Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/export.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
  93#include <linux/mmu_notifier.h>
  94
  95#include <asm/tlbflush.h>
  96#include <asm/uaccess.h>
  97#include <linux/random.h>
  98
  99#include "internal.h"
 100
 101/* Internal flags */
 102#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 103#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 104
 105static struct kmem_cache *policy_cache;
 106static struct kmem_cache *sn_cache;
 107
 108/* Highest zone. An specific allocation for a zone below that is not
 109   policied. */
 110enum zone_type policy_zone = 0;
 111
 112/*
 113 * run-time system-wide default policy => local allocation
 114 */
 115static struct mempolicy default_policy = {
 116	.refcnt = ATOMIC_INIT(1), /* never free it */
 117	.mode = MPOL_PREFERRED,
 118	.flags = MPOL_F_LOCAL,
 119};
 120
 121static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 122
 123static struct mempolicy *get_task_policy(struct task_struct *p)
 124{
 125	struct mempolicy *pol = p->mempolicy;
 126
 127	if (!pol) {
 128		int node = numa_node_id();
 129
 130		if (node != NUMA_NO_NODE) {
 131			pol = &preferred_node_policy[node];
 132			/*
 133			 * preferred_node_policy is not initialised early in
 134			 * boot
 135			 */
 136			if (!pol->mode)
 137				pol = NULL;
 138		}
 139	}
 140
 141	return pol;
 142}
 143
 144static const struct mempolicy_operations {
 145	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 146	/*
 147	 * If read-side task has no lock to protect task->mempolicy, write-side
 148	 * task will rebind the task->mempolicy by two step. The first step is
 149	 * setting all the newly nodes, and the second step is cleaning all the
 150	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 151	 * page.
 152	 * If we have a lock to protect task->mempolicy in read-side, we do
 153	 * rebind directly.
 154	 *
 155	 * step:
 156	 * 	MPOL_REBIND_ONCE - do rebind work at once
 157	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 158	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 159	 */
 160	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 161			enum mpol_rebind_step step);
 162} mpol_ops[MPOL_MAX];
 163
 164/* Check that the nodemask contains at least one populated zone */
 165static int is_valid_nodemask(const nodemask_t *nodemask)
 166{
 167	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
 
 
 
 
 
 
 
 
 
 
 
 
 168}
 169
 170static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 171{
 172	return pol->flags & MPOL_MODE_FLAGS;
 173}
 174
 175static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 176				   const nodemask_t *rel)
 177{
 178	nodemask_t tmp;
 179	nodes_fold(tmp, *orig, nodes_weight(*rel));
 180	nodes_onto(*ret, tmp, *rel);
 181}
 182
 183static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 184{
 185	if (nodes_empty(*nodes))
 186		return -EINVAL;
 187	pol->v.nodes = *nodes;
 188	return 0;
 189}
 190
 191static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 192{
 193	if (!nodes)
 194		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 195	else if (nodes_empty(*nodes))
 196		return -EINVAL;			/*  no allowed nodes */
 197	else
 198		pol->v.preferred_node = first_node(*nodes);
 199	return 0;
 200}
 201
 202static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 203{
 204	if (!is_valid_nodemask(nodes))
 205		return -EINVAL;
 206	pol->v.nodes = *nodes;
 207	return 0;
 208}
 209
 210/*
 211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 212 * any, for the new policy.  mpol_new() has already validated the nodes
 213 * parameter with respect to the policy mode and flags.  But, we need to
 214 * handle an empty nodemask with MPOL_PREFERRED here.
 215 *
 216 * Must be called holding task's alloc_lock to protect task's mems_allowed
 217 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 218 */
 219static int mpol_set_nodemask(struct mempolicy *pol,
 220		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 221{
 222	int ret;
 223
 224	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 225	if (pol == NULL)
 226		return 0;
 227	/* Check N_MEMORY */
 228	nodes_and(nsc->mask1,
 229		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 230
 231	VM_BUG_ON(!nodes);
 232	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 233		nodes = NULL;	/* explicit local allocation */
 234	else {
 235		if (pol->flags & MPOL_F_RELATIVE_NODES)
 236			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 237		else
 238			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 239
 240		if (mpol_store_user_nodemask(pol))
 241			pol->w.user_nodemask = *nodes;
 242		else
 243			pol->w.cpuset_mems_allowed =
 244						cpuset_current_mems_allowed;
 245	}
 246
 247	if (nodes)
 248		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 249	else
 250		ret = mpol_ops[pol->mode].create(pol, NULL);
 251	return ret;
 252}
 253
 254/*
 255 * This function just creates a new policy, does some check and simple
 256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 257 */
 258static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 259				  nodemask_t *nodes)
 260{
 261	struct mempolicy *policy;
 262
 263	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 264		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 265
 266	if (mode == MPOL_DEFAULT) {
 267		if (nodes && !nodes_empty(*nodes))
 268			return ERR_PTR(-EINVAL);
 269		return NULL;
 270	}
 271	VM_BUG_ON(!nodes);
 272
 273	/*
 274	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 275	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 276	 * All other modes require a valid pointer to a non-empty nodemask.
 277	 */
 278	if (mode == MPOL_PREFERRED) {
 279		if (nodes_empty(*nodes)) {
 280			if (((flags & MPOL_F_STATIC_NODES) ||
 281			     (flags & MPOL_F_RELATIVE_NODES)))
 282				return ERR_PTR(-EINVAL);
 283		}
 284	} else if (mode == MPOL_LOCAL) {
 285		if (!nodes_empty(*nodes))
 286			return ERR_PTR(-EINVAL);
 287		mode = MPOL_PREFERRED;
 288	} else if (nodes_empty(*nodes))
 289		return ERR_PTR(-EINVAL);
 290	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 291	if (!policy)
 292		return ERR_PTR(-ENOMEM);
 293	atomic_set(&policy->refcnt, 1);
 294	policy->mode = mode;
 295	policy->flags = flags;
 296
 297	return policy;
 298}
 299
 300/* Slow path of a mpol destructor. */
 301void __mpol_put(struct mempolicy *p)
 302{
 303	if (!atomic_dec_and_test(&p->refcnt))
 304		return;
 305	kmem_cache_free(policy_cache, p);
 306}
 307
 308static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 309				enum mpol_rebind_step step)
 310{
 311}
 312
 313/*
 314 * step:
 315 * 	MPOL_REBIND_ONCE  - do rebind work at once
 316 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 317 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 318 */
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 320				 enum mpol_rebind_step step)
 321{
 322	nodemask_t tmp;
 323
 324	if (pol->flags & MPOL_F_STATIC_NODES)
 325		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 326	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 327		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 328	else {
 329		/*
 330		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 331		 * result
 332		 */
 333		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 334			nodes_remap(tmp, pol->v.nodes,
 335					pol->w.cpuset_mems_allowed, *nodes);
 336			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 337		} else if (step == MPOL_REBIND_STEP2) {
 338			tmp = pol->w.cpuset_mems_allowed;
 339			pol->w.cpuset_mems_allowed = *nodes;
 340		} else
 341			BUG();
 342	}
 343
 344	if (nodes_empty(tmp))
 345		tmp = *nodes;
 346
 347	if (step == MPOL_REBIND_STEP1)
 348		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 349	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 350		pol->v.nodes = tmp;
 351	else
 352		BUG();
 353
 354	if (!node_isset(current->il_next, tmp)) {
 355		current->il_next = next_node(current->il_next, tmp);
 356		if (current->il_next >= MAX_NUMNODES)
 357			current->il_next = first_node(tmp);
 358		if (current->il_next >= MAX_NUMNODES)
 359			current->il_next = numa_node_id();
 360	}
 361}
 362
 363static void mpol_rebind_preferred(struct mempolicy *pol,
 364				  const nodemask_t *nodes,
 365				  enum mpol_rebind_step step)
 366{
 367	nodemask_t tmp;
 368
 369	if (pol->flags & MPOL_F_STATIC_NODES) {
 370		int node = first_node(pol->w.user_nodemask);
 371
 372		if (node_isset(node, *nodes)) {
 373			pol->v.preferred_node = node;
 374			pol->flags &= ~MPOL_F_LOCAL;
 375		} else
 376			pol->flags |= MPOL_F_LOCAL;
 377	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 378		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 379		pol->v.preferred_node = first_node(tmp);
 380	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 381		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 382						   pol->w.cpuset_mems_allowed,
 383						   *nodes);
 384		pol->w.cpuset_mems_allowed = *nodes;
 385	}
 386}
 387
 388/*
 389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 390 *
 391 * If read-side task has no lock to protect task->mempolicy, write-side
 392 * task will rebind the task->mempolicy by two step. The first step is
 393 * setting all the newly nodes, and the second step is cleaning all the
 394 * disallowed nodes. In this way, we can avoid finding no node to alloc
 395 * page.
 396 * If we have a lock to protect task->mempolicy in read-side, we do
 397 * rebind directly.
 398 *
 399 * step:
 400 * 	MPOL_REBIND_ONCE  - do rebind work at once
 401 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 402 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 403 */
 404static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 405				enum mpol_rebind_step step)
 406{
 407	if (!pol)
 408		return;
 409	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 410	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 411		return;
 412
 413	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 414		return;
 415
 416	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 417		BUG();
 418
 419	if (step == MPOL_REBIND_STEP1)
 420		pol->flags |= MPOL_F_REBINDING;
 421	else if (step == MPOL_REBIND_STEP2)
 422		pol->flags &= ~MPOL_F_REBINDING;
 423	else if (step >= MPOL_REBIND_NSTEP)
 424		BUG();
 425
 426	mpol_ops[pol->mode].rebind(pol, newmask, step);
 427}
 428
 429/*
 430 * Wrapper for mpol_rebind_policy() that just requires task
 431 * pointer, and updates task mempolicy.
 432 *
 433 * Called with task's alloc_lock held.
 434 */
 435
 436void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 437			enum mpol_rebind_step step)
 438{
 439	mpol_rebind_policy(tsk->mempolicy, new, step);
 440}
 441
 442/*
 443 * Rebind each vma in mm to new nodemask.
 444 *
 445 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 446 */
 447
 448void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 449{
 450	struct vm_area_struct *vma;
 451
 452	down_write(&mm->mmap_sem);
 453	for (vma = mm->mmap; vma; vma = vma->vm_next)
 454		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 455	up_write(&mm->mmap_sem);
 456}
 457
 458static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 459	[MPOL_DEFAULT] = {
 460		.rebind = mpol_rebind_default,
 461	},
 462	[MPOL_INTERLEAVE] = {
 463		.create = mpol_new_interleave,
 464		.rebind = mpol_rebind_nodemask,
 465	},
 466	[MPOL_PREFERRED] = {
 467		.create = mpol_new_preferred,
 468		.rebind = mpol_rebind_preferred,
 469	},
 470	[MPOL_BIND] = {
 471		.create = mpol_new_bind,
 472		.rebind = mpol_rebind_nodemask,
 473	},
 474};
 475
 476static void migrate_page_add(struct page *page, struct list_head *pagelist,
 477				unsigned long flags);
 478
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 482 */
 483static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 484		unsigned long addr, unsigned long end,
 485		const nodemask_t *nodes, unsigned long flags,
 486		void *private)
 487{
 488	pte_t *orig_pte;
 489	pte_t *pte;
 490	spinlock_t *ptl;
 491
 492	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 493	do {
 494		struct page *page;
 495		int nid;
 496
 497		if (!pte_present(*pte))
 498			continue;
 499		page = vm_normal_page(vma, addr, *pte);
 500		if (!page)
 501			continue;
 502		/*
 503		 * vm_normal_page() filters out zero pages, but there might
 504		 * still be PageReserved pages to skip, perhaps in a VDSO.
 
 505		 */
 506		if (PageReserved(page))
 507			continue;
 508		nid = page_to_nid(page);
 509		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 510			continue;
 511
 512		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 513			migrate_page_add(page, private, flags);
 514		else
 515			break;
 516	} while (pte++, addr += PAGE_SIZE, addr != end);
 517	pte_unmap_unlock(orig_pte, ptl);
 518	return addr != end;
 519}
 520
 521static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
 522		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
 523				    void *private)
 524{
 525#ifdef CONFIG_HUGETLB_PAGE
 526	int nid;
 527	struct page *page;
 528	spinlock_t *ptl;
 529	pte_t entry;
 530
 531	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
 532	entry = huge_ptep_get((pte_t *)pmd);
 533	if (!pte_present(entry))
 534		goto unlock;
 535	page = pte_page(entry);
 536	nid = page_to_nid(page);
 537	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 538		goto unlock;
 539	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 540	if (flags & (MPOL_MF_MOVE_ALL) ||
 541	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 542		isolate_huge_page(page, private);
 543unlock:
 544	spin_unlock(ptl);
 545#else
 546	BUG();
 547#endif
 548}
 549
 550static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 551		unsigned long addr, unsigned long end,
 552		const nodemask_t *nodes, unsigned long flags,
 553		void *private)
 554{
 555	pmd_t *pmd;
 556	unsigned long next;
 557
 558	pmd = pmd_offset(pud, addr);
 559	do {
 560		next = pmd_addr_end(addr, end);
 561		if (!pmd_present(*pmd))
 562			continue;
 563		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
 564			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
 565						flags, private);
 566			continue;
 567		}
 568		split_huge_page_pmd(vma, addr, pmd);
 569		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 570			continue;
 571		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
 572				    flags, private))
 573			return -EIO;
 574	} while (pmd++, addr = next, addr != end);
 575	return 0;
 576}
 577
 578static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 579		unsigned long addr, unsigned long end,
 580		const nodemask_t *nodes, unsigned long flags,
 581		void *private)
 582{
 583	pud_t *pud;
 584	unsigned long next;
 585
 586	pud = pud_offset(pgd, addr);
 587	do {
 588		next = pud_addr_end(addr, end);
 589		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
 590			continue;
 591		if (pud_none_or_clear_bad(pud))
 592			continue;
 593		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
 594				    flags, private))
 595			return -EIO;
 596	} while (pud++, addr = next, addr != end);
 597	return 0;
 598}
 599
 600static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
 601		unsigned long addr, unsigned long end,
 602		const nodemask_t *nodes, unsigned long flags,
 603		void *private)
 604{
 605	pgd_t *pgd;
 606	unsigned long next;
 607
 608	pgd = pgd_offset(vma->vm_mm, addr);
 609	do {
 610		next = pgd_addr_end(addr, end);
 611		if (pgd_none_or_clear_bad(pgd))
 612			continue;
 613		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
 614				    flags, private))
 615			return -EIO;
 616	} while (pgd++, addr = next, addr != end);
 617	return 0;
 618}
 619
 620#ifdef CONFIG_NUMA_BALANCING
 621/*
 622 * This is used to mark a range of virtual addresses to be inaccessible.
 623 * These are later cleared by a NUMA hinting fault. Depending on these
 624 * faults, pages may be migrated for better NUMA placement.
 625 *
 626 * This is assuming that NUMA faults are handled using PROT_NONE. If
 627 * an architecture makes a different choice, it will need further
 628 * changes to the core.
 629 */
 630unsigned long change_prot_numa(struct vm_area_struct *vma,
 631			unsigned long addr, unsigned long end)
 632{
 633	int nr_updated;
 634
 635	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
 636	if (nr_updated)
 637		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 638
 639	return nr_updated;
 640}
 641#else
 642static unsigned long change_prot_numa(struct vm_area_struct *vma,
 643			unsigned long addr, unsigned long end)
 644{
 645	return 0;
 646}
 647#endif /* CONFIG_NUMA_BALANCING */
 648
 649/*
 650 * Walk through page tables and collect pages to be migrated.
 651 *
 652 * If pages found in a given range are on a set of nodes (determined by
 653 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 654 * passed via @private.)
 655 */
 656static struct vm_area_struct *
 657queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 658		const nodemask_t *nodes, unsigned long flags, void *private)
 659{
 660	int err;
 661	struct vm_area_struct *first, *vma, *prev;
 662
 663
 664	first = find_vma(mm, start);
 665	if (!first)
 666		return ERR_PTR(-EFAULT);
 667	prev = NULL;
 668	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 669		unsigned long endvma = vma->vm_end;
 670
 671		if (endvma > end)
 672			endvma = end;
 673		if (vma->vm_start > start)
 674			start = vma->vm_start;
 675
 676		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 677			if (!vma->vm_next && vma->vm_end < end)
 678				return ERR_PTR(-EFAULT);
 679			if (prev && prev->vm_end < vma->vm_start)
 680				return ERR_PTR(-EFAULT);
 681		}
 682
 683		if (flags & MPOL_MF_LAZY) {
 684			change_prot_numa(vma, start, endvma);
 685			goto next;
 686		}
 687
 688		if ((flags & MPOL_MF_STRICT) ||
 689		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 690		      vma_migratable(vma))) {
 
 691
 692			err = queue_pages_pgd_range(vma, start, endvma, nodes,
 
 
 
 
 693						flags, private);
 694			if (err) {
 695				first = ERR_PTR(err);
 696				break;
 697			}
 698		}
 699next:
 700		prev = vma;
 701	}
 702	return first;
 703}
 704
 705/*
 706 * Apply policy to a single VMA
 707 * This must be called with the mmap_sem held for writing.
 708 */
 709static int vma_replace_policy(struct vm_area_struct *vma,
 710						struct mempolicy *pol)
 711{
 712	int err;
 713	struct mempolicy *old;
 714	struct mempolicy *new;
 715
 716	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 717		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 718		 vma->vm_ops, vma->vm_file,
 719		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 720
 721	new = mpol_dup(pol);
 722	if (IS_ERR(new))
 723		return PTR_ERR(new);
 724
 725	if (vma->vm_ops && vma->vm_ops->set_policy) {
 726		err = vma->vm_ops->set_policy(vma, new);
 727		if (err)
 728			goto err_out;
 
 
 729	}
 730
 731	old = vma->vm_policy;
 732	vma->vm_policy = new; /* protected by mmap_sem */
 733	mpol_put(old);
 734
 735	return 0;
 736 err_out:
 737	mpol_put(new);
 738	return err;
 739}
 740
 741/* Step 2: apply policy to a range and do splits. */
 742static int mbind_range(struct mm_struct *mm, unsigned long start,
 743		       unsigned long end, struct mempolicy *new_pol)
 744{
 745	struct vm_area_struct *next;
 746	struct vm_area_struct *prev;
 747	struct vm_area_struct *vma;
 748	int err = 0;
 749	pgoff_t pgoff;
 750	unsigned long vmstart;
 751	unsigned long vmend;
 752
 753	vma = find_vma(mm, start);
 754	if (!vma || vma->vm_start > start)
 755		return -EFAULT;
 756
 757	prev = vma->vm_prev;
 758	if (start > vma->vm_start)
 759		prev = vma;
 760
 761	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 762		next = vma->vm_next;
 763		vmstart = max(start, vma->vm_start);
 764		vmend   = min(end, vma->vm_end);
 765
 766		if (mpol_equal(vma_policy(vma), new_pol))
 767			continue;
 768
 769		pgoff = vma->vm_pgoff +
 770			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 771		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 772				  vma->anon_vma, vma->vm_file, pgoff,
 773				  new_pol);
 774		if (prev) {
 775			vma = prev;
 776			next = vma->vm_next;
 777			if (mpol_equal(vma_policy(vma), new_pol))
 778				continue;
 779			/* vma_merge() joined vma && vma->next, case 8 */
 780			goto replace;
 781		}
 782		if (vma->vm_start != vmstart) {
 783			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 784			if (err)
 785				goto out;
 786		}
 787		if (vma->vm_end != vmend) {
 788			err = split_vma(vma->vm_mm, vma, vmend, 0);
 789			if (err)
 790				goto out;
 791		}
 792 replace:
 793		err = vma_replace_policy(vma, new_pol);
 794		if (err)
 795			goto out;
 796	}
 797
 798 out:
 799	return err;
 800}
 801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802/* Set the process memory policy */
 803static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 804			     nodemask_t *nodes)
 805{
 806	struct mempolicy *new, *old;
 807	struct mm_struct *mm = current->mm;
 808	NODEMASK_SCRATCH(scratch);
 809	int ret;
 810
 811	if (!scratch)
 812		return -ENOMEM;
 813
 814	new = mpol_new(mode, flags, nodes);
 815	if (IS_ERR(new)) {
 816		ret = PTR_ERR(new);
 817		goto out;
 818	}
 819	/*
 820	 * prevent changing our mempolicy while show_numa_maps()
 821	 * is using it.
 822	 * Note:  do_set_mempolicy() can be called at init time
 823	 * with no 'mm'.
 824	 */
 825	if (mm)
 826		down_write(&mm->mmap_sem);
 827	task_lock(current);
 828	ret = mpol_set_nodemask(new, nodes, scratch);
 829	if (ret) {
 830		task_unlock(current);
 831		if (mm)
 832			up_write(&mm->mmap_sem);
 833		mpol_put(new);
 834		goto out;
 835	}
 836	old = current->mempolicy;
 837	current->mempolicy = new;
 
 838	if (new && new->mode == MPOL_INTERLEAVE &&
 839	    nodes_weight(new->v.nodes))
 840		current->il_next = first_node(new->v.nodes);
 841	task_unlock(current);
 842	if (mm)
 843		up_write(&mm->mmap_sem);
 844
 845	mpol_put(old);
 846	ret = 0;
 847out:
 848	NODEMASK_SCRATCH_FREE(scratch);
 849	return ret;
 850}
 851
 852/*
 853 * Return nodemask for policy for get_mempolicy() query
 854 *
 855 * Called with task's alloc_lock held
 856 */
 857static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 858{
 859	nodes_clear(*nodes);
 860	if (p == &default_policy)
 861		return;
 862
 863	switch (p->mode) {
 864	case MPOL_BIND:
 865		/* Fall through */
 866	case MPOL_INTERLEAVE:
 867		*nodes = p->v.nodes;
 868		break;
 869	case MPOL_PREFERRED:
 870		if (!(p->flags & MPOL_F_LOCAL))
 871			node_set(p->v.preferred_node, *nodes);
 872		/* else return empty node mask for local allocation */
 873		break;
 874	default:
 875		BUG();
 876	}
 877}
 878
 879static int lookup_node(struct mm_struct *mm, unsigned long addr)
 880{
 881	struct page *p;
 882	int err;
 883
 884	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 885	if (err >= 0) {
 886		err = page_to_nid(p);
 887		put_page(p);
 888	}
 889	return err;
 890}
 891
 892/* Retrieve NUMA policy */
 893static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 894			     unsigned long addr, unsigned long flags)
 895{
 896	int err;
 897	struct mm_struct *mm = current->mm;
 898	struct vm_area_struct *vma = NULL;
 899	struct mempolicy *pol = current->mempolicy;
 900
 901	if (flags &
 902		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 903		return -EINVAL;
 904
 905	if (flags & MPOL_F_MEMS_ALLOWED) {
 906		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 907			return -EINVAL;
 908		*policy = 0;	/* just so it's initialized */
 909		task_lock(current);
 910		*nmask  = cpuset_current_mems_allowed;
 911		task_unlock(current);
 912		return 0;
 913	}
 914
 915	if (flags & MPOL_F_ADDR) {
 916		/*
 917		 * Do NOT fall back to task policy if the
 918		 * vma/shared policy at addr is NULL.  We
 919		 * want to return MPOL_DEFAULT in this case.
 920		 */
 921		down_read(&mm->mmap_sem);
 922		vma = find_vma_intersection(mm, addr, addr+1);
 923		if (!vma) {
 924			up_read(&mm->mmap_sem);
 925			return -EFAULT;
 926		}
 927		if (vma->vm_ops && vma->vm_ops->get_policy)
 928			pol = vma->vm_ops->get_policy(vma, addr);
 929		else
 930			pol = vma->vm_policy;
 931	} else if (addr)
 932		return -EINVAL;
 933
 934	if (!pol)
 935		pol = &default_policy;	/* indicates default behavior */
 936
 937	if (flags & MPOL_F_NODE) {
 938		if (flags & MPOL_F_ADDR) {
 939			err = lookup_node(mm, addr);
 940			if (err < 0)
 941				goto out;
 942			*policy = err;
 943		} else if (pol == current->mempolicy &&
 944				pol->mode == MPOL_INTERLEAVE) {
 945			*policy = current->il_next;
 946		} else {
 947			err = -EINVAL;
 948			goto out;
 949		}
 950	} else {
 951		*policy = pol == &default_policy ? MPOL_DEFAULT :
 952						pol->mode;
 953		/*
 954		 * Internal mempolicy flags must be masked off before exposing
 955		 * the policy to userspace.
 956		 */
 957		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 958	}
 959
 960	if (vma) {
 961		up_read(&current->mm->mmap_sem);
 962		vma = NULL;
 963	}
 964
 965	err = 0;
 966	if (nmask) {
 967		if (mpol_store_user_nodemask(pol)) {
 968			*nmask = pol->w.user_nodemask;
 969		} else {
 970			task_lock(current);
 971			get_policy_nodemask(pol, nmask);
 972			task_unlock(current);
 973		}
 974	}
 975
 976 out:
 977	mpol_cond_put(pol);
 978	if (vma)
 979		up_read(&current->mm->mmap_sem);
 980	return err;
 981}
 982
 983#ifdef CONFIG_MIGRATION
 984/*
 985 * page migration
 986 */
 987static void migrate_page_add(struct page *page, struct list_head *pagelist,
 988				unsigned long flags)
 989{
 990	/*
 991	 * Avoid migrating a page that is shared with others.
 992	 */
 993	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 994		if (!isolate_lru_page(page)) {
 995			list_add_tail(&page->lru, pagelist);
 996			inc_zone_page_state(page, NR_ISOLATED_ANON +
 997					    page_is_file_cache(page));
 998		}
 999	}
1000}
1001
1002static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1003{
1004	if (PageHuge(page))
1005		return alloc_huge_page_node(page_hstate(compound_head(page)),
1006					node);
1007	else
1008		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1009}
1010
1011/*
1012 * Migrate pages from one node to a target node.
1013 * Returns error or the number of pages not migrated.
1014 */
1015static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1016			   int flags)
1017{
1018	nodemask_t nmask;
1019	LIST_HEAD(pagelist);
1020	int err = 0;
 
1021
1022	nodes_clear(nmask);
1023	node_set(source, nmask);
1024
1025	/*
1026	 * This does not "check" the range but isolates all pages that
1027	 * need migration.  Between passing in the full user address
1028	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1029	 */
1030	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1031	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1032			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 
 
1033
1034	if (!list_empty(&pagelist)) {
1035		err = migrate_pages(&pagelist, new_node_page, dest,
1036					MIGRATE_SYNC, MR_SYSCALL);
1037		if (err)
1038			putback_movable_pages(&pagelist);
1039	}
1040
1041	return err;
1042}
1043
1044/*
1045 * Move pages between the two nodesets so as to preserve the physical
1046 * layout as much as possible.
1047 *
1048 * Returns the number of page that could not be moved.
1049 */
1050int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1051		     const nodemask_t *to, int flags)
1052{
1053	int busy = 0;
1054	int err;
1055	nodemask_t tmp;
1056
1057	err = migrate_prep();
1058	if (err)
1059		return err;
1060
1061	down_read(&mm->mmap_sem);
1062
1063	err = migrate_vmas(mm, from, to, flags);
1064	if (err)
1065		goto out;
1066
1067	/*
1068	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1069	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1070	 * bit in 'tmp', and return that <source, dest> pair for migration.
1071	 * The pair of nodemasks 'to' and 'from' define the map.
1072	 *
1073	 * If no pair of bits is found that way, fallback to picking some
1074	 * pair of 'source' and 'dest' bits that are not the same.  If the
1075	 * 'source' and 'dest' bits are the same, this represents a node
1076	 * that will be migrating to itself, so no pages need move.
1077	 *
1078	 * If no bits are left in 'tmp', or if all remaining bits left
1079	 * in 'tmp' correspond to the same bit in 'to', return false
1080	 * (nothing left to migrate).
1081	 *
1082	 * This lets us pick a pair of nodes to migrate between, such that
1083	 * if possible the dest node is not already occupied by some other
1084	 * source node, minimizing the risk of overloading the memory on a
1085	 * node that would happen if we migrated incoming memory to a node
1086	 * before migrating outgoing memory source that same node.
1087	 *
1088	 * A single scan of tmp is sufficient.  As we go, we remember the
1089	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1090	 * that not only moved, but what's better, moved to an empty slot
1091	 * (d is not set in tmp), then we break out then, with that pair.
1092	 * Otherwise when we finish scanning from_tmp, we at least have the
1093	 * most recent <s, d> pair that moved.  If we get all the way through
1094	 * the scan of tmp without finding any node that moved, much less
1095	 * moved to an empty node, then there is nothing left worth migrating.
1096	 */
1097
1098	tmp = *from;
1099	while (!nodes_empty(tmp)) {
1100		int s,d;
1101		int source = NUMA_NO_NODE;
1102		int dest = 0;
1103
1104		for_each_node_mask(s, tmp) {
1105
1106			/*
1107			 * do_migrate_pages() tries to maintain the relative
1108			 * node relationship of the pages established between
1109			 * threads and memory areas.
1110                         *
1111			 * However if the number of source nodes is not equal to
1112			 * the number of destination nodes we can not preserve
1113			 * this node relative relationship.  In that case, skip
1114			 * copying memory from a node that is in the destination
1115			 * mask.
1116			 *
1117			 * Example: [2,3,4] -> [3,4,5] moves everything.
1118			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1119			 */
1120
1121			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1122						(node_isset(s, *to)))
1123				continue;
1124
1125			d = node_remap(s, *from, *to);
1126			if (s == d)
1127				continue;
1128
1129			source = s;	/* Node moved. Memorize */
1130			dest = d;
1131
1132			/* dest not in remaining from nodes? */
1133			if (!node_isset(dest, tmp))
1134				break;
1135		}
1136		if (source == NUMA_NO_NODE)
1137			break;
1138
1139		node_clear(source, tmp);
1140		err = migrate_to_node(mm, source, dest, flags);
1141		if (err > 0)
1142			busy += err;
1143		if (err < 0)
1144			break;
1145	}
1146out:
1147	up_read(&mm->mmap_sem);
1148	if (err < 0)
1149		return err;
1150	return busy;
1151
1152}
1153
1154/*
1155 * Allocate a new page for page migration based on vma policy.
1156 * Start assuming that page is mapped by vma pointed to by @private.
1157 * Search forward from there, if not.  N.B., this assumes that the
1158 * list of pages handed to migrate_pages()--which is how we get here--
1159 * is in virtual address order.
1160 */
1161static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1162{
1163	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1164	unsigned long uninitialized_var(address);
1165
1166	while (vma) {
1167		address = page_address_in_vma(page, vma);
1168		if (address != -EFAULT)
1169			break;
1170		vma = vma->vm_next;
1171	}
1172
1173	if (PageHuge(page)) {
1174		BUG_ON(!vma);
1175		return alloc_huge_page_noerr(vma, address, 1);
1176	}
1177	/*
1178	 * if !vma, alloc_page_vma() will use task or system default policy
1179	 */
1180	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1181}
1182#else
1183
1184static void migrate_page_add(struct page *page, struct list_head *pagelist,
1185				unsigned long flags)
1186{
1187}
1188
1189int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1190		     const nodemask_t *to, int flags)
1191{
1192	return -ENOSYS;
1193}
1194
1195static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1196{
1197	return NULL;
1198}
1199#endif
1200
1201static long do_mbind(unsigned long start, unsigned long len,
1202		     unsigned short mode, unsigned short mode_flags,
1203		     nodemask_t *nmask, unsigned long flags)
1204{
1205	struct vm_area_struct *vma;
1206	struct mm_struct *mm = current->mm;
1207	struct mempolicy *new;
1208	unsigned long end;
1209	int err;
1210	LIST_HEAD(pagelist);
1211
1212	if (flags & ~(unsigned long)MPOL_MF_VALID)
 
1213		return -EINVAL;
1214	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1215		return -EPERM;
1216
1217	if (start & ~PAGE_MASK)
1218		return -EINVAL;
1219
1220	if (mode == MPOL_DEFAULT)
1221		flags &= ~MPOL_MF_STRICT;
1222
1223	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1224	end = start + len;
1225
1226	if (end < start)
1227		return -EINVAL;
1228	if (end == start)
1229		return 0;
1230
1231	new = mpol_new(mode, mode_flags, nmask);
1232	if (IS_ERR(new))
1233		return PTR_ERR(new);
1234
1235	if (flags & MPOL_MF_LAZY)
1236		new->flags |= MPOL_F_MOF;
1237
1238	/*
1239	 * If we are using the default policy then operation
1240	 * on discontinuous address spaces is okay after all
1241	 */
1242	if (!new)
1243		flags |= MPOL_MF_DISCONTIG_OK;
1244
1245	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1246		 start, start + len, mode, mode_flags,
1247		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1248
1249	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1250
1251		err = migrate_prep();
1252		if (err)
1253			goto mpol_out;
1254	}
1255	{
1256		NODEMASK_SCRATCH(scratch);
1257		if (scratch) {
1258			down_write(&mm->mmap_sem);
1259			task_lock(current);
1260			err = mpol_set_nodemask(new, nmask, scratch);
1261			task_unlock(current);
1262			if (err)
1263				up_write(&mm->mmap_sem);
1264		} else
1265			err = -ENOMEM;
1266		NODEMASK_SCRATCH_FREE(scratch);
1267	}
1268	if (err)
1269		goto mpol_out;
1270
1271	vma = queue_pages_range(mm, start, end, nmask,
1272			  flags | MPOL_MF_INVERT, &pagelist);
1273
1274	err = PTR_ERR(vma);	/* maybe ... */
1275	if (!IS_ERR(vma))
1276		err = mbind_range(mm, start, end, new);
1277
1278	if (!err) {
1279		int nr_failed = 0;
1280
 
 
1281		if (!list_empty(&pagelist)) {
1282			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1283			nr_failed = migrate_pages(&pagelist, new_vma_page,
1284					(unsigned long)vma,
1285					MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1286			if (nr_failed)
1287				putback_movable_pages(&pagelist);
1288		}
1289
1290		if (nr_failed && (flags & MPOL_MF_STRICT))
1291			err = -EIO;
1292	} else
1293		putback_movable_pages(&pagelist);
1294
1295	up_write(&mm->mmap_sem);
1296 mpol_out:
1297	mpol_put(new);
1298	return err;
1299}
1300
1301/*
1302 * User space interface with variable sized bitmaps for nodelists.
1303 */
1304
1305/* Copy a node mask from user space. */
1306static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1307		     unsigned long maxnode)
1308{
1309	unsigned long k;
1310	unsigned long nlongs;
1311	unsigned long endmask;
1312
1313	--maxnode;
1314	nodes_clear(*nodes);
1315	if (maxnode == 0 || !nmask)
1316		return 0;
1317	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1318		return -EINVAL;
1319
1320	nlongs = BITS_TO_LONGS(maxnode);
1321	if ((maxnode % BITS_PER_LONG) == 0)
1322		endmask = ~0UL;
1323	else
1324		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1325
1326	/* When the user specified more nodes than supported just check
1327	   if the non supported part is all zero. */
1328	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1329		if (nlongs > PAGE_SIZE/sizeof(long))
1330			return -EINVAL;
1331		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1332			unsigned long t;
1333			if (get_user(t, nmask + k))
1334				return -EFAULT;
1335			if (k == nlongs - 1) {
1336				if (t & endmask)
1337					return -EINVAL;
1338			} else if (t)
1339				return -EINVAL;
1340		}
1341		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1342		endmask = ~0UL;
1343	}
1344
1345	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1346		return -EFAULT;
1347	nodes_addr(*nodes)[nlongs-1] &= endmask;
1348	return 0;
1349}
1350
1351/* Copy a kernel node mask to user space */
1352static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1353			      nodemask_t *nodes)
1354{
1355	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1356	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1357
1358	if (copy > nbytes) {
1359		if (copy > PAGE_SIZE)
1360			return -EINVAL;
1361		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1362			return -EFAULT;
1363		copy = nbytes;
1364	}
1365	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1366}
1367
1368SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1369		unsigned long, mode, unsigned long __user *, nmask,
1370		unsigned long, maxnode, unsigned, flags)
1371{
1372	nodemask_t nodes;
1373	int err;
1374	unsigned short mode_flags;
1375
1376	mode_flags = mode & MPOL_MODE_FLAGS;
1377	mode &= ~MPOL_MODE_FLAGS;
1378	if (mode >= MPOL_MAX)
1379		return -EINVAL;
1380	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1381	    (mode_flags & MPOL_F_RELATIVE_NODES))
1382		return -EINVAL;
1383	err = get_nodes(&nodes, nmask, maxnode);
1384	if (err)
1385		return err;
1386	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1387}
1388
1389/* Set the process memory policy */
1390SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1391		unsigned long, maxnode)
1392{
1393	int err;
1394	nodemask_t nodes;
1395	unsigned short flags;
1396
1397	flags = mode & MPOL_MODE_FLAGS;
1398	mode &= ~MPOL_MODE_FLAGS;
1399	if ((unsigned int)mode >= MPOL_MAX)
1400		return -EINVAL;
1401	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1402		return -EINVAL;
1403	err = get_nodes(&nodes, nmask, maxnode);
1404	if (err)
1405		return err;
1406	return do_set_mempolicy(mode, flags, &nodes);
1407}
1408
1409SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1410		const unsigned long __user *, old_nodes,
1411		const unsigned long __user *, new_nodes)
1412{
1413	const struct cred *cred = current_cred(), *tcred;
1414	struct mm_struct *mm = NULL;
1415	struct task_struct *task;
1416	nodemask_t task_nodes;
1417	int err;
1418	nodemask_t *old;
1419	nodemask_t *new;
1420	NODEMASK_SCRATCH(scratch);
1421
1422	if (!scratch)
1423		return -ENOMEM;
1424
1425	old = &scratch->mask1;
1426	new = &scratch->mask2;
1427
1428	err = get_nodes(old, old_nodes, maxnode);
1429	if (err)
1430		goto out;
1431
1432	err = get_nodes(new, new_nodes, maxnode);
1433	if (err)
1434		goto out;
1435
1436	/* Find the mm_struct */
1437	rcu_read_lock();
1438	task = pid ? find_task_by_vpid(pid) : current;
1439	if (!task) {
1440		rcu_read_unlock();
1441		err = -ESRCH;
1442		goto out;
1443	}
1444	get_task_struct(task);
 
1445
1446	err = -EINVAL;
 
 
1447
1448	/*
1449	 * Check if this process has the right to modify the specified
1450	 * process. The right exists if the process has administrative
1451	 * capabilities, superuser privileges or the same
1452	 * userid as the target process.
1453	 */
 
1454	tcred = __task_cred(task);
1455	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1456	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1457	    !capable(CAP_SYS_NICE)) {
1458		rcu_read_unlock();
1459		err = -EPERM;
1460		goto out_put;
1461	}
1462	rcu_read_unlock();
1463
1464	task_nodes = cpuset_mems_allowed(task);
1465	/* Is the user allowed to access the target nodes? */
1466	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1467		err = -EPERM;
1468		goto out_put;
1469	}
1470
1471	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1472		err = -EINVAL;
1473		goto out_put;
1474	}
1475
1476	err = security_task_movememory(task);
1477	if (err)
1478		goto out_put;
1479
1480	mm = get_task_mm(task);
1481	put_task_struct(task);
1482
1483	if (!mm) {
1484		err = -EINVAL;
1485		goto out;
1486	}
1487
1488	err = do_migrate_pages(mm, old, new,
1489		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1490
1491	mmput(mm);
1492out:
 
 
1493	NODEMASK_SCRATCH_FREE(scratch);
1494
1495	return err;
1496
1497out_put:
1498	put_task_struct(task);
1499	goto out;
1500
1501}
1502
1503
1504/* Retrieve NUMA policy */
1505SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1506		unsigned long __user *, nmask, unsigned long, maxnode,
1507		unsigned long, addr, unsigned long, flags)
1508{
1509	int err;
1510	int uninitialized_var(pval);
1511	nodemask_t nodes;
1512
1513	if (nmask != NULL && maxnode < MAX_NUMNODES)
1514		return -EINVAL;
1515
1516	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1517
1518	if (err)
1519		return err;
1520
1521	if (policy && put_user(pval, policy))
1522		return -EFAULT;
1523
1524	if (nmask)
1525		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1526
1527	return err;
1528}
1529
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1533		       compat_ulong_t __user *, nmask,
1534		       compat_ulong_t, maxnode,
1535		       compat_ulong_t, addr, compat_ulong_t, flags)
1536{
1537	long err;
1538	unsigned long __user *nm = NULL;
1539	unsigned long nr_bits, alloc_size;
1540	DECLARE_BITMAP(bm, MAX_NUMNODES);
1541
1542	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1543	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1544
1545	if (nmask)
1546		nm = compat_alloc_user_space(alloc_size);
1547
1548	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1549
1550	if (!err && nmask) {
1551		unsigned long copy_size;
1552		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1553		err = copy_from_user(bm, nm, copy_size);
1554		/* ensure entire bitmap is zeroed */
1555		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1556		err |= compat_put_bitmap(nmask, bm, nr_bits);
1557	}
1558
1559	return err;
1560}
1561
1562COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1563		       compat_ulong_t, maxnode)
1564{
1565	long err = 0;
1566	unsigned long __user *nm = NULL;
1567	unsigned long nr_bits, alloc_size;
1568	DECLARE_BITMAP(bm, MAX_NUMNODES);
1569
1570	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1571	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1572
1573	if (nmask) {
1574		err = compat_get_bitmap(bm, nmask, nr_bits);
1575		nm = compat_alloc_user_space(alloc_size);
1576		err |= copy_to_user(nm, bm, alloc_size);
1577	}
1578
1579	if (err)
1580		return -EFAULT;
1581
1582	return sys_set_mempolicy(mode, nm, nr_bits+1);
1583}
1584
1585COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1586		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1587		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1588{
1589	long err = 0;
1590	unsigned long __user *nm = NULL;
1591	unsigned long nr_bits, alloc_size;
1592	nodemask_t bm;
1593
1594	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1595	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1596
1597	if (nmask) {
1598		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1599		nm = compat_alloc_user_space(alloc_size);
1600		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1601	}
1602
1603	if (err)
1604		return -EFAULT;
1605
1606	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1607}
1608
1609#endif
1610
1611/*
1612 * get_vma_policy(@task, @vma, @addr)
1613 * @task - task for fallback if vma policy == default
1614 * @vma   - virtual memory area whose policy is sought
1615 * @addr  - address in @vma for shared policy lookup
1616 *
1617 * Returns effective policy for a VMA at specified address.
1618 * Falls back to @task or system default policy, as necessary.
1619 * Current or other task's task mempolicy and non-shared vma policies must be
1620 * protected by task_lock(task) by the caller.
 
1621 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1622 * count--added by the get_policy() vm_op, as appropriate--to protect against
1623 * freeing by another task.  It is the caller's responsibility to free the
1624 * extra reference for shared policies.
1625 */
1626struct mempolicy *get_vma_policy(struct task_struct *task,
1627		struct vm_area_struct *vma, unsigned long addr)
1628{
1629	struct mempolicy *pol = get_task_policy(task);
1630
1631	if (vma) {
1632		if (vma->vm_ops && vma->vm_ops->get_policy) {
1633			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1634									addr);
1635			if (vpol)
1636				pol = vpol;
1637		} else if (vma->vm_policy) {
1638			pol = vma->vm_policy;
1639
1640			/*
1641			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1642			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1643			 * count on these policies which will be dropped by
1644			 * mpol_cond_put() later
1645			 */
1646			if (mpol_needs_cond_ref(pol))
1647				mpol_get(pol);
1648		}
1649	}
1650	if (!pol)
1651		pol = &default_policy;
1652	return pol;
1653}
1654
1655bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1656{
1657	struct mempolicy *pol = get_task_policy(task);
1658	if (vma) {
1659		if (vma->vm_ops && vma->vm_ops->get_policy) {
1660			bool ret = false;
1661
1662			pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1663			if (pol && (pol->flags & MPOL_F_MOF))
1664				ret = true;
1665			mpol_cond_put(pol);
1666
1667			return ret;
1668		} else if (vma->vm_policy) {
1669			pol = vma->vm_policy;
1670		}
1671	}
1672
1673	if (!pol)
1674		return default_policy.flags & MPOL_F_MOF;
1675
1676	return pol->flags & MPOL_F_MOF;
1677}
1678
1679static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1680{
1681	enum zone_type dynamic_policy_zone = policy_zone;
1682
1683	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1684
1685	/*
1686	 * if policy->v.nodes has movable memory only,
1687	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1688	 *
1689	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1690	 * so if the following test faile, it implies
1691	 * policy->v.nodes has movable memory only.
1692	 */
1693	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1694		dynamic_policy_zone = ZONE_MOVABLE;
1695
1696	return zone >= dynamic_policy_zone;
1697}
1698
1699/*
1700 * Return a nodemask representing a mempolicy for filtering nodes for
1701 * page allocation
1702 */
1703static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1704{
1705	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1706	if (unlikely(policy->mode == MPOL_BIND) &&
1707			apply_policy_zone(policy, gfp_zone(gfp)) &&
1708			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1709		return &policy->v.nodes;
1710
1711	return NULL;
1712}
1713
1714/* Return a zonelist indicated by gfp for node representing a mempolicy */
1715static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1716	int nd)
1717{
1718	switch (policy->mode) {
1719	case MPOL_PREFERRED:
1720		if (!(policy->flags & MPOL_F_LOCAL))
1721			nd = policy->v.preferred_node;
1722		break;
1723	case MPOL_BIND:
1724		/*
1725		 * Normally, MPOL_BIND allocations are node-local within the
1726		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1727		 * current node isn't part of the mask, we use the zonelist for
1728		 * the first node in the mask instead.
1729		 */
1730		if (unlikely(gfp & __GFP_THISNODE) &&
1731				unlikely(!node_isset(nd, policy->v.nodes)))
1732			nd = first_node(policy->v.nodes);
1733		break;
1734	default:
1735		BUG();
1736	}
1737	return node_zonelist(nd, gfp);
1738}
1739
1740/* Do dynamic interleaving for a process */
1741static unsigned interleave_nodes(struct mempolicy *policy)
1742{
1743	unsigned nid, next;
1744	struct task_struct *me = current;
1745
1746	nid = me->il_next;
1747	next = next_node(nid, policy->v.nodes);
1748	if (next >= MAX_NUMNODES)
1749		next = first_node(policy->v.nodes);
1750	if (next < MAX_NUMNODES)
1751		me->il_next = next;
1752	return nid;
1753}
1754
1755/*
1756 * Depending on the memory policy provide a node from which to allocate the
1757 * next slab entry.
 
 
 
 
1758 */
1759unsigned int mempolicy_slab_node(void)
1760{
1761	struct mempolicy *policy;
1762	int node = numa_mem_id();
1763
1764	if (in_interrupt())
1765		return node;
1766
1767	policy = current->mempolicy;
1768	if (!policy || policy->flags & MPOL_F_LOCAL)
1769		return node;
1770
1771	switch (policy->mode) {
1772	case MPOL_PREFERRED:
1773		/*
1774		 * handled MPOL_F_LOCAL above
1775		 */
1776		return policy->v.preferred_node;
1777
1778	case MPOL_INTERLEAVE:
1779		return interleave_nodes(policy);
1780
1781	case MPOL_BIND: {
1782		/*
1783		 * Follow bind policy behavior and start allocation at the
1784		 * first node.
1785		 */
1786		struct zonelist *zonelist;
1787		struct zone *zone;
1788		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1789		zonelist = &NODE_DATA(node)->node_zonelists[0];
1790		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1791							&policy->v.nodes,
1792							&zone);
1793		return zone ? zone->node : node;
1794	}
1795
1796	default:
1797		BUG();
1798	}
1799}
1800
1801/* Do static interleaving for a VMA with known offset. */
1802static unsigned offset_il_node(struct mempolicy *pol,
1803		struct vm_area_struct *vma, unsigned long off)
1804{
1805	unsigned nnodes = nodes_weight(pol->v.nodes);
1806	unsigned target;
1807	int c;
1808	int nid = NUMA_NO_NODE;
1809
1810	if (!nnodes)
1811		return numa_node_id();
1812	target = (unsigned int)off % nnodes;
1813	c = 0;
1814	do {
1815		nid = next_node(nid, pol->v.nodes);
1816		c++;
1817	} while (c <= target);
1818	return nid;
1819}
1820
1821/* Determine a node number for interleave */
1822static inline unsigned interleave_nid(struct mempolicy *pol,
1823		 struct vm_area_struct *vma, unsigned long addr, int shift)
1824{
1825	if (vma) {
1826		unsigned long off;
1827
1828		/*
1829		 * for small pages, there is no difference between
1830		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1831		 * for huge pages, since vm_pgoff is in units of small
1832		 * pages, we need to shift off the always 0 bits to get
1833		 * a useful offset.
1834		 */
1835		BUG_ON(shift < PAGE_SHIFT);
1836		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1837		off += (addr - vma->vm_start) >> shift;
1838		return offset_il_node(pol, vma, off);
1839	} else
1840		return interleave_nodes(pol);
1841}
1842
1843/*
1844 * Return the bit number of a random bit set in the nodemask.
1845 * (returns NUMA_NO_NODE if nodemask is empty)
1846 */
1847int node_random(const nodemask_t *maskp)
1848{
1849	int w, bit = NUMA_NO_NODE;
1850
1851	w = nodes_weight(*maskp);
1852	if (w)
1853		bit = bitmap_ord_to_pos(maskp->bits,
1854			get_random_int() % w, MAX_NUMNODES);
1855	return bit;
1856}
1857
1858#ifdef CONFIG_HUGETLBFS
1859/*
1860 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1861 * @vma = virtual memory area whose policy is sought
1862 * @addr = address in @vma for shared policy lookup and interleave policy
1863 * @gfp_flags = for requested zone
1864 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1865 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1866 *
1867 * Returns a zonelist suitable for a huge page allocation and a pointer
1868 * to the struct mempolicy for conditional unref after allocation.
1869 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1870 * @nodemask for filtering the zonelist.
1871 *
1872 * Must be protected by read_mems_allowed_begin()
1873 */
1874struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1875				gfp_t gfp_flags, struct mempolicy **mpol,
1876				nodemask_t **nodemask)
1877{
1878	struct zonelist *zl;
1879
1880	*mpol = get_vma_policy(current, vma, addr);
1881	*nodemask = NULL;	/* assume !MPOL_BIND */
1882
1883	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1884		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1885				huge_page_shift(hstate_vma(vma))), gfp_flags);
1886	} else {
1887		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1888		if ((*mpol)->mode == MPOL_BIND)
1889			*nodemask = &(*mpol)->v.nodes;
1890	}
1891	return zl;
1892}
1893
1894/*
1895 * init_nodemask_of_mempolicy
1896 *
1897 * If the current task's mempolicy is "default" [NULL], return 'false'
1898 * to indicate default policy.  Otherwise, extract the policy nodemask
1899 * for 'bind' or 'interleave' policy into the argument nodemask, or
1900 * initialize the argument nodemask to contain the single node for
1901 * 'preferred' or 'local' policy and return 'true' to indicate presence
1902 * of non-default mempolicy.
1903 *
1904 * We don't bother with reference counting the mempolicy [mpol_get/put]
1905 * because the current task is examining it's own mempolicy and a task's
1906 * mempolicy is only ever changed by the task itself.
1907 *
1908 * N.B., it is the caller's responsibility to free a returned nodemask.
1909 */
1910bool init_nodemask_of_mempolicy(nodemask_t *mask)
1911{
1912	struct mempolicy *mempolicy;
1913	int nid;
1914
1915	if (!(mask && current->mempolicy))
1916		return false;
1917
1918	task_lock(current);
1919	mempolicy = current->mempolicy;
1920	switch (mempolicy->mode) {
1921	case MPOL_PREFERRED:
1922		if (mempolicy->flags & MPOL_F_LOCAL)
1923			nid = numa_node_id();
1924		else
1925			nid = mempolicy->v.preferred_node;
1926		init_nodemask_of_node(mask, nid);
1927		break;
1928
1929	case MPOL_BIND:
1930		/* Fall through */
1931	case MPOL_INTERLEAVE:
1932		*mask =  mempolicy->v.nodes;
1933		break;
1934
1935	default:
1936		BUG();
1937	}
1938	task_unlock(current);
1939
1940	return true;
1941}
1942#endif
1943
1944/*
1945 * mempolicy_nodemask_intersects
1946 *
1947 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1948 * policy.  Otherwise, check for intersection between mask and the policy
1949 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1950 * policy, always return true since it may allocate elsewhere on fallback.
1951 *
1952 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1953 */
1954bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1955					const nodemask_t *mask)
1956{
1957	struct mempolicy *mempolicy;
1958	bool ret = true;
1959
1960	if (!mask)
1961		return ret;
1962	task_lock(tsk);
1963	mempolicy = tsk->mempolicy;
1964	if (!mempolicy)
1965		goto out;
1966
1967	switch (mempolicy->mode) {
1968	case MPOL_PREFERRED:
1969		/*
1970		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1971		 * allocate from, they may fallback to other nodes when oom.
1972		 * Thus, it's possible for tsk to have allocated memory from
1973		 * nodes in mask.
1974		 */
1975		break;
1976	case MPOL_BIND:
1977	case MPOL_INTERLEAVE:
1978		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1979		break;
1980	default:
1981		BUG();
1982	}
1983out:
1984	task_unlock(tsk);
1985	return ret;
1986}
1987
1988/* Allocate a page in interleaved policy.
1989   Own path because it needs to do special accounting. */
1990static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1991					unsigned nid)
1992{
1993	struct zonelist *zl;
1994	struct page *page;
1995
1996	zl = node_zonelist(nid, gfp);
1997	page = __alloc_pages(gfp, order, zl);
1998	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1999		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2000	return page;
2001}
2002
2003/**
2004 * 	alloc_pages_vma	- Allocate a page for a VMA.
2005 *
2006 * 	@gfp:
2007 *      %GFP_USER    user allocation.
2008 *      %GFP_KERNEL  kernel allocations,
2009 *      %GFP_HIGHMEM highmem/user allocations,
2010 *      %GFP_FS      allocation should not call back into a file system.
2011 *      %GFP_ATOMIC  don't sleep.
2012 *
2013 *	@order:Order of the GFP allocation.
2014 * 	@vma:  Pointer to VMA or NULL if not available.
2015 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2016 *
2017 * 	This function allocates a page from the kernel page pool and applies
2018 *	a NUMA policy associated with the VMA or the current process.
2019 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2020 *	mm_struct of the VMA to prevent it from going away. Should be used for
2021 *	all allocations for pages that will be mapped into
2022 * 	user space. Returns NULL when no page can be allocated.
2023 *
2024 *	Should be called with the mm_sem of the vma hold.
2025 */
2026struct page *
2027alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2028		unsigned long addr, int node)
2029{
2030	struct mempolicy *pol;
 
2031	struct page *page;
2032	unsigned int cpuset_mems_cookie;
2033
2034retry_cpuset:
2035	pol = get_vma_policy(current, vma, addr);
2036	cpuset_mems_cookie = read_mems_allowed_begin();
2037
 
2038	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2039		unsigned nid;
2040
2041		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2042		mpol_cond_put(pol);
2043		page = alloc_page_interleave(gfp, order, nid);
2044		if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2045			goto retry_cpuset;
2046
2047		return page;
2048	}
2049	page = __alloc_pages_nodemask(gfp, order,
2050				      policy_zonelist(gfp, pol, node),
2051				      policy_nodemask(gfp, pol));
2052	if (unlikely(mpol_needs_cond_ref(pol)))
 
 
 
2053		__mpol_put(pol);
2054	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2055		goto retry_cpuset;
 
 
 
 
 
 
 
2056	return page;
2057}
2058
2059/**
2060 * 	alloc_pages_current - Allocate pages.
2061 *
2062 *	@gfp:
2063 *		%GFP_USER   user allocation,
2064 *      	%GFP_KERNEL kernel allocation,
2065 *      	%GFP_HIGHMEM highmem allocation,
2066 *      	%GFP_FS     don't call back into a file system.
2067 *      	%GFP_ATOMIC don't sleep.
2068 *	@order: Power of two of allocation size in pages. 0 is a single page.
2069 *
2070 *	Allocate a page from the kernel page pool.  When not in
2071 *	interrupt context and apply the current process NUMA policy.
2072 *	Returns NULL when no page can be allocated.
2073 *
2074 *	Don't call cpuset_update_task_memory_state() unless
2075 *	1) it's ok to take cpuset_sem (can WAIT), and
2076 *	2) allocating for current task (not interrupt).
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079{
2080	struct mempolicy *pol = get_task_policy(current);
2081	struct page *page;
2082	unsigned int cpuset_mems_cookie;
2083
2084	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2085		pol = &default_policy;
2086
2087retry_cpuset:
2088	cpuset_mems_cookie = read_mems_allowed_begin();
2089
2090	/*
2091	 * No reference counting needed for current->mempolicy
2092	 * nor system default_policy
2093	 */
2094	if (pol->mode == MPOL_INTERLEAVE)
2095		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2096	else
2097		page = __alloc_pages_nodemask(gfp, order,
2098				policy_zonelist(gfp, pol, numa_node_id()),
2099				policy_nodemask(gfp, pol));
2100
2101	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2102		goto retry_cpuset;
2103
2104	return page;
2105}
2106EXPORT_SYMBOL(alloc_pages_current);
2107
2108int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2109{
2110	struct mempolicy *pol = mpol_dup(vma_policy(src));
2111
2112	if (IS_ERR(pol))
2113		return PTR_ERR(pol);
2114	dst->vm_policy = pol;
2115	return 0;
2116}
2117
2118/*
2119 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2120 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2121 * with the mems_allowed returned by cpuset_mems_allowed().  This
2122 * keeps mempolicies cpuset relative after its cpuset moves.  See
2123 * further kernel/cpuset.c update_nodemask().
2124 *
2125 * current's mempolicy may be rebinded by the other task(the task that changes
2126 * cpuset's mems), so we needn't do rebind work for current task.
2127 */
2128
2129/* Slow path of a mempolicy duplicate */
2130struct mempolicy *__mpol_dup(struct mempolicy *old)
2131{
2132	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2133
2134	if (!new)
2135		return ERR_PTR(-ENOMEM);
2136
2137	/* task's mempolicy is protected by alloc_lock */
2138	if (old == current->mempolicy) {
2139		task_lock(current);
2140		*new = *old;
2141		task_unlock(current);
2142	} else
2143		*new = *old;
2144
2145	rcu_read_lock();
2146	if (current_cpuset_is_being_rebound()) {
2147		nodemask_t mems = cpuset_mems_allowed(current);
2148		if (new->flags & MPOL_F_REBINDING)
2149			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2150		else
2151			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2152	}
2153	rcu_read_unlock();
2154	atomic_set(&new->refcnt, 1);
2155	return new;
2156}
2157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158/* Slow path of a mempolicy comparison */
2159bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2160{
2161	if (!a || !b)
2162		return false;
2163	if (a->mode != b->mode)
2164		return false;
2165	if (a->flags != b->flags)
2166		return false;
2167	if (mpol_store_user_nodemask(a))
2168		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2169			return false;
2170
2171	switch (a->mode) {
2172	case MPOL_BIND:
2173		/* Fall through */
2174	case MPOL_INTERLEAVE:
2175		return !!nodes_equal(a->v.nodes, b->v.nodes);
2176	case MPOL_PREFERRED:
2177		return a->v.preferred_node == b->v.preferred_node;
2178	default:
2179		BUG();
2180		return false;
2181	}
2182}
2183
2184/*
2185 * Shared memory backing store policy support.
2186 *
2187 * Remember policies even when nobody has shared memory mapped.
2188 * The policies are kept in Red-Black tree linked from the inode.
2189 * They are protected by the sp->lock spinlock, which should be held
2190 * for any accesses to the tree.
2191 */
2192
2193/* lookup first element intersecting start-end */
2194/* Caller holds sp->lock */
2195static struct sp_node *
2196sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2197{
2198	struct rb_node *n = sp->root.rb_node;
2199
2200	while (n) {
2201		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2202
2203		if (start >= p->end)
2204			n = n->rb_right;
2205		else if (end <= p->start)
2206			n = n->rb_left;
2207		else
2208			break;
2209	}
2210	if (!n)
2211		return NULL;
2212	for (;;) {
2213		struct sp_node *w = NULL;
2214		struct rb_node *prev = rb_prev(n);
2215		if (!prev)
2216			break;
2217		w = rb_entry(prev, struct sp_node, nd);
2218		if (w->end <= start)
2219			break;
2220		n = prev;
2221	}
2222	return rb_entry(n, struct sp_node, nd);
2223}
2224
2225/* Insert a new shared policy into the list. */
2226/* Caller holds sp->lock */
2227static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2228{
2229	struct rb_node **p = &sp->root.rb_node;
2230	struct rb_node *parent = NULL;
2231	struct sp_node *nd;
2232
2233	while (*p) {
2234		parent = *p;
2235		nd = rb_entry(parent, struct sp_node, nd);
2236		if (new->start < nd->start)
2237			p = &(*p)->rb_left;
2238		else if (new->end > nd->end)
2239			p = &(*p)->rb_right;
2240		else
2241			BUG();
2242	}
2243	rb_link_node(&new->nd, parent, p);
2244	rb_insert_color(&new->nd, &sp->root);
2245	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2246		 new->policy ? new->policy->mode : 0);
2247}
2248
2249/* Find shared policy intersecting idx */
2250struct mempolicy *
2251mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2252{
2253	struct mempolicy *pol = NULL;
2254	struct sp_node *sn;
2255
2256	if (!sp->root.rb_node)
2257		return NULL;
2258	spin_lock(&sp->lock);
2259	sn = sp_lookup(sp, idx, idx+1);
2260	if (sn) {
2261		mpol_get(sn->policy);
2262		pol = sn->policy;
2263	}
2264	spin_unlock(&sp->lock);
2265	return pol;
2266}
2267
2268static void sp_free(struct sp_node *n)
2269{
2270	mpol_put(n->policy);
2271	kmem_cache_free(sn_cache, n);
2272}
2273
2274/**
2275 * mpol_misplaced - check whether current page node is valid in policy
2276 *
2277 * @page   - page to be checked
2278 * @vma    - vm area where page mapped
2279 * @addr   - virtual address where page mapped
2280 *
2281 * Lookup current policy node id for vma,addr and "compare to" page's
2282 * node id.
2283 *
2284 * Returns:
2285 *	-1	- not misplaced, page is in the right node
2286 *	node	- node id where the page should be
2287 *
2288 * Policy determination "mimics" alloc_page_vma().
2289 * Called from fault path where we know the vma and faulting address.
2290 */
2291int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2292{
2293	struct mempolicy *pol;
2294	struct zone *zone;
2295	int curnid = page_to_nid(page);
2296	unsigned long pgoff;
2297	int thiscpu = raw_smp_processor_id();
2298	int thisnid = cpu_to_node(thiscpu);
2299	int polnid = -1;
2300	int ret = -1;
2301
2302	BUG_ON(!vma);
2303
2304	pol = get_vma_policy(current, vma, addr);
2305	if (!(pol->flags & MPOL_F_MOF))
2306		goto out;
2307
2308	switch (pol->mode) {
2309	case MPOL_INTERLEAVE:
2310		BUG_ON(addr >= vma->vm_end);
2311		BUG_ON(addr < vma->vm_start);
2312
2313		pgoff = vma->vm_pgoff;
2314		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2315		polnid = offset_il_node(pol, vma, pgoff);
2316		break;
2317
2318	case MPOL_PREFERRED:
2319		if (pol->flags & MPOL_F_LOCAL)
2320			polnid = numa_node_id();
2321		else
2322			polnid = pol->v.preferred_node;
2323		break;
2324
2325	case MPOL_BIND:
2326		/*
2327		 * allows binding to multiple nodes.
2328		 * use current page if in policy nodemask,
2329		 * else select nearest allowed node, if any.
2330		 * If no allowed nodes, use current [!misplaced].
2331		 */
2332		if (node_isset(curnid, pol->v.nodes))
2333			goto out;
2334		(void)first_zones_zonelist(
2335				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2336				gfp_zone(GFP_HIGHUSER),
2337				&pol->v.nodes, &zone);
2338		polnid = zone->node;
2339		break;
2340
2341	default:
2342		BUG();
2343	}
2344
2345	/* Migrate the page towards the node whose CPU is referencing it */
2346	if (pol->flags & MPOL_F_MORON) {
2347		polnid = thisnid;
2348
2349		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2350			goto out;
2351	}
2352
2353	if (curnid != polnid)
2354		ret = polnid;
2355out:
2356	mpol_cond_put(pol);
2357
2358	return ret;
2359}
2360
2361static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2362{
2363	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2364	rb_erase(&n->nd, &sp->root);
2365	sp_free(n);
2366}
2367
2368static void sp_node_init(struct sp_node *node, unsigned long start,
2369			unsigned long end, struct mempolicy *pol)
2370{
2371	node->start = start;
2372	node->end = end;
2373	node->policy = pol;
2374}
2375
2376static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2377				struct mempolicy *pol)
2378{
2379	struct sp_node *n;
2380	struct mempolicy *newpol;
2381
2382	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2383	if (!n)
2384		return NULL;
2385
2386	newpol = mpol_dup(pol);
2387	if (IS_ERR(newpol)) {
2388		kmem_cache_free(sn_cache, n);
2389		return NULL;
2390	}
2391	newpol->flags |= MPOL_F_SHARED;
2392	sp_node_init(n, start, end, newpol);
2393
2394	return n;
2395}
2396
2397/* Replace a policy range. */
2398static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2399				 unsigned long end, struct sp_node *new)
2400{
2401	struct sp_node *n;
2402	struct sp_node *n_new = NULL;
2403	struct mempolicy *mpol_new = NULL;
2404	int ret = 0;
2405
2406restart:
2407	spin_lock(&sp->lock);
2408	n = sp_lookup(sp, start, end);
2409	/* Take care of old policies in the same range. */
2410	while (n && n->start < end) {
2411		struct rb_node *next = rb_next(&n->nd);
2412		if (n->start >= start) {
2413			if (n->end <= end)
2414				sp_delete(sp, n);
2415			else
2416				n->start = end;
2417		} else {
2418			/* Old policy spanning whole new range. */
2419			if (n->end > end) {
2420				if (!n_new)
2421					goto alloc_new;
2422
2423				*mpol_new = *n->policy;
2424				atomic_set(&mpol_new->refcnt, 1);
2425				sp_node_init(n_new, end, n->end, mpol_new);
 
2426				n->end = start;
2427				sp_insert(sp, n_new);
2428				n_new = NULL;
2429				mpol_new = NULL;
2430				break;
2431			} else
2432				n->end = start;
2433		}
2434		if (!next)
2435			break;
2436		n = rb_entry(next, struct sp_node, nd);
2437	}
2438	if (new)
2439		sp_insert(sp, new);
2440	spin_unlock(&sp->lock);
2441	ret = 0;
2442
2443err_out:
2444	if (mpol_new)
2445		mpol_put(mpol_new);
2446	if (n_new)
2447		kmem_cache_free(sn_cache, n_new);
2448
2449	return ret;
2450
2451alloc_new:
2452	spin_unlock(&sp->lock);
2453	ret = -ENOMEM;
2454	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2455	if (!n_new)
2456		goto err_out;
2457	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2458	if (!mpol_new)
2459		goto err_out;
2460	goto restart;
2461}
2462
2463/**
2464 * mpol_shared_policy_init - initialize shared policy for inode
2465 * @sp: pointer to inode shared policy
2466 * @mpol:  struct mempolicy to install
2467 *
2468 * Install non-NULL @mpol in inode's shared policy rb-tree.
2469 * On entry, the current task has a reference on a non-NULL @mpol.
2470 * This must be released on exit.
2471 * This is called at get_inode() calls and we can use GFP_KERNEL.
2472 */
2473void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2474{
2475	int ret;
2476
2477	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2478	spin_lock_init(&sp->lock);
2479
2480	if (mpol) {
2481		struct vm_area_struct pvma;
2482		struct mempolicy *new;
2483		NODEMASK_SCRATCH(scratch);
2484
2485		if (!scratch)
2486			goto put_mpol;
2487		/* contextualize the tmpfs mount point mempolicy */
2488		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2489		if (IS_ERR(new))
2490			goto free_scratch; /* no valid nodemask intersection */
2491
2492		task_lock(current);
2493		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2494		task_unlock(current);
2495		if (ret)
2496			goto put_new;
2497
2498		/* Create pseudo-vma that contains just the policy */
2499		memset(&pvma, 0, sizeof(struct vm_area_struct));
2500		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2501		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2502
2503put_new:
2504		mpol_put(new);			/* drop initial ref */
2505free_scratch:
2506		NODEMASK_SCRATCH_FREE(scratch);
2507put_mpol:
2508		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2509	}
2510}
2511
2512int mpol_set_shared_policy(struct shared_policy *info,
2513			struct vm_area_struct *vma, struct mempolicy *npol)
2514{
2515	int err;
2516	struct sp_node *new = NULL;
2517	unsigned long sz = vma_pages(vma);
2518
2519	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2520		 vma->vm_pgoff,
2521		 sz, npol ? npol->mode : -1,
2522		 npol ? npol->flags : -1,
2523		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2524
2525	if (npol) {
2526		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2527		if (!new)
2528			return -ENOMEM;
2529	}
2530	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2531	if (err && new)
2532		sp_free(new);
2533	return err;
2534}
2535
2536/* Free a backing policy store on inode delete. */
2537void mpol_free_shared_policy(struct shared_policy *p)
2538{
2539	struct sp_node *n;
2540	struct rb_node *next;
2541
2542	if (!p->root.rb_node)
2543		return;
2544	spin_lock(&p->lock);
2545	next = rb_first(&p->root);
2546	while (next) {
2547		n = rb_entry(next, struct sp_node, nd);
2548		next = rb_next(&n->nd);
2549		sp_delete(p, n);
 
 
2550	}
2551	spin_unlock(&p->lock);
2552}
2553
2554#ifdef CONFIG_NUMA_BALANCING
2555static int __initdata numabalancing_override;
2556
2557static void __init check_numabalancing_enable(void)
2558{
2559	bool numabalancing_default = false;
2560
2561	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2562		numabalancing_default = true;
2563
2564	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2565	if (numabalancing_override)
2566		set_numabalancing_state(numabalancing_override == 1);
2567
2568	if (nr_node_ids > 1 && !numabalancing_override) {
2569		pr_info("%s automatic NUMA balancing. "
2570			"Configure with numa_balancing= or the "
2571			"kernel.numa_balancing sysctl",
2572			numabalancing_default ? "Enabling" : "Disabling");
2573		set_numabalancing_state(numabalancing_default);
2574	}
2575}
2576
2577static int __init setup_numabalancing(char *str)
2578{
2579	int ret = 0;
2580	if (!str)
2581		goto out;
2582
2583	if (!strcmp(str, "enable")) {
2584		numabalancing_override = 1;
2585		ret = 1;
2586	} else if (!strcmp(str, "disable")) {
2587		numabalancing_override = -1;
2588		ret = 1;
2589	}
2590out:
2591	if (!ret)
2592		pr_warn("Unable to parse numa_balancing=\n");
2593
2594	return ret;
2595}
2596__setup("numa_balancing=", setup_numabalancing);
2597#else
2598static inline void __init check_numabalancing_enable(void)
2599{
2600}
2601#endif /* CONFIG_NUMA_BALANCING */
2602
2603/* assumes fs == KERNEL_DS */
2604void __init numa_policy_init(void)
2605{
2606	nodemask_t interleave_nodes;
2607	unsigned long largest = 0;
2608	int nid, prefer = 0;
2609
2610	policy_cache = kmem_cache_create("numa_policy",
2611					 sizeof(struct mempolicy),
2612					 0, SLAB_PANIC, NULL);
2613
2614	sn_cache = kmem_cache_create("shared_policy_node",
2615				     sizeof(struct sp_node),
2616				     0, SLAB_PANIC, NULL);
2617
2618	for_each_node(nid) {
2619		preferred_node_policy[nid] = (struct mempolicy) {
2620			.refcnt = ATOMIC_INIT(1),
2621			.mode = MPOL_PREFERRED,
2622			.flags = MPOL_F_MOF | MPOL_F_MORON,
2623			.v = { .preferred_node = nid, },
2624		};
2625	}
2626
2627	/*
2628	 * Set interleaving policy for system init. Interleaving is only
2629	 * enabled across suitably sized nodes (default is >= 16MB), or
2630	 * fall back to the largest node if they're all smaller.
2631	 */
2632	nodes_clear(interleave_nodes);
2633	for_each_node_state(nid, N_MEMORY) {
2634		unsigned long total_pages = node_present_pages(nid);
2635
2636		/* Preserve the largest node */
2637		if (largest < total_pages) {
2638			largest = total_pages;
2639			prefer = nid;
2640		}
2641
2642		/* Interleave this node? */
2643		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2644			node_set(nid, interleave_nodes);
2645	}
2646
2647	/* All too small, use the largest */
2648	if (unlikely(nodes_empty(interleave_nodes)))
2649		node_set(prefer, interleave_nodes);
2650
2651	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2652		printk("numa_policy_init: interleaving failed\n");
2653
2654	check_numabalancing_enable();
2655}
2656
2657/* Reset policy of current process to default */
2658void numa_default_policy(void)
2659{
2660	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2661}
2662
2663/*
2664 * Parse and format mempolicy from/to strings
2665 */
2666
2667/*
2668 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
 
2669 */
 
2670static const char * const policy_modes[] =
2671{
2672	[MPOL_DEFAULT]    = "default",
2673	[MPOL_PREFERRED]  = "prefer",
2674	[MPOL_BIND]       = "bind",
2675	[MPOL_INTERLEAVE] = "interleave",
2676	[MPOL_LOCAL]      = "local",
2677};
2678
2679
2680#ifdef CONFIG_TMPFS
2681/**
2682 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2683 * @str:  string containing mempolicy to parse
2684 * @mpol:  pointer to struct mempolicy pointer, returned on success.
 
2685 *
2686 * Format of input:
2687 *	<mode>[=<flags>][:<nodelist>]
2688 *
 
 
 
 
 
 
 
2689 * On success, returns 0, else 1
2690 */
2691int mpol_parse_str(char *str, struct mempolicy **mpol)
2692{
2693	struct mempolicy *new = NULL;
2694	unsigned short mode;
2695	unsigned short mode_flags;
2696	nodemask_t nodes;
2697	char *nodelist = strchr(str, ':');
2698	char *flags = strchr(str, '=');
2699	int err = 1;
2700
2701	if (nodelist) {
2702		/* NUL-terminate mode or flags string */
2703		*nodelist++ = '\0';
2704		if (nodelist_parse(nodelist, nodes))
2705			goto out;
2706		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2707			goto out;
2708	} else
2709		nodes_clear(nodes);
2710
2711	if (flags)
2712		*flags++ = '\0';	/* terminate mode string */
2713
2714	for (mode = 0; mode < MPOL_MAX; mode++) {
2715		if (!strcmp(str, policy_modes[mode])) {
2716			break;
2717		}
2718	}
2719	if (mode >= MPOL_MAX)
2720		goto out;
2721
2722	switch (mode) {
2723	case MPOL_PREFERRED:
2724		/*
2725		 * Insist on a nodelist of one node only
2726		 */
2727		if (nodelist) {
2728			char *rest = nodelist;
2729			while (isdigit(*rest))
2730				rest++;
2731			if (*rest)
2732				goto out;
2733		}
2734		break;
2735	case MPOL_INTERLEAVE:
2736		/*
2737		 * Default to online nodes with memory if no nodelist
2738		 */
2739		if (!nodelist)
2740			nodes = node_states[N_MEMORY];
2741		break;
2742	case MPOL_LOCAL:
2743		/*
2744		 * Don't allow a nodelist;  mpol_new() checks flags
2745		 */
2746		if (nodelist)
2747			goto out;
2748		mode = MPOL_PREFERRED;
2749		break;
2750	case MPOL_DEFAULT:
2751		/*
2752		 * Insist on a empty nodelist
2753		 */
2754		if (!nodelist)
2755			err = 0;
2756		goto out;
2757	case MPOL_BIND:
2758		/*
2759		 * Insist on a nodelist
2760		 */
2761		if (!nodelist)
2762			goto out;
2763	}
2764
2765	mode_flags = 0;
2766	if (flags) {
2767		/*
2768		 * Currently, we only support two mutually exclusive
2769		 * mode flags.
2770		 */
2771		if (!strcmp(flags, "static"))
2772			mode_flags |= MPOL_F_STATIC_NODES;
2773		else if (!strcmp(flags, "relative"))
2774			mode_flags |= MPOL_F_RELATIVE_NODES;
2775		else
2776			goto out;
2777	}
2778
2779	new = mpol_new(mode, mode_flags, &nodes);
2780	if (IS_ERR(new))
2781		goto out;
2782
2783	/*
2784	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2785	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2786	 */
2787	if (mode != MPOL_PREFERRED)
2788		new->v.nodes = nodes;
2789	else if (nodelist)
2790		new->v.preferred_node = first_node(nodes);
2791	else
2792		new->flags |= MPOL_F_LOCAL;
2793
2794	/*
2795	 * Save nodes for contextualization: this will be used to "clone"
2796	 * the mempolicy in a specific context [cpuset] at a later time.
2797	 */
2798	new->w.user_nodemask = nodes;
2799
 
2800	err = 0;
2801
2802out:
2803	/* Restore string for error message */
2804	if (nodelist)
2805		*--nodelist = ':';
2806	if (flags)
2807		*--flags = '=';
2808	if (!err)
2809		*mpol = new;
2810	return err;
2811}
2812#endif /* CONFIG_TMPFS */
2813
2814/**
2815 * mpol_to_str - format a mempolicy structure for printing
2816 * @buffer:  to contain formatted mempolicy string
2817 * @maxlen:  length of @buffer
2818 * @pol:  pointer to mempolicy to be formatted
 
2819 *
2820 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2821 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2822 * longest flag, "relative", and to display at least a few node ids.
2823 */
2824void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2825{
2826	char *p = buffer;
2827	nodemask_t nodes = NODE_MASK_NONE;
2828	unsigned short mode = MPOL_DEFAULT;
2829	unsigned short flags = 0;
 
2830
2831	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
 
 
 
 
 
 
 
2832		mode = pol->mode;
2833		flags = pol->flags;
2834	}
2835
2836	switch (mode) {
2837	case MPOL_DEFAULT:
 
2838		break;
 
2839	case MPOL_PREFERRED:
 
2840		if (flags & MPOL_F_LOCAL)
2841			mode = MPOL_LOCAL;
2842		else
2843			node_set(pol->v.preferred_node, nodes);
2844		break;
 
2845	case MPOL_BIND:
 
2846	case MPOL_INTERLEAVE:
2847		nodes = pol->v.nodes;
 
 
 
2848		break;
 
2849	default:
2850		WARN_ON_ONCE(1);
2851		snprintf(p, maxlen, "unknown");
2852		return;
2853	}
2854
2855	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
 
 
 
 
 
2856
2857	if (flags & MPOL_MODE_FLAGS) {
2858		p += snprintf(p, buffer + maxlen - p, "=");
 
 
2859
2860		/*
2861		 * Currently, the only defined flags are mutually exclusive
2862		 */
2863		if (flags & MPOL_F_STATIC_NODES)
2864			p += snprintf(p, buffer + maxlen - p, "static");
2865		else if (flags & MPOL_F_RELATIVE_NODES)
2866			p += snprintf(p, buffer + maxlen - p, "relative");
2867	}
2868
2869	if (!nodes_empty(nodes)) {
2870		p += snprintf(p, buffer + maxlen - p, ":");
 
 
2871	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2872	}
 
2873}
v3.1
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/module.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
 
  93
  94#include <asm/tlbflush.h>
  95#include <asm/uaccess.h>
  96#include <linux/random.h>
  97
  98#include "internal.h"
  99
 100/* Internal flags */
 101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 103
 104static struct kmem_cache *policy_cache;
 105static struct kmem_cache *sn_cache;
 106
 107/* Highest zone. An specific allocation for a zone below that is not
 108   policied. */
 109enum zone_type policy_zone = 0;
 110
 111/*
 112 * run-time system-wide default policy => local allocation
 113 */
 114struct mempolicy default_policy = {
 115	.refcnt = ATOMIC_INIT(1), /* never free it */
 116	.mode = MPOL_PREFERRED,
 117	.flags = MPOL_F_LOCAL,
 118};
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120static const struct mempolicy_operations {
 121	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 122	/*
 123	 * If read-side task has no lock to protect task->mempolicy, write-side
 124	 * task will rebind the task->mempolicy by two step. The first step is
 125	 * setting all the newly nodes, and the second step is cleaning all the
 126	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 127	 * page.
 128	 * If we have a lock to protect task->mempolicy in read-side, we do
 129	 * rebind directly.
 130	 *
 131	 * step:
 132	 * 	MPOL_REBIND_ONCE - do rebind work at once
 133	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 134	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 135	 */
 136	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 137			enum mpol_rebind_step step);
 138} mpol_ops[MPOL_MAX];
 139
 140/* Check that the nodemask contains at least one populated zone */
 141static int is_valid_nodemask(const nodemask_t *nodemask)
 142{
 143	int nd, k;
 144
 145	for_each_node_mask(nd, *nodemask) {
 146		struct zone *z;
 147
 148		for (k = 0; k <= policy_zone; k++) {
 149			z = &NODE_DATA(nd)->node_zones[k];
 150			if (z->present_pages > 0)
 151				return 1;
 152		}
 153	}
 154
 155	return 0;
 156}
 157
 158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 159{
 160	return pol->flags & MPOL_MODE_FLAGS;
 161}
 162
 163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 164				   const nodemask_t *rel)
 165{
 166	nodemask_t tmp;
 167	nodes_fold(tmp, *orig, nodes_weight(*rel));
 168	nodes_onto(*ret, tmp, *rel);
 169}
 170
 171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 172{
 173	if (nodes_empty(*nodes))
 174		return -EINVAL;
 175	pol->v.nodes = *nodes;
 176	return 0;
 177}
 178
 179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 180{
 181	if (!nodes)
 182		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 183	else if (nodes_empty(*nodes))
 184		return -EINVAL;			/*  no allowed nodes */
 185	else
 186		pol->v.preferred_node = first_node(*nodes);
 187	return 0;
 188}
 189
 190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 191{
 192	if (!is_valid_nodemask(nodes))
 193		return -EINVAL;
 194	pol->v.nodes = *nodes;
 195	return 0;
 196}
 197
 198/*
 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 200 * any, for the new policy.  mpol_new() has already validated the nodes
 201 * parameter with respect to the policy mode and flags.  But, we need to
 202 * handle an empty nodemask with MPOL_PREFERRED here.
 203 *
 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
 205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 206 */
 207static int mpol_set_nodemask(struct mempolicy *pol,
 208		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 209{
 210	int ret;
 211
 212	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 213	if (pol == NULL)
 214		return 0;
 215	/* Check N_HIGH_MEMORY */
 216	nodes_and(nsc->mask1,
 217		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 218
 219	VM_BUG_ON(!nodes);
 220	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 221		nodes = NULL;	/* explicit local allocation */
 222	else {
 223		if (pol->flags & MPOL_F_RELATIVE_NODES)
 224			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 225		else
 226			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 227
 228		if (mpol_store_user_nodemask(pol))
 229			pol->w.user_nodemask = *nodes;
 230		else
 231			pol->w.cpuset_mems_allowed =
 232						cpuset_current_mems_allowed;
 233	}
 234
 235	if (nodes)
 236		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 237	else
 238		ret = mpol_ops[pol->mode].create(pol, NULL);
 239	return ret;
 240}
 241
 242/*
 243 * This function just creates a new policy, does some check and simple
 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 245 */
 246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 247				  nodemask_t *nodes)
 248{
 249	struct mempolicy *policy;
 250
 251	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 252		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 253
 254	if (mode == MPOL_DEFAULT) {
 255		if (nodes && !nodes_empty(*nodes))
 256			return ERR_PTR(-EINVAL);
 257		return NULL;	/* simply delete any existing policy */
 258	}
 259	VM_BUG_ON(!nodes);
 260
 261	/*
 262	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 263	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 264	 * All other modes require a valid pointer to a non-empty nodemask.
 265	 */
 266	if (mode == MPOL_PREFERRED) {
 267		if (nodes_empty(*nodes)) {
 268			if (((flags & MPOL_F_STATIC_NODES) ||
 269			     (flags & MPOL_F_RELATIVE_NODES)))
 270				return ERR_PTR(-EINVAL);
 271		}
 
 
 
 
 272	} else if (nodes_empty(*nodes))
 273		return ERR_PTR(-EINVAL);
 274	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 275	if (!policy)
 276		return ERR_PTR(-ENOMEM);
 277	atomic_set(&policy->refcnt, 1);
 278	policy->mode = mode;
 279	policy->flags = flags;
 280
 281	return policy;
 282}
 283
 284/* Slow path of a mpol destructor. */
 285void __mpol_put(struct mempolicy *p)
 286{
 287	if (!atomic_dec_and_test(&p->refcnt))
 288		return;
 289	kmem_cache_free(policy_cache, p);
 290}
 291
 292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 293				enum mpol_rebind_step step)
 294{
 295}
 296
 297/*
 298 * step:
 299 * 	MPOL_REBIND_ONCE  - do rebind work at once
 300 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 301 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 302 */
 303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 304				 enum mpol_rebind_step step)
 305{
 306	nodemask_t tmp;
 307
 308	if (pol->flags & MPOL_F_STATIC_NODES)
 309		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 310	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 311		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 312	else {
 313		/*
 314		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 315		 * result
 316		 */
 317		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 318			nodes_remap(tmp, pol->v.nodes,
 319					pol->w.cpuset_mems_allowed, *nodes);
 320			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 321		} else if (step == MPOL_REBIND_STEP2) {
 322			tmp = pol->w.cpuset_mems_allowed;
 323			pol->w.cpuset_mems_allowed = *nodes;
 324		} else
 325			BUG();
 326	}
 327
 328	if (nodes_empty(tmp))
 329		tmp = *nodes;
 330
 331	if (step == MPOL_REBIND_STEP1)
 332		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 333	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 334		pol->v.nodes = tmp;
 335	else
 336		BUG();
 337
 338	if (!node_isset(current->il_next, tmp)) {
 339		current->il_next = next_node(current->il_next, tmp);
 340		if (current->il_next >= MAX_NUMNODES)
 341			current->il_next = first_node(tmp);
 342		if (current->il_next >= MAX_NUMNODES)
 343			current->il_next = numa_node_id();
 344	}
 345}
 346
 347static void mpol_rebind_preferred(struct mempolicy *pol,
 348				  const nodemask_t *nodes,
 349				  enum mpol_rebind_step step)
 350{
 351	nodemask_t tmp;
 352
 353	if (pol->flags & MPOL_F_STATIC_NODES) {
 354		int node = first_node(pol->w.user_nodemask);
 355
 356		if (node_isset(node, *nodes)) {
 357			pol->v.preferred_node = node;
 358			pol->flags &= ~MPOL_F_LOCAL;
 359		} else
 360			pol->flags |= MPOL_F_LOCAL;
 361	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363		pol->v.preferred_node = first_node(tmp);
 364	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 365		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 366						   pol->w.cpuset_mems_allowed,
 367						   *nodes);
 368		pol->w.cpuset_mems_allowed = *nodes;
 369	}
 370}
 371
 372/*
 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 374 *
 375 * If read-side task has no lock to protect task->mempolicy, write-side
 376 * task will rebind the task->mempolicy by two step. The first step is
 377 * setting all the newly nodes, and the second step is cleaning all the
 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
 379 * page.
 380 * If we have a lock to protect task->mempolicy in read-side, we do
 381 * rebind directly.
 382 *
 383 * step:
 384 * 	MPOL_REBIND_ONCE  - do rebind work at once
 385 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 386 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 389				enum mpol_rebind_step step)
 390{
 391	if (!pol)
 392		return;
 393	if (!mpol_store_user_nodemask(pol) && step == 0 &&
 394	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 395		return;
 396
 397	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 398		return;
 399
 400	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 401		BUG();
 402
 403	if (step == MPOL_REBIND_STEP1)
 404		pol->flags |= MPOL_F_REBINDING;
 405	else if (step == MPOL_REBIND_STEP2)
 406		pol->flags &= ~MPOL_F_REBINDING;
 407	else if (step >= MPOL_REBIND_NSTEP)
 408		BUG();
 409
 410	mpol_ops[pol->mode].rebind(pol, newmask, step);
 411}
 412
 413/*
 414 * Wrapper for mpol_rebind_policy() that just requires task
 415 * pointer, and updates task mempolicy.
 416 *
 417 * Called with task's alloc_lock held.
 418 */
 419
 420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 421			enum mpol_rebind_step step)
 422{
 423	mpol_rebind_policy(tsk->mempolicy, new, step);
 424}
 425
 426/*
 427 * Rebind each vma in mm to new nodemask.
 428 *
 429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 430 */
 431
 432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 433{
 434	struct vm_area_struct *vma;
 435
 436	down_write(&mm->mmap_sem);
 437	for (vma = mm->mmap; vma; vma = vma->vm_next)
 438		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 439	up_write(&mm->mmap_sem);
 440}
 441
 442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 443	[MPOL_DEFAULT] = {
 444		.rebind = mpol_rebind_default,
 445	},
 446	[MPOL_INTERLEAVE] = {
 447		.create = mpol_new_interleave,
 448		.rebind = mpol_rebind_nodemask,
 449	},
 450	[MPOL_PREFERRED] = {
 451		.create = mpol_new_preferred,
 452		.rebind = mpol_rebind_preferred,
 453	},
 454	[MPOL_BIND] = {
 455		.create = mpol_new_bind,
 456		.rebind = mpol_rebind_nodemask,
 457	},
 458};
 459
 460static void migrate_page_add(struct page *page, struct list_head *pagelist,
 461				unsigned long flags);
 462
 463/* Scan through pages checking if pages follow certain conditions. */
 464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 
 
 
 465		unsigned long addr, unsigned long end,
 466		const nodemask_t *nodes, unsigned long flags,
 467		void *private)
 468{
 469	pte_t *orig_pte;
 470	pte_t *pte;
 471	spinlock_t *ptl;
 472
 473	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 474	do {
 475		struct page *page;
 476		int nid;
 477
 478		if (!pte_present(*pte))
 479			continue;
 480		page = vm_normal_page(vma, addr, *pte);
 481		if (!page)
 482			continue;
 483		/*
 484		 * vm_normal_page() filters out zero pages, but there might
 485		 * still be PageReserved pages to skip, perhaps in a VDSO.
 486		 * And we cannot move PageKsm pages sensibly or safely yet.
 487		 */
 488		if (PageReserved(page) || PageKsm(page))
 489			continue;
 490		nid = page_to_nid(page);
 491		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 492			continue;
 493
 494		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 495			migrate_page_add(page, private, flags);
 496		else
 497			break;
 498	} while (pte++, addr += PAGE_SIZE, addr != end);
 499	pte_unmap_unlock(orig_pte, ptl);
 500	return addr != end;
 501}
 502
 503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504		unsigned long addr, unsigned long end,
 505		const nodemask_t *nodes, unsigned long flags,
 506		void *private)
 507{
 508	pmd_t *pmd;
 509	unsigned long next;
 510
 511	pmd = pmd_offset(pud, addr);
 512	do {
 513		next = pmd_addr_end(addr, end);
 514		split_huge_page_pmd(vma->vm_mm, pmd);
 515		if (pmd_none_or_clear_bad(pmd))
 
 
 
 
 
 
 
 516			continue;
 517		if (check_pte_range(vma, pmd, addr, next, nodes,
 518				    flags, private))
 519			return -EIO;
 520	} while (pmd++, addr = next, addr != end);
 521	return 0;
 522}
 523
 524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 525		unsigned long addr, unsigned long end,
 526		const nodemask_t *nodes, unsigned long flags,
 527		void *private)
 528{
 529	pud_t *pud;
 530	unsigned long next;
 531
 532	pud = pud_offset(pgd, addr);
 533	do {
 534		next = pud_addr_end(addr, end);
 
 
 535		if (pud_none_or_clear_bad(pud))
 536			continue;
 537		if (check_pmd_range(vma, pud, addr, next, nodes,
 538				    flags, private))
 539			return -EIO;
 540	} while (pud++, addr = next, addr != end);
 541	return 0;
 542}
 543
 544static inline int check_pgd_range(struct vm_area_struct *vma,
 545		unsigned long addr, unsigned long end,
 546		const nodemask_t *nodes, unsigned long flags,
 547		void *private)
 548{
 549	pgd_t *pgd;
 550	unsigned long next;
 551
 552	pgd = pgd_offset(vma->vm_mm, addr);
 553	do {
 554		next = pgd_addr_end(addr, end);
 555		if (pgd_none_or_clear_bad(pgd))
 556			continue;
 557		if (check_pud_range(vma, pgd, addr, next, nodes,
 558				    flags, private))
 559			return -EIO;
 560	} while (pgd++, addr = next, addr != end);
 561	return 0;
 562}
 563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564/*
 565 * Check if all pages in a range are on a set of nodes.
 566 * If pagelist != NULL then isolate pages from the LRU and
 567 * put them on the pagelist.
 
 
 568 */
 569static struct vm_area_struct *
 570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 571		const nodemask_t *nodes, unsigned long flags, void *private)
 572{
 573	int err;
 574	struct vm_area_struct *first, *vma, *prev;
 575
 576
 577	first = find_vma(mm, start);
 578	if (!first)
 579		return ERR_PTR(-EFAULT);
 580	prev = NULL;
 581	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 
 
 
 
 
 
 
 582		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 583			if (!vma->vm_next && vma->vm_end < end)
 584				return ERR_PTR(-EFAULT);
 585			if (prev && prev->vm_end < vma->vm_start)
 586				return ERR_PTR(-EFAULT);
 587		}
 588		if (!is_vm_hugetlb_page(vma) &&
 589		    ((flags & MPOL_MF_STRICT) ||
 
 
 
 
 
 590		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 591				vma_migratable(vma)))) {
 592			unsigned long endvma = vma->vm_end;
 593
 594			if (endvma > end)
 595				endvma = end;
 596			if (vma->vm_start > start)
 597				start = vma->vm_start;
 598			err = check_pgd_range(vma, start, endvma, nodes,
 599						flags, private);
 600			if (err) {
 601				first = ERR_PTR(err);
 602				break;
 603			}
 604		}
 
 605		prev = vma;
 606	}
 607	return first;
 608}
 609
 610/* Apply policy to a single VMA */
 611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 
 
 
 
 612{
 613	int err = 0;
 614	struct mempolicy *old = vma->vm_policy;
 
 615
 616	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 617		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 618		 vma->vm_ops, vma->vm_file,
 619		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 620
 621	if (vma->vm_ops && vma->vm_ops->set_policy)
 
 
 
 
 622		err = vma->vm_ops->set_policy(vma, new);
 623	if (!err) {
 624		mpol_get(new);
 625		vma->vm_policy = new;
 626		mpol_put(old);
 627	}
 
 
 
 
 
 
 
 
 628	return err;
 629}
 630
 631/* Step 2: apply policy to a range and do splits. */
 632static int mbind_range(struct mm_struct *mm, unsigned long start,
 633		       unsigned long end, struct mempolicy *new_pol)
 634{
 635	struct vm_area_struct *next;
 636	struct vm_area_struct *prev;
 637	struct vm_area_struct *vma;
 638	int err = 0;
 
 639	unsigned long vmstart;
 640	unsigned long vmend;
 641
 642	vma = find_vma_prev(mm, start, &prev);
 643	if (!vma || vma->vm_start > start)
 644		return -EFAULT;
 645
 
 
 
 
 646	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 647		next = vma->vm_next;
 648		vmstart = max(start, vma->vm_start);
 649		vmend   = min(end, vma->vm_end);
 650
 
 
 
 
 
 651		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 652				  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 653				  new_pol);
 654		if (prev) {
 655			vma = prev;
 656			next = vma->vm_next;
 657			continue;
 
 
 
 658		}
 659		if (vma->vm_start != vmstart) {
 660			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 661			if (err)
 662				goto out;
 663		}
 664		if (vma->vm_end != vmend) {
 665			err = split_vma(vma->vm_mm, vma, vmend, 0);
 666			if (err)
 667				goto out;
 668		}
 669		err = policy_vma(vma, new_pol);
 
 670		if (err)
 671			goto out;
 672	}
 673
 674 out:
 675	return err;
 676}
 677
 678/*
 679 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 680 * mempolicy.  Allows more rapid checking of this (combined perhaps
 681 * with other PF_* flag bits) on memory allocation hot code paths.
 682 *
 683 * If called from outside this file, the task 'p' should -only- be
 684 * a newly forked child not yet visible on the task list, because
 685 * manipulating the task flags of a visible task is not safe.
 686 *
 687 * The above limitation is why this routine has the funny name
 688 * mpol_fix_fork_child_flag().
 689 *
 690 * It is also safe to call this with a task pointer of current,
 691 * which the static wrapper mpol_set_task_struct_flag() does,
 692 * for use within this file.
 693 */
 694
 695void mpol_fix_fork_child_flag(struct task_struct *p)
 696{
 697	if (p->mempolicy)
 698		p->flags |= PF_MEMPOLICY;
 699	else
 700		p->flags &= ~PF_MEMPOLICY;
 701}
 702
 703static void mpol_set_task_struct_flag(void)
 704{
 705	mpol_fix_fork_child_flag(current);
 706}
 707
 708/* Set the process memory policy */
 709static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 710			     nodemask_t *nodes)
 711{
 712	struct mempolicy *new, *old;
 713	struct mm_struct *mm = current->mm;
 714	NODEMASK_SCRATCH(scratch);
 715	int ret;
 716
 717	if (!scratch)
 718		return -ENOMEM;
 719
 720	new = mpol_new(mode, flags, nodes);
 721	if (IS_ERR(new)) {
 722		ret = PTR_ERR(new);
 723		goto out;
 724	}
 725	/*
 726	 * prevent changing our mempolicy while show_numa_maps()
 727	 * is using it.
 728	 * Note:  do_set_mempolicy() can be called at init time
 729	 * with no 'mm'.
 730	 */
 731	if (mm)
 732		down_write(&mm->mmap_sem);
 733	task_lock(current);
 734	ret = mpol_set_nodemask(new, nodes, scratch);
 735	if (ret) {
 736		task_unlock(current);
 737		if (mm)
 738			up_write(&mm->mmap_sem);
 739		mpol_put(new);
 740		goto out;
 741	}
 742	old = current->mempolicy;
 743	current->mempolicy = new;
 744	mpol_set_task_struct_flag();
 745	if (new && new->mode == MPOL_INTERLEAVE &&
 746	    nodes_weight(new->v.nodes))
 747		current->il_next = first_node(new->v.nodes);
 748	task_unlock(current);
 749	if (mm)
 750		up_write(&mm->mmap_sem);
 751
 752	mpol_put(old);
 753	ret = 0;
 754out:
 755	NODEMASK_SCRATCH_FREE(scratch);
 756	return ret;
 757}
 758
 759/*
 760 * Return nodemask for policy for get_mempolicy() query
 761 *
 762 * Called with task's alloc_lock held
 763 */
 764static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 765{
 766	nodes_clear(*nodes);
 767	if (p == &default_policy)
 768		return;
 769
 770	switch (p->mode) {
 771	case MPOL_BIND:
 772		/* Fall through */
 773	case MPOL_INTERLEAVE:
 774		*nodes = p->v.nodes;
 775		break;
 776	case MPOL_PREFERRED:
 777		if (!(p->flags & MPOL_F_LOCAL))
 778			node_set(p->v.preferred_node, *nodes);
 779		/* else return empty node mask for local allocation */
 780		break;
 781	default:
 782		BUG();
 783	}
 784}
 785
 786static int lookup_node(struct mm_struct *mm, unsigned long addr)
 787{
 788	struct page *p;
 789	int err;
 790
 791	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 792	if (err >= 0) {
 793		err = page_to_nid(p);
 794		put_page(p);
 795	}
 796	return err;
 797}
 798
 799/* Retrieve NUMA policy */
 800static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 801			     unsigned long addr, unsigned long flags)
 802{
 803	int err;
 804	struct mm_struct *mm = current->mm;
 805	struct vm_area_struct *vma = NULL;
 806	struct mempolicy *pol = current->mempolicy;
 807
 808	if (flags &
 809		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 810		return -EINVAL;
 811
 812	if (flags & MPOL_F_MEMS_ALLOWED) {
 813		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 814			return -EINVAL;
 815		*policy = 0;	/* just so it's initialized */
 816		task_lock(current);
 817		*nmask  = cpuset_current_mems_allowed;
 818		task_unlock(current);
 819		return 0;
 820	}
 821
 822	if (flags & MPOL_F_ADDR) {
 823		/*
 824		 * Do NOT fall back to task policy if the
 825		 * vma/shared policy at addr is NULL.  We
 826		 * want to return MPOL_DEFAULT in this case.
 827		 */
 828		down_read(&mm->mmap_sem);
 829		vma = find_vma_intersection(mm, addr, addr+1);
 830		if (!vma) {
 831			up_read(&mm->mmap_sem);
 832			return -EFAULT;
 833		}
 834		if (vma->vm_ops && vma->vm_ops->get_policy)
 835			pol = vma->vm_ops->get_policy(vma, addr);
 836		else
 837			pol = vma->vm_policy;
 838	} else if (addr)
 839		return -EINVAL;
 840
 841	if (!pol)
 842		pol = &default_policy;	/* indicates default behavior */
 843
 844	if (flags & MPOL_F_NODE) {
 845		if (flags & MPOL_F_ADDR) {
 846			err = lookup_node(mm, addr);
 847			if (err < 0)
 848				goto out;
 849			*policy = err;
 850		} else if (pol == current->mempolicy &&
 851				pol->mode == MPOL_INTERLEAVE) {
 852			*policy = current->il_next;
 853		} else {
 854			err = -EINVAL;
 855			goto out;
 856		}
 857	} else {
 858		*policy = pol == &default_policy ? MPOL_DEFAULT :
 859						pol->mode;
 860		/*
 861		 * Internal mempolicy flags must be masked off before exposing
 862		 * the policy to userspace.
 863		 */
 864		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 865	}
 866
 867	if (vma) {
 868		up_read(&current->mm->mmap_sem);
 869		vma = NULL;
 870	}
 871
 872	err = 0;
 873	if (nmask) {
 874		if (mpol_store_user_nodemask(pol)) {
 875			*nmask = pol->w.user_nodemask;
 876		} else {
 877			task_lock(current);
 878			get_policy_nodemask(pol, nmask);
 879			task_unlock(current);
 880		}
 881	}
 882
 883 out:
 884	mpol_cond_put(pol);
 885	if (vma)
 886		up_read(&current->mm->mmap_sem);
 887	return err;
 888}
 889
 890#ifdef CONFIG_MIGRATION
 891/*
 892 * page migration
 893 */
 894static void migrate_page_add(struct page *page, struct list_head *pagelist,
 895				unsigned long flags)
 896{
 897	/*
 898	 * Avoid migrating a page that is shared with others.
 899	 */
 900	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 901		if (!isolate_lru_page(page)) {
 902			list_add_tail(&page->lru, pagelist);
 903			inc_zone_page_state(page, NR_ISOLATED_ANON +
 904					    page_is_file_cache(page));
 905		}
 906	}
 907}
 908
 909static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 910{
 911	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 
 
 
 
 912}
 913
 914/*
 915 * Migrate pages from one node to a target node.
 916 * Returns error or the number of pages not migrated.
 917 */
 918static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 919			   int flags)
 920{
 921	nodemask_t nmask;
 922	LIST_HEAD(pagelist);
 923	int err = 0;
 924	struct vm_area_struct *vma;
 925
 926	nodes_clear(nmask);
 927	node_set(source, nmask);
 928
 929	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 
 
 
 
 
 
 930			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 931	if (IS_ERR(vma))
 932		return PTR_ERR(vma);
 933
 934	if (!list_empty(&pagelist)) {
 935		err = migrate_pages(&pagelist, new_node_page, dest,
 936								false, true);
 937		if (err)
 938			putback_lru_pages(&pagelist);
 939	}
 940
 941	return err;
 942}
 943
 944/*
 945 * Move pages between the two nodesets so as to preserve the physical
 946 * layout as much as possible.
 947 *
 948 * Returns the number of page that could not be moved.
 949 */
 950int do_migrate_pages(struct mm_struct *mm,
 951	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 952{
 953	int busy = 0;
 954	int err;
 955	nodemask_t tmp;
 956
 957	err = migrate_prep();
 958	if (err)
 959		return err;
 960
 961	down_read(&mm->mmap_sem);
 962
 963	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 964	if (err)
 965		goto out;
 966
 967	/*
 968	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 969	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 970	 * bit in 'tmp', and return that <source, dest> pair for migration.
 971	 * The pair of nodemasks 'to' and 'from' define the map.
 972	 *
 973	 * If no pair of bits is found that way, fallback to picking some
 974	 * pair of 'source' and 'dest' bits that are not the same.  If the
 975	 * 'source' and 'dest' bits are the same, this represents a node
 976	 * that will be migrating to itself, so no pages need move.
 977	 *
 978	 * If no bits are left in 'tmp', or if all remaining bits left
 979	 * in 'tmp' correspond to the same bit in 'to', return false
 980	 * (nothing left to migrate).
 981	 *
 982	 * This lets us pick a pair of nodes to migrate between, such that
 983	 * if possible the dest node is not already occupied by some other
 984	 * source node, minimizing the risk of overloading the memory on a
 985	 * node that would happen if we migrated incoming memory to a node
 986	 * before migrating outgoing memory source that same node.
 987	 *
 988	 * A single scan of tmp is sufficient.  As we go, we remember the
 989	 * most recent <s, d> pair that moved (s != d).  If we find a pair
 990	 * that not only moved, but what's better, moved to an empty slot
 991	 * (d is not set in tmp), then we break out then, with that pair.
 992	 * Otherwise when we finish scanning from_tmp, we at least have the
 993	 * most recent <s, d> pair that moved.  If we get all the way through
 994	 * the scan of tmp without finding any node that moved, much less
 995	 * moved to an empty node, then there is nothing left worth migrating.
 996	 */
 997
 998	tmp = *from_nodes;
 999	while (!nodes_empty(tmp)) {
1000		int s,d;
1001		int source = -1;
1002		int dest = 0;
1003
1004		for_each_node_mask(s, tmp) {
1005			d = node_remap(s, *from_nodes, *to_nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006			if (s == d)
1007				continue;
1008
1009			source = s;	/* Node moved. Memorize */
1010			dest = d;
1011
1012			/* dest not in remaining from nodes? */
1013			if (!node_isset(dest, tmp))
1014				break;
1015		}
1016		if (source == -1)
1017			break;
1018
1019		node_clear(source, tmp);
1020		err = migrate_to_node(mm, source, dest, flags);
1021		if (err > 0)
1022			busy += err;
1023		if (err < 0)
1024			break;
1025	}
1026out:
1027	up_read(&mm->mmap_sem);
1028	if (err < 0)
1029		return err;
1030	return busy;
1031
1032}
1033
1034/*
1035 * Allocate a new page for page migration based on vma policy.
1036 * Start assuming that page is mapped by vma pointed to by @private.
1037 * Search forward from there, if not.  N.B., this assumes that the
1038 * list of pages handed to migrate_pages()--which is how we get here--
1039 * is in virtual address order.
1040 */
1041static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1042{
1043	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1044	unsigned long uninitialized_var(address);
1045
1046	while (vma) {
1047		address = page_address_in_vma(page, vma);
1048		if (address != -EFAULT)
1049			break;
1050		vma = vma->vm_next;
1051	}
1052
 
 
 
 
1053	/*
1054	 * if !vma, alloc_page_vma() will use task or system default policy
1055	 */
1056	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1057}
1058#else
1059
1060static void migrate_page_add(struct page *page, struct list_head *pagelist,
1061				unsigned long flags)
1062{
1063}
1064
1065int do_migrate_pages(struct mm_struct *mm,
1066	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1067{
1068	return -ENOSYS;
1069}
1070
1071static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072{
1073	return NULL;
1074}
1075#endif
1076
1077static long do_mbind(unsigned long start, unsigned long len,
1078		     unsigned short mode, unsigned short mode_flags,
1079		     nodemask_t *nmask, unsigned long flags)
1080{
1081	struct vm_area_struct *vma;
1082	struct mm_struct *mm = current->mm;
1083	struct mempolicy *new;
1084	unsigned long end;
1085	int err;
1086	LIST_HEAD(pagelist);
1087
1088	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1089				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1090		return -EINVAL;
1091	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1092		return -EPERM;
1093
1094	if (start & ~PAGE_MASK)
1095		return -EINVAL;
1096
1097	if (mode == MPOL_DEFAULT)
1098		flags &= ~MPOL_MF_STRICT;
1099
1100	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1101	end = start + len;
1102
1103	if (end < start)
1104		return -EINVAL;
1105	if (end == start)
1106		return 0;
1107
1108	new = mpol_new(mode, mode_flags, nmask);
1109	if (IS_ERR(new))
1110		return PTR_ERR(new);
1111
 
 
 
1112	/*
1113	 * If we are using the default policy then operation
1114	 * on discontinuous address spaces is okay after all
1115	 */
1116	if (!new)
1117		flags |= MPOL_MF_DISCONTIG_OK;
1118
1119	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1120		 start, start + len, mode, mode_flags,
1121		 nmask ? nodes_addr(*nmask)[0] : -1);
1122
1123	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1124
1125		err = migrate_prep();
1126		if (err)
1127			goto mpol_out;
1128	}
1129	{
1130		NODEMASK_SCRATCH(scratch);
1131		if (scratch) {
1132			down_write(&mm->mmap_sem);
1133			task_lock(current);
1134			err = mpol_set_nodemask(new, nmask, scratch);
1135			task_unlock(current);
1136			if (err)
1137				up_write(&mm->mmap_sem);
1138		} else
1139			err = -ENOMEM;
1140		NODEMASK_SCRATCH_FREE(scratch);
1141	}
1142	if (err)
1143		goto mpol_out;
1144
1145	vma = check_range(mm, start, end, nmask,
1146			  flags | MPOL_MF_INVERT, &pagelist);
1147
1148	err = PTR_ERR(vma);
1149	if (!IS_ERR(vma)) {
 
 
 
1150		int nr_failed = 0;
1151
1152		err = mbind_range(mm, start, end, new);
1153
1154		if (!list_empty(&pagelist)) {
 
1155			nr_failed = migrate_pages(&pagelist, new_vma_page,
1156						(unsigned long)vma,
1157						false, true);
1158			if (nr_failed)
1159				putback_lru_pages(&pagelist);
1160		}
1161
1162		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1163			err = -EIO;
1164	} else
1165		putback_lru_pages(&pagelist);
1166
1167	up_write(&mm->mmap_sem);
1168 mpol_out:
1169	mpol_put(new);
1170	return err;
1171}
1172
1173/*
1174 * User space interface with variable sized bitmaps for nodelists.
1175 */
1176
1177/* Copy a node mask from user space. */
1178static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1179		     unsigned long maxnode)
1180{
1181	unsigned long k;
1182	unsigned long nlongs;
1183	unsigned long endmask;
1184
1185	--maxnode;
1186	nodes_clear(*nodes);
1187	if (maxnode == 0 || !nmask)
1188		return 0;
1189	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1190		return -EINVAL;
1191
1192	nlongs = BITS_TO_LONGS(maxnode);
1193	if ((maxnode % BITS_PER_LONG) == 0)
1194		endmask = ~0UL;
1195	else
1196		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1197
1198	/* When the user specified more nodes than supported just check
1199	   if the non supported part is all zero. */
1200	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1201		if (nlongs > PAGE_SIZE/sizeof(long))
1202			return -EINVAL;
1203		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1204			unsigned long t;
1205			if (get_user(t, nmask + k))
1206				return -EFAULT;
1207			if (k == nlongs - 1) {
1208				if (t & endmask)
1209					return -EINVAL;
1210			} else if (t)
1211				return -EINVAL;
1212		}
1213		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1214		endmask = ~0UL;
1215	}
1216
1217	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1218		return -EFAULT;
1219	nodes_addr(*nodes)[nlongs-1] &= endmask;
1220	return 0;
1221}
1222
1223/* Copy a kernel node mask to user space */
1224static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1225			      nodemask_t *nodes)
1226{
1227	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1228	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1229
1230	if (copy > nbytes) {
1231		if (copy > PAGE_SIZE)
1232			return -EINVAL;
1233		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1234			return -EFAULT;
1235		copy = nbytes;
1236	}
1237	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1238}
1239
1240SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1241		unsigned long, mode, unsigned long __user *, nmask,
1242		unsigned long, maxnode, unsigned, flags)
1243{
1244	nodemask_t nodes;
1245	int err;
1246	unsigned short mode_flags;
1247
1248	mode_flags = mode & MPOL_MODE_FLAGS;
1249	mode &= ~MPOL_MODE_FLAGS;
1250	if (mode >= MPOL_MAX)
1251		return -EINVAL;
1252	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1253	    (mode_flags & MPOL_F_RELATIVE_NODES))
1254		return -EINVAL;
1255	err = get_nodes(&nodes, nmask, maxnode);
1256	if (err)
1257		return err;
1258	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1259}
1260
1261/* Set the process memory policy */
1262SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1263		unsigned long, maxnode)
1264{
1265	int err;
1266	nodemask_t nodes;
1267	unsigned short flags;
1268
1269	flags = mode & MPOL_MODE_FLAGS;
1270	mode &= ~MPOL_MODE_FLAGS;
1271	if ((unsigned int)mode >= MPOL_MAX)
1272		return -EINVAL;
1273	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1274		return -EINVAL;
1275	err = get_nodes(&nodes, nmask, maxnode);
1276	if (err)
1277		return err;
1278	return do_set_mempolicy(mode, flags, &nodes);
1279}
1280
1281SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1282		const unsigned long __user *, old_nodes,
1283		const unsigned long __user *, new_nodes)
1284{
1285	const struct cred *cred = current_cred(), *tcred;
1286	struct mm_struct *mm = NULL;
1287	struct task_struct *task;
1288	nodemask_t task_nodes;
1289	int err;
1290	nodemask_t *old;
1291	nodemask_t *new;
1292	NODEMASK_SCRATCH(scratch);
1293
1294	if (!scratch)
1295		return -ENOMEM;
1296
1297	old = &scratch->mask1;
1298	new = &scratch->mask2;
1299
1300	err = get_nodes(old, old_nodes, maxnode);
1301	if (err)
1302		goto out;
1303
1304	err = get_nodes(new, new_nodes, maxnode);
1305	if (err)
1306		goto out;
1307
1308	/* Find the mm_struct */
1309	rcu_read_lock();
1310	task = pid ? find_task_by_vpid(pid) : current;
1311	if (!task) {
1312		rcu_read_unlock();
1313		err = -ESRCH;
1314		goto out;
1315	}
1316	mm = get_task_mm(task);
1317	rcu_read_unlock();
1318
1319	err = -EINVAL;
1320	if (!mm)
1321		goto out;
1322
1323	/*
1324	 * Check if this process has the right to modify the specified
1325	 * process. The right exists if the process has administrative
1326	 * capabilities, superuser privileges or the same
1327	 * userid as the target process.
1328	 */
1329	rcu_read_lock();
1330	tcred = __task_cred(task);
1331	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1333	    !capable(CAP_SYS_NICE)) {
1334		rcu_read_unlock();
1335		err = -EPERM;
1336		goto out;
1337	}
1338	rcu_read_unlock();
1339
1340	task_nodes = cpuset_mems_allowed(task);
1341	/* Is the user allowed to access the target nodes? */
1342	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1343		err = -EPERM;
1344		goto out;
1345	}
1346
1347	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1348		err = -EINVAL;
1349		goto out;
1350	}
1351
1352	err = security_task_movememory(task);
1353	if (err)
 
 
 
 
 
 
 
1354		goto out;
 
1355
1356	err = do_migrate_pages(mm, old, new,
1357		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
 
 
1358out:
1359	if (mm)
1360		mmput(mm);
1361	NODEMASK_SCRATCH_FREE(scratch);
1362
1363	return err;
 
 
 
 
 
1364}
1365
1366
1367/* Retrieve NUMA policy */
1368SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1369		unsigned long __user *, nmask, unsigned long, maxnode,
1370		unsigned long, addr, unsigned long, flags)
1371{
1372	int err;
1373	int uninitialized_var(pval);
1374	nodemask_t nodes;
1375
1376	if (nmask != NULL && maxnode < MAX_NUMNODES)
1377		return -EINVAL;
1378
1379	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1380
1381	if (err)
1382		return err;
1383
1384	if (policy && put_user(pval, policy))
1385		return -EFAULT;
1386
1387	if (nmask)
1388		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1389
1390	return err;
1391}
1392
1393#ifdef CONFIG_COMPAT
1394
1395asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1396				     compat_ulong_t __user *nmask,
1397				     compat_ulong_t maxnode,
1398				     compat_ulong_t addr, compat_ulong_t flags)
1399{
1400	long err;
1401	unsigned long __user *nm = NULL;
1402	unsigned long nr_bits, alloc_size;
1403	DECLARE_BITMAP(bm, MAX_NUMNODES);
1404
1405	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1406	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1407
1408	if (nmask)
1409		nm = compat_alloc_user_space(alloc_size);
1410
1411	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1412
1413	if (!err && nmask) {
1414		unsigned long copy_size;
1415		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1416		err = copy_from_user(bm, nm, copy_size);
1417		/* ensure entire bitmap is zeroed */
1418		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1419		err |= compat_put_bitmap(nmask, bm, nr_bits);
1420	}
1421
1422	return err;
1423}
1424
1425asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1426				     compat_ulong_t maxnode)
1427{
1428	long err = 0;
1429	unsigned long __user *nm = NULL;
1430	unsigned long nr_bits, alloc_size;
1431	DECLARE_BITMAP(bm, MAX_NUMNODES);
1432
1433	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1434	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1435
1436	if (nmask) {
1437		err = compat_get_bitmap(bm, nmask, nr_bits);
1438		nm = compat_alloc_user_space(alloc_size);
1439		err |= copy_to_user(nm, bm, alloc_size);
1440	}
1441
1442	if (err)
1443		return -EFAULT;
1444
1445	return sys_set_mempolicy(mode, nm, nr_bits+1);
1446}
1447
1448asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1449			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1450			     compat_ulong_t maxnode, compat_ulong_t flags)
1451{
1452	long err = 0;
1453	unsigned long __user *nm = NULL;
1454	unsigned long nr_bits, alloc_size;
1455	nodemask_t bm;
1456
1457	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1458	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1459
1460	if (nmask) {
1461		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1462		nm = compat_alloc_user_space(alloc_size);
1463		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1464	}
1465
1466	if (err)
1467		return -EFAULT;
1468
1469	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1470}
1471
1472#endif
1473
1474/*
1475 * get_vma_policy(@task, @vma, @addr)
1476 * @task - task for fallback if vma policy == default
1477 * @vma   - virtual memory area whose policy is sought
1478 * @addr  - address in @vma for shared policy lookup
1479 *
1480 * Returns effective policy for a VMA at specified address.
1481 * Falls back to @task or system default policy, as necessary.
1482 * Current or other task's task mempolicy and non-shared vma policies
1483 * are protected by the task's mmap_sem, which must be held for read by
1484 * the caller.
1485 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1486 * count--added by the get_policy() vm_op, as appropriate--to protect against
1487 * freeing by another task.  It is the caller's responsibility to free the
1488 * extra reference for shared policies.
1489 */
1490struct mempolicy *get_vma_policy(struct task_struct *task,
1491		struct vm_area_struct *vma, unsigned long addr)
1492{
1493	struct mempolicy *pol = task->mempolicy;
1494
1495	if (vma) {
1496		if (vma->vm_ops && vma->vm_ops->get_policy) {
1497			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1498									addr);
1499			if (vpol)
1500				pol = vpol;
1501		} else if (vma->vm_policy)
1502			pol = vma->vm_policy;
 
 
 
 
 
 
 
 
 
 
1503	}
1504	if (!pol)
1505		pol = &default_policy;
1506	return pol;
1507}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509/*
1510 * Return a nodemask representing a mempolicy for filtering nodes for
1511 * page allocation
1512 */
1513static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514{
1515	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1516	if (unlikely(policy->mode == MPOL_BIND) &&
1517			gfp_zone(gfp) >= policy_zone &&
1518			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1519		return &policy->v.nodes;
1520
1521	return NULL;
1522}
1523
1524/* Return a zonelist indicated by gfp for node representing a mempolicy */
1525static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1526	int nd)
1527{
1528	switch (policy->mode) {
1529	case MPOL_PREFERRED:
1530		if (!(policy->flags & MPOL_F_LOCAL))
1531			nd = policy->v.preferred_node;
1532		break;
1533	case MPOL_BIND:
1534		/*
1535		 * Normally, MPOL_BIND allocations are node-local within the
1536		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1537		 * current node isn't part of the mask, we use the zonelist for
1538		 * the first node in the mask instead.
1539		 */
1540		if (unlikely(gfp & __GFP_THISNODE) &&
1541				unlikely(!node_isset(nd, policy->v.nodes)))
1542			nd = first_node(policy->v.nodes);
1543		break;
1544	default:
1545		BUG();
1546	}
1547	return node_zonelist(nd, gfp);
1548}
1549
1550/* Do dynamic interleaving for a process */
1551static unsigned interleave_nodes(struct mempolicy *policy)
1552{
1553	unsigned nid, next;
1554	struct task_struct *me = current;
1555
1556	nid = me->il_next;
1557	next = next_node(nid, policy->v.nodes);
1558	if (next >= MAX_NUMNODES)
1559		next = first_node(policy->v.nodes);
1560	if (next < MAX_NUMNODES)
1561		me->il_next = next;
1562	return nid;
1563}
1564
1565/*
1566 * Depending on the memory policy provide a node from which to allocate the
1567 * next slab entry.
1568 * @policy must be protected by freeing by the caller.  If @policy is
1569 * the current task's mempolicy, this protection is implicit, as only the
1570 * task can change it's policy.  The system default policy requires no
1571 * such protection.
1572 */
1573unsigned slab_node(struct mempolicy *policy)
1574{
 
 
 
 
 
 
 
1575	if (!policy || policy->flags & MPOL_F_LOCAL)
1576		return numa_node_id();
1577
1578	switch (policy->mode) {
1579	case MPOL_PREFERRED:
1580		/*
1581		 * handled MPOL_F_LOCAL above
1582		 */
1583		return policy->v.preferred_node;
1584
1585	case MPOL_INTERLEAVE:
1586		return interleave_nodes(policy);
1587
1588	case MPOL_BIND: {
1589		/*
1590		 * Follow bind policy behavior and start allocation at the
1591		 * first node.
1592		 */
1593		struct zonelist *zonelist;
1594		struct zone *zone;
1595		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1598							&policy->v.nodes,
1599							&zone);
1600		return zone ? zone->node : numa_node_id();
1601	}
1602
1603	default:
1604		BUG();
1605	}
1606}
1607
1608/* Do static interleaving for a VMA with known offset. */
1609static unsigned offset_il_node(struct mempolicy *pol,
1610		struct vm_area_struct *vma, unsigned long off)
1611{
1612	unsigned nnodes = nodes_weight(pol->v.nodes);
1613	unsigned target;
1614	int c;
1615	int nid = -1;
1616
1617	if (!nnodes)
1618		return numa_node_id();
1619	target = (unsigned int)off % nnodes;
1620	c = 0;
1621	do {
1622		nid = next_node(nid, pol->v.nodes);
1623		c++;
1624	} while (c <= target);
1625	return nid;
1626}
1627
1628/* Determine a node number for interleave */
1629static inline unsigned interleave_nid(struct mempolicy *pol,
1630		 struct vm_area_struct *vma, unsigned long addr, int shift)
1631{
1632	if (vma) {
1633		unsigned long off;
1634
1635		/*
1636		 * for small pages, there is no difference between
1637		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638		 * for huge pages, since vm_pgoff is in units of small
1639		 * pages, we need to shift off the always 0 bits to get
1640		 * a useful offset.
1641		 */
1642		BUG_ON(shift < PAGE_SHIFT);
1643		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644		off += (addr - vma->vm_start) >> shift;
1645		return offset_il_node(pol, vma, off);
1646	} else
1647		return interleave_nodes(pol);
1648}
1649
1650/*
1651 * Return the bit number of a random bit set in the nodemask.
1652 * (returns -1 if nodemask is empty)
1653 */
1654int node_random(const nodemask_t *maskp)
1655{
1656	int w, bit = -1;
1657
1658	w = nodes_weight(*maskp);
1659	if (w)
1660		bit = bitmap_ord_to_pos(maskp->bits,
1661			get_random_int() % w, MAX_NUMNODES);
1662	return bit;
1663}
1664
1665#ifdef CONFIG_HUGETLBFS
1666/*
1667 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1668 * @vma = virtual memory area whose policy is sought
1669 * @addr = address in @vma for shared policy lookup and interleave policy
1670 * @gfp_flags = for requested zone
1671 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1672 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673 *
1674 * Returns a zonelist suitable for a huge page allocation and a pointer
1675 * to the struct mempolicy for conditional unref after allocation.
1676 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1677 * @nodemask for filtering the zonelist.
1678 *
1679 * Must be protected by get_mems_allowed()
1680 */
1681struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1682				gfp_t gfp_flags, struct mempolicy **mpol,
1683				nodemask_t **nodemask)
1684{
1685	struct zonelist *zl;
1686
1687	*mpol = get_vma_policy(current, vma, addr);
1688	*nodemask = NULL;	/* assume !MPOL_BIND */
1689
1690	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1691		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1692				huge_page_shift(hstate_vma(vma))), gfp_flags);
1693	} else {
1694		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1695		if ((*mpol)->mode == MPOL_BIND)
1696			*nodemask = &(*mpol)->v.nodes;
1697	}
1698	return zl;
1699}
1700
1701/*
1702 * init_nodemask_of_mempolicy
1703 *
1704 * If the current task's mempolicy is "default" [NULL], return 'false'
1705 * to indicate default policy.  Otherwise, extract the policy nodemask
1706 * for 'bind' or 'interleave' policy into the argument nodemask, or
1707 * initialize the argument nodemask to contain the single node for
1708 * 'preferred' or 'local' policy and return 'true' to indicate presence
1709 * of non-default mempolicy.
1710 *
1711 * We don't bother with reference counting the mempolicy [mpol_get/put]
1712 * because the current task is examining it's own mempolicy and a task's
1713 * mempolicy is only ever changed by the task itself.
1714 *
1715 * N.B., it is the caller's responsibility to free a returned nodemask.
1716 */
1717bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718{
1719	struct mempolicy *mempolicy;
1720	int nid;
1721
1722	if (!(mask && current->mempolicy))
1723		return false;
1724
1725	task_lock(current);
1726	mempolicy = current->mempolicy;
1727	switch (mempolicy->mode) {
1728	case MPOL_PREFERRED:
1729		if (mempolicy->flags & MPOL_F_LOCAL)
1730			nid = numa_node_id();
1731		else
1732			nid = mempolicy->v.preferred_node;
1733		init_nodemask_of_node(mask, nid);
1734		break;
1735
1736	case MPOL_BIND:
1737		/* Fall through */
1738	case MPOL_INTERLEAVE:
1739		*mask =  mempolicy->v.nodes;
1740		break;
1741
1742	default:
1743		BUG();
1744	}
1745	task_unlock(current);
1746
1747	return true;
1748}
1749#endif
1750
1751/*
1752 * mempolicy_nodemask_intersects
1753 *
1754 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1755 * policy.  Otherwise, check for intersection between mask and the policy
1756 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1757 * policy, always return true since it may allocate elsewhere on fallback.
1758 *
1759 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760 */
1761bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1762					const nodemask_t *mask)
1763{
1764	struct mempolicy *mempolicy;
1765	bool ret = true;
1766
1767	if (!mask)
1768		return ret;
1769	task_lock(tsk);
1770	mempolicy = tsk->mempolicy;
1771	if (!mempolicy)
1772		goto out;
1773
1774	switch (mempolicy->mode) {
1775	case MPOL_PREFERRED:
1776		/*
1777		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1778		 * allocate from, they may fallback to other nodes when oom.
1779		 * Thus, it's possible for tsk to have allocated memory from
1780		 * nodes in mask.
1781		 */
1782		break;
1783	case MPOL_BIND:
1784	case MPOL_INTERLEAVE:
1785		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1786		break;
1787	default:
1788		BUG();
1789	}
1790out:
1791	task_unlock(tsk);
1792	return ret;
1793}
1794
1795/* Allocate a page in interleaved policy.
1796   Own path because it needs to do special accounting. */
1797static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1798					unsigned nid)
1799{
1800	struct zonelist *zl;
1801	struct page *page;
1802
1803	zl = node_zonelist(nid, gfp);
1804	page = __alloc_pages(gfp, order, zl);
1805	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1806		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1807	return page;
1808}
1809
1810/**
1811 * 	alloc_pages_vma	- Allocate a page for a VMA.
1812 *
1813 * 	@gfp:
1814 *      %GFP_USER    user allocation.
1815 *      %GFP_KERNEL  kernel allocations,
1816 *      %GFP_HIGHMEM highmem/user allocations,
1817 *      %GFP_FS      allocation should not call back into a file system.
1818 *      %GFP_ATOMIC  don't sleep.
1819 *
1820 *	@order:Order of the GFP allocation.
1821 * 	@vma:  Pointer to VMA or NULL if not available.
1822 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1823 *
1824 * 	This function allocates a page from the kernel page pool and applies
1825 *	a NUMA policy associated with the VMA or the current process.
1826 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1827 *	mm_struct of the VMA to prevent it from going away. Should be used for
1828 *	all allocations for pages that will be mapped into
1829 * 	user space. Returns NULL when no page can be allocated.
1830 *
1831 *	Should be called with the mm_sem of the vma hold.
1832 */
1833struct page *
1834alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1835		unsigned long addr, int node)
1836{
1837	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1838	struct zonelist *zl;
1839	struct page *page;
 
 
 
 
 
1840
1841	get_mems_allowed();
1842	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1843		unsigned nid;
1844
1845		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846		mpol_cond_put(pol);
1847		page = alloc_page_interleave(gfp, order, nid);
1848		put_mems_allowed();
 
 
1849		return page;
1850	}
1851	zl = policy_zonelist(gfp, pol, node);
1852	if (unlikely(mpol_needs_cond_ref(pol))) {
1853		/*
1854		 * slow path: ref counted shared policy
1855		 */
1856		struct page *page =  __alloc_pages_nodemask(gfp, order,
1857						zl, policy_nodemask(gfp, pol));
1858		__mpol_put(pol);
1859		put_mems_allowed();
1860		return page;
1861	}
1862	/*
1863	 * fast path:  default or task policy
1864	 */
1865	page = __alloc_pages_nodemask(gfp, order, zl,
1866				      policy_nodemask(gfp, pol));
1867	put_mems_allowed();
1868	return page;
1869}
1870
1871/**
1872 * 	alloc_pages_current - Allocate pages.
1873 *
1874 *	@gfp:
1875 *		%GFP_USER   user allocation,
1876 *      	%GFP_KERNEL kernel allocation,
1877 *      	%GFP_HIGHMEM highmem allocation,
1878 *      	%GFP_FS     don't call back into a file system.
1879 *      	%GFP_ATOMIC don't sleep.
1880 *	@order: Power of two of allocation size in pages. 0 is a single page.
1881 *
1882 *	Allocate a page from the kernel page pool.  When not in
1883 *	interrupt context and apply the current process NUMA policy.
1884 *	Returns NULL when no page can be allocated.
1885 *
1886 *	Don't call cpuset_update_task_memory_state() unless
1887 *	1) it's ok to take cpuset_sem (can WAIT), and
1888 *	2) allocating for current task (not interrupt).
1889 */
1890struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891{
1892	struct mempolicy *pol = current->mempolicy;
1893	struct page *page;
 
1894
1895	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1896		pol = &default_policy;
1897
1898	get_mems_allowed();
 
 
1899	/*
1900	 * No reference counting needed for current->mempolicy
1901	 * nor system default_policy
1902	 */
1903	if (pol->mode == MPOL_INTERLEAVE)
1904		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1905	else
1906		page = __alloc_pages_nodemask(gfp, order,
1907				policy_zonelist(gfp, pol, numa_node_id()),
1908				policy_nodemask(gfp, pol));
1909	put_mems_allowed();
 
 
 
1910	return page;
1911}
1912EXPORT_SYMBOL(alloc_pages_current);
1913
 
 
 
 
 
 
 
 
 
 
1914/*
1915 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1916 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1917 * with the mems_allowed returned by cpuset_mems_allowed().  This
1918 * keeps mempolicies cpuset relative after its cpuset moves.  See
1919 * further kernel/cpuset.c update_nodemask().
1920 *
1921 * current's mempolicy may be rebinded by the other task(the task that changes
1922 * cpuset's mems), so we needn't do rebind work for current task.
1923 */
1924
1925/* Slow path of a mempolicy duplicate */
1926struct mempolicy *__mpol_dup(struct mempolicy *old)
1927{
1928	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1929
1930	if (!new)
1931		return ERR_PTR(-ENOMEM);
1932
1933	/* task's mempolicy is protected by alloc_lock */
1934	if (old == current->mempolicy) {
1935		task_lock(current);
1936		*new = *old;
1937		task_unlock(current);
1938	} else
1939		*new = *old;
1940
1941	rcu_read_lock();
1942	if (current_cpuset_is_being_rebound()) {
1943		nodemask_t mems = cpuset_mems_allowed(current);
1944		if (new->flags & MPOL_F_REBINDING)
1945			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946		else
1947			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1948	}
1949	rcu_read_unlock();
1950	atomic_set(&new->refcnt, 1);
1951	return new;
1952}
1953
1954/*
1955 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1956 * eliminate the * MPOL_F_* flags that require conditional ref and
1957 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1958 * after return.  Use the returned value.
1959 *
1960 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1961 * policy lookup, even if the policy needs/has extra ref on lookup.
1962 * shmem_readahead needs this.
1963 */
1964struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1965						struct mempolicy *frompol)
1966{
1967	if (!mpol_needs_cond_ref(frompol))
1968		return frompol;
1969
1970	*tompol = *frompol;
1971	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1972	__mpol_put(frompol);
1973	return tompol;
1974}
1975
1976/* Slow path of a mempolicy comparison */
1977int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1978{
1979	if (!a || !b)
1980		return 0;
1981	if (a->mode != b->mode)
1982		return 0;
1983	if (a->flags != b->flags)
1984		return 0;
1985	if (mpol_store_user_nodemask(a))
1986		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1987			return 0;
1988
1989	switch (a->mode) {
1990	case MPOL_BIND:
1991		/* Fall through */
1992	case MPOL_INTERLEAVE:
1993		return nodes_equal(a->v.nodes, b->v.nodes);
1994	case MPOL_PREFERRED:
1995		return a->v.preferred_node == b->v.preferred_node;
1996	default:
1997		BUG();
1998		return 0;
1999	}
2000}
2001
2002/*
2003 * Shared memory backing store policy support.
2004 *
2005 * Remember policies even when nobody has shared memory mapped.
2006 * The policies are kept in Red-Black tree linked from the inode.
2007 * They are protected by the sp->lock spinlock, which should be held
2008 * for any accesses to the tree.
2009 */
2010
2011/* lookup first element intersecting start-end */
2012/* Caller holds sp->lock */
2013static struct sp_node *
2014sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015{
2016	struct rb_node *n = sp->root.rb_node;
2017
2018	while (n) {
2019		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020
2021		if (start >= p->end)
2022			n = n->rb_right;
2023		else if (end <= p->start)
2024			n = n->rb_left;
2025		else
2026			break;
2027	}
2028	if (!n)
2029		return NULL;
2030	for (;;) {
2031		struct sp_node *w = NULL;
2032		struct rb_node *prev = rb_prev(n);
2033		if (!prev)
2034			break;
2035		w = rb_entry(prev, struct sp_node, nd);
2036		if (w->end <= start)
2037			break;
2038		n = prev;
2039	}
2040	return rb_entry(n, struct sp_node, nd);
2041}
2042
2043/* Insert a new shared policy into the list. */
2044/* Caller holds sp->lock */
2045static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046{
2047	struct rb_node **p = &sp->root.rb_node;
2048	struct rb_node *parent = NULL;
2049	struct sp_node *nd;
2050
2051	while (*p) {
2052		parent = *p;
2053		nd = rb_entry(parent, struct sp_node, nd);
2054		if (new->start < nd->start)
2055			p = &(*p)->rb_left;
2056		else if (new->end > nd->end)
2057			p = &(*p)->rb_right;
2058		else
2059			BUG();
2060	}
2061	rb_link_node(&new->nd, parent, p);
2062	rb_insert_color(&new->nd, &sp->root);
2063	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2064		 new->policy ? new->policy->mode : 0);
2065}
2066
2067/* Find shared policy intersecting idx */
2068struct mempolicy *
2069mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070{
2071	struct mempolicy *pol = NULL;
2072	struct sp_node *sn;
2073
2074	if (!sp->root.rb_node)
2075		return NULL;
2076	spin_lock(&sp->lock);
2077	sn = sp_lookup(sp, idx, idx+1);
2078	if (sn) {
2079		mpol_get(sn->policy);
2080		pol = sn->policy;
2081	}
2082	spin_unlock(&sp->lock);
2083	return pol;
2084}
2085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087{
2088	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2089	rb_erase(&n->nd, &sp->root);
2090	mpol_put(n->policy);
2091	kmem_cache_free(sn_cache, n);
 
 
 
 
 
 
 
2092}
2093
2094static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2095				struct mempolicy *pol)
2096{
2097	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 
2098
 
2099	if (!n)
2100		return NULL;
2101	n->start = start;
2102	n->end = end;
2103	mpol_get(pol);
2104	pol->flags |= MPOL_F_SHARED;	/* for unref */
2105	n->policy = pol;
 
 
 
 
2106	return n;
2107}
2108
2109/* Replace a policy range. */
2110static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2111				 unsigned long end, struct sp_node *new)
2112{
2113	struct sp_node *n, *new2 = NULL;
 
 
 
2114
2115restart:
2116	spin_lock(&sp->lock);
2117	n = sp_lookup(sp, start, end);
2118	/* Take care of old policies in the same range. */
2119	while (n && n->start < end) {
2120		struct rb_node *next = rb_next(&n->nd);
2121		if (n->start >= start) {
2122			if (n->end <= end)
2123				sp_delete(sp, n);
2124			else
2125				n->start = end;
2126		} else {
2127			/* Old policy spanning whole new range. */
2128			if (n->end > end) {
2129				if (!new2) {
2130					spin_unlock(&sp->lock);
2131					new2 = sp_alloc(end, n->end, n->policy);
2132					if (!new2)
2133						return -ENOMEM;
2134					goto restart;
2135				}
2136				n->end = start;
2137				sp_insert(sp, new2);
2138				new2 = NULL;
 
2139				break;
2140			} else
2141				n->end = start;
2142		}
2143		if (!next)
2144			break;
2145		n = rb_entry(next, struct sp_node, nd);
2146	}
2147	if (new)
2148		sp_insert(sp, new);
2149	spin_unlock(&sp->lock);
2150	if (new2) {
2151		mpol_put(new2->policy);
2152		kmem_cache_free(sn_cache, new2);
2153	}
2154	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157/**
2158 * mpol_shared_policy_init - initialize shared policy for inode
2159 * @sp: pointer to inode shared policy
2160 * @mpol:  struct mempolicy to install
2161 *
2162 * Install non-NULL @mpol in inode's shared policy rb-tree.
2163 * On entry, the current task has a reference on a non-NULL @mpol.
2164 * This must be released on exit.
2165 * This is called at get_inode() calls and we can use GFP_KERNEL.
2166 */
2167void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2168{
2169	int ret;
2170
2171	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2172	spin_lock_init(&sp->lock);
2173
2174	if (mpol) {
2175		struct vm_area_struct pvma;
2176		struct mempolicy *new;
2177		NODEMASK_SCRATCH(scratch);
2178
2179		if (!scratch)
2180			goto put_mpol;
2181		/* contextualize the tmpfs mount point mempolicy */
2182		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183		if (IS_ERR(new))
2184			goto free_scratch; /* no valid nodemask intersection */
2185
2186		task_lock(current);
2187		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2188		task_unlock(current);
2189		if (ret)
2190			goto put_new;
2191
2192		/* Create pseudo-vma that contains just the policy */
2193		memset(&pvma, 0, sizeof(struct vm_area_struct));
2194		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2195		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2196
2197put_new:
2198		mpol_put(new);			/* drop initial ref */
2199free_scratch:
2200		NODEMASK_SCRATCH_FREE(scratch);
2201put_mpol:
2202		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2203	}
2204}
2205
2206int mpol_set_shared_policy(struct shared_policy *info,
2207			struct vm_area_struct *vma, struct mempolicy *npol)
2208{
2209	int err;
2210	struct sp_node *new = NULL;
2211	unsigned long sz = vma_pages(vma);
2212
2213	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214		 vma->vm_pgoff,
2215		 sz, npol ? npol->mode : -1,
2216		 npol ? npol->flags : -1,
2217		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2218
2219	if (npol) {
2220		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2221		if (!new)
2222			return -ENOMEM;
2223	}
2224	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225	if (err && new)
2226		kmem_cache_free(sn_cache, new);
2227	return err;
2228}
2229
2230/* Free a backing policy store on inode delete. */
2231void mpol_free_shared_policy(struct shared_policy *p)
2232{
2233	struct sp_node *n;
2234	struct rb_node *next;
2235
2236	if (!p->root.rb_node)
2237		return;
2238	spin_lock(&p->lock);
2239	next = rb_first(&p->root);
2240	while (next) {
2241		n = rb_entry(next, struct sp_node, nd);
2242		next = rb_next(&n->nd);
2243		rb_erase(&n->nd, &p->root);
2244		mpol_put(n->policy);
2245		kmem_cache_free(sn_cache, n);
2246	}
2247	spin_unlock(&p->lock);
2248}
2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250/* assumes fs == KERNEL_DS */
2251void __init numa_policy_init(void)
2252{
2253	nodemask_t interleave_nodes;
2254	unsigned long largest = 0;
2255	int nid, prefer = 0;
2256
2257	policy_cache = kmem_cache_create("numa_policy",
2258					 sizeof(struct mempolicy),
2259					 0, SLAB_PANIC, NULL);
2260
2261	sn_cache = kmem_cache_create("shared_policy_node",
2262				     sizeof(struct sp_node),
2263				     0, SLAB_PANIC, NULL);
2264
 
 
 
 
 
 
 
 
 
2265	/*
2266	 * Set interleaving policy for system init. Interleaving is only
2267	 * enabled across suitably sized nodes (default is >= 16MB), or
2268	 * fall back to the largest node if they're all smaller.
2269	 */
2270	nodes_clear(interleave_nodes);
2271	for_each_node_state(nid, N_HIGH_MEMORY) {
2272		unsigned long total_pages = node_present_pages(nid);
2273
2274		/* Preserve the largest node */
2275		if (largest < total_pages) {
2276			largest = total_pages;
2277			prefer = nid;
2278		}
2279
2280		/* Interleave this node? */
2281		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2282			node_set(nid, interleave_nodes);
2283	}
2284
2285	/* All too small, use the largest */
2286	if (unlikely(nodes_empty(interleave_nodes)))
2287		node_set(prefer, interleave_nodes);
2288
2289	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2290		printk("numa_policy_init: interleaving failed\n");
 
 
2291}
2292
2293/* Reset policy of current process to default */
2294void numa_default_policy(void)
2295{
2296	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2297}
2298
2299/*
2300 * Parse and format mempolicy from/to strings
2301 */
2302
2303/*
2304 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2305 * Used only for mpol_parse_str() and mpol_to_str()
2306 */
2307#define MPOL_LOCAL MPOL_MAX
2308static const char * const policy_modes[] =
2309{
2310	[MPOL_DEFAULT]    = "default",
2311	[MPOL_PREFERRED]  = "prefer",
2312	[MPOL_BIND]       = "bind",
2313	[MPOL_INTERLEAVE] = "interleave",
2314	[MPOL_LOCAL]      = "local"
2315};
2316
2317
2318#ifdef CONFIG_TMPFS
2319/**
2320 * mpol_parse_str - parse string to mempolicy
2321 * @str:  string containing mempolicy to parse
2322 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2323 * @no_context:  flag whether to "contextualize" the mempolicy
2324 *
2325 * Format of input:
2326 *	<mode>[=<flags>][:<nodelist>]
2327 *
2328 * if @no_context is true, save the input nodemask in w.user_nodemask in
2329 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2330 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2331 * mount option.  Note that if 'static' or 'relative' mode flags were
2332 * specified, the input nodemask will already have been saved.  Saving
2333 * it again is redundant, but safe.
2334 *
2335 * On success, returns 0, else 1
2336 */
2337int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338{
2339	struct mempolicy *new = NULL;
2340	unsigned short mode;
2341	unsigned short uninitialized_var(mode_flags);
2342	nodemask_t nodes;
2343	char *nodelist = strchr(str, ':');
2344	char *flags = strchr(str, '=');
2345	int err = 1;
2346
2347	if (nodelist) {
2348		/* NUL-terminate mode or flags string */
2349		*nodelist++ = '\0';
2350		if (nodelist_parse(nodelist, nodes))
2351			goto out;
2352		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2353			goto out;
2354	} else
2355		nodes_clear(nodes);
2356
2357	if (flags)
2358		*flags++ = '\0';	/* terminate mode string */
2359
2360	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2361		if (!strcmp(str, policy_modes[mode])) {
2362			break;
2363		}
2364	}
2365	if (mode > MPOL_LOCAL)
2366		goto out;
2367
2368	switch (mode) {
2369	case MPOL_PREFERRED:
2370		/*
2371		 * Insist on a nodelist of one node only
2372		 */
2373		if (nodelist) {
2374			char *rest = nodelist;
2375			while (isdigit(*rest))
2376				rest++;
2377			if (*rest)
2378				goto out;
2379		}
2380		break;
2381	case MPOL_INTERLEAVE:
2382		/*
2383		 * Default to online nodes with memory if no nodelist
2384		 */
2385		if (!nodelist)
2386			nodes = node_states[N_HIGH_MEMORY];
2387		break;
2388	case MPOL_LOCAL:
2389		/*
2390		 * Don't allow a nodelist;  mpol_new() checks flags
2391		 */
2392		if (nodelist)
2393			goto out;
2394		mode = MPOL_PREFERRED;
2395		break;
2396	case MPOL_DEFAULT:
2397		/*
2398		 * Insist on a empty nodelist
2399		 */
2400		if (!nodelist)
2401			err = 0;
2402		goto out;
2403	case MPOL_BIND:
2404		/*
2405		 * Insist on a nodelist
2406		 */
2407		if (!nodelist)
2408			goto out;
2409	}
2410
2411	mode_flags = 0;
2412	if (flags) {
2413		/*
2414		 * Currently, we only support two mutually exclusive
2415		 * mode flags.
2416		 */
2417		if (!strcmp(flags, "static"))
2418			mode_flags |= MPOL_F_STATIC_NODES;
2419		else if (!strcmp(flags, "relative"))
2420			mode_flags |= MPOL_F_RELATIVE_NODES;
2421		else
2422			goto out;
2423	}
2424
2425	new = mpol_new(mode, mode_flags, &nodes);
2426	if (IS_ERR(new))
2427		goto out;
2428
2429	if (no_context) {
2430		/* save for contextualization */
2431		new->w.user_nodemask = nodes;
2432	} else {
2433		int ret;
2434		NODEMASK_SCRATCH(scratch);
2435		if (scratch) {
2436			task_lock(current);
2437			ret = mpol_set_nodemask(new, &nodes, scratch);
2438			task_unlock(current);
2439		} else
2440			ret = -ENOMEM;
2441		NODEMASK_SCRATCH_FREE(scratch);
2442		if (ret) {
2443			mpol_put(new);
2444			goto out;
2445		}
2446	}
2447	err = 0;
2448
2449out:
2450	/* Restore string for error message */
2451	if (nodelist)
2452		*--nodelist = ':';
2453	if (flags)
2454		*--flags = '=';
2455	if (!err)
2456		*mpol = new;
2457	return err;
2458}
2459#endif /* CONFIG_TMPFS */
2460
2461/**
2462 * mpol_to_str - format a mempolicy structure for printing
2463 * @buffer:  to contain formatted mempolicy string
2464 * @maxlen:  length of @buffer
2465 * @pol:  pointer to mempolicy to be formatted
2466 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2467 *
2468 * Convert a mempolicy into a string.
2469 * Returns the number of characters in buffer (if positive)
2470 * or an error (negative)
2471 */
2472int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2473{
2474	char *p = buffer;
2475	int l;
2476	nodemask_t nodes;
2477	unsigned short mode;
2478	unsigned short flags = pol ? pol->flags : 0;
2479
2480	/*
2481	 * Sanity check:  room for longest mode, flag and some nodes
2482	 */
2483	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484
2485	if (!pol || pol == &default_policy)
2486		mode = MPOL_DEFAULT;
2487	else
2488		mode = pol->mode;
 
 
2489
2490	switch (mode) {
2491	case MPOL_DEFAULT:
2492		nodes_clear(nodes);
2493		break;
2494
2495	case MPOL_PREFERRED:
2496		nodes_clear(nodes);
2497		if (flags & MPOL_F_LOCAL)
2498			mode = MPOL_LOCAL;	/* pseudo-policy */
2499		else
2500			node_set(pol->v.preferred_node, nodes);
2501		break;
2502
2503	case MPOL_BIND:
2504		/* Fall through */
2505	case MPOL_INTERLEAVE:
2506		if (no_context)
2507			nodes = pol->w.user_nodemask;
2508		else
2509			nodes = pol->v.nodes;
2510		break;
2511
2512	default:
2513		BUG();
 
 
2514	}
2515
2516	l = strlen(policy_modes[mode]);
2517	if (buffer + maxlen < p + l + 1)
2518		return -ENOSPC;
2519
2520	strcpy(p, policy_modes[mode]);
2521	p += l;
2522
2523	if (flags & MPOL_MODE_FLAGS) {
2524		if (buffer + maxlen < p + 2)
2525			return -ENOSPC;
2526		*p++ = '=';
2527
2528		/*
2529		 * Currently, the only defined flags are mutually exclusive
2530		 */
2531		if (flags & MPOL_F_STATIC_NODES)
2532			p += snprintf(p, buffer + maxlen - p, "static");
2533		else if (flags & MPOL_F_RELATIVE_NODES)
2534			p += snprintf(p, buffer + maxlen - p, "relative");
2535	}
2536
2537	if (!nodes_empty(nodes)) {
2538		if (buffer + maxlen < p + 2)
2539			return -ENOSPC;
2540		*p++ = ':';
2541	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2542	}
2543	return p - buffer;
2544}