held.
1545 */
 
 
 
 
 
 
 
 
 
 
 
1546static inline void remove_partial(struct kmem_cache_node *n,
1547					struct page *page)
1548{
1549	list_del(&page->lru);
1550	n->nr_partial--;
1551}
1552
1553/*
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
1556 *
1557 * Must hold list_lock.
1558 */
1559static inline int acquire_slab(struct kmem_cache *s,
1560		struct kmem_cache_node *n, struct page *page)
 
1561{
1562	void *freelist;
1563	unsigned long counters;
1564	struct page new;
1565
 
 
1566	/*
1567	 * Zap the freelist and set the frozen bit.
1568	 * The old freelist is the list of objects for the
1569	 * per cpu allocation list.
1570	 */
1571	do {
1572		freelist = page->freelist;
1573		counters = page->counters;
1574		new.counters = counters;
 
1575		new.inuse = page->objects;
 
 
 
 
1576
1577		VM_BUG_ON(new.frozen);
1578		new.frozen = 1;
1579
1580	} while (!__cmpxchg_double_slab(s, page,
1581			freelist, counters,
1582			NULL, new.counters,
1583			"lock and freeze"));
 
1584
1585	remove_partial(n, page);
 
 
 
1586
1587	if (freelist) {
1588		/* Populate the per cpu freelist */
1589		this_cpu_write(s->cpu_slab->freelist, freelist);
1590		this_cpu_write(s->cpu_slab->page, page);
1591		this_cpu_write(s->cpu_slab->node, page_to_nid(page));
1592		return 1;
1593	} else {
1594		/*
1595		 * Slab page came from the wrong list. No object to allocate
1596		 * from. Put it onto the correct list and continue partial
1597		 * scan.
1598		 */
1599		printk(KERN_ERR "SLUB: %s : Page without available objects on"
1600			" partial list\n", s->name);
1601		return 0;
1602	}
1603}
1604
1605/*
1606 * Try to allocate a partial slab from a specific node.
1607 */
1608static struct page *get_partial_node(struct kmem_cache *s,
1609					struct kmem_cache_node *n)
1610{
1611	struct page *page;
 
 
 
1612
1613	/*
1614	 * Racy check. If we mistakenly see no partial slabs then we
1615	 * just allocate an empty slab. If we mistakenly try to get a
1616	 * partial slab and there is none available then get_partials()
1617	 * will return NULL.
1618	 */
1619	if (!n || !n->nr_partial)
1620		return NULL;
1621
1622	spin_lock(&n->list_lock);
1623	list_for_each_entry(page, &n->partial, lru)
1624		if (acquire_slab(s, n, page))
1625			goto out;
1626	page = NULL;
1627out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628	spin_unlock(&n->list_lock);
1629	return page;
1630}
1631
1632/*
1633 * Get a page from somewhere. Search in increasing NUMA distances.
1634 */
1635static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
 
1636{
1637#ifdef CONFIG_NUMA
1638	struct zonelist *zonelist;
1639	struct zoneref *z;
1640	struct zone *zone;
1641	enum zone_type high_zoneidx = gfp_zone(flags);
1642	struct page *page;
 
1643
1644	/*
1645	 * The defrag ratio allows a configuration of the tradeoffs between
1646	 * inter node defragmentation and node local allocations. A lower
1647	 * defrag_ratio increases the tendency to do local allocations
1648	 * instead of attempting to obtain partial slabs from other nodes.
1649	 *
1650	 * If the defrag_ratio is set to 0 then kmalloc() always
1651	 * returns node local objects. If the ratio is higher then kmalloc()
1652	 * may return off node objects because partial slabs are obtained
1653	 * from other nodes and filled up.
1654	 *
1655	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1656	 * defrag_ratio = 1000) then every (well almost) allocation will
1657	 * first attempt to defrag slab caches on other nodes. This means
1658	 * scanning over all nodes to look for partial slabs which may be
1659	 * expensive if we do it every time we are trying to find a slab
1660	 * with available objects.
1661	 */
1662	if (!s->remote_node_defrag_ratio ||
1663			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1664		return NULL;
1665
1666	get_mems_allowed();
1667	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1668	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669		struct kmem_cache_node *n;
1670
1671		n = get_node(s, zone_to_nid(zone));
1672
1673		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1674				n->nr_partial > s->min_partial) {
1675			page = get_partial_node(s, n);
1676			if (page) {
1677				put_mems_allowed();
1678				return page;
 
 
 
 
 
 
 
 
1679			}
1680		}
1681	}
1682	put_mems_allowed();
1683#endif
1684	return NULL;
1685}
1686
1687/*
1688 * Get a partial page, lock it and return it.
1689 */
1690static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
 
1691{
1692	struct page *page;
1693	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1694
1695	page = get_partial_node(s, get_node(s, searchnode));
1696	if (page || node != NUMA_NO_NODE)
1697		return page;
1698
1699	return get_any_partial(s, flags);
1700}
1701
1702#ifdef CONFIG_PREEMPT
1703/*
1704 * Calculate the next globally unique transaction for disambiguiation
1705 * during cmpxchg. The transactions start with the cpu number and are then
1706 * incremented by CONFIG_NR_CPUS.
1707 */
1708#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1709#else
1710/*
1711 * No preemption supported therefore also no need to check for
1712 * different cpus.
1713 */
1714#define TID_STEP 1
1715#endif
1716
1717static inline unsigned long next_tid(unsigned long tid)
1718{
1719	return tid + TID_STEP;
1720}
1721
1722static inline unsigned int tid_to_cpu(unsigned long tid)
1723{
1724	return tid % TID_STEP;
1725}
1726
1727static inline unsigned long tid_to_event(unsigned long tid)
1728{
1729	return tid / TID_STEP;
1730}
1731
1732static inline unsigned int init_tid(int cpu)
1733{
1734	return cpu;
1735}
1736
1737static inline void note_cmpxchg_failure(const char *n,
1738		const struct kmem_cache *s, unsigned long tid)
1739{
1740#ifdef SLUB_DEBUG_CMPXCHG
1741	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1742
1743	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1744
1745#ifdef CONFIG_PREEMPT
1746	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1747		printk("due to cpu change %d -> %d\n",
1748			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1749	else
1750#endif
1751	if (tid_to_event(tid) != tid_to_event(actual_tid))
1752		printk("due to cpu running other code. Event %ld->%ld\n",
1753			tid_to_event(tid), tid_to_event(actual_tid));
1754	else
1755		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1756			actual_tid, tid, next_tid(tid));
1757#endif
1758	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1759}
1760
1761void init_kmem_cache_cpus(struct kmem_cache *s)
1762{
1763	int cpu;
1764
1765	for_each_possible_cpu(cpu)
1766		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1767}
1768/*
1769 * Remove the cpu slab
1770 */
1771
1772/*
1773 * Remove the cpu slab
1774 */
1775static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 
1776{
1777	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1778	struct page *page = c->page;
1779	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1780	int lock = 0;
1781	enum slab_modes l = M_NONE, m = M_NONE;
1782	void *freelist;
1783	void *nextfree;
1784	int tail = 0;
1785	struct page new;
1786	struct page old;
1787
1788	if (page->freelist) {
1789		stat(s, DEACTIVATE_REMOTE_FREES);
1790		tail = 1;
1791	}
1792
1793	c->tid = next_tid(c->tid);
1794	c->page = NULL;
1795	freelist = c->freelist;
1796	c->freelist = NULL;
1797
1798	/*
1799	 * Stage one: Free all available per cpu objects back
1800	 * to the page freelist while it is still frozen. Leave the
1801	 * last one.
1802	 *
1803	 * There is no need to take the list->lock because the page
1804	 * is still frozen.
1805	 */
1806	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1807		void *prior;
1808		unsigned long counters;
1809
1810		do {
1811			prior = page->freelist;
1812			counters = page->counters;
1813			set_freepointer(s, freelist, prior);
1814			new.counters = counters;
1815			new.inuse--;
1816			VM_BUG_ON(!new.frozen);
1817
1818		} while (!__cmpxchg_double_slab(s, page,
1819			prior, counters,
1820			freelist, new.counters,
1821			"drain percpu freelist"));
1822
1823		freelist = nextfree;
1824	}
1825
1826	/*
1827	 * Stage two: Ensure that the page is unfrozen while the
1828	 * list presence reflects the actual number of objects
1829	 * during unfreeze.
1830	 *
1831	 * We setup the list membership and then perform a cmpxchg
1832	 * with the count. If there is a mismatch then the page
1833	 * is not unfrozen but the page is on the wrong list.
1834	 *
1835	 * Then we restart the process which may have to remove
1836	 * the page from the list that we just put it on again
1837	 * because the number of objects in the slab may have
1838	 * changed.
1839	 */
1840redo:
1841
1842	old.freelist = page->freelist;
1843	old.counters = page->counters;
1844	VM_BUG_ON(!old.frozen);
1845
1846	/* Determine target state of the slab */
1847	new.counters = old.counters;
1848	if (freelist) {
1849		new.inuse--;
1850		set_freepointer(s, freelist, old.freelist);
1851		new.freelist = freelist;
1852	} else
1853		new.freelist = old.freelist;
1854
1855	new.frozen = 0;
1856
1857	if (!new.inuse && n->nr_partial > s->min_partial)
1858		m = M_FREE;
1859	else if (new.freelist) {
1860		m = M_PARTIAL;
1861		if (!lock) {
1862			lock = 1;
1863			/*
1864			 * Taking the spinlock removes the possiblity
1865			 * that acquire_slab() will see a slab page that
1866			 * is frozen
1867			 */
1868			spin_lock(&n->list_lock);
1869		}
1870	} else {
1871		m = M_FULL;
1872		if (kmem_cache_debug(s) && !lock) {
1873			lock = 1;
1874			/*
1875			 * This also ensures that the scanning of full
1876			 * slabs from diagnostic functions will not see
1877			 * any frozen slabs.
1878			 */
1879			spin_lock(&n->list_lock);
1880		}
1881	}
1882
1883	if (l != m) {
1884
1885		if (l == M_PARTIAL)
1886
1887			remove_partial(n, page);
1888
1889		else if (l == M_FULL)
1890
1891			remove_full(s, page);
1892
1893		if (m == M_PARTIAL) {
1894
1895			add_partial(n, page, tail);
1896			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1897
1898		} else if (m == M_FULL) {
1899
1900			stat(s, DEACTIVATE_FULL);
1901			add_full(s, n, page);
1902
1903		}
1904	}
1905
1906	l = m;
1907	if (!__cmpxchg_double_slab(s, page,
1908				old.freelist, old.counters,
1909				new.freelist, new.counters,
1910				"unfreezing slab"))
1911		goto redo;
1912
1913	if (lock)
1914		spin_unlock(&n->list_lock);
1915
1916	if (m == M_FREE) {
1917		stat(s, DEACTIVATE_EMPTY);
1918		discard_slab(s, page);
1919		stat(s, FREE_SLAB);
1920	}
1921}
1922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1924{
1925	stat(s, CPUSLAB_FLUSH);
1926	deactivate_slab(s, c);
 
 
 
 
1927}
1928
1929/*
1930 * Flush cpu slab.
1931 *
1932 * Called from IPI handler with interrupts disabled.
1933 */
1934static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1935{
1936	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1937
1938	if (likely(c && c->page))
1939		flush_slab(s, c);
 
 
 
 
1940}
1941
1942static void flush_cpu_slab(void *d)
1943{
1944	struct kmem_cache *s = d;
1945
1946	__flush_cpu_slab(s, smp_processor_id());
1947}
1948
 
 
 
 
 
 
 
 
1949static void flush_all(struct kmem_cache *s)
1950{
1951	on_each_cpu(flush_cpu_slab, s, 1);
1952}
1953
1954/*
1955 * Check if the objects in a per cpu structure fit numa
1956 * locality expectations.
1957 */
1958static inline int node_match(struct kmem_cache_cpu *c, int node)
1959{
1960#ifdef CONFIG_NUMA
1961	if (node != NUMA_NO_NODE && c->node != node)
1962		return 0;
1963#endif
1964	return 1;
1965}
1966
1967static int count_free(struct page *page)
1968{
1969	return page->objects - page->inuse;
1970}
1971
1972static unsigned long count_partial(struct kmem_cache_node *n,
1973					int (*get_count)(struct page *))
1974{
1975	unsigned long flags;
1976	unsigned long x = 0;
1977	struct page *page;
1978
1979	spin_lock_irqsave(&n->list_lock, flags);
1980	list_for_each_entry(page, &n->partial, lru)
1981		x += get_count(page);
1982	spin_unlock_irqrestore(&n->list_lock, flags);
1983	return x;
1984}
1985
1986static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1987{
1988#ifdef CONFIG_SLUB_DEBUG
1989	return atomic_long_read(&n->total_objects);
1990#else
1991	return 0;
1992#endif
1993}
1994
1995static noinline void
1996slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1997{
1998	int node;
1999
2000	printk(KERN_WARNING
2001		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2002		nid, gfpflags);
2003	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2004		"default order: %d, min order: %d\n", s->name, s->objsize,
2005		s->size, oo_order(s->oo), oo_order(s->min));
2006
2007	if (oo_order(s->min) > get_order(s->objsize))
2008		printk(KERN_WARNING "  %s debugging increased min order, use "
2009		       "slub_debug=O to disable.\n", s->name);
2010
2011	for_each_online_node(node) {
2012		struct kmem_cache_node *n = get_node(s, node);
2013		unsigned long nr_slabs;
2014		unsigned long nr_objs;
2015		unsigned long nr_free;
2016
2017		if (!n)
2018			continue;
2019
2020		nr_free  = count_partial(n, count_free);
2021		nr_slabs = node_nr_slabs(n);
2022		nr_objs  = node_nr_objs(n);
2023
2024		printk(KERN_WARNING
2025			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2026			node, nr_slabs, nr_objs, nr_free);
2027	}
2028}
2029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030/*
2031 * Slow path. The lockless freelist is empty or we need to perform
2032 * debugging duties.
2033 *
2034 * Interrupts are disabled.
2035 *
2036 * Processing is still very fast if new objects have been freed to the
2037 * regular freelist. In that case we simply take over the regular freelist
2038 * as the lockless freelist and zap the regular freelist.
2039 *
2040 * If that is not working then we fall back to the partial lists. We take the
2041 * first element of the freelist as the object to allocate now and move the
2042 * rest of the freelist to the lockless freelist.
2043 *
2044 * And if we were unable to get a new slab from the partial slab lists then
2045 * we need to allocate a new slab. This is the slowest path since it involves
2046 * a call to the page allocator and the setup of a new slab.
2047 */
2048static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2049			  unsigned long addr, struct kmem_cache_cpu *c)
2050{
2051	void **object;
2052	struct page *page;
2053	unsigned long flags;
2054	struct page new;
2055	unsigned long counters;
2056
2057	local_irq_save(flags);
2058#ifdef CONFIG_PREEMPT
2059	/*
2060	 * We may have been preempted and rescheduled on a different
2061	 * cpu before disabling interrupts. Need to reload cpu area
2062	 * pointer.
2063	 */
2064	c = this_cpu_ptr(s->cpu_slab);
2065#endif
2066
2067	/* We handle __GFP_ZERO in the caller */
2068	gfpflags &= ~__GFP_ZERO;
2069
2070	page = c->page;
2071	if (!page)
2072		goto new_slab;
 
2073
2074	if (unlikely(!node_match(c, node))) {
2075		stat(s, ALLOC_NODE_MISMATCH);
2076		deactivate_slab(s, c);
 
 
2077		goto new_slab;
2078	}
2079
2080	stat(s, ALLOC_SLOWPATH);
 
 
 
 
 
 
 
 
 
 
2081
2082	do {
2083		object = page->freelist;
2084		counters = page->counters;
2085		new.counters = counters;
2086		VM_BUG_ON(!new.frozen);
2087
2088		/*
2089		 * If there is no object left then we use this loop to
2090		 * deactivate the slab which is simple since no objects
2091		 * are left in the slab and therefore we do not need to
2092		 * put the page back onto the partial list.
2093		 *
2094		 * If there are objects left then we retrieve them
2095		 * and use them to refill the per cpu queue.
2096		*/
2097
2098		new.inuse = page->objects;
2099		new.frozen = object != NULL;
2100
2101	} while (!__cmpxchg_double_slab(s, page,
2102			object, counters,
2103			NULL, new.counters,
2104			"__slab_alloc"));
2105
2106	if (unlikely(!object)) {
2107		c->page = NULL;
2108		stat(s, DEACTIVATE_BYPASS);
2109		goto new_slab;
2110	}
2111
2112	stat(s, ALLOC_REFILL);
2113
2114load_freelist:
2115	VM_BUG_ON(!page->frozen);
2116	c->freelist = get_freepointer(s, object);
 
 
 
 
 
2117	c->tid = next_tid(c->tid);
2118	local_irq_restore(flags);
2119	return object;
2120
2121new_slab:
2122	page = get_partial(s, gfpflags, node);
2123	if (page) {
2124		stat(s, ALLOC_FROM_PARTIAL);
2125		object = c->freelist;
2126
2127		if (kmem_cache_debug(s))
2128			goto debug;
2129		goto load_freelist;
 
 
 
2130	}
2131
2132	page = new_slab(s, gfpflags, node);
2133
2134	if (page) {
2135		c = __this_cpu_ptr(s->cpu_slab);
2136		if (c->page)
2137			flush_slab(s, c);
2138
2139		/*
2140		 * No other reference to the page yet so we can
2141		 * muck around with it freely without cmpxchg
2142		 */
2143		object = page->freelist;
2144		page->freelist = NULL;
2145		page->inuse = page->objects;
2146
2147		stat(s, ALLOC_SLAB);
2148		c->node = page_to_nid(page);
2149		c->page = page;
2150
2151		if (kmem_cache_debug(s))
2152			goto debug;
2153		goto load_freelist;
2154	}
2155	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2156		slab_out_of_memory(s, gfpflags, node);
2157	local_irq_restore(flags);
2158	return NULL;
2159
2160debug:
2161	if (!object || !alloc_debug_processing(s, page, object, addr))
2162		goto new_slab;
 
2163
2164	c->freelist = get_freepointer(s, object);
2165	deactivate_slab(s, c);
2166	c->page = NULL;
2167	c->node = NUMA_NO_NODE;
2168	local_irq_restore(flags);
2169	return object;
2170}
2171
2172/*
2173 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2174 * have the fastpath folded into their functions. So no function call
2175 * overhead for requests that can be satisfied on the fastpath.
2176 *
2177 * The fastpath works by first checking if the lockless freelist can be used.
2178 * If not then __slab_alloc is called for slow processing.
2179 *
2180 * Otherwise we can simply pick the next object from the lockless free list.
2181 */
2182static __always_inline void *slab_alloc(struct kmem_cache *s,
2183		gfp_t gfpflags, int node, unsigned long addr)
2184{
2185	void **object;
2186	struct kmem_cache_cpu *c;
 
2187	unsigned long tid;
2188
2189	if (slab_pre_alloc_hook(s, gfpflags))
2190		return NULL;
2191
 
2192redo:
2193
2194	/*
2195	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2196	 * enabled. We may switch back and forth between cpus while
2197	 * reading from one cpu area. That does not matter as long
2198	 * as we end up on the original cpu again when doing the cmpxchg.
 
 
 
 
 
2199	 */
 
2200	c = __this_cpu_ptr(s->cpu_slab);
2201
2202	/*
2203	 * The transaction ids are globally unique per cpu and per operation on
2204	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2205	 * occurs on the right processor and that there was no operation on the
2206	 * linked list in between.
2207	 */
2208	tid = c->tid;
2209	barrier();
2210
2211	object = c->freelist;
2212	if (unlikely(!object || !node_match(c, node)))
2213
2214		object = __slab_alloc(s, gfpflags, node, addr, c);
2215
2216	else {
 
 
2217		/*
2218		 * The cmpxchg will only match if there was no additional
2219		 * operation and if we are on the right processor.
2220		 *
2221		 * The cmpxchg does the following atomically (without lock semantics!)
 
2222		 * 1. Relocate first pointer to the current per cpu area.
2223		 * 2. Verify that tid and freelist have not been changed
2224		 * 3. If they were not changed replace tid and freelist
2225		 *
2226		 * Since this is without lock semantics the protection is only against
2227		 * code executing on this cpu *not* from access by other cpus.
 
2228		 */
2229		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2230				s->cpu_slab->freelist, s->cpu_slab->tid,
2231				object, tid,
2232				get_freepointer_safe(s, object), next_tid(tid)))) {
2233
2234			note_cmpxchg_failure("slab_alloc", s, tid);
2235			goto redo;
2236		}
 
2237		stat(s, ALLOC_FASTPATH);
2238	}
2239
2240	if (unlikely(gfpflags & __GFP_ZERO) && object)
2241		memset(object, 0, s->objsize);
2242
2243	slab_post_alloc_hook(s, gfpflags, object);
2244
2245	return object;
2246}
2247
 
 
 
 
 
 
2248void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2249{
2250	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2251
2252	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
 
2253
2254	return ret;
2255}
2256EXPORT_SYMBOL(kmem_cache_alloc);
2257
2258#ifdef CONFIG_TRACING
2259void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2260{
2261	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2262	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2263	return ret;
2264}
2265EXPORT_SYMBOL(kmem_cache_alloc_trace);
2266
2267void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2268{
2269	void *ret = kmalloc_order(size, flags, order);
2270	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2271	return ret;
2272}
2273EXPORT_SYMBOL(kmalloc_order_trace);
2274#endif
2275
2276#ifdef CONFIG_NUMA
2277void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2278{
2279	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2280
2281	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2282				    s->objsize, s->size, gfpflags, node);
2283
2284	return ret;
2285}
2286EXPORT_SYMBOL(kmem_cache_alloc_node);
2287
2288#ifdef CONFIG_TRACING
2289void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2290				    gfp_t gfpflags,
2291				    int node, size_t size)
2292{
2293	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2294
2295	trace_kmalloc_node(_RET_IP_, ret,
2296			   size, s->size, gfpflags, node);
2297	return ret;
2298}
2299EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2300#endif
2301#endif
2302
2303/*
2304 * Slow patch handling. This may still be called frequently since objects
2305 * have a longer lifetime than the cpu slabs in most processing loads.
2306 *
2307 * So we still attempt to reduce cache line usage. Just take the slab
2308 * lock and free the item. If there is no additional partial page
2309 * handling required then we can return immediately.
2310 */
2311static void __slab_free(struct kmem_cache *s, struct page *page,
2312			void *x, unsigned long addr)
2313{
2314	void *prior;
2315	void **object = (void *)x;
2316	int was_frozen;
2317	int inuse;
2318	struct page new;
2319	unsigned long counters;
2320	struct kmem_cache_node *n = NULL;
2321	unsigned long uninitialized_var(flags);
2322
2323	stat(s, FREE_SLOWPATH);
2324
2325	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
 
2326		return;
2327
2328	do {
 
 
 
 
2329		prior = page->freelist;
2330		counters = page->counters;
2331		set_freepointer(s, object, prior);
2332		new.counters = counters;
2333		was_frozen = new.frozen;
2334		new.inuse--;
2335		if ((!new.inuse || !prior) && !was_frozen && !n) {
2336                        n = get_node(s, page_to_nid(page));
2337			/*
2338			 * Speculatively acquire the list_lock.
2339			 * If the cmpxchg does not succeed then we may
2340			 * drop the list_lock without any processing.
2341			 *
2342			 * Otherwise the list_lock will synchronize with
2343			 * other processors updating the list of slabs.
2344			 */
2345                        spin_lock_irqsave(&n->list_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346		}
2347		inuse = new.inuse;
2348
2349	} while (!cmpxchg_double_slab(s, page,
2350		prior, counters,
2351		object, new.counters,
2352		"__slab_free"));
2353
2354	if (likely(!n)) {
2355                /*
 
 
 
 
 
 
 
 
 
2356		 * The list lock was not taken therefore no list
2357		 * activity can be necessary.
2358		 */
2359                if (was_frozen)
2360                        stat(s, FREE_FROZEN);
2361                return;
2362        }
2363
 
 
 
2364	/*
2365	 * was_frozen may have been set after we acquired the list_lock in
2366	 * an earlier loop. So we need to check it here again.
2367	 */
2368	if (was_frozen)
2369		stat(s, FREE_FROZEN);
2370	else {
2371		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2372                        goto slab_empty;
2373
2374		/*
2375		 * Objects left in the slab. If it was not on the partial list before
2376		 * then add it.
2377		 */
2378		if (unlikely(!prior)) {
2379			remove_full(s, page);
2380			add_partial(n, page, 1);
2381			stat(s, FREE_ADD_PARTIAL);
2382		}
2383	}
2384	spin_unlock_irqrestore(&n->list_lock, flags);
2385	return;
2386
2387slab_empty:
2388	if (prior) {
2389		/*
2390		 * Slab on the partial list.
2391		 */
2392		remove_partial(n, page);
2393		stat(s, FREE_REMOVE_PARTIAL);
2394	} else
2395		/* Slab must be on the full list */
2396		remove_full(s, page);
 
2397
2398	spin_unlock_irqrestore(&n->list_lock, flags);
2399	stat(s, FREE_SLAB);
2400	discard_slab(s, page);
2401}
2402
2403/*
2404 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2405 * can perform fastpath freeing without additional function calls.
2406 *
2407 * The fastpath is only possible if we are freeing to the current cpu slab
2408 * of this processor. This typically the case if we have just allocated
2409 * the item before.
2410 *
2411 * If fastpath is not possible then fall back to __slab_free where we deal
2412 * with all sorts of special processing.
2413 */
2414static __always_inline void slab_free(struct kmem_cache *s,
2415			struct page *page, void *x, unsigned long addr)
2416{
2417	void **object = (void *)x;
2418	struct kmem_cache_cpu *c;
2419	unsigned long tid;
2420
2421	slab_free_hook(s, x);
2422
2423redo:
2424
2425	/*
2426	 * Determine the currently cpus per cpu slab.
2427	 * The cpu may change afterward. However that does not matter since
2428	 * data is retrieved via this pointer. If we are on the same cpu
2429	 * during the cmpxchg then the free will succedd.
2430	 */
 
2431	c = __this_cpu_ptr(s->cpu_slab);
2432
2433	tid = c->tid;
2434	barrier();
2435
2436	if (likely(page == c->page)) {
2437		set_freepointer(s, object, c->freelist);
2438
2439		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2440				s->cpu_slab->freelist, s->cpu_slab->tid,
2441				c->freelist, tid,
2442				object, next_tid(tid)))) {
2443
2444			note_cmpxchg_failure("slab_free", s, tid);
2445			goto redo;
2446		}
2447		stat(s, FREE_FASTPATH);
2448	} else
2449		__slab_free(s, page, x, addr);
2450
2451}
2452
2453void kmem_cache_free(struct kmem_cache *s, void *x)
2454{
2455	struct page *page;
2456
2457	page = virt_to_head_page(x);
2458
2459	slab_free(s, page, x, _RET_IP_);
2460
2461	trace_kmem_cache_free(_RET_IP_, x);
2462}
2463EXPORT_SYMBOL(kmem_cache_free);
2464
2465/*
2466 * Object placement in a slab is made very easy because we always start at
2467 * offset 0. If we tune the size of the object to the alignment then we can
2468 * get the required alignment by putting one properly sized object after
2469 * another.
2470 *
2471 * Notice that the allocation order determines the sizes of the per cpu
2472 * caches. Each processor has always one slab available for allocations.
2473 * Increasing the allocation order reduces the number of times that slabs
2474 * must be moved on and off the partial lists and is therefore a factor in
2475 * locking overhead.
2476 */
2477
2478/*
2479 * Mininum / Maximum order of slab pages. This influences locking overhead
2480 * and slab fragmentation. A higher order reduces the number of partial slabs
2481 * and increases the number of allocations possible without having to
2482 * take the list_lock.
2483 */
2484static int slub_min_order;
2485static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2486static int slub_min_objects;
2487
2488/*
2489 * Merge control. If this is set then no merging of slab caches will occur.
2490 * (Could be removed. This was introduced to pacify the merge skeptics.)
2491 */
2492static int slub_nomerge;
2493
2494/*
2495 * Calculate the order of allocation given an slab object size.
2496 *
2497 * The order of allocation has significant impact on performance and other
2498 * system components. Generally order 0 allocations should be preferred since
2499 * order 0 does not cause fragmentation in the page allocator. Larger objects
2500 * be problematic to put into order 0 slabs because there may be too much
2501 * unused space left. We go to a higher order if more than 1/16th of the slab
2502 * would be wasted.
2503 *
2504 * In order to reach satisfactory performance we must ensure that a minimum
2505 * number of objects is in one slab. Otherwise we may generate too much
2506 * activity on the partial lists which requires taking the list_lock. This is
2507 * less a concern for large slabs though which are rarely used.
2508 *
2509 * slub_max_order specifies the order where we begin to stop considering the
2510 * number of objects in a slab as critical. If we reach slub_max_order then
2511 * we try to keep the page order as low as possible. So we accept more waste
2512 * of space in favor of a small page order.
2513 *
2514 * Higher order allocations also allow the placement of more objects in a
2515 * slab and thereby reduce object handling overhead. If the user has
2516 * requested a higher mininum order then we start with that one instead of
2517 * the smallest order which will fit the object.
2518 */
2519static inline int slab_order(int size, int min_objects,
2520				int max_order, int fract_leftover, int reserved)
2521{
2522	int order;
2523	int rem;
2524	int min_order = slub_min_order;
2525
2526	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2527		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2528
2529	for (order = max(min_order,
2530				fls(min_objects * size - 1) - PAGE_SHIFT);
2531			order <= max_order; order++) {
2532
2533		unsigned long slab_size = PAGE_SIZE << order;
2534
2535		if (slab_size < min_objects * size + reserved)
2536			continue;
2537
2538		rem = (slab_size - reserved) % size;
2539
2540		if (rem <= slab_size / fract_leftover)
2541			break;
2542
2543	}
2544
2545	return order;
2546}
2547
2548static inline int calculate_order(int size, int reserved)
2549{
2550	int order;
2551	int min_objects;
2552	int fraction;
2553	int max_objects;
2554
2555	/*
2556	 * Attempt to find best configuration for a slab. This
2557	 * works by first attempting to generate a layout with
2558	 * the best configuration and backing off gradually.
2559	 *
2560	 * First we reduce the acceptable waste in a slab. Then
2561	 * we reduce the minimum objects required in a slab.
2562	 */
2563	min_objects = slub_min_objects;
2564	if (!min_objects)
2565		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2566	max_objects = order_objects(slub_max_order, size, reserved);
2567	min_objects = min(min_objects, max_objects);
2568
2569	while (min_objects > 1) {
2570		fraction = 16;
2571		while (fraction >= 4) {
2572			order = slab_order(size, min_objects,
2573					slub_max_order, fraction, reserved);
2574			if (order <= slub_max_order)
2575				return order;
2576			fraction /= 2;
2577		}
2578		min_objects--;
2579	}
2580
2581	/*
2582	 * We were unable to place multiple objects in a slab. Now
2583	 * lets see if we can place a single object there.
2584	 */
2585	order = slab_order(size, 1, slub_max_order, 1, reserved);
2586	if (order <= slub_max_order)
2587		return order;
2588
2589	/*
2590	 * Doh this slab cannot be placed using slub_max_order.
2591	 */
2592	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2593	if (order < MAX_ORDER)
2594		return order;
2595	return -ENOSYS;
2596}
2597
2598/*
2599 * Figure out what the alignment of the objects will be.
2600 */
2601static unsigned long calculate_alignment(unsigned long flags,
2602		unsigned long align, unsigned long size)
2603{
2604	/*
2605	 * If the user wants hardware cache aligned objects then follow that
2606	 * suggestion if the object is sufficiently large.
2607	 *
2608	 * The hardware cache alignment cannot override the specified
2609	 * alignment though. If that is greater then use it.
2610	 */
2611	if (flags & SLAB_HWCACHE_ALIGN) {
2612		unsigned long ralign = cache_line_size();
2613		while (size <= ralign / 2)
2614			ralign /= 2;
2615		align = max(align, ralign);
2616	}
2617
2618	if (align < ARCH_SLAB_MINALIGN)
2619		align = ARCH_SLAB_MINALIGN;
2620
2621	return ALIGN(align, sizeof(void *));
2622}
2623
2624static void
2625init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2626{
2627	n->nr_partial = 0;
2628	spin_lock_init(&n->list_lock);
2629	INIT_LIST_HEAD(&n->partial);
2630#ifdef CONFIG_SLUB_DEBUG
2631	atomic_long_set(&n->nr_slabs, 0);
2632	atomic_long_set(&n->total_objects, 0);
2633	INIT_LIST_HEAD(&n->full);
2634#endif
2635}
2636
2637static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2638{
2639	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2640			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2641
2642	/*
2643	 * Must align to double word boundary for the double cmpxchg
2644	 * instructions to work; see __pcpu_double_call_return_bool().
2645	 */
2646	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2647				     2 * sizeof(void *));
2648
2649	if (!s->cpu_slab)
2650		return 0;
2651
2652	init_kmem_cache_cpus(s);
2653
2654	return 1;
2655}
2656
2657static struct kmem_cache *kmem_cache_node;
2658
2659/*
2660 * No kmalloc_node yet so do it by hand. We know that this is the first
2661 * slab on the node for this slabcache. There are no concurrent accesses
2662 * possible.
2663 *
2664 * Note that this function only works on the kmalloc_node_cache
2665 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2666 * memory on a fresh node that has no slab structures yet.
2667 */
2668static void early_kmem_cache_node_alloc(int node)
2669{
2670	struct page *page;
2671	struct kmem_cache_node *n;
2672
2673	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2674
2675	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2676
2677	BUG_ON(!page);
2678	if (page_to_nid(page) != node) {
2679		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2680				"node %d\n", node);
2681		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2682				"in order to be able to continue\n");
2683	}
2684
2685	n = page->freelist;
2686	BUG_ON(!n);
2687	page->freelist = get_freepointer(kmem_cache_node, n);
2688	page->inuse++;
2689	page->frozen = 0;
2690	kmem_cache_node->node[node] = n;
2691#ifdef CONFIG_SLUB_DEBUG
2692	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2693	init_tracking(kmem_cache_node, n);
2694#endif
2695	init_kmem_cache_node(n, kmem_cache_node);
2696	inc_slabs_node(kmem_cache_node, node, page->objects);
2697
2698	add_partial(n, page, 0);
 
 
 
 
2699}
2700
2701static void free_kmem_cache_nodes(struct kmem_cache *s)
2702{
2703	int node;
2704
2705	for_each_node_state(node, N_NORMAL_MEMORY) {
2706		struct kmem_cache_node *n = s->node[node];
2707
2708		if (n)
2709			kmem_cache_free(kmem_cache_node, n);
2710
2711		s->node[node] = NULL;
2712	}
2713}
2714
2715static int init_kmem_cache_nodes(struct kmem_cache *s)
2716{
2717	int node;
2718
2719	for_each_node_state(node, N_NORMAL_MEMORY) {
2720		struct kmem_cache_node *n;
2721
2722		if (slab_state == DOWN) {
2723			early_kmem_cache_node_alloc(node);
2724			continue;
2725		}
2726		n = kmem_cache_alloc_node(kmem_cache_node,
2727						GFP_KERNEL, node);
2728
2729		if (!n) {
2730			free_kmem_cache_nodes(s);
2731			return 0;
2732		}
2733
2734		s->node[node] = n;
2735		init_kmem_cache_node(n, s);
2736	}
2737	return 1;
2738}
2739
2740static void set_min_partial(struct kmem_cache *s, unsigned long min)
2741{
2742	if (min < MIN_PARTIAL)
2743		min = MIN_PARTIAL;
2744	else if (min > MAX_PARTIAL)
2745		min = MAX_PARTIAL;
2746	s->min_partial = min;
2747}
2748
2749/*
2750 * calculate_sizes() determines the order and the distribution of data within
2751 * a slab object.
2752 */
2753static int calculate_sizes(struct kmem_cache *s, int forced_order)
2754{
2755	unsigned long flags = s->flags;
2756	unsigned long size = s->objsize;
2757	unsigned long align = s->align;
2758	int order;
2759
2760	/*
2761	 * Round up object size to the next word boundary. We can only
2762	 * place the free pointer at word boundaries and this determines
2763	 * the possible location of the free pointer.
2764	 */
2765	size = ALIGN(size, sizeof(void *));
2766
2767#ifdef CONFIG_SLUB_DEBUG
2768	/*
2769	 * Determine if we can poison the object itself. If the user of
2770	 * the slab may touch the object after free or before allocation
2771	 * then we should never poison the object itself.
2772	 */
2773	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2774			!s->ctor)
2775		s->flags |= __OBJECT_POISON;
2776	else
2777		s->flags &= ~__OBJECT_POISON;
2778
2779
2780	/*
2781	 * If we are Redzoning then check if there is some space between the
2782	 * end of the object and the free pointer. If not then add an
2783	 * additional word to have some bytes to store Redzone information.
2784	 */
2785	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2786		size += sizeof(void *);
2787#endif
2788
2789	/*
2790	 * With that we have determined the number of bytes in actual use
2791	 * by the object. This is the potential offset to the free pointer.
2792	 */
2793	s->inuse = size;
2794
2795	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2796		s->ctor)) {
2797		/*
2798		 * Relocate free pointer after the object if it is not
2799		 * permitted to overwrite the first word of the object on
2800		 * kmem_cache_free.
2801		 *
2802		 * This is the case if we do RCU, have a constructor or
2803		 * destructor or are poisoning the objects.
2804		 */
2805		s->offset = size;
2806		size += sizeof(void *);
2807	}
2808
2809#ifdef CONFIG_SLUB_DEBUG
2810	if (flags & SLAB_STORE_USER)
2811		/*
2812		 * Need to store information about allocs and frees after
2813		 * the object.
2814		 */
2815		size += 2 * sizeof(struct track);
2816
2817	if (flags & SLAB_RED_ZONE)
2818		/*
2819		 * Add some empty padding so that we can catch
2820		 * overwrites from earlier objects rather than let
2821		 * tracking information or the free pointer be
2822		 * corrupted if a user writes before the start
2823		 * of the object.
2824		 */
2825		size += sizeof(void *);
2826#endif
2827
2828	/*
2829	 * Determine the alignment based on various parameters that the
2830	 * user specified and the dynamic determination of cache line size
2831	 * on bootup.
2832	 */
2833	align = calculate_alignment(flags, align, s->objsize);
2834	s->align = align;
2835
2836	/*
2837	 * SLUB stores one object immediately after another beginning from
2838	 * offset 0. In order to align the objects we have to simply size
2839	 * each object to conform to the alignment.
2840	 */
2841	size = ALIGN(size, align);
2842	s->size = size;
2843	if (forced_order >= 0)
2844		order = forced_order;
2845	else
2846		order = calculate_order(size, s->reserved);
2847
2848	if (order < 0)
2849		return 0;
2850
2851	s->allocflags = 0;
2852	if (order)
2853		s->allocflags |= __GFP_COMP;
2854
2855	if (s->flags & SLAB_CACHE_DMA)
2856		s->allocflags |= SLUB_DMA;
2857
2858	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2859		s->allocflags |= __GFP_RECLAIMABLE;
2860
2861	/*
2862	 * Determine the number of objects per slab
2863	 */
2864	s->oo = oo_make(order, size, s->reserved);
2865	s->min = oo_make(get_order(size), size, s->reserved);
2866	if (oo_objects(s->oo) > oo_objects(s->max))
2867		s->max = s->oo;
2868
2869	return !!oo_objects(s->oo);
2870
2871}
2872
2873static int kmem_cache_open(struct kmem_cache *s,
2874		const char *name, size_t size,
2875		size_t align, unsigned long flags,
2876		void (*ctor)(void *))
2877{
2878	memset(s, 0, kmem_size);
2879	s->name = name;
2880	s->ctor = ctor;
2881	s->objsize = size;
2882	s->align = align;
2883	s->flags = kmem_cache_flags(size, flags, name, ctor);
2884	s->reserved = 0;
2885
2886	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2887		s->reserved = sizeof(struct rcu_head);
2888
2889	if (!calculate_sizes(s, -1))
2890		goto error;
2891	if (disable_higher_order_debug) {
2892		/*
2893		 * Disable debugging flags that store metadata if the min slab
2894		 * order increased.
2895		 */
2896		if (get_order(s->size) > get_order(s->objsize)) {
2897			s->flags &= ~DEBUG_METADATA_FLAGS;
2898			s->offset = 0;
2899			if (!calculate_sizes(s, -1))
2900				goto error;
2901		}
2902	}
2903
2904#ifdef CONFIG_CMPXCHG_DOUBLE
 
2905	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2906		/* Enable fast mode */
2907		s->flags |= __CMPXCHG_DOUBLE;
2908#endif
2909
2910	/*
2911	 * The larger the object size is, the more pages we want on the partial
2912	 * list to avoid pounding the page allocator excessively.
2913	 */
2914	set_min_partial(s, ilog2(s->size));
2915	s->refcount = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2916#ifdef CONFIG_NUMA
2917	s->remote_node_defrag_ratio = 1000;
2918#endif
2919	if (!init_kmem_cache_nodes(s))
2920		goto error;
2921
2922	if (alloc_kmem_cache_cpus(s))
2923		return 1;
2924
2925	free_kmem_cache_nodes(s);
2926error:
2927	if (flags & SLAB_PANIC)
2928		panic("Cannot create slab %s size=%lu realsize=%u "
2929			"order=%u offset=%u flags=%lx\n",
2930			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2931			s->offset, flags);
2932	return 0;
2933}
2934
2935/*
2936 * Determine the size of a slab object
2937 */
2938unsigned int kmem_cache_size(struct kmem_cache *s)
2939{
2940	return s->objsize;
2941}
2942EXPORT_SYMBOL(kmem_cache_size);
2943
2944static void list_slab_objects(struct kmem_cache *s, struct page *page,
2945							const char *text)
2946{
2947#ifdef CONFIG_SLUB_DEBUG
2948	void *addr = page_address(page);
2949	void *p;
2950	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2951				     sizeof(long), GFP_ATOMIC);
2952	if (!map)
2953		return;
2954	slab_err(s, page, "%s", text);
2955	slab_lock(page);
2956
2957	get_map(s, page, map);
2958	for_each_object(p, s, addr, page->objects) {
2959
2960		if (!test_bit(slab_index(p, s, addr), map)) {
2961			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2962							p, p - addr);
2963			print_tracking(s, p);
2964		}
2965	}
2966	slab_unlock(page);
2967	kfree(map);
2968#endif
2969}
2970
2971/*
2972 * Attempt to free all partial slabs on a node.
 
 
2973 */
2974static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2975{
2976	unsigned long flags;
2977	struct page *page, *h;
2978
2979	spin_lock_irqsave(&n->list_lock, flags);
2980	list_for_each_entry_safe(page, h, &n->partial, lru) {
2981		if (!page->inuse) {
2982			remove_partial(n, page);
2983			discard_slab(s, page);
2984		} else {
2985			list_slab_objects(s, page,
2986				"Objects remaining on kmem_cache_close()");
2987		}
2988	}
2989	spin_unlock_irqrestore(&n->list_lock, flags);
2990}
2991
2992/*
2993 * Release all resources used by a slab cache.
2994 */
2995static inline int kmem_cache_close(struct kmem_cache *s)
2996{
2997	int node;
2998
2999	flush_all(s);
3000	free_percpu(s->cpu_slab);
3001	/* Attempt to free all objects */
3002	for_each_node_state(node, N_NORMAL_MEMORY) {
3003		struct kmem_cache_node *n = get_node(s, node);
3004
3005		free_partial(s, n);
3006		if (n->nr_partial || slabs_node(s, node))
3007			return 1;
3008	}
 
3009	free_kmem_cache_nodes(s);
3010	return 0;
3011}
3012
3013/*
3014 * Close a cache and release the kmem_cache structure
3015 * (must be used for caches created using kmem_cache_create)
3016 */
3017void kmem_cache_destroy(struct kmem_cache *s)
3018{
3019	down_write(&slub_lock);
3020	s->refcount--;
3021	if (!s->refcount) {
3022		list_del(&s->list);
3023		if (kmem_cache_close(s)) {
3024			printk(KERN_ERR "SLUB %s: %s called for cache that "
3025				"still has objects.\n", s->name, __func__);
3026			dump_stack();
3027		}
3028		if (s->flags & SLAB_DESTROY_BY_RCU)
3029			rcu_barrier();
3030		sysfs_slab_remove(s);
3031	}
3032	up_write(&slub_lock);
3033}
3034EXPORT_SYMBOL(kmem_cache_destroy);
3035
3036/********************************************************************
3037 *		Kmalloc subsystem
3038 *******************************************************************/
3039
3040struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3041EXPORT_SYMBOL(kmalloc_caches);
3042
3043static struct kmem_cache *kmem_cache;
3044
3045#ifdef CONFIG_ZONE_DMA
3046static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3047#endif
3048
3049static int __init setup_slub_min_order(char *str)
3050{
3051	get_option(&str, &slub_min_order);
3052
3053	return 1;
3054}
3055
3056__setup("slub_min_order=", setup_slub_min_order);
3057
3058static int __init setup_slub_max_order(char *str)
3059{
3060	get_option(&str, &slub_max_order);
3061	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3062
3063	return 1;
3064}
3065
3066__setup("slub_max_order=", setup_slub_max_order);
3067
3068static int __init setup_slub_min_objects(char *str)
3069{
3070	get_option(&str, &slub_min_objects);
3071
3072	return 1;
3073}
3074
3075__setup("slub_min_objects=", setup_slub_min_objects);
3076
3077static int __init setup_slub_nomerge(char *str)
3078{
3079	slub_nomerge = 1;
3080	return 1;
3081}
3082
3083__setup("slub_nomerge", setup_slub_nomerge);
3084
3085static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3086						int size, unsigned int flags)
3087{
3088	struct kmem_cache *s;
3089
3090	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3091
3092	/*
3093	 * This function is called with IRQs disabled during early-boot on
3094	 * single CPU so there's no need to take slub_lock here.
3095	 */
3096	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3097								flags, NULL))
3098		goto panic;
3099
3100	list_add(&s->list, &slab_caches);
3101	return s;
3102
3103panic:
3104	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3105	return NULL;
3106}
3107
3108/*
3109 * Conversion table for small slabs sizes / 8 to the index in the
3110 * kmalloc array. This is necessary for slabs < 192 since we have non power
3111 * of two cache sizes there. The size of larger slabs can be determined using
3112 * fls.
3113 */
3114static s8 size_index[24] = {
3115	3,	/* 8 */
3116	4,	/* 16 */
3117	5,	/* 24 */
3118	5,	/* 32 */
3119	6,	/* 40 */
3120	6,	/* 48 */
3121	6,	/* 56 */
3122	6,	/* 64 */
3123	1,	/* 72 */
3124	1,	/* 80 */
3125	1,	/* 88 */
3126	1,	/* 96 */
3127	7,	/* 104 */
3128	7,	/* 112 */
3129	7,	/* 120 */
3130	7,	/* 128 */
3131	2,	/* 136 */
3132	2,	/* 144 */
3133	2,	/* 152 */
3134	2,	/* 160 */
3135	2,	/* 168 */
3136	2,	/* 176 */
3137	2,	/* 184 */
3138	2	/* 192 */
3139};
3140
3141static inline int size_index_elem(size_t bytes)
3142{
3143	return (bytes - 1) / 8;
3144}
3145
3146static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3147{
3148	int index;
3149
3150	if (size <= 192) {
3151		if (!size)
3152			return ZERO_SIZE_PTR;
3153
3154		index = size_index[size_index_elem(size)];
3155	} else
3156		index = fls(size - 1);
3157
3158#ifdef CONFIG_ZONE_DMA
3159	if (unlikely((flags & SLUB_DMA)))
3160		return kmalloc_dma_caches[index];
3161
3162#endif
3163	return kmalloc_caches[index];
3164}
3165
3166void *__kmalloc(size_t size, gfp_t flags)
3167{
3168	struct kmem_cache *s;
3169	void *ret;
3170
3171	if (unlikely(size > SLUB_MAX_SIZE))
3172		return kmalloc_large(size, flags);
3173
3174	s = get_slab(size, flags);
3175
3176	if (unlikely(ZERO_OR_NULL_PTR(s)))
3177		return s;
3178
3179	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3180
3181	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3182
3183	return ret;
3184}
3185EXPORT_SYMBOL(__kmalloc);
3186
3187#ifdef CONFIG_NUMA
3188static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3189{
3190	struct page *page;
3191	void *ptr = NULL;
3192
3193	flags |= __GFP_COMP | __GFP_NOTRACK;
3194	page = alloc_pages_node(node, flags, get_order(size));
3195	if (page)
3196		ptr = page_address(page);
3197
3198	kmemleak_alloc(ptr, size, 1, flags);
3199	return ptr;
3200}
3201
3202void *__kmalloc_node(size_t size, gfp_t flags, int node)
3203{
3204	struct kmem_cache *s;
3205	void *ret;
3206
3207	if (unlikely(size > SLUB_MAX_SIZE)) {
3208		ret = kmalloc_large_node(size, flags, node);
3209
3210		trace_kmalloc_node(_RET_IP_, ret,
3211				   size, PAGE_SIZE << get_order(size),
3212				   flags, node);
3213
3214		return ret;
3215	}
3216
3217	s = get_slab(size, flags);
3218
3219	if (unlikely(ZERO_OR_NULL_PTR(s)))
3220		return s;
3221
3222	ret = slab_alloc(s, flags, node, _RET_IP_);
3223
3224	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3225
3226	return ret;
3227}
3228EXPORT_SYMBOL(__kmalloc_node);
3229#endif
3230
3231size_t ksize(const void *object)
3232{
3233	struct page *page;
3234
3235	if (unlikely(object == ZERO_SIZE_PTR))
3236		return 0;
3237
3238	page = virt_to_head_page(object);
3239
3240	if (unlikely(!PageSlab(page))) {
3241		WARN_ON(!PageCompound(page));
3242		return PAGE_SIZE << compound_order(page);
3243	}
3244
3245	return slab_ksize(page->slab);
3246}
3247EXPORT_SYMBOL(ksize);
3248
3249#ifdef CONFIG_SLUB_DEBUG
3250bool verify_mem_not_deleted(const void *x)
3251{
3252	struct page *page;
3253	void *object = (void *)x;
3254	unsigned long flags;
3255	bool rv;
3256
3257	if (unlikely(ZERO_OR_NULL_PTR(x)))
3258		return false;
3259
3260	local_irq_save(flags);
3261
3262	page = virt_to_head_page(x);
3263	if (unlikely(!PageSlab(page))) {
3264		/* maybe it was from stack? */
3265		rv = true;
3266		goto out_unlock;
3267	}
3268
3269	slab_lock(page);
3270	if (on_freelist(page->slab, page, object)) {
3271		object_err(page->slab, page, object, "Object is on free-list");
3272		rv = false;
3273	} else {
3274		rv = true;
3275	}
3276	slab_unlock(page);
3277
3278out_unlock:
3279	local_irq_restore(flags);
3280	return rv;
3281}
3282EXPORT_SYMBOL(verify_mem_not_deleted);
3283#endif
3284
3285void kfree(const void *x)
3286{
3287	struct page *page;
3288	void *object = (void *)x;
3289
3290	trace_kfree(_RET_IP_, x);
3291
3292	if (unlikely(ZERO_OR_NULL_PTR(x)))
3293		return;
3294
3295	page = virt_to_head_page(x);
3296	if (unlikely(!PageSlab(page))) {
3297		BUG_ON(!PageCompound(page));
3298		kmemleak_free(x);
3299		put_page(page);
3300		return;
3301	}
3302	slab_free(page->slab, page, object, _RET_IP_);
3303}
3304EXPORT_SYMBOL(kfree);
3305
3306/*
3307 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3308 * the remaining slabs by the number of items in use. The slabs with the
3309 * most items in use come first. New allocations will then fill those up
3310 * and thus they can be removed from the partial lists.
3311 *
3312 * The slabs with the least items are placed last. This results in them
3313 * being allocated from last increasing the chance that the last objects
3314 * are freed in them.
3315 */
3316int kmem_cache_shrink(struct kmem_cache *s)
3317{
3318	int node;
3319	int i;
3320	struct kmem_cache_node *n;
3321	struct page *page;
3322	struct page *t;
3323	int objects = oo_objects(s->max);
3324	struct list_head *slabs_by_inuse =
3325		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3326	unsigned long flags;
3327
3328	if (!slabs_by_inuse)
3329		return -ENOMEM;
3330
3331	flush_all(s);
3332	for_each_node_state(node, N_NORMAL_MEMORY) {
3333		n = get_node(s, node);
3334
3335		if (!n->nr_partial)
3336			continue;
3337
3338		for (i = 0; i < objects; i++)
3339			INIT_LIST_HEAD(slabs_by_inuse + i);
3340
3341		spin_lock_irqsave(&n->list_lock, flags);
3342
3343		/*
3344		 * Build lists indexed by the items in use in each slab.
3345		 *
3346		 * Note that concurrent frees may occur while we hold the
3347		 * list_lock. page->inuse here is the upper limit.
3348		 */
3349		list_for_each_entry_safe(page, t, &n->partial, lru) {
3350			if (!page->inuse) {
3351				remove_partial(n, page);
3352				discard_slab(s, page);
3353			} else {
3354				list_move(&page->lru,
3355				slabs_by_inuse + page->inuse);
3356			}
3357		}
3358
3359		/*
3360		 * Rebuild the partial list with the slabs filled up most
3361		 * first and the least used slabs at the end.
3362		 */
3363		for (i = objects - 1; i >= 0; i--)
3364			list_splice(slabs_by_inuse + i, n->partial.prev);
3365
3366		spin_unlock_irqrestore(&n->list_lock, flags);
 
 
 
 
3367	}
3368
3369	kfree(slabs_by_inuse);
3370	return 0;
3371}
3372EXPORT_SYMBOL(kmem_cache_shrink);
3373
3374#if defined(CONFIG_MEMORY_HOTPLUG)
3375static int slab_mem_going_offline_callback(void *arg)
3376{
3377	struct kmem_cache *s;
3378
3379	down_read(&slub_lock);
3380	list_for_each_entry(s, &slab_caches, list)
3381		kmem_cache_shrink(s);
3382	up_read(&slub_lock);
3383
3384	return 0;
3385}
3386
3387static void slab_mem_offline_callback(void *arg)
3388{
3389	struct kmem_cache_node *n;
3390	struct kmem_cache *s;
3391	struct memory_notify *marg = arg;
3392	int offline_node;
3393
3394	offline_node = marg->status_change_nid;
3395
3396	/*
3397	 * If the node still has available memory. we need kmem_cache_node
3398	 * for it yet.
3399	 */
3400	if (offline_node < 0)
3401		return;
3402
3403	down_read(&slub_lock);
3404	list_for_each_entry(s, &slab_caches, list) {
3405		n = get_node(s, offline_node);
3406		if (n) {
3407			/*
3408			 * if n->nr_slabs > 0, slabs still exist on the node
3409			 * that is going down. We were unable to free them,
3410			 * and offline_pages() function shouldn't call this
3411			 * callback. So, we must fail.
3412			 */
3413			BUG_ON(slabs_node(s, offline_node));
3414
3415			s->node[offline_node] = NULL;
3416			kmem_cache_free(kmem_cache_node, n);
3417		}
3418	}
3419	up_read(&slub_lock);
3420}
3421
3422static int slab_mem_going_online_callback(void *arg)
3423{
3424	struct kmem_cache_node *n;
3425	struct kmem_cache *s;
3426	struct memory_notify *marg = arg;
3427	int nid = marg->status_change_nid;
3428	int ret = 0;
3429
3430	/*
3431	 * If the node's memory is already available, then kmem_cache_node is
3432	 * already created. Nothing to do.
3433	 */
3434	if (nid < 0)
3435		return 0;
3436
3437	/*
3438	 * We are bringing a node online. No memory is available yet. We must
3439	 * allocate a kmem_cache_node structure in order to bring the node
3440	 * online.
3441	 */
3442	down_read(&slub_lock);
3443	list_for_each_entry(s, &slab_caches, list) {
3444		/*
3445		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3446		 *      since memory is not yet available from the node that
3447		 *      is brought up.
3448		 */
3449		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3450		if (!n) {
3451			ret = -ENOMEM;
3452			goto out;
3453		}
3454		init_kmem_cache_node(n, s);
3455		s->node[nid] = n;
3456	}
3457out:
3458	up_read(&slub_lock);
3459	return ret;
3460}
3461
3462static int slab_memory_callback(struct notifier_block *self,
3463				unsigned long action, void *arg)
3464{
3465	int ret = 0;
3466
3467	switch (action) {
3468	case MEM_GOING_ONLINE:
3469		ret = slab_mem_going_online_callback(arg);
3470		break;
3471	case MEM_GOING_OFFLINE:
3472		ret = slab_mem_going_offline_callback(arg);
3473		break;
3474	case MEM_OFFLINE:
3475	case MEM_CANCEL_ONLINE:
3476		slab_mem_offline_callback(arg);
3477		break;
3478	case MEM_ONLINE:
3479	case MEM_CANCEL_OFFLINE:
3480		break;
3481	}
3482	if (ret)
3483		ret = notifier_from_errno(ret);
3484	else
3485		ret = NOTIFY_OK;
3486	return ret;
3487}
3488
3489#endif /* CONFIG_MEMORY_HOTPLUG */
 
 
 
3490
3491/********************************************************************
3492 *			Basic setup of slabs
3493 *******************************************************************/
3494
3495/*
3496 * Used for early kmem_cache structures that were allocated using
3497 * the page allocator
 
3498 */
3499
3500static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3501{
3502	int node;
 
3503
3504	list_add(&s->list, &slab_caches);
3505	s->refcount = -1;
3506
 
 
 
 
 
 
3507	for_each_node_state(node, N_NORMAL_MEMORY) {
3508		struct kmem_cache_node *n = get_node(s, node);
3509		struct page *p;
3510
3511		if (n) {
3512			list_for_each_entry(p, &n->partial, lru)
3513				p->slab = s;
3514
3515#ifdef CONFIG_SLUB_DEBUG
3516			list_for_each_entry(p, &n->full, lru)
3517				p->slab = s;
3518#endif
3519		}
3520	}
 
 
3521}
3522
3523void __init kmem_cache_init(void)
3524{
3525	int i;
3526	int caches = 0;
3527	struct kmem_cache *temp_kmem_cache;
3528	int order;
3529	struct kmem_cache *temp_kmem_cache_node;
3530	unsigned long kmalloc_size;
3531
3532	kmem_size = offsetof(struct kmem_cache, node) +
3533				nr_node_ids * sizeof(struct kmem_cache_node *);
3534
3535	/* Allocate two kmem_caches from the page allocator */
3536	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3537	order = get_order(2 * kmalloc_size);
3538	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3539
3540	/*
3541	 * Must first have the slab cache available for the allocations of the
3542	 * struct kmem_cache_node's. There is special bootstrap code in
3543	 * kmem_cache_open for slab_state == DOWN.
3544	 */
3545	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3546
3547	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3548		sizeof(struct kmem_cache_node),
3549		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3550
3551	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3552
3553	/* Able to allocate the per node structures */
3554	slab_state = PARTIAL;
3555
3556	temp_kmem_cache = kmem_cache;
3557	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3558		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3559	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3560	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
 
3561
3562	/*
3563	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3564	 * kmem_cache_node is separately allocated so no need to
3565	 * update any list pointers.
3566	 */
3567	temp_kmem_cache_node = kmem_cache_node;
3568
3569	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3570	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3571
3572	kmem_cache_bootstrap_fixup(kmem_cache_node);
3573
3574	caches++;
3575	kmem_cache_bootstrap_fixup(kmem_cache);
3576	caches++;
3577	/* Free temporary boot structure */
3578	free_pages((unsigned long)temp_kmem_cache, order);
3579
3580	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3581
3582	/*
3583	 * Patch up the size_index table if we have strange large alignment
3584	 * requirements for the kmalloc array. This is only the case for
3585	 * MIPS it seems. The standard arches will not generate any code here.
3586	 *
3587	 * Largest permitted alignment is 256 bytes due to the way we
3588	 * handle the index determination for the smaller caches.
3589	 *
3590	 * Make sure that nothing crazy happens if someone starts tinkering
3591	 * around with ARCH_KMALLOC_MINALIGN
3592	 */
3593	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3594		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3595
3596	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3597		int elem = size_index_elem(i);
3598		if (elem >= ARRAY_SIZE(size_index))
3599			break;
3600		size_index[elem] = KMALLOC_SHIFT_LOW;
3601	}
3602
3603	if (KMALLOC_MIN_SIZE == 64) {
3604		/*
3605		 * The 96 byte size cache is not used if the alignment
3606		 * is 64 byte.
3607		 */
3608		for (i = 64 + 8; i <= 96; i += 8)
3609			size_index[size_index_elem(i)] = 7;
3610	} else if (KMALLOC_MIN_SIZE == 128) {
3611		/*
3612		 * The 192 byte sized cache is not used if the alignment
3613		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3614		 * instead.
3615		 */
3616		for (i = 128 + 8; i <= 192; i += 8)
3617			size_index[size_index_elem(i)] = 8;
3618	}
3619
3620	/* Caches that are not of the two-to-the-power-of size */
3621	if (KMALLOC_MIN_SIZE <= 32) {
3622		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3623		caches++;
3624	}
3625
3626	if (KMALLOC_MIN_SIZE <= 64) {
3627		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3628		caches++;
3629	}
3630
3631	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3632		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3633		caches++;
3634	}
3635
3636	slab_state = UP;
3637
3638	/* Provide the correct kmalloc names now that the caches are up */
3639	if (KMALLOC_MIN_SIZE <= 32) {
3640		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3641		BUG_ON(!kmalloc_caches[1]->name);
3642	}
3643
3644	if (KMALLOC_MIN_SIZE <= 64) {
3645		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3646		BUG_ON(!kmalloc_caches[2]->name);
3647	}
3648
3649	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3650		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3651
3652		BUG_ON(!s);
3653		kmalloc_caches[i]->name = s;
3654	}
3655
3656#ifdef CONFIG_SMP
3657	register_cpu_notifier(&slab_notifier);
3658#endif
3659
3660#ifdef CONFIG_ZONE_DMA
3661	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3662		struct kmem_cache *s = kmalloc_caches[i];
3663
3664		if (s && s->size) {
3665			char *name = kasprintf(GFP_NOWAIT,
3666				 "dma-kmalloc-%d", s->objsize);
3667
3668			BUG_ON(!name);
3669			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3670				s->objsize, SLAB_CACHE_DMA);
3671		}
3672	}
3673#endif
3674	printk(KERN_INFO
3675		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3676		" CPUs=%d, Nodes=%d\n",
3677		caches, cache_line_size(),
3678		slub_min_order, slub_max_order, slub_min_objects,
3679		nr_cpu_ids, nr_node_ids);
3680}
3681
3682void __init kmem_cache_init_late(void)
3683{
3684}
3685
3686/*
3687 * Find a mergeable slab cache
3688 */
3689static int slab_unmergeable(struct kmem_cache *s)
3690{
3691	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3692		return 1;
3693
 
 
 
3694	if (s->ctor)
3695		return 1;
3696
3697	/*
3698	 * We may have set a slab to be unmergeable during bootstrap.
3699	 */
3700	if (s->refcount < 0)
3701		return 1;
3702
3703	return 0;
3704}
3705
3706static struct kmem_cache *find_mergeable(size_t size,
3707		size_t align, unsigned long flags, const char *name,
3708		void (*ctor)(void *))
3709{
3710	struct kmem_cache *s;
3711
3712	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3713		return NULL;
3714
3715	if (ctor)
3716		return NULL;
3717
3718	size = ALIGN(size, sizeof(void *));
3719	align = calculate_alignment(flags, align, size);
3720	size = ALIGN(size, align);
3721	flags = kmem_cache_flags(size, flags, name, NULL);
3722
3723	list_for_each_entry(s, &slab_caches, list) {
3724		if (slab_unmergeable(s))
3725			continue;
3726
3727		if (size > s->size)
3728			continue;
3729
3730		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3731				continue;
3732		/*
3733		 * Check if alignment is compatible.
3734		 * Courtesy of Adrian Drzewiecki
3735		 */
3736		if ((s->size & ~(align - 1)) != s->size)
3737			continue;
3738
3739		if (s->size - size >= sizeof(void *))
3740			continue;
3741
3742		return s;
3743	}
3744	return NULL;
3745}
3746
3747struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3748		size_t align, unsigned long flags, void (*ctor)(void *))
 
3749{
3750	struct kmem_cache *s;
3751	char *n;
3752
3753	if (WARN_ON(!name))
3754		return NULL;
3755
3756	down_write(&slub_lock);
3757	s = find_mergeable(size, align, flags, name, ctor);
3758	if (s) {
 
 
 
3759		s->refcount++;
 
3760		/*
3761		 * Adjust the object sizes so that we clear
3762		 * the complete object on kzalloc.
3763		 */
3764		s->objsize = max(s->objsize, (int)size);
3765		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3766
 
 
 
 
 
 
 
 
 
3767		if (sysfs_slab_alias(s, name)) {
3768			s->refcount--;
3769			goto err;
3770		}
3771		up_write(&slub_lock);
3772		return s;
3773	}
3774
3775	n = kstrdup(name, GFP_KERNEL);
3776	if (!n)
3777		goto err;
 
 
 
 
 
 
 
 
 
 
 
3778
3779	s = kmalloc(kmem_size, GFP_KERNEL);
3780	if (s) {
3781		if (kmem_cache_open(s, n,
3782				size, align, flags, ctor)) {
3783			list_add(&s->list, &slab_caches);
3784			if (sysfs_slab_add(s)) {
3785				list_del(&s->list);
3786				kfree(n);
3787				kfree(s);
3788				goto err;
3789			}
3790			up_write(&slub_lock);
3791			return s;
3792		}
3793		kfree(n);
3794		kfree(s);
3795	}
3796err:
3797	up_write(&slub_lock);
3798
3799	if (flags & SLAB_PANIC)
3800		panic("Cannot create slabcache %s\n", name);
3801	else
3802		s = NULL;
3803	return s;
3804}
3805EXPORT_SYMBOL(kmem_cache_create);
3806
3807#ifdef CONFIG_SMP
3808/*
3809 * Use the cpu notifier to insure that the cpu slabs are flushed when
3810 * necessary.
3811 */
3812static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3813		unsigned long action, void *hcpu)
3814{
3815	long cpu = (long)hcpu;
3816	struct kmem_cache *s;
3817	unsigned long flags;
3818
3819	switch (action) {
3820	case CPU_UP_CANCELED:
3821	case CPU_UP_CANCELED_FROZEN:
3822	case CPU_DEAD:
3823	case CPU_DEAD_FROZEN:
3824		down_read(&slub_lock);
3825		list_for_each_entry(s, &slab_caches, list) {
3826			local_irq_save(flags);
3827			__flush_cpu_slab(s, cpu);
3828			local_irq_restore(flags);
3829		}
3830		up_read(&slub_lock);
3831		break;
3832	default:
3833		break;
3834	}
3835	return NOTIFY_OK;
3836}
3837
3838static struct notifier_block __cpuinitdata slab_notifier = {
3839	.notifier_call = slab_cpuup_callback
3840};
3841
3842#endif
3843
3844void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3845{
3846	struct kmem_cache *s;
3847	void *ret;
3848
3849	if (unlikely(size > SLUB_MAX_SIZE))
3850		return kmalloc_large(size, gfpflags);
3851
3852	s = get_slab(size, gfpflags);
3853
3854	if (unlikely(ZERO_OR_NULL_PTR(s)))
3855		return s;
3856
3857	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3858
3859	/* Honor the call site pointer we received. */
3860	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3861
3862	return ret;
3863}
3864
3865#ifdef CONFIG_NUMA
3866void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3867					int node, unsigned long caller)
3868{
3869	struct kmem_cache *s;
3870	void *ret;
3871
3872	if (unlikely(size > SLUB_MAX_SIZE)) {
3873		ret = kmalloc_large_node(size, gfpflags, node);
3874
3875		trace_kmalloc_node(caller, ret,
3876				   size, PAGE_SIZE << get_order(size),
3877				   gfpflags, node);
3878
3879		return ret;
3880	}
3881
3882	s = get_slab(size, gfpflags);
3883
3884	if (unlikely(ZERO_OR_NULL_PTR(s)))
3885		return s;
3886
3887	ret = slab_alloc(s, gfpflags, node, caller);
3888
3889	/* Honor the call site pointer we received. */
3890	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3891
3892	return ret;
3893}
3894#endif
3895
3896#ifdef CONFIG_SYSFS
3897static int count_inuse(struct page *page)
3898{
3899	return page->inuse;
3900}
3901
3902static int count_total(struct page *page)
3903{
3904	return page->objects;
3905}
3906#endif
3907
3908#ifdef CONFIG_SLUB_DEBUG
3909static int validate_slab(struct kmem_cache *s, struct page *page,
3910						unsigned long *map)
3911{
3912	void *p;
3913	void *addr = page_address(page);
3914
3915	if (!check_slab(s, page) ||
3916			!on_freelist(s, page, NULL))
3917		return 0;
3918
3919	/* Now we know that a valid freelist exists */
3920	bitmap_zero(map, page->objects);
3921
3922	get_map(s, page, map);
3923	for_each_object(p, s, addr, page->objects) {
3924		if (test_bit(slab_index(p, s, addr), map))
3925			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3926				return 0;
3927	}
3928
3929	for_each_object(p, s, addr, page->objects)
3930		if (!test_bit(slab_index(p, s, addr), map))
3931			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3932				return 0;
3933	return 1;
3934}
3935
3936static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3937						unsigned long *map)
3938{
3939	slab_lock(page);
3940	validate_slab(s, page, map);
3941	slab_unlock(page);
3942}
3943
3944static int validate_slab_node(struct kmem_cache *s,
3945		struct kmem_cache_node *n, unsigned long *map)
3946{
3947	unsigned long count = 0;
3948	struct page *page;
3949	unsigned long flags;
3950
3951	spin_lock_irqsave(&n->list_lock, flags);
3952
3953	list_for_each_entry(page, &n->partial, lru) {
3954		validate_slab_slab(s, page, map);
3955		count++;
3956	}
3957	if (count != n->nr_partial)
3958		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3959			"counter=%ld\n", s->name, count, n->nr_partial);
3960
3961	if (!(s->flags & SLAB_STORE_USER))
3962		goto out;
3963
3964	list_for_each_entry(page, &n->full, lru) {
3965		validate_slab_slab(s, page, map);
3966		count++;
3967	}
3968	if (count != atomic_long_read(&n->nr_slabs))
3969		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3970			"counter=%ld\n", s->name, count,
3971			atomic_long_read(&n->nr_slabs));
3972
3973out:
3974	spin_unlock_irqrestore(&n->list_lock, flags);
3975	return count;
3976}
3977
3978static long validate_slab_cache(struct kmem_cache *s)
3979{
3980	int node;
3981	unsigned long count = 0;
3982	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3983				sizeof(unsigned long), GFP_KERNEL);
3984
3985	if (!map)
3986		return -ENOMEM;
3987
3988	flush_all(s);
3989	for_each_node_state(node, N_NORMAL_MEMORY) {
3990		struct kmem_cache_node *n = get_node(s, node);
3991
3992		count += validate_slab_node(s, n, map);
3993	}
3994	kfree(map);
3995	return count;
3996}
3997/*
3998 * Generate lists of code addresses where slabcache objects are allocated
3999 * and freed.
4000 */
4001
4002struct location {
4003	unsigned long count;
4004	unsigned long addr;
4005	long long sum_time;
4006	long min_time;
4007	long max_time;
4008	long min_pid;
4009	long max_pid;
4010	DECLARE_BITMAP(cpus, NR_CPUS);
4011	nodemask_t nodes;
4012};
4013
4014struct loc_track {
4015	unsigned long max;
4016	unsigned long count;
4017	struct location *loc;
4018};
4019
4020static void free_loc_track(struct loc_track *t)
4021{
4022	if (t->max)
4023		free_pages((unsigned long)t->loc,
4024			get_order(sizeof(struct location) * t->max));
4025}
4026
4027static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4028{
4029	struct location *l;
4030	int order;
4031
4032	order = get_order(sizeof(struct location) * max);
4033
4034	l = (void *)__get_free_pages(flags, order);
4035	if (!l)
4036		return 0;
4037
4038	if (t->count) {
4039		memcpy(l, t->loc, sizeof(struct location) * t->count);
4040		free_loc_track(t);
4041	}
4042	t->max = max;
4043	t->loc = l;
4044	return 1;
4045}
4046
4047static int add_location(struct loc_track *t, struct kmem_cache *s,
4048				const struct track *track)
4049{
4050	long start, end, pos;
4051	struct location *l;
4052	unsigned long caddr;
4053	unsigned long age = jiffies - track->when;
4054
4055	start = -1;
4056	end = t->count;
4057
4058	for ( ; ; ) {
4059		pos = start + (end - start + 1) / 2;
4060
4061		/*
4062		 * There is nothing at "end". If we end up there
4063		 * we need to add something to before end.
4064		 */
4065		if (pos == end)
4066			break;
4067
4068		caddr = t->loc[pos].addr;
4069		if (track->addr == caddr) {
4070
4071			l = &t->loc[pos];
4072			l->count++;
4073			if (track->when) {
4074				l->sum_time += age;
4075				if (age < l->min_time)
4076					l->min_time = age;
4077				if (age > l->max_time)
4078					l->max_time = age;
4079
4080				if (track->pid < l->min_pid)
4081					l->min_pid = track->pid;
4082				if (track->pid > l->max_pid)
4083					l->max_pid = track->pid;
4084
4085				cpumask_set_cpu(track->cpu,
4086						to_cpumask(l->cpus));
4087			}
4088			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4089			return 1;
4090		}
4091
4092		if (track->addr < caddr)
4093			end = pos;
4094		else
4095			start = pos;
4096	}
4097
4098	/*
4099	 * Not found. Insert new tracking element.
4100	 */
4101	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4102		return 0;
4103
4104	l = t->loc + pos;
4105	if (pos < t->count)
4106		memmove(l + 1, l,
4107			(t->count - pos) * sizeof(struct location));
4108	t->count++;
4109	l->count = 1;
4110	l->addr = track->addr;
4111	l->sum_time = age;
4112	l->min_time = age;
4113	l->max_time = age;
4114	l->min_pid = track->pid;
4115	l->max_pid = track->pid;
4116	cpumask_clear(to_cpumask(l->cpus));
4117	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4118	nodes_clear(l->nodes);
4119	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4120	return 1;
4121}
4122
4123static void process_slab(struct loc_track *t, struct kmem_cache *s,
4124		struct page *page, enum track_item alloc,
4125		unsigned long *map)
4126{
4127	void *addr = page_address(page);
4128	void *p;
4129
4130	bitmap_zero(map, page->objects);
4131	get_map(s, page, map);
4132
4133	for_each_object(p, s, addr, page->objects)
4134		if (!test_bit(slab_index(p, s, addr), map))
4135			add_location(t, s, get_track(s, p, alloc));
4136}
4137
4138static int list_locations(struct kmem_cache *s, char *buf,
4139					enum track_item alloc)
4140{
4141	int len = 0;
4142	unsigned long i;
4143	struct loc_track t = { 0, 0, NULL };
4144	int node;
4145	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4146				     sizeof(unsigned long), GFP_KERNEL);
4147
4148	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4149				     GFP_TEMPORARY)) {
4150		kfree(map);
4151		return sprintf(buf, "Out of memory\n");
4152	}
4153	/* Push back cpu slabs */
4154	flush_all(s);
4155
4156	for_each_node_state(node, N_NORMAL_MEMORY) {
4157		struct kmem_cache_node *n = get_node(s, node);
4158		unsigned long flags;
4159		struct page *page;
4160
4161		if (!atomic_long_read(&n->nr_slabs))
4162			continue;
4163
4164		spin_lock_irqsave(&n->list_lock, flags);
4165		list_for_each_entry(page, &n->partial, lru)
4166			process_slab(&t, s, page, alloc, map);
4167		list_for_each_entry(page, &n->full, lru)
4168			process_slab(&t, s, page, alloc, map);
4169		spin_unlock_irqrestore(&n->list_lock, flags);
4170	}
4171
4172	for (i = 0; i < t.count; i++) {
4173		struct location *l = &t.loc[i];
4174
4175		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4176			break;
4177		len += sprintf(buf + len, "%7ld ", l->count);
4178
4179		if (l->addr)
4180			len += sprintf(buf + len, "%pS", (void *)l->addr);
4181		else
4182			len += sprintf(buf + len, "<not-available>");
4183
4184		if (l->sum_time != l->min_time) {
4185			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4186				l->min_time,
4187				(long)div_u64(l->sum_time, l->count),
4188				l->max_time);
4189		} else
4190			len += sprintf(buf + len, " age=%ld",
4191				l->min_time);
4192
4193		if (l->min_pid != l->max_pid)
4194			len += sprintf(buf + len, " pid=%ld-%ld",
4195				l->min_pid, l->max_pid);
4196		else
4197			len += sprintf(buf + len, " pid=%ld",
4198				l->min_pid);
4199
4200		if (num_online_cpus() > 1 &&
4201				!cpumask_empty(to_cpumask(l->cpus)) &&
4202				len < PAGE_SIZE - 60) {
4203			len += sprintf(buf + len, " cpus=");
4204			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
 
4205						 to_cpumask(l->cpus));
4206		}
4207
4208		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4209				len < PAGE_SIZE - 60) {
4210			len += sprintf(buf + len, " nodes=");
4211			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4212					l->nodes);
 
4213		}
4214
4215		len += sprintf(buf + len, "\n");
4216	}
4217
4218	free_loc_track(&t);
4219	kfree(map);
4220	if (!t.count)
4221		len += sprintf(buf, "No data\n");
4222	return len;
4223}
4224#endif
4225
4226#ifdef SLUB_RESILIENCY_TEST
4227static void resiliency_test(void)
4228{
4229	u8 *p;
4230
4231	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4232
4233	printk(KERN_ERR "SLUB resiliency testing\n");
4234	printk(KERN_ERR "-----------------------\n");
4235	printk(KERN_ERR "A. Corruption after allocation\n");
4236
4237	p = kzalloc(16, GFP_KERNEL);
4238	p[16] = 0x12;
4239	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4240			" 0x12->0x%p\n\n", p + 16);
4241
4242	validate_slab_cache(kmalloc_caches[4]);
4243
4244	/* Hmmm... The next two are dangerous */
4245	p = kzalloc(32, GFP_KERNEL);
4246	p[32 + sizeof(void *)] = 0x34;
4247	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4248			" 0x34 -> -0x%p\n", p);
4249	printk(KERN_ERR
4250		"If allocated object is overwritten then not detectable\n\n");
4251
4252	validate_slab_cache(kmalloc_caches[5]);
4253	p = kzalloc(64, GFP_KERNEL);
4254	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4255	*p = 0x56;
4256	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4257									p);
4258	printk(KERN_ERR
4259		"If allocated object is overwritten then not detectable\n\n");
4260	validate_slab_cache(kmalloc_caches[6]);
4261
4262	printk(KERN_ERR "\nB. Corruption after free\n");
4263	p = kzalloc(128, GFP_KERNEL);
4264	kfree(p);
4265	*p = 0x78;
4266	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4267	validate_slab_cache(kmalloc_caches[7]);
4268
4269	p = kzalloc(256, GFP_KERNEL);
4270	kfree(p);
4271	p[50] = 0x9a;
4272	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4273			p);
4274	validate_slab_cache(kmalloc_caches[8]);
4275
4276	p = kzalloc(512, GFP_KERNEL);
4277	kfree(p);
4278	p[512] = 0xab;
4279	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4280	validate_slab_cache(kmalloc_caches[9]);
4281}
4282#else
4283#ifdef CONFIG_SYSFS
4284static void resiliency_test(void) {};
4285#endif
4286#endif
4287
4288#ifdef CONFIG_SYSFS
4289enum slab_stat_type {
4290	SL_ALL,			/* All slabs */
4291	SL_PARTIAL,		/* Only partially allocated slabs */
4292	SL_CPU,			/* Only slabs used for cpu caches */
4293	SL_OBJECTS,		/* Determine allocated objects not slabs */
4294	SL_TOTAL		/* Determine object capacity not slabs */
4295};
4296
4297#define SO_ALL		(1 << SL_ALL)
4298#define SO_PARTIAL	(1 << SL_PARTIAL)
4299#define SO_CPU		(1 << SL_CPU)
4300#define SO_OBJECTS	(1 << SL_OBJECTS)
4301#define SO_TOTAL	(1 << SL_TOTAL)
4302
4303static ssize_t show_slab_objects(struct kmem_cache *s,
4304			    char *buf, unsigned long flags)
4305{
4306	unsigned long total = 0;
4307	int node;
4308	int x;
4309	unsigned long *nodes;
4310	unsigned long *per_cpu;
4311
4312	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4313	if (!nodes)
4314		return -ENOMEM;
4315	per_cpu = nodes + nr_node_ids;
4316
4317	if (flags & SO_CPU) {
4318		int cpu;
4319
4320		for_each_possible_cpu(cpu) {
4321			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
 
4322
4323			if (!c || c->node < 0)
 
4324				continue;
4325
4326			if (c->page) {
4327					if (flags & SO_TOTAL)
4328						x = c->page->objects;
 
 
 
 
 
 
 
 
 
 
 
 
 
4329				else if (flags & SO_OBJECTS)
4330					x = c->page->inuse;
4331				else
4332					x = 1;
4333
4334				total += x;
4335				nodes[c->node] += x;
4336			}
4337			per_cpu[c->node]++;
4338		}
4339	}
4340
4341	lock_memory_hotplug();
4342#ifdef CONFIG_SLUB_DEBUG
4343	if (flags & SO_ALL) {
4344		for_each_node_state(node, N_NORMAL_MEMORY) {
4345			struct kmem_cache_node *n = get_node(s, node);
4346
4347		if (flags & SO_TOTAL)
4348			x = atomic_long_read(&n->total_objects);
4349		else if (flags & SO_OBJECTS)
4350			x = atomic_long_read(&n->total_objects) -
4351				count_partial(n, count_free);
4352
4353			else
4354				x = atomic_long_read(&n->nr_slabs);
4355			total += x;
4356			nodes[node] += x;
4357		}
4358
4359	} else
4360#endif
4361	if (flags & SO_PARTIAL) {
4362		for_each_node_state(node, N_NORMAL_MEMORY) {
4363			struct kmem_cache_node *n = get_node(s, node);
4364
4365			if (flags & SO_TOTAL)
4366				x = count_partial(n, count_total);
4367			else if (flags & SO_OBJECTS)
4368				x = count_partial(n, count_inuse);
4369			else
4370				x = n->nr_partial;
4371			total += x;
4372			nodes[node] += x;
4373		}
4374	}
4375	x = sprintf(buf, "%lu", total);
4376#ifdef CONFIG_NUMA
4377	for_each_node_state(node, N_NORMAL_MEMORY)
4378		if (nodes[node])
4379			x += sprintf(buf + x, " N%d=%lu",
4380					node, nodes[node]);
4381#endif
4382	unlock_memory_hotplug();
4383	kfree(nodes);
4384	return x + sprintf(buf + x, "\n");
4385}
4386
4387#ifdef CONFIG_SLUB_DEBUG
4388static int any_slab_objects(struct kmem_cache *s)
4389{
4390	int node;
4391
4392	for_each_online_node(node) {
4393		struct kmem_cache_node *n = get_node(s, node);
4394
4395		if (!n)
4396			continue;
4397
4398		if (atomic_long_read(&n->total_objects))
4399			return 1;
4400	}
4401	return 0;
4402}
4403#endif
4404
4405#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4407
4408struct slab_attribute {
4409	struct attribute attr;
4410	ssize_t (*show)(struct kmem_cache *s, char *buf);
4411	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4412};
4413
4414#define SLAB_ATTR_RO(_name) \
4415	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
 
4416
4417#define SLAB_ATTR(_name) \
4418	static struct slab_attribute _name##_attr =  \
4419	__ATTR(_name, 0644, _name##_show, _name##_store)
4420
4421static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4422{
4423	return sprintf(buf, "%d\n", s->size);
4424}
4425SLAB_ATTR_RO(slab_size);
4426
4427static ssize_t align_show(struct kmem_cache *s, char *buf)
4428{
4429	return sprintf(buf, "%d\n", s->align);
4430}
4431SLAB_ATTR_RO(align);
4432
4433static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4434{
4435	return sprintf(buf, "%d\n", s->objsize);
4436}
4437SLAB_ATTR_RO(object_size);
4438
4439static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4440{
4441	return sprintf(buf, "%d\n", oo_objects(s->oo));
4442}
4443SLAB_ATTR_RO(objs_per_slab);
4444
4445static ssize_t order_store(struct kmem_cache *s,
4446				const char *buf, size_t length)
4447{
4448	unsigned long order;
4449	int err;
4450
4451	err = strict_strtoul(buf, 10, &order);
4452	if (err)
4453		return err;
4454
4455	if (order > slub_max_order || order < slub_min_order)
4456		return -EINVAL;
4457
4458	calculate_sizes(s, order);
4459	return length;
4460}
4461
4462static ssize_t order_show(struct kmem_cache *s, char *buf)
4463{
4464	return sprintf(buf, "%d\n", oo_order(s->oo));
4465}
4466SLAB_ATTR(order);
4467
4468static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4469{
4470	return sprintf(buf, "%lu\n", s->min_partial);
4471}
4472
4473static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4474				 size_t length)
4475{
4476	unsigned long min;
4477	int err;
4478
4479	err = strict_strtoul(buf, 10, &min);
4480	if (err)
4481		return err;
4482
4483	set_min_partial(s, min);
4484	return length;
4485}
4486SLAB_ATTR(min_partial);
4487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4488static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4489{
4490	if (!s->ctor)
4491		return 0;
4492	return sprintf(buf, "%pS\n", s->ctor);
4493}
4494SLAB_ATTR_RO(ctor);
4495
4496static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4497{
4498	return sprintf(buf, "%d\n", s->refcount - 1);
4499}
4500SLAB_ATTR_RO(aliases);
4501
4502static ssize_t partial_show(struct kmem_cache *s, char *buf)
4503{
4504	return show_slab_objects(s, buf, SO_PARTIAL);
4505}
4506SLAB_ATTR_RO(partial);
4507
4508static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4509{
4510	return show_slab_objects(s, buf, SO_CPU);
4511}
4512SLAB_ATTR_RO(cpu_slabs);
4513
4514static ssize_t objects_show(struct kmem_cache *s, char *buf)
4515{
4516	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4517}
4518SLAB_ATTR_RO(objects);
4519
4520static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4521{
4522	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4523}
4524SLAB_ATTR_RO(objects_partial);
4525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4526static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4527{
4528	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4529}
4530
4531static ssize_t reclaim_account_store(struct kmem_cache *s,
4532				const char *buf, size_t length)
4533{
4534	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4535	if (buf[0] == '1')
4536		s->flags |= SLAB_RECLAIM_ACCOUNT;
4537	return length;
4538}
4539SLAB_ATTR(reclaim_account);
4540
4541static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4542{
4543	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4544}
4545SLAB_ATTR_RO(hwcache_align);
4546
4547#ifdef CONFIG_ZONE_DMA
4548static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4549{
4550	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4551}
4552SLAB_ATTR_RO(cache_dma);
4553#endif
4554
4555static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4556{
4557	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4558}
4559SLAB_ATTR_RO(destroy_by_rcu);
4560
4561static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4562{
4563	return sprintf(buf, "%d\n", s->reserved);
4564}
4565SLAB_ATTR_RO(reserved);
4566
4567#ifdef CONFIG_SLUB_DEBUG
4568static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4569{
4570	return show_slab_objects(s, buf, SO_ALL);
4571}
4572SLAB_ATTR_RO(slabs);
4573
4574static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4575{
4576	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4577}
4578SLAB_ATTR_RO(total_objects);
4579
4580static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4581{
4582	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4583}
4584
4585static ssize_t sanity_checks_store(struct kmem_cache *s,
4586				const char *buf, size_t length)
4587{
4588	s->flags &= ~SLAB_DEBUG_FREE;
4589	if (buf[0] == '1') {
4590		s->flags &= ~__CMPXCHG_DOUBLE;
4591		s->flags |= SLAB_DEBUG_FREE;
4592	}
4593	return length;
4594}
4595SLAB_ATTR(sanity_checks);
4596
4597static ssize_t trace_show(struct kmem_cache *s, char *buf)
4598{
4599	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4600}
4601
4602static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4603							size_t length)
4604{
4605	s->flags &= ~SLAB_TRACE;
4606	if (buf[0] == '1') {
4607		s->flags &= ~__CMPXCHG_DOUBLE;
4608		s->flags |= SLAB_TRACE;
4609	}
4610	return length;
4611}
4612SLAB_ATTR(trace);
4613
4614static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4615{
4616	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4617}
4618
4619static ssize_t red_zone_store(struct kmem_cache *s,
4620				const char *buf, size_t length)
4621{
4622	if (any_slab_objects(s))
4623		return -EBUSY;
4624
4625	s->flags &= ~SLAB_RED_ZONE;
4626	if (buf[0] == '1') {
4627		s->flags &= ~__CMPXCHG_DOUBLE;
4628		s->flags |= SLAB_RED_ZONE;
4629	}
4630	calculate_sizes(s, -1);
4631	return length;
4632}
4633SLAB_ATTR(red_zone);
4634
4635static ssize_t poison_show(struct kmem_cache *s, char *buf)
4636{
4637	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4638}
4639
4640static ssize_t poison_store(struct kmem_cache *s,
4641				const char *buf, size_t length)
4642{
4643	if (any_slab_objects(s))
4644		return -EBUSY;
4645
4646	s->flags &= ~SLAB_POISON;
4647	if (buf[0] == '1') {
4648		s->flags &= ~__CMPXCHG_DOUBLE;
4649		s->flags |= SLAB_POISON;
4650	}
4651	calculate_sizes(s, -1);
4652	return length;
4653}
4654SLAB_ATTR(poison);
4655
4656static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4657{
4658	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4659}
4660
4661static ssize_t store_user_store(struct kmem_cache *s,
4662				const char *buf, size_t length)
4663{
4664	if (any_slab_objects(s))
4665		return -EBUSY;
4666
4667	s->flags &= ~SLAB_STORE_USER;
4668	if (buf[0] == '1') {
4669		s->flags &= ~__CMPXCHG_DOUBLE;
4670		s->flags |= SLAB_STORE_USER;
4671	}
4672	calculate_sizes(s, -1);
4673	return length;
4674}
4675SLAB_ATTR(store_user);
4676
4677static ssize_t validate_show(struct kmem_cache *s, char *buf)
4678{
4679	return 0;
4680}
4681
4682static ssize_t validate_store(struct kmem_cache *s,
4683			const char *buf, size_t length)
4684{
4685	int ret = -EINVAL;
4686
4687	if (buf[0] == '1') {
4688		ret = validate_slab_cache(s);
4689		if (ret >= 0)
4690			ret = length;
4691	}
4692	return ret;
4693}
4694SLAB_ATTR(validate);
4695
4696static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4697{
4698	if (!(s->flags & SLAB_STORE_USER))
4699		return -ENOSYS;
4700	return list_locations(s, buf, TRACK_ALLOC);
4701}
4702SLAB_ATTR_RO(alloc_calls);
4703
4704static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4705{
4706	if (!(s->flags & SLAB_STORE_USER))
4707		return -ENOSYS;
4708	return list_locations(s, buf, TRACK_FREE);
4709}
4710SLAB_ATTR_RO(free_calls);
4711#endif /* CONFIG_SLUB_DEBUG */
4712
4713#ifdef CONFIG_FAILSLAB
4714static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4715{
4716	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4717}
4718
4719static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4720							size_t length)
4721{
4722	s->flags &= ~SLAB_FAILSLAB;
4723	if (buf[0] == '1')
4724		s->flags |= SLAB_FAILSLAB;
4725	return length;
4726}
4727SLAB_ATTR(failslab);
4728#endif
4729
4730static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4731{
4732	return 0;
4733}
4734
4735static ssize_t shrink_store(struct kmem_cache *s,
4736			const char *buf, size_t length)
4737{
4738	if (buf[0] == '1') {
4739		int rc = kmem_cache_shrink(s);
4740
4741		if (rc)
4742			return rc;
4743	} else
4744		return -EINVAL;
4745	return length;
4746}
4747SLAB_ATTR(shrink);
4748
4749#ifdef CONFIG_NUMA
4750static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4751{
4752	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4753}
4754
4755static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4756				const char *buf, size_t length)
4757{
4758	unsigned long ratio;
4759	int err;
4760
4761	err = strict_strtoul(buf, 10, &ratio);
4762	if (err)
4763		return err;
4764
4765	if (ratio <= 100)
4766		s->remote_node_defrag_ratio = ratio * 10;
4767
4768	return length;
4769}
4770SLAB_ATTR(remote_node_defrag_ratio);
4771#endif
4772
4773#ifdef CONFIG_SLUB_STATS
4774static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4775{
4776	unsigned long sum  = 0;
4777	int cpu;
4778	int len;
4779	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4780
4781	if (!data)
4782		return -ENOMEM;
4783
4784	for_each_online_cpu(cpu) {
4785		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4786
4787		data[cpu] = x;
4788		sum += x;
4789	}
4790
4791	len = sprintf(buf, "%lu", sum);
4792
4793#ifdef CONFIG_SMP
4794	for_each_online_cpu(cpu) {
4795		if (data[cpu] && len < PAGE_SIZE - 20)
4796			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4797	}
4798#endif
4799	kfree(data);
4800	return len + sprintf(buf + len, "\n");
4801}
4802
4803static void clear_stat(struct kmem_cache *s, enum stat_item si)
4804{
4805	int cpu;
4806
4807	for_each_online_cpu(cpu)
4808		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4809}
4810
4811#define STAT_ATTR(si, text) 					\
4812static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4813{								\
4814	return show_stat(s, buf, si);				\
4815}								\
4816static ssize_t text##_store(struct kmem_cache *s,		\
4817				const char *buf, size_t length)	\
4818{								\
4819	if (buf[0] != '0')					\
4820		return -EINVAL;					\
4821	clear_stat(s, si);					\
4822	return length;						\
4823}								\
4824SLAB_ATTR(text);						\
4825
4826STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4827STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4828STAT_ATTR(FREE_FASTPATH, free_fastpath);
4829STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4830STAT_ATTR(FREE_FROZEN, free_frozen);
4831STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4832STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4833STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4834STAT_ATTR(ALLOC_SLAB, alloc_slab);
4835STAT_ATTR(ALLOC_REFILL, alloc_refill);
4836STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4837STAT_ATTR(FREE_SLAB, free_slab);
4838STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4839STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4840STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4841STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4842STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4843STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4844STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4845STAT_ATTR(ORDER_FALLBACK, order_fallback);
4846STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4847STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
 
 
 
 
4848#endif
4849
4850static struct attribute *slab_attrs[] = {
4851	&slab_size_attr.attr,
4852	&object_size_attr.attr,
4853	&objs_per_slab_attr.attr,
4854	&order_attr.attr,
4855	&min_partial_attr.attr,
 
4856	&objects_attr.attr,
4857	&objects_partial_attr.attr,
4858	&partial_attr.attr,
4859	&cpu_slabs_attr.attr,
4860	&ctor_attr.attr,
4861	&aliases_attr.attr,
4862	&align_attr.attr,
4863	&hwcache_align_attr.attr,
4864	&reclaim_account_attr.attr,
4865	&destroy_by_rcu_attr.attr,
4866	&shrink_attr.attr,
4867	&reserved_attr.attr,
 
4868#ifdef CONFIG_SLUB_DEBUG
4869	&total_objects_attr.attr,
4870	&slabs_attr.attr,
4871	&sanity_checks_attr.attr,
4872	&trace_attr.attr,
4873	&red_zone_attr.attr,
4874	&poison_attr.attr,
4875	&store_user_attr.attr,
4876	&validate_attr.attr,
4877	&alloc_calls_attr.attr,
4878	&free_calls_attr.attr,
4879#endif
4880#ifdef CONFIG_ZONE_DMA
4881	&cache_dma_attr.attr,
4882#endif
4883#ifdef CONFIG_NUMA
4884	&remote_node_defrag_ratio_attr.attr,
4885#endif
4886#ifdef CONFIG_SLUB_STATS
4887	&alloc_fastpath_attr.attr,
4888	&alloc_slowpath_attr.attr,
4889	&free_fastpath_attr.attr,
4890	&free_slowpath_attr.attr,
4891	&free_frozen_attr.attr,
4892	&free_add_partial_attr.attr,
4893	&free_remove_partial_attr.attr,
4894	&alloc_from_partial_attr.attr,
4895	&alloc_slab_attr.attr,
4896	&alloc_refill_attr.attr,
4897	&alloc_node_mismatch_attr.attr,
4898	&free_slab_attr.attr,
4899	&cpuslab_flush_attr.attr,
4900	&deactivate_full_attr.attr,
4901	&deactivate_empty_attr.attr,
4902	&deactivate_to_head_attr.attr,
4903	&deactivate_to_tail_attr.attr,
4904	&deactivate_remote_frees_attr.attr,
4905	&deactivate_bypass_attr.attr,
4906	&order_fallback_attr.attr,
4907	&cmpxchg_double_fail_attr.attr,
4908	&cmpxchg_double_cpu_fail_attr.attr,
 
 
 
 
4909#endif
4910#ifdef CONFIG_FAILSLAB
4911	&failslab_attr.attr,
4912#endif
4913
4914	NULL
4915};
4916
4917static struct attribute_group slab_attr_group = {
4918	.attrs = slab_attrs,
4919};
4920
4921static ssize_t slab_attr_show(struct kobject *kobj,
4922				struct attribute *attr,
4923				char *buf)
4924{
4925	struct slab_attribute *attribute;
4926	struct kmem_cache *s;
4927	int err;
4928
4929	attribute = to_slab_attr(attr);
4930	s = to_slab(kobj);
4931
4932	if (!attribute->show)
4933		return -EIO;
4934
4935	err = attribute->show(s, buf);
4936
4937	return err;
4938}
4939
4940static ssize_t slab_attr_store(struct kobject *kobj,
4941				struct attribute *attr,
4942				const char *buf, size_t len)
4943{
4944	struct slab_attribute *attribute;
4945	struct kmem_cache *s;
4946	int err;
4947
4948	attribute = to_slab_attr(attr);
4949	s = to_slab(kobj);
4950
4951	if (!attribute->store)
4952		return -EIO;
4953
4954	err = attribute->store(s, buf, len);
 
 
 
 
 
 
 
4955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4956	return err;
4957}
4958
4959static void kmem_cache_release(struct kobject *kobj)
4960{
4961	struct kmem_cache *s = to_slab(kobj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4962
4963	kfree(s->name);
4964	kfree(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4965}
4966
4967static const struct sysfs_ops slab_sysfs_ops = {
4968	.show = slab_attr_show,
4969	.store = slab_attr_store,
4970};
4971
4972static struct kobj_type slab_ktype = {
4973	.sysfs_ops = &slab_sysfs_ops,
4974	.release = kmem_cache_release
4975};
4976
4977static int uevent_filter(struct kset *kset, struct kobject *kobj)
4978{
4979	struct kobj_type *ktype = get_ktype(kobj);
4980
4981	if (ktype == &slab_ktype)
4982		return 1;
4983	return 0;
4984}
4985
4986static const struct kset_uevent_ops slab_uevent_ops = {
4987	.filter = uevent_filter,
4988};
4989
4990static struct kset *slab_kset;
4991
 
 
 
 
 
 
 
 
 
4992#define ID_STR_LENGTH 64
4993
4994/* Create a unique string id for a slab cache:
4995 *
4996 * Format	:[flags-]size
4997 */
4998static char *create_unique_id(struct kmem_cache *s)
4999{
5000	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5001	char *p = name;
5002
5003	BUG_ON(!name);
5004
5005	*p++ = ':';
5006	/*
5007	 * First flags affecting slabcache operations. We will only
5008	 * get here for aliasable slabs so we do not need to support
5009	 * too many flags. The flags here must cover all flags that
5010	 * are matched during merging to guarantee that the id is
5011	 * unique.
5012	 */
5013	if (s->flags & SLAB_CACHE_DMA)
5014		*p++ = 'd';
5015	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5016		*p++ = 'a';
5017	if (s->flags & SLAB_DEBUG_FREE)
5018		*p++ = 'F';
5019	if (!(s->flags & SLAB_NOTRACK))
5020		*p++ = 't';
5021	if (p != name + 1)
5022		*p++ = '-';
5023	p += sprintf(p, "%07d", s->size);
 
 
 
 
 
 
 
5024	BUG_ON(p > name + ID_STR_LENGTH - 1);
5025	return name;
5026}
5027
5028static int sysfs_slab_add(struct kmem_cache *s)
5029{
5030	int err;
5031	const char *name;
5032	int unmergeable;
5033
5034	if (slab_state < SYSFS)
5035		/* Defer until later */
5036		return 0;
5037
5038	unmergeable = slab_unmergeable(s);
5039	if (unmergeable) {
5040		/*
5041		 * Slabcache can never be merged so we can use the name proper.
5042		 * This is typically the case for debug situations. In that
5043		 * case we can catch duplicate names easily.
5044		 */
5045		sysfs_remove_link(&slab_kset->kobj, s->name);
5046		name = s->name;
5047	} else {
5048		/*
5049		 * Create a unique name for the slab as a target
5050		 * for the symlinks.
5051		 */
5052		name = create_unique_id(s);
5053	}
5054
5055	s->kobj.kset = slab_kset;
5056	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5057	if (err) {
5058		kobject_put(&s->kobj);
5059		return err;
5060	}
5061
5062	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5063	if (err) {
5064		kobject_del(&s->kobj);
5065		kobject_put(&s->kobj);
5066		return err;
 
 
 
 
 
 
5067	}
 
 
5068	kobject_uevent(&s->kobj, KOBJ_ADD);
5069	if (!unmergeable) {
5070		/* Setup first alias */
5071		sysfs_slab_alias(s, s->name);
 
 
 
5072		kfree(name);
5073	}
5074	return 0;
 
 
 
 
5075}
5076
5077static void sysfs_slab_remove(struct kmem_cache *s)
5078{
5079	if (slab_state < SYSFS)
5080		/*
5081		 * Sysfs has not been setup yet so no need to remove the
5082		 * cache from sysfs.
5083		 */
5084		return;
5085
 
 
 
5086	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5087	kobject_del(&s->kobj);
5088	kobject_put(&s->kobj);
5089}
5090
5091/*
5092 * Need to buffer aliases during bootup until sysfs becomes
5093 * available lest we lose that information.
5094 */
5095struct saved_alias {
5096	struct kmem_cache *s;
5097	const char *name;
5098	struct saved_alias *next;
5099};
5100
5101static struct saved_alias *alias_list;
5102
5103static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5104{
5105	struct saved_alias *al;
5106
5107	if (slab_state == SYSFS) {
5108		/*
5109		 * If we have a leftover link then remove it.
5110		 */
5111		sysfs_remove_link(&slab_kset->kobj, name);
5112		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5113	}
5114
5115	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5116	if (!al)
5117		return -ENOMEM;
5118
5119	al->s = s;
5120	al->name = name;
5121	al->next = alias_list;
5122	alias_list = al;
5123	return 0;
5124}
5125
5126static int __init slab_sysfs_init(void)
5127{
5128	struct kmem_cache *s;
5129	int err;
5130
5131	down_write(&slub_lock);
5132
5133	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5134	if (!slab_kset) {
5135		up_write(&slub_lock);
5136		printk(KERN_ERR "Cannot register slab subsystem.\n");
5137		return -ENOSYS;
5138	}
5139
5140	slab_state = SYSFS;
5141
5142	list_for_each_entry(s, &slab_caches, list) {
5143		err = sysfs_slab_add(s);
5144		if (err)
5145			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5146						" to sysfs\n", s->name);
5147	}
5148
5149	while (alias_list) {
5150		struct saved_alias *al = alias_list;
5151
5152		alias_list = alias_list->next;
5153		err = sysfs_slab_alias(al->s, al->name);
5154		if (err)
5155			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5156					" %s to sysfs\n", s->name);
5157		kfree(al);
5158	}
5159
5160	up_write(&slub_lock);
5161	resiliency_test();
5162	return 0;
5163}
5164
5165__initcall(slab_sysfs_init);
5166#endif /* CONFIG_SYSFS */
5167
5168/*
5169 * The /proc/slabinfo ABI
5170 */
5171#ifdef CONFIG_SLABINFO
5172static void print_slabinfo_header(struct seq_file *m)
5173{
5174	seq_puts(m, "slabinfo - version: 2.1\n");
5175	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5176		 "<objperslab> <pagesperslab>");
5177	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5178	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5179	seq_putc(m, '\n');
5180}
5181
5182static void *s_start(struct seq_file *m, loff_t *pos)
5183{
5184	loff_t n = *pos;
5185
5186	down_read(&slub_lock);
5187	if (!n)
5188		print_slabinfo_header(m);
5189
5190	return seq_list_start(&slab_caches, *pos);
5191}
5192
5193static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5194{
5195	return seq_list_next(p, &slab_caches, pos);
5196}
5197
5198static void s_stop(struct seq_file *m, void *p)
5199{
5200	up_read(&slub_lock);
5201}
5202
5203static int s_show(struct seq_file *m, void *p)
5204{
5205	unsigned long nr_partials = 0;
5206	unsigned long nr_slabs = 0;
5207	unsigned long nr_inuse = 0;
5208	unsigned long nr_objs = 0;
5209	unsigned long nr_free = 0;
5210	struct kmem_cache *s;
5211	int node;
5212
5213	s = list_entry(p, struct kmem_cache, list);
5214
5215	for_each_online_node(node) {
5216		struct kmem_cache_node *n = get_node(s, node);
5217
5218		if (!n)
5219			continue;
5220
5221		nr_partials += n->nr_partial;
5222		nr_slabs += atomic_long_read(&n->nr_slabs);
5223		nr_objs += atomic_long_read(&n->total_objects);
5224		nr_free += count_partial(n, count_free);
5225	}
5226
5227	nr_inuse = nr_objs - nr_free;
5228
5229	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5230		   nr_objs, s->size, oo_objects(s->oo),
5231		   (1 << oo_order(s->oo)));
5232	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5233	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5234		   0UL);
5235	seq_putc(m, '\n');
5236	return 0;
5237}
5238
5239static const struct seq_operations slabinfo_op = {
5240	.start = s_start,
5241	.next = s_next,
5242	.stop = s_stop,
5243	.show = s_show,
5244};
5245
5246static int slabinfo_open(struct inode *inode, struct file *file)
5247{
5248	return seq_open(file, &slabinfo_op);
5249}
5250
5251static const struct file_operations proc_slabinfo_operations = {
5252	.open		= slabinfo_open,
5253	.read		= seq_read,
5254	.llseek		= seq_lseek,
5255	.release	= seq_release,
5256};
5257
5258static int __init slab_proc_init(void)
5259{
5260	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5261	return 0;
5262}
5263module_init(slab_proc_init);
5264#endif /* CONFIG_SLABINFO */