Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * tracing clocks
  3 *
  4 *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5 *
  6 * Implements 3 trace clock variants, with differing scalability/precision
  7 * tradeoffs:
  8 *
  9 *  -   local: CPU-local trace clock
 10 *  -  medium: scalable global clock with some jitter
 11 *  -  global: globally monotonic, serialized clock
 12 *
 13 * Tracer plugins will chose a default from these clocks.
 14 */
 15#include <linux/spinlock.h>
 16#include <linux/irqflags.h>
 17#include <linux/hardirq.h>
 18#include <linux/module.h>
 19#include <linux/percpu.h>
 20#include <linux/sched.h>
 21#include <linux/ktime.h>
 22#include <linux/trace_clock.h>
 23
 
 
 24/*
 25 * trace_clock_local(): the simplest and least coherent tracing clock.
 26 *
 27 * Useful for tracing that does not cross to other CPUs nor
 28 * does it go through idle events.
 29 */
 30u64 notrace trace_clock_local(void)
 31{
 32	u64 clock;
 33
 34	/*
 35	 * sched_clock() is an architecture implemented, fast, scalable,
 36	 * lockless clock. It is not guaranteed to be coherent across
 37	 * CPUs, nor across CPU idle events.
 38	 */
 39	preempt_disable_notrace();
 40	clock = sched_clock();
 41	preempt_enable_notrace();
 42
 43	return clock;
 44}
 45EXPORT_SYMBOL_GPL(trace_clock_local);
 46
 47/*
 48 * trace_clock(): 'between' trace clock. Not completely serialized,
 49 * but not completely incorrect when crossing CPUs either.
 50 *
 51 * This is based on cpu_clock(), which will allow at most ~1 jiffy of
 52 * jitter between CPUs. So it's a pretty scalable clock, but there
 53 * can be offsets in the trace data.
 54 */
 55u64 notrace trace_clock(void)
 56{
 57	return local_clock();
 58}
 59
 60/*
 61 * trace_jiffy_clock(): Simply use jiffies as a clock counter.
 62 */
 63u64 notrace trace_clock_jiffies(void)
 64{
 65	u64 jiffy = jiffies - INITIAL_JIFFIES;
 66
 67	/* Return nsecs */
 68	return (u64)jiffies_to_usecs(jiffy) * 1000ULL;
 69}
 70
 71/*
 72 * trace_clock_global(): special globally coherent trace clock
 73 *
 74 * It has higher overhead than the other trace clocks but is still
 75 * an order of magnitude faster than GTOD derived hardware clocks.
 76 *
 77 * Used by plugins that need globally coherent timestamps.
 78 */
 79
 80/* keep prev_time and lock in the same cacheline. */
 81static struct {
 82	u64 prev_time;
 83	arch_spinlock_t lock;
 84} trace_clock_struct ____cacheline_aligned_in_smp =
 85	{
 86		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
 87	};
 88
 89u64 notrace trace_clock_global(void)
 90{
 91	unsigned long flags;
 92	int this_cpu;
 93	u64 now;
 94
 95	local_irq_save(flags);
 96
 97	this_cpu = raw_smp_processor_id();
 98	now = sched_clock_cpu(this_cpu);
 99	/*
100	 * If in an NMI context then dont risk lockups and return the
101	 * cpu_clock() time:
102	 */
103	if (unlikely(in_nmi()))
104		goto out;
105
106	arch_spin_lock(&trace_clock_struct.lock);
107
108	/*
109	 * TODO: if this happens often then maybe we should reset
110	 * my_scd->clock to prev_time+1, to make sure
111	 * we start ticking with the local clock from now on?
112	 */
113	if ((s64)(now - trace_clock_struct.prev_time) < 0)
114		now = trace_clock_struct.prev_time + 1;
115
116	trace_clock_struct.prev_time = now;
117
118	arch_spin_unlock(&trace_clock_struct.lock);
119
120 out:
121	local_irq_restore(flags);
122
123	return now;
124}
125
126static atomic64_t trace_counter;
127
128/*
129 * trace_clock_counter(): simply an atomic counter.
130 * Use the trace_counter "counter" for cases where you do not care
131 * about timings, but are interested in strict ordering.
132 */
133u64 notrace trace_clock_counter(void)
134{
135	return atomic64_add_return(1, &trace_counter);
136}
v3.1
  1/*
  2 * tracing clocks
  3 *
  4 *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5 *
  6 * Implements 3 trace clock variants, with differing scalability/precision
  7 * tradeoffs:
  8 *
  9 *  -   local: CPU-local trace clock
 10 *  -  medium: scalable global clock with some jitter
 11 *  -  global: globally monotonic, serialized clock
 12 *
 13 * Tracer plugins will chose a default from these clocks.
 14 */
 15#include <linux/spinlock.h>
 16#include <linux/irqflags.h>
 17#include <linux/hardirq.h>
 18#include <linux/module.h>
 19#include <linux/percpu.h>
 20#include <linux/sched.h>
 21#include <linux/ktime.h>
 22#include <linux/trace_clock.h>
 23
 24#include "trace.h"
 25
 26/*
 27 * trace_clock_local(): the simplest and least coherent tracing clock.
 28 *
 29 * Useful for tracing that does not cross to other CPUs nor
 30 * does it go through idle events.
 31 */
 32u64 notrace trace_clock_local(void)
 33{
 34	u64 clock;
 35
 36	/*
 37	 * sched_clock() is an architecture implemented, fast, scalable,
 38	 * lockless clock. It is not guaranteed to be coherent across
 39	 * CPUs, nor across CPU idle events.
 40	 */
 41	preempt_disable_notrace();
 42	clock = sched_clock();
 43	preempt_enable_notrace();
 44
 45	return clock;
 46}
 
 47
 48/*
 49 * trace_clock(): 'between' trace clock. Not completely serialized,
 50 * but not completely incorrect when crossing CPUs either.
 51 *
 52 * This is based on cpu_clock(), which will allow at most ~1 jiffy of
 53 * jitter between CPUs. So it's a pretty scalable clock, but there
 54 * can be offsets in the trace data.
 55 */
 56u64 notrace trace_clock(void)
 57{
 58	return local_clock();
 59}
 60
 
 
 
 
 
 
 
 
 
 
 61
 62/*
 63 * trace_clock_global(): special globally coherent trace clock
 64 *
 65 * It has higher overhead than the other trace clocks but is still
 66 * an order of magnitude faster than GTOD derived hardware clocks.
 67 *
 68 * Used by plugins that need globally coherent timestamps.
 69 */
 70
 71/* keep prev_time and lock in the same cacheline. */
 72static struct {
 73	u64 prev_time;
 74	arch_spinlock_t lock;
 75} trace_clock_struct ____cacheline_aligned_in_smp =
 76	{
 77		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
 78	};
 79
 80u64 notrace trace_clock_global(void)
 81{
 82	unsigned long flags;
 83	int this_cpu;
 84	u64 now;
 85
 86	local_irq_save(flags);
 87
 88	this_cpu = raw_smp_processor_id();
 89	now = cpu_clock(this_cpu);
 90	/*
 91	 * If in an NMI context then dont risk lockups and return the
 92	 * cpu_clock() time:
 93	 */
 94	if (unlikely(in_nmi()))
 95		goto out;
 96
 97	arch_spin_lock(&trace_clock_struct.lock);
 98
 99	/*
100	 * TODO: if this happens often then maybe we should reset
101	 * my_scd->clock to prev_time+1, to make sure
102	 * we start ticking with the local clock from now on?
103	 */
104	if ((s64)(now - trace_clock_struct.prev_time) < 0)
105		now = trace_clock_struct.prev_time + 1;
106
107	trace_clock_struct.prev_time = now;
108
109	arch_spin_unlock(&trace_clock_struct.lock);
110
111 out:
112	local_irq_restore(flags);
113
114	return now;
 
 
 
 
 
 
 
 
 
 
 
 
115}