Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * NTP state machine interfaces and logic.
  3 *
  4 * This code was mainly moved from kernel/timer.c and kernel/time.c
  5 * Please see those files for relevant copyright info and historical
  6 * changelogs.
  7 */
  8#include <linux/capability.h>
  9#include <linux/clocksource.h>
 10#include <linux/workqueue.h>
 11#include <linux/hrtimer.h>
 12#include <linux/jiffies.h>
 13#include <linux/math64.h>
 14#include <linux/timex.h>
 15#include <linux/time.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 18#include <linux/rtc.h>
 19
 20#include "tick-internal.h"
 21#include "ntp_internal.h"
 22
 23/*
 24 * NTP timekeeping variables:
 25 *
 26 * Note: All of the NTP state is protected by the timekeeping locks.
 27 */
 28
 29
 30/* USER_HZ period (usecs): */
 31unsigned long			tick_usec = TICK_USEC;
 32
 33/* SHIFTED_HZ period (nsecs): */
 34unsigned long			tick_nsec;
 35
 36static u64			tick_length;
 37static u64			tick_length_base;
 38
 
 
 39#define MAX_TICKADJ		500LL		/* usecs */
 40#define MAX_TICKADJ_SCALED \
 41	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 42
 43/*
 44 * phase-lock loop variables
 45 */
 46
 47/*
 48 * clock synchronization status
 49 *
 50 * (TIME_ERROR prevents overwriting the CMOS clock)
 51 */
 52static int			time_state = TIME_OK;
 53
 54/* clock status bits:							*/
 55static int			time_status = STA_UNSYNC;
 
 
 
 56
 57/* time adjustment (nsecs):						*/
 58static s64			time_offset;
 59
 60/* pll time constant:							*/
 61static long			time_constant = 2;
 62
 63/* maximum error (usecs):						*/
 64static long			time_maxerror = NTP_PHASE_LIMIT;
 65
 66/* estimated error (usecs):						*/
 67static long			time_esterror = NTP_PHASE_LIMIT;
 68
 69/* frequency offset (scaled nsecs/secs):				*/
 70static s64			time_freq;
 71
 72/* time at last adjustment (secs):					*/
 73static long			time_reftime;
 74
 75static long			time_adjust;
 76
 77/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
 78static s64			ntp_tick_adj;
 79
 80#ifdef CONFIG_NTP_PPS
 81
 82/*
 83 * The following variables are used when a pulse-per-second (PPS) signal
 84 * is available. They establish the engineering parameters of the clock
 85 * discipline loop when controlled by the PPS signal.
 86 */
 87#define PPS_VALID	10	/* PPS signal watchdog max (s) */
 88#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
 89#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
 90#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
 91#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 92				   increase pps_shift or consecutive bad
 93				   intervals to decrease it */
 94#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 95
 96static int pps_valid;		/* signal watchdog counter */
 97static long pps_tf[3];		/* phase median filter */
 98static long pps_jitter;		/* current jitter (ns) */
 99static struct timespec pps_fbase; /* beginning of the last freq interval */
100static int pps_shift;		/* current interval duration (s) (shift) */
101static int pps_intcnt;		/* interval counter */
102static s64 pps_freq;		/* frequency offset (scaled ns/s) */
103static long pps_stabil;		/* current stability (scaled ns/s) */
104
105/*
106 * PPS signal quality monitors
107 */
108static long pps_calcnt;		/* calibration intervals */
109static long pps_jitcnt;		/* jitter limit exceeded */
110static long pps_stbcnt;		/* stability limit exceeded */
111static long pps_errcnt;		/* calibration errors */
112
113
114/* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117static inline s64 ntp_offset_chunk(s64 offset)
118{
119	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120		return offset;
121	else
122		return shift_right(offset, SHIFT_PLL + time_constant);
123}
124
125static inline void pps_reset_freq_interval(void)
126{
127	/* the PPS calibration interval may end
128	   surprisingly early */
129	pps_shift = PPS_INTMIN;
130	pps_intcnt = 0;
131}
132
133/**
134 * pps_clear - Clears the PPS state variables
 
 
135 */
136static inline void pps_clear(void)
137{
138	pps_reset_freq_interval();
139	pps_tf[0] = 0;
140	pps_tf[1] = 0;
141	pps_tf[2] = 0;
142	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
143	pps_freq = 0;
144}
145
146/* Decrease pps_valid to indicate that another second has passed since
147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
148 * missing.
 
 
149 */
150static inline void pps_dec_valid(void)
151{
152	if (pps_valid > 0)
153		pps_valid--;
154	else {
155		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
156				 STA_PPSWANDER | STA_PPSERROR);
157		pps_clear();
158	}
159}
160
161static inline void pps_set_freq(s64 freq)
162{
163	pps_freq = freq;
164}
165
166static inline int is_error_status(int status)
167{
168	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
169		/* PPS signal lost when either PPS time or
170		 * PPS frequency synchronization requested
171		 */
172		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
173			&& !(time_status & STA_PPSSIGNAL))
174		/* PPS jitter exceeded when
175		 * PPS time synchronization requested */
176		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
177			== (STA_PPSTIME|STA_PPSJITTER))
178		/* PPS wander exceeded or calibration error when
179		 * PPS frequency synchronization requested
180		 */
181		|| ((time_status & STA_PPSFREQ)
182			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
183}
184
185static inline void pps_fill_timex(struct timex *txc)
186{
187	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
188					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
189	txc->jitter	   = pps_jitter;
190	if (!(time_status & STA_NANO))
191		txc->jitter /= NSEC_PER_USEC;
192	txc->shift	   = pps_shift;
193	txc->stabil	   = pps_stabil;
194	txc->jitcnt	   = pps_jitcnt;
195	txc->calcnt	   = pps_calcnt;
196	txc->errcnt	   = pps_errcnt;
197	txc->stbcnt	   = pps_stbcnt;
198}
199
200#else /* !CONFIG_NTP_PPS */
201
202static inline s64 ntp_offset_chunk(s64 offset)
203{
204	return shift_right(offset, SHIFT_PLL + time_constant);
205}
206
207static inline void pps_reset_freq_interval(void) {}
208static inline void pps_clear(void) {}
209static inline void pps_dec_valid(void) {}
210static inline void pps_set_freq(s64 freq) {}
211
212static inline int is_error_status(int status)
213{
214	return status & (STA_UNSYNC|STA_CLOCKERR);
215}
216
217static inline void pps_fill_timex(struct timex *txc)
218{
219	/* PPS is not implemented, so these are zero */
220	txc->ppsfreq	   = 0;
221	txc->jitter	   = 0;
222	txc->shift	   = 0;
223	txc->stabil	   = 0;
224	txc->jitcnt	   = 0;
225	txc->calcnt	   = 0;
226	txc->errcnt	   = 0;
227	txc->stbcnt	   = 0;
228}
229
230#endif /* CONFIG_NTP_PPS */
231
232
233/**
234 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
235 *
236 */
237static inline int ntp_synced(void)
238{
239	return !(time_status & STA_UNSYNC);
240}
241
242
243/*
244 * NTP methods:
245 */
246
247/*
248 * Update (tick_length, tick_length_base, tick_nsec), based
249 * on (tick_usec, ntp_tick_adj, time_freq):
250 */
251static void ntp_update_frequency(void)
252{
253	u64 second_length;
254	u64 new_base;
255
256	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
257						<< NTP_SCALE_SHIFT;
258
259	second_length		+= ntp_tick_adj;
260	second_length		+= time_freq;
261
262	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
263	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
264
265	/*
266	 * Don't wait for the next second_overflow, apply
267	 * the change to the tick length immediately:
268	 */
269	tick_length		+= new_base - tick_length_base;
270	tick_length_base	 = new_base;
271}
272
273static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
274{
275	time_status &= ~STA_MODE;
276
277	if (secs < MINSEC)
278		return 0;
279
280	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
281		return 0;
282
283	time_status |= STA_MODE;
284
285	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
286}
287
288static void ntp_update_offset(long offset)
289{
290	s64 freq_adj;
291	s64 offset64;
292	long secs;
293
294	if (!(time_status & STA_PLL))
295		return;
296
297	if (!(time_status & STA_NANO))
298		offset *= NSEC_PER_USEC;
299
300	/*
301	 * Scale the phase adjustment and
302	 * clamp to the operating range.
303	 */
304	offset = min(offset, MAXPHASE);
305	offset = max(offset, -MAXPHASE);
306
307	/*
308	 * Select how the frequency is to be controlled
309	 * and in which mode (PLL or FLL).
310	 */
311	secs = get_seconds() - time_reftime;
312	if (unlikely(time_status & STA_FREQHOLD))
313		secs = 0;
314
315	time_reftime = get_seconds();
316
317	offset64    = offset;
318	freq_adj    = ntp_update_offset_fll(offset64, secs);
319
320	/*
321	 * Clamp update interval to reduce PLL gain with low
322	 * sampling rate (e.g. intermittent network connection)
323	 * to avoid instability.
324	 */
325	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
326		secs = 1 << (SHIFT_PLL + 1 + time_constant);
327
328	freq_adj    += (offset64 * secs) <<
329			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
330
331	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
332
333	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
334
335	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
336}
337
338/**
339 * ntp_clear - Clears the NTP state variables
 
 
340 */
341void ntp_clear(void)
342{
343	time_adjust	= 0;		/* stop active adjtime() */
344	time_status	|= STA_UNSYNC;
345	time_maxerror	= NTP_PHASE_LIMIT;
346	time_esterror	= NTP_PHASE_LIMIT;
347
348	ntp_update_frequency();
349
350	tick_length	= tick_length_base;
351	time_offset	= 0;
352
353	/* Clear PPS state variables */
354	pps_clear();
355}
356
357
358u64 ntp_tick_length(void)
359{
360	return tick_length;
361}
362
363
364/*
365 * this routine handles the overflow of the microsecond field
366 *
367 * The tricky bits of code to handle the accurate clock support
368 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
369 * They were originally developed for SUN and DEC kernels.
370 * All the kudos should go to Dave for this stuff.
371 *
372 * Also handles leap second processing, and returns leap offset
373 */
374int second_overflow(unsigned long secs)
375{
376	s64 delta;
377	int leap = 0;
 
378
379	/*
380	 * Leap second processing. If in leap-insert state at the end of the
381	 * day, the system clock is set back one second; if in leap-delete
382	 * state, the system clock is set ahead one second.
383	 */
384	switch (time_state) {
385	case TIME_OK:
386		if (time_status & STA_INS)
387			time_state = TIME_INS;
388		else if (time_status & STA_DEL)
389			time_state = TIME_DEL;
390		break;
391	case TIME_INS:
392		if (!(time_status & STA_INS))
393			time_state = TIME_OK;
394		else if (secs % 86400 == 0) {
395			leap = -1;
396			time_state = TIME_OOP;
397			printk(KERN_NOTICE
398				"Clock: inserting leap second 23:59:60 UTC\n");
399		}
400		break;
401	case TIME_DEL:
402		if (!(time_status & STA_DEL))
403			time_state = TIME_OK;
404		else if ((secs + 1) % 86400 == 0) {
405			leap = 1;
406			time_state = TIME_WAIT;
407			printk(KERN_NOTICE
408				"Clock: deleting leap second 23:59:59 UTC\n");
409		}
410		break;
411	case TIME_OOP:
 
412		time_state = TIME_WAIT;
413		break;
414
415	case TIME_WAIT:
416		if (!(time_status & (STA_INS | STA_DEL)))
417			time_state = TIME_OK;
418		break;
419	}
420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421
422	/* Bump the maxerror field */
423	time_maxerror += MAXFREQ / NSEC_PER_USEC;
424	if (time_maxerror > NTP_PHASE_LIMIT) {
425		time_maxerror = NTP_PHASE_LIMIT;
426		time_status |= STA_UNSYNC;
427	}
428
429	/* Compute the phase adjustment for the next second */
430	tick_length	 = tick_length_base;
431
432	delta		 = ntp_offset_chunk(time_offset);
433	time_offset	-= delta;
434	tick_length	+= delta;
435
436	/* Check PPS signal */
437	pps_dec_valid();
438
439	if (!time_adjust)
440		goto out;
441
442	if (time_adjust > MAX_TICKADJ) {
443		time_adjust -= MAX_TICKADJ;
444		tick_length += MAX_TICKADJ_SCALED;
445		goto out;
446	}
447
448	if (time_adjust < -MAX_TICKADJ) {
449		time_adjust += MAX_TICKADJ;
450		tick_length -= MAX_TICKADJ_SCALED;
451		goto out;
452	}
453
454	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
455							 << NTP_SCALE_SHIFT;
456	time_adjust = 0;
457
458out:
459	return leap;
460}
461
462#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
 
 
 
 
463static void sync_cmos_clock(struct work_struct *work);
464
465static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
466
467static void sync_cmos_clock(struct work_struct *work)
468{
469	struct timespec now, next;
470	int fail = 1;
471
472	/*
473	 * If we have an externally synchronized Linux clock, then update
474	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
475	 * called as close as possible to 500 ms before the new second starts.
476	 * This code is run on a timer.  If the clock is set, that timer
477	 * may not expire at the correct time.  Thus, we adjust...
478	 * We want the clock to be within a couple of ticks from the target.
479	 */
480	if (!ntp_synced()) {
481		/*
482		 * Not synced, exit, do not restart a timer (if one is
483		 * running, let it run out).
484		 */
485		return;
486	}
487
488	getnstimeofday(&now);
489	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
490		struct timespec adjust = now;
491
492		fail = -ENODEV;
493		if (persistent_clock_is_local)
494			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
495#ifdef CONFIG_GENERIC_CMOS_UPDATE
496		fail = update_persistent_clock(adjust);
497#endif
498#ifdef CONFIG_RTC_SYSTOHC
499		if (fail == -ENODEV)
500			fail = rtc_set_ntp_time(adjust);
501#endif
502	}
503
504	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
505	if (next.tv_nsec <= 0)
506		next.tv_nsec += NSEC_PER_SEC;
507
508	if (!fail || fail == -ENODEV)
509		next.tv_sec = 659;
510	else
511		next.tv_sec = 0;
512
513	if (next.tv_nsec >= NSEC_PER_SEC) {
514		next.tv_sec++;
515		next.tv_nsec -= NSEC_PER_SEC;
516	}
517	queue_delayed_work(system_power_efficient_wq,
518			   &sync_cmos_work, timespec_to_jiffies(&next));
519}
520
521void ntp_notify_cmos_timer(void)
522{
523	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
 
524}
525
526#else
527void ntp_notify_cmos_timer(void) { }
528#endif
529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530
531/*
532 * Propagate a new txc->status value into the NTP state:
533 */
534static inline void process_adj_status(struct timex *txc, struct timespec *ts)
535{
536	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
537		time_state = TIME_OK;
538		time_status = STA_UNSYNC;
539		/* restart PPS frequency calibration */
540		pps_reset_freq_interval();
541	}
542
543	/*
544	 * If we turn on PLL adjustments then reset the
545	 * reference time to current time.
546	 */
547	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
548		time_reftime = get_seconds();
549
550	/* only set allowed bits */
551	time_status &= STA_RONLY;
552	time_status |= txc->status & ~STA_RONLY;
553}
554
555
556static inline void process_adjtimex_modes(struct timex *txc,
557						struct timespec *ts,
558						s32 *time_tai)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559{
560	if (txc->modes & ADJ_STATUS)
561		process_adj_status(txc, ts);
562
563	if (txc->modes & ADJ_NANO)
564		time_status |= STA_NANO;
565
566	if (txc->modes & ADJ_MICRO)
567		time_status &= ~STA_NANO;
568
569	if (txc->modes & ADJ_FREQUENCY) {
570		time_freq = txc->freq * PPM_SCALE;
571		time_freq = min(time_freq, MAXFREQ_SCALED);
572		time_freq = max(time_freq, -MAXFREQ_SCALED);
573		/* update pps_freq */
574		pps_set_freq(time_freq);
575	}
576
577	if (txc->modes & ADJ_MAXERROR)
578		time_maxerror = txc->maxerror;
579
580	if (txc->modes & ADJ_ESTERROR)
581		time_esterror = txc->esterror;
582
583	if (txc->modes & ADJ_TIMECONST) {
584		time_constant = txc->constant;
585		if (!(time_status & STA_NANO))
586			time_constant += 4;
587		time_constant = min(time_constant, (long)MAXTC);
588		time_constant = max(time_constant, 0l);
589	}
590
591	if (txc->modes & ADJ_TAI && txc->constant > 0)
592		*time_tai = txc->constant;
593
594	if (txc->modes & ADJ_OFFSET)
595		ntp_update_offset(txc->offset);
596
597	if (txc->modes & ADJ_TICK)
598		tick_usec = txc->tick;
599
600	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
601		ntp_update_frequency();
602}
603
604
605
606/**
607 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
608 */
609int ntp_validate_timex(struct timex *txc)
610{
 
 
 
 
611	if (txc->modes & ADJ_ADJTIME) {
612		/* singleshot must not be used with any other mode bits */
613		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
614			return -EINVAL;
615		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
616		    !capable(CAP_SYS_TIME))
617			return -EPERM;
618	} else {
619		/* In order to modify anything, you gotta be super-user! */
620		 if (txc->modes && !capable(CAP_SYS_TIME))
621			return -EPERM;
 
622		/*
623		 * if the quartz is off by more than 10% then
624		 * something is VERY wrong!
625		 */
626		if (txc->modes & ADJ_TICK &&
627		    (txc->tick <  900000/USER_HZ ||
628		     txc->tick > 1100000/USER_HZ))
629			return -EINVAL;
630	}
631
632	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
633		return -EPERM;
 
634
635	return 0;
636}
 
 
 
 
 
 
 
 
 
 
637
 
638
639/*
640 * adjtimex mainly allows reading (and writing, if superuser) of
641 * kernel time-keeping variables. used by xntpd.
642 */
643int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai)
644{
645	int result;
646
647	if (txc->modes & ADJ_ADJTIME) {
648		long save_adjust = time_adjust;
649
650		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
651			/* adjtime() is independent from ntp_adjtime() */
652			time_adjust = txc->offset;
653			ntp_update_frequency();
654		}
655		txc->offset = save_adjust;
656	} else {
657
658		/* If there are input parameters, then process them: */
659		if (txc->modes)
660			process_adjtimex_modes(txc, ts, time_tai);
661
662		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
663				  NTP_SCALE_SHIFT);
664		if (!(time_status & STA_NANO))
665			txc->offset /= NSEC_PER_USEC;
666	}
667
668	result = time_state;	/* mostly `TIME_OK' */
669	/* check for errors */
670	if (is_error_status(time_status))
671		result = TIME_ERROR;
672
673	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
674					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
675	txc->maxerror	   = time_maxerror;
676	txc->esterror	   = time_esterror;
677	txc->status	   = time_status;
678	txc->constant	   = time_constant;
679	txc->precision	   = 1;
680	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
681	txc->tick	   = tick_usec;
682	txc->tai	   = *time_tai;
683
684	/* fill PPS status fields */
685	pps_fill_timex(txc);
686
687	txc->time.tv_sec = ts->tv_sec;
688	txc->time.tv_usec = ts->tv_nsec;
 
 
689	if (!(time_status & STA_NANO))
690		txc->time.tv_usec /= NSEC_PER_USEC;
691
 
 
692	return result;
693}
694
695#ifdef	CONFIG_NTP_PPS
696
697/* actually struct pps_normtime is good old struct timespec, but it is
698 * semantically different (and it is the reason why it was invented):
699 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
700 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
701struct pps_normtime {
702	__kernel_time_t	sec;	/* seconds */
703	long		nsec;	/* nanoseconds */
704};
705
706/* normalize the timestamp so that nsec is in the
707   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
708static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
709{
710	struct pps_normtime norm = {
711		.sec = ts.tv_sec,
712		.nsec = ts.tv_nsec
713	};
714
715	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
716		norm.nsec -= NSEC_PER_SEC;
717		norm.sec++;
718	}
719
720	return norm;
721}
722
723/* get current phase correction and jitter */
724static inline long pps_phase_filter_get(long *jitter)
725{
726	*jitter = pps_tf[0] - pps_tf[1];
727	if (*jitter < 0)
728		*jitter = -*jitter;
729
730	/* TODO: test various filters */
731	return pps_tf[0];
732}
733
734/* add the sample to the phase filter */
735static inline void pps_phase_filter_add(long err)
736{
737	pps_tf[2] = pps_tf[1];
738	pps_tf[1] = pps_tf[0];
739	pps_tf[0] = err;
740}
741
742/* decrease frequency calibration interval length.
743 * It is halved after four consecutive unstable intervals.
744 */
745static inline void pps_dec_freq_interval(void)
746{
747	if (--pps_intcnt <= -PPS_INTCOUNT) {
748		pps_intcnt = -PPS_INTCOUNT;
749		if (pps_shift > PPS_INTMIN) {
750			pps_shift--;
751			pps_intcnt = 0;
752		}
753	}
754}
755
756/* increase frequency calibration interval length.
757 * It is doubled after four consecutive stable intervals.
758 */
759static inline void pps_inc_freq_interval(void)
760{
761	if (++pps_intcnt >= PPS_INTCOUNT) {
762		pps_intcnt = PPS_INTCOUNT;
763		if (pps_shift < PPS_INTMAX) {
764			pps_shift++;
765			pps_intcnt = 0;
766		}
767	}
768}
769
770/* update clock frequency based on MONOTONIC_RAW clock PPS signal
771 * timestamps
772 *
773 * At the end of the calibration interval the difference between the
774 * first and last MONOTONIC_RAW clock timestamps divided by the length
775 * of the interval becomes the frequency update. If the interval was
776 * too long, the data are discarded.
777 * Returns the difference between old and new frequency values.
778 */
779static long hardpps_update_freq(struct pps_normtime freq_norm)
780{
781	long delta, delta_mod;
782	s64 ftemp;
783
784	/* check if the frequency interval was too long */
785	if (freq_norm.sec > (2 << pps_shift)) {
786		time_status |= STA_PPSERROR;
787		pps_errcnt++;
788		pps_dec_freq_interval();
789		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
790				freq_norm.sec);
791		return 0;
792	}
793
794	/* here the raw frequency offset and wander (stability) is
795	 * calculated. If the wander is less than the wander threshold
796	 * the interval is increased; otherwise it is decreased.
797	 */
798	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
799			freq_norm.sec);
800	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
801	pps_freq = ftemp;
802	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
803		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
804		time_status |= STA_PPSWANDER;
805		pps_stbcnt++;
806		pps_dec_freq_interval();
807	} else {	/* good sample */
808		pps_inc_freq_interval();
809	}
810
811	/* the stability metric is calculated as the average of recent
812	 * frequency changes, but is used only for performance
813	 * monitoring
814	 */
815	delta_mod = delta;
816	if (delta_mod < 0)
817		delta_mod = -delta_mod;
818	pps_stabil += (div_s64(((s64)delta_mod) <<
819				(NTP_SCALE_SHIFT - SHIFT_USEC),
820				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
821
822	/* if enabled, the system clock frequency is updated */
823	if ((time_status & STA_PPSFREQ) != 0 &&
824	    (time_status & STA_FREQHOLD) == 0) {
825		time_freq = pps_freq;
826		ntp_update_frequency();
827	}
828
829	return delta;
830}
831
832/* correct REALTIME clock phase error against PPS signal */
833static void hardpps_update_phase(long error)
834{
835	long correction = -error;
836	long jitter;
837
838	/* add the sample to the median filter */
839	pps_phase_filter_add(correction);
840	correction = pps_phase_filter_get(&jitter);
841
842	/* Nominal jitter is due to PPS signal noise. If it exceeds the
843	 * threshold, the sample is discarded; otherwise, if so enabled,
844	 * the time offset is updated.
845	 */
846	if (jitter > (pps_jitter << PPS_POPCORN)) {
847		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
848		       jitter, (pps_jitter << PPS_POPCORN));
849		time_status |= STA_PPSJITTER;
850		pps_jitcnt++;
851	} else if (time_status & STA_PPSTIME) {
852		/* correct the time using the phase offset */
853		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
854				NTP_INTERVAL_FREQ);
855		/* cancel running adjtime() */
856		time_adjust = 0;
857	}
858	/* update jitter */
859	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
860}
861
862/*
863 * __hardpps() - discipline CPU clock oscillator to external PPS signal
864 *
865 * This routine is called at each PPS signal arrival in order to
866 * discipline the CPU clock oscillator to the PPS signal. It takes two
867 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
868 * is used to correct clock phase error and the latter is used to
869 * correct the frequency.
870 *
871 * This code is based on David Mills's reference nanokernel
872 * implementation. It was mostly rewritten but keeps the same idea.
873 */
874void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
875{
876	struct pps_normtime pts_norm, freq_norm;
 
877
878	pts_norm = pps_normalize_ts(*phase_ts);
879
 
 
880	/* clear the error bits, they will be set again if needed */
881	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
882
883	/* indicate signal presence */
884	time_status |= STA_PPSSIGNAL;
885	pps_valid = PPS_VALID;
886
887	/* when called for the first time,
888	 * just start the frequency interval */
889	if (unlikely(pps_fbase.tv_sec == 0)) {
890		pps_fbase = *raw_ts;
 
891		return;
892	}
893
894	/* ok, now we have a base for frequency calculation */
895	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
896
897	/* check that the signal is in the range
898	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
899	if ((freq_norm.sec == 0) ||
900			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
901			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
902		time_status |= STA_PPSJITTER;
903		/* restart the frequency calibration interval */
904		pps_fbase = *raw_ts;
 
905		pr_err("hardpps: PPSJITTER: bad pulse\n");
906		return;
907	}
908
909	/* signal is ok */
910
911	/* check if the current frequency interval is finished */
912	if (freq_norm.sec >= (1 << pps_shift)) {
913		pps_calcnt++;
914		/* restart the frequency calibration interval */
915		pps_fbase = *raw_ts;
916		hardpps_update_freq(freq_norm);
917	}
918
919	hardpps_update_phase(pts_norm.nsec);
920
 
921}
 
 
922#endif	/* CONFIG_NTP_PPS */
923
924static int __init ntp_tick_adj_setup(char *str)
925{
926	ntp_tick_adj = simple_strtol(str, NULL, 0);
927	ntp_tick_adj <<= NTP_SCALE_SHIFT;
928
929	return 1;
930}
931
932__setup("ntp_tick_adj=", ntp_tick_adj_setup);
933
934void __init ntp_init(void)
935{
936	ntp_clear();
 
 
937}
v3.1
  1/*
  2 * NTP state machine interfaces and logic.
  3 *
  4 * This code was mainly moved from kernel/timer.c and kernel/time.c
  5 * Please see those files for relevant copyright info and historical
  6 * changelogs.
  7 */
  8#include <linux/capability.h>
  9#include <linux/clocksource.h>
 10#include <linux/workqueue.h>
 11#include <linux/hrtimer.h>
 12#include <linux/jiffies.h>
 13#include <linux/math64.h>
 14#include <linux/timex.h>
 15#include <linux/time.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 
 18
 19#include "tick-internal.h"
 
 20
 21/*
 22 * NTP timekeeping variables:
 
 
 23 */
 24
 
 25/* USER_HZ period (usecs): */
 26unsigned long			tick_usec = TICK_USEC;
 27
 28/* ACTHZ period (nsecs): */
 29unsigned long			tick_nsec;
 30
 31u64				tick_length;
 32static u64			tick_length_base;
 33
 34static struct hrtimer		leap_timer;
 35
 36#define MAX_TICKADJ		500LL		/* usecs */
 37#define MAX_TICKADJ_SCALED \
 38	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 39
 40/*
 41 * phase-lock loop variables
 42 */
 43
 44/*
 45 * clock synchronization status
 46 *
 47 * (TIME_ERROR prevents overwriting the CMOS clock)
 48 */
 49static int			time_state = TIME_OK;
 50
 51/* clock status bits:							*/
 52int				time_status = STA_UNSYNC;
 53
 54/* TAI offset (secs):							*/
 55static long			time_tai;
 56
 57/* time adjustment (nsecs):						*/
 58static s64			time_offset;
 59
 60/* pll time constant:							*/
 61static long			time_constant = 2;
 62
 63/* maximum error (usecs):						*/
 64static long			time_maxerror = NTP_PHASE_LIMIT;
 65
 66/* estimated error (usecs):						*/
 67static long			time_esterror = NTP_PHASE_LIMIT;
 68
 69/* frequency offset (scaled nsecs/secs):				*/
 70static s64			time_freq;
 71
 72/* time at last adjustment (secs):					*/
 73static long			time_reftime;
 74
 75static long			time_adjust;
 76
 77/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
 78static s64			ntp_tick_adj;
 79
 80#ifdef CONFIG_NTP_PPS
 81
 82/*
 83 * The following variables are used when a pulse-per-second (PPS) signal
 84 * is available. They establish the engineering parameters of the clock
 85 * discipline loop when controlled by the PPS signal.
 86 */
 87#define PPS_VALID	10	/* PPS signal watchdog max (s) */
 88#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
 89#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
 90#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
 91#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 92				   increase pps_shift or consecutive bad
 93				   intervals to decrease it */
 94#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 95
 96static int pps_valid;		/* signal watchdog counter */
 97static long pps_tf[3];		/* phase median filter */
 98static long pps_jitter;		/* current jitter (ns) */
 99static struct timespec pps_fbase; /* beginning of the last freq interval */
100static int pps_shift;		/* current interval duration (s) (shift) */
101static int pps_intcnt;		/* interval counter */
102static s64 pps_freq;		/* frequency offset (scaled ns/s) */
103static long pps_stabil;		/* current stability (scaled ns/s) */
104
105/*
106 * PPS signal quality monitors
107 */
108static long pps_calcnt;		/* calibration intervals */
109static long pps_jitcnt;		/* jitter limit exceeded */
110static long pps_stbcnt;		/* stability limit exceeded */
111static long pps_errcnt;		/* calibration errors */
112
113
114/* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117static inline s64 ntp_offset_chunk(s64 offset)
118{
119	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120		return offset;
121	else
122		return shift_right(offset, SHIFT_PLL + time_constant);
123}
124
125static inline void pps_reset_freq_interval(void)
126{
127	/* the PPS calibration interval may end
128	   surprisingly early */
129	pps_shift = PPS_INTMIN;
130	pps_intcnt = 0;
131}
132
133/**
134 * pps_clear - Clears the PPS state variables
135 *
136 * Must be called while holding a write on the xtime_lock
137 */
138static inline void pps_clear(void)
139{
140	pps_reset_freq_interval();
141	pps_tf[0] = 0;
142	pps_tf[1] = 0;
143	pps_tf[2] = 0;
144	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
145	pps_freq = 0;
146}
147
148/* Decrease pps_valid to indicate that another second has passed since
149 * the last PPS signal. When it reaches 0, indicate that PPS signal is
150 * missing.
151 *
152 * Must be called while holding a write on the xtime_lock
153 */
154static inline void pps_dec_valid(void)
155{
156	if (pps_valid > 0)
157		pps_valid--;
158	else {
159		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
160				 STA_PPSWANDER | STA_PPSERROR);
161		pps_clear();
162	}
163}
164
165static inline void pps_set_freq(s64 freq)
166{
167	pps_freq = freq;
168}
169
170static inline int is_error_status(int status)
171{
172	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
173		/* PPS signal lost when either PPS time or
174		 * PPS frequency synchronization requested
175		 */
176		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
177			&& !(time_status & STA_PPSSIGNAL))
178		/* PPS jitter exceeded when
179		 * PPS time synchronization requested */
180		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
181			== (STA_PPSTIME|STA_PPSJITTER))
182		/* PPS wander exceeded or calibration error when
183		 * PPS frequency synchronization requested
184		 */
185		|| ((time_status & STA_PPSFREQ)
186			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
187}
188
189static inline void pps_fill_timex(struct timex *txc)
190{
191	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
192					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
193	txc->jitter	   = pps_jitter;
194	if (!(time_status & STA_NANO))
195		txc->jitter /= NSEC_PER_USEC;
196	txc->shift	   = pps_shift;
197	txc->stabil	   = pps_stabil;
198	txc->jitcnt	   = pps_jitcnt;
199	txc->calcnt	   = pps_calcnt;
200	txc->errcnt	   = pps_errcnt;
201	txc->stbcnt	   = pps_stbcnt;
202}
203
204#else /* !CONFIG_NTP_PPS */
205
206static inline s64 ntp_offset_chunk(s64 offset)
207{
208	return shift_right(offset, SHIFT_PLL + time_constant);
209}
210
211static inline void pps_reset_freq_interval(void) {}
212static inline void pps_clear(void) {}
213static inline void pps_dec_valid(void) {}
214static inline void pps_set_freq(s64 freq) {}
215
216static inline int is_error_status(int status)
217{
218	return status & (STA_UNSYNC|STA_CLOCKERR);
219}
220
221static inline void pps_fill_timex(struct timex *txc)
222{
223	/* PPS is not implemented, so these are zero */
224	txc->ppsfreq	   = 0;
225	txc->jitter	   = 0;
226	txc->shift	   = 0;
227	txc->stabil	   = 0;
228	txc->jitcnt	   = 0;
229	txc->calcnt	   = 0;
230	txc->errcnt	   = 0;
231	txc->stbcnt	   = 0;
232}
233
234#endif /* CONFIG_NTP_PPS */
235
 
 
 
 
 
 
 
 
 
 
 
236/*
237 * NTP methods:
238 */
239
240/*
241 * Update (tick_length, tick_length_base, tick_nsec), based
242 * on (tick_usec, ntp_tick_adj, time_freq):
243 */
244static void ntp_update_frequency(void)
245{
246	u64 second_length;
247	u64 new_base;
248
249	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
250						<< NTP_SCALE_SHIFT;
251
252	second_length		+= ntp_tick_adj;
253	second_length		+= time_freq;
254
255	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
256	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
257
258	/*
259	 * Don't wait for the next second_overflow, apply
260	 * the change to the tick length immediately:
261	 */
262	tick_length		+= new_base - tick_length_base;
263	tick_length_base	 = new_base;
264}
265
266static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
267{
268	time_status &= ~STA_MODE;
269
270	if (secs < MINSEC)
271		return 0;
272
273	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
274		return 0;
275
276	time_status |= STA_MODE;
277
278	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
279}
280
281static void ntp_update_offset(long offset)
282{
283	s64 freq_adj;
284	s64 offset64;
285	long secs;
286
287	if (!(time_status & STA_PLL))
288		return;
289
290	if (!(time_status & STA_NANO))
291		offset *= NSEC_PER_USEC;
292
293	/*
294	 * Scale the phase adjustment and
295	 * clamp to the operating range.
296	 */
297	offset = min(offset, MAXPHASE);
298	offset = max(offset, -MAXPHASE);
299
300	/*
301	 * Select how the frequency is to be controlled
302	 * and in which mode (PLL or FLL).
303	 */
304	secs = get_seconds() - time_reftime;
305	if (unlikely(time_status & STA_FREQHOLD))
306		secs = 0;
307
308	time_reftime = get_seconds();
309
310	offset64    = offset;
311	freq_adj    = ntp_update_offset_fll(offset64, secs);
312
313	/*
314	 * Clamp update interval to reduce PLL gain with low
315	 * sampling rate (e.g. intermittent network connection)
316	 * to avoid instability.
317	 */
318	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
319		secs = 1 << (SHIFT_PLL + 1 + time_constant);
320
321	freq_adj    += (offset64 * secs) <<
322			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
323
324	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
325
326	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
327
328	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
329}
330
331/**
332 * ntp_clear - Clears the NTP state variables
333 *
334 * Must be called while holding a write on the xtime_lock
335 */
336void ntp_clear(void)
337{
338	time_adjust	= 0;		/* stop active adjtime() */
339	time_status	|= STA_UNSYNC;
340	time_maxerror	= NTP_PHASE_LIMIT;
341	time_esterror	= NTP_PHASE_LIMIT;
342
343	ntp_update_frequency();
344
345	tick_length	= tick_length_base;
346	time_offset	= 0;
347
348	/* Clear PPS state variables */
349	pps_clear();
350}
351
 
 
 
 
 
 
 
352/*
353 * Leap second processing. If in leap-insert state at the end of the
354 * day, the system clock is set back one second; if in leap-delete
355 * state, the system clock is set ahead one second.
 
 
 
 
 
356 */
357static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
358{
359	enum hrtimer_restart res = HRTIMER_NORESTART;
360
361	write_seqlock(&xtime_lock);
362
 
 
 
 
 
363	switch (time_state) {
364	case TIME_OK:
 
 
 
 
365		break;
366	case TIME_INS:
367		timekeeping_leap_insert(-1);
368		time_state = TIME_OOP;
369		printk(KERN_NOTICE
370			"Clock: inserting leap second 23:59:60 UTC\n");
371		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
372		res = HRTIMER_RESTART;
 
 
373		break;
374	case TIME_DEL:
375		timekeeping_leap_insert(1);
376		time_tai--;
377		time_state = TIME_WAIT;
378		printk(KERN_NOTICE
379			"Clock: deleting leap second 23:59:59 UTC\n");
 
 
 
380		break;
381	case TIME_OOP:
382		time_tai++;
383		time_state = TIME_WAIT;
384		/* fall through */
 
385	case TIME_WAIT:
386		if (!(time_status & (STA_INS | STA_DEL)))
387			time_state = TIME_OK;
388		break;
389	}
390
391	write_sequnlock(&xtime_lock);
392
393	return res;
394}
395
396/*
397 * this routine handles the overflow of the microsecond field
398 *
399 * The tricky bits of code to handle the accurate clock support
400 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
401 * They were originally developed for SUN and DEC kernels.
402 * All the kudos should go to Dave for this stuff.
403 */
404void second_overflow(void)
405{
406	s64 delta;
407
408	/* Bump the maxerror field */
409	time_maxerror += MAXFREQ / NSEC_PER_USEC;
410	if (time_maxerror > NTP_PHASE_LIMIT) {
411		time_maxerror = NTP_PHASE_LIMIT;
412		time_status |= STA_UNSYNC;
413	}
414
415	/* Compute the phase adjustment for the next second */
416	tick_length	 = tick_length_base;
417
418	delta		 = ntp_offset_chunk(time_offset);
419	time_offset	-= delta;
420	tick_length	+= delta;
421
422	/* Check PPS signal */
423	pps_dec_valid();
424
425	if (!time_adjust)
426		return;
427
428	if (time_adjust > MAX_TICKADJ) {
429		time_adjust -= MAX_TICKADJ;
430		tick_length += MAX_TICKADJ_SCALED;
431		return;
432	}
433
434	if (time_adjust < -MAX_TICKADJ) {
435		time_adjust += MAX_TICKADJ;
436		tick_length -= MAX_TICKADJ_SCALED;
437		return;
438	}
439
440	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
441							 << NTP_SCALE_SHIFT;
442	time_adjust = 0;
 
 
 
443}
444
445#ifdef CONFIG_GENERIC_CMOS_UPDATE
446
447/* Disable the cmos update - used by virtualization and embedded */
448int no_sync_cmos_clock  __read_mostly;
449
450static void sync_cmos_clock(struct work_struct *work);
451
452static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
453
454static void sync_cmos_clock(struct work_struct *work)
455{
456	struct timespec now, next;
457	int fail = 1;
458
459	/*
460	 * If we have an externally synchronized Linux clock, then update
461	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
462	 * called as close as possible to 500 ms before the new second starts.
463	 * This code is run on a timer.  If the clock is set, that timer
464	 * may not expire at the correct time.  Thus, we adjust...
 
465	 */
466	if (!ntp_synced()) {
467		/*
468		 * Not synced, exit, do not restart a timer (if one is
469		 * running, let it run out).
470		 */
471		return;
472	}
473
474	getnstimeofday(&now);
475	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
476		fail = update_persistent_clock(now);
 
 
 
 
 
 
 
 
 
 
 
 
477
478	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
479	if (next.tv_nsec <= 0)
480		next.tv_nsec += NSEC_PER_SEC;
481
482	if (!fail)
483		next.tv_sec = 659;
484	else
485		next.tv_sec = 0;
486
487	if (next.tv_nsec >= NSEC_PER_SEC) {
488		next.tv_sec++;
489		next.tv_nsec -= NSEC_PER_SEC;
490	}
491	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
 
492}
493
494static void notify_cmos_timer(void)
495{
496	if (!no_sync_cmos_clock)
497		schedule_delayed_work(&sync_cmos_work, 0);
498}
499
500#else
501static inline void notify_cmos_timer(void) { }
502#endif
503
504/*
505 * Start the leap seconds timer:
506 */
507static inline void ntp_start_leap_timer(struct timespec *ts)
508{
509	long now = ts->tv_sec;
510
511	if (time_status & STA_INS) {
512		time_state = TIME_INS;
513		now += 86400 - now % 86400;
514		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
515
516		return;
517	}
518
519	if (time_status & STA_DEL) {
520		time_state = TIME_DEL;
521		now += 86400 - (now + 1) % 86400;
522		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
523	}
524}
525
526/*
527 * Propagate a new txc->status value into the NTP state:
528 */
529static inline void process_adj_status(struct timex *txc, struct timespec *ts)
530{
531	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
532		time_state = TIME_OK;
533		time_status = STA_UNSYNC;
534		/* restart PPS frequency calibration */
535		pps_reset_freq_interval();
536	}
537
538	/*
539	 * If we turn on PLL adjustments then reset the
540	 * reference time to current time.
541	 */
542	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
543		time_reftime = get_seconds();
544
545	/* only set allowed bits */
546	time_status &= STA_RONLY;
547	time_status |= txc->status & ~STA_RONLY;
 
 
548
549	switch (time_state) {
550	case TIME_OK:
551		ntp_start_leap_timer(ts);
552		break;
553	case TIME_INS:
554	case TIME_DEL:
555		time_state = TIME_OK;
556		ntp_start_leap_timer(ts);
557	case TIME_WAIT:
558		if (!(time_status & (STA_INS | STA_DEL)))
559			time_state = TIME_OK;
560		break;
561	case TIME_OOP:
562		hrtimer_restart(&leap_timer);
563		break;
564	}
565}
566/*
567 * Called with the xtime lock held, so we can access and modify
568 * all the global NTP state:
569 */
570static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
571{
572	if (txc->modes & ADJ_STATUS)
573		process_adj_status(txc, ts);
574
575	if (txc->modes & ADJ_NANO)
576		time_status |= STA_NANO;
577
578	if (txc->modes & ADJ_MICRO)
579		time_status &= ~STA_NANO;
580
581	if (txc->modes & ADJ_FREQUENCY) {
582		time_freq = txc->freq * PPM_SCALE;
583		time_freq = min(time_freq, MAXFREQ_SCALED);
584		time_freq = max(time_freq, -MAXFREQ_SCALED);
585		/* update pps_freq */
586		pps_set_freq(time_freq);
587	}
588
589	if (txc->modes & ADJ_MAXERROR)
590		time_maxerror = txc->maxerror;
591
592	if (txc->modes & ADJ_ESTERROR)
593		time_esterror = txc->esterror;
594
595	if (txc->modes & ADJ_TIMECONST) {
596		time_constant = txc->constant;
597		if (!(time_status & STA_NANO))
598			time_constant += 4;
599		time_constant = min(time_constant, (long)MAXTC);
600		time_constant = max(time_constant, 0l);
601	}
602
603	if (txc->modes & ADJ_TAI && txc->constant > 0)
604		time_tai = txc->constant;
605
606	if (txc->modes & ADJ_OFFSET)
607		ntp_update_offset(txc->offset);
608
609	if (txc->modes & ADJ_TICK)
610		tick_usec = txc->tick;
611
612	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
613		ntp_update_frequency();
614}
615
616/*
617 * adjtimex mainly allows reading (and writing, if superuser) of
618 * kernel time-keeping variables. used by xntpd.
 
619 */
620int do_adjtimex(struct timex *txc)
621{
622	struct timespec ts;
623	int result;
624
625	/* Validate the data before disabling interrupts */
626	if (txc->modes & ADJ_ADJTIME) {
627		/* singleshot must not be used with any other mode bits */
628		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
629			return -EINVAL;
630		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
631		    !capable(CAP_SYS_TIME))
632			return -EPERM;
633	} else {
634		/* In order to modify anything, you gotta be super-user! */
635		 if (txc->modes && !capable(CAP_SYS_TIME))
636			return -EPERM;
637
638		/*
639		 * if the quartz is off by more than 10% then
640		 * something is VERY wrong!
641		 */
642		if (txc->modes & ADJ_TICK &&
643		    (txc->tick <  900000/USER_HZ ||
644		     txc->tick > 1100000/USER_HZ))
645			return -EINVAL;
 
646
647		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
648			hrtimer_cancel(&leap_timer);
649	}
650
651	if (txc->modes & ADJ_SETOFFSET) {
652		struct timespec delta;
653		delta.tv_sec  = txc->time.tv_sec;
654		delta.tv_nsec = txc->time.tv_usec;
655		if (!capable(CAP_SYS_TIME))
656			return -EPERM;
657		if (!(txc->modes & ADJ_NANO))
658			delta.tv_nsec *= 1000;
659		result = timekeeping_inject_offset(&delta);
660		if (result)
661			return result;
662	}
663
664	getnstimeofday(&ts);
665
666	write_seqlock_irq(&xtime_lock);
 
 
 
 
 
 
667
668	if (txc->modes & ADJ_ADJTIME) {
669		long save_adjust = time_adjust;
670
671		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
672			/* adjtime() is independent from ntp_adjtime() */
673			time_adjust = txc->offset;
674			ntp_update_frequency();
675		}
676		txc->offset = save_adjust;
677	} else {
678
679		/* If there are input parameters, then process them: */
680		if (txc->modes)
681			process_adjtimex_modes(txc, &ts);
682
683		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
684				  NTP_SCALE_SHIFT);
685		if (!(time_status & STA_NANO))
686			txc->offset /= NSEC_PER_USEC;
687	}
688
689	result = time_state;	/* mostly `TIME_OK' */
690	/* check for errors */
691	if (is_error_status(time_status))
692		result = TIME_ERROR;
693
694	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
695					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
696	txc->maxerror	   = time_maxerror;
697	txc->esterror	   = time_esterror;
698	txc->status	   = time_status;
699	txc->constant	   = time_constant;
700	txc->precision	   = 1;
701	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
702	txc->tick	   = tick_usec;
703	txc->tai	   = time_tai;
704
705	/* fill PPS status fields */
706	pps_fill_timex(txc);
707
708	write_sequnlock_irq(&xtime_lock);
709
710	txc->time.tv_sec = ts.tv_sec;
711	txc->time.tv_usec = ts.tv_nsec;
712	if (!(time_status & STA_NANO))
713		txc->time.tv_usec /= NSEC_PER_USEC;
714
715	notify_cmos_timer();
716
717	return result;
718}
719
720#ifdef	CONFIG_NTP_PPS
721
722/* actually struct pps_normtime is good old struct timespec, but it is
723 * semantically different (and it is the reason why it was invented):
724 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
725 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
726struct pps_normtime {
727	__kernel_time_t	sec;	/* seconds */
728	long		nsec;	/* nanoseconds */
729};
730
731/* normalize the timestamp so that nsec is in the
732   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
733static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
734{
735	struct pps_normtime norm = {
736		.sec = ts.tv_sec,
737		.nsec = ts.tv_nsec
738	};
739
740	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
741		norm.nsec -= NSEC_PER_SEC;
742		norm.sec++;
743	}
744
745	return norm;
746}
747
748/* get current phase correction and jitter */
749static inline long pps_phase_filter_get(long *jitter)
750{
751	*jitter = pps_tf[0] - pps_tf[1];
752	if (*jitter < 0)
753		*jitter = -*jitter;
754
755	/* TODO: test various filters */
756	return pps_tf[0];
757}
758
759/* add the sample to the phase filter */
760static inline void pps_phase_filter_add(long err)
761{
762	pps_tf[2] = pps_tf[1];
763	pps_tf[1] = pps_tf[0];
764	pps_tf[0] = err;
765}
766
767/* decrease frequency calibration interval length.
768 * It is halved after four consecutive unstable intervals.
769 */
770static inline void pps_dec_freq_interval(void)
771{
772	if (--pps_intcnt <= -PPS_INTCOUNT) {
773		pps_intcnt = -PPS_INTCOUNT;
774		if (pps_shift > PPS_INTMIN) {
775			pps_shift--;
776			pps_intcnt = 0;
777		}
778	}
779}
780
781/* increase frequency calibration interval length.
782 * It is doubled after four consecutive stable intervals.
783 */
784static inline void pps_inc_freq_interval(void)
785{
786	if (++pps_intcnt >= PPS_INTCOUNT) {
787		pps_intcnt = PPS_INTCOUNT;
788		if (pps_shift < PPS_INTMAX) {
789			pps_shift++;
790			pps_intcnt = 0;
791		}
792	}
793}
794
795/* update clock frequency based on MONOTONIC_RAW clock PPS signal
796 * timestamps
797 *
798 * At the end of the calibration interval the difference between the
799 * first and last MONOTONIC_RAW clock timestamps divided by the length
800 * of the interval becomes the frequency update. If the interval was
801 * too long, the data are discarded.
802 * Returns the difference between old and new frequency values.
803 */
804static long hardpps_update_freq(struct pps_normtime freq_norm)
805{
806	long delta, delta_mod;
807	s64 ftemp;
808
809	/* check if the frequency interval was too long */
810	if (freq_norm.sec > (2 << pps_shift)) {
811		time_status |= STA_PPSERROR;
812		pps_errcnt++;
813		pps_dec_freq_interval();
814		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
815				freq_norm.sec);
816		return 0;
817	}
818
819	/* here the raw frequency offset and wander (stability) is
820	 * calculated. If the wander is less than the wander threshold
821	 * the interval is increased; otherwise it is decreased.
822	 */
823	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
824			freq_norm.sec);
825	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
826	pps_freq = ftemp;
827	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
828		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
829		time_status |= STA_PPSWANDER;
830		pps_stbcnt++;
831		pps_dec_freq_interval();
832	} else {	/* good sample */
833		pps_inc_freq_interval();
834	}
835
836	/* the stability metric is calculated as the average of recent
837	 * frequency changes, but is used only for performance
838	 * monitoring
839	 */
840	delta_mod = delta;
841	if (delta_mod < 0)
842		delta_mod = -delta_mod;
843	pps_stabil += (div_s64(((s64)delta_mod) <<
844				(NTP_SCALE_SHIFT - SHIFT_USEC),
845				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
846
847	/* if enabled, the system clock frequency is updated */
848	if ((time_status & STA_PPSFREQ) != 0 &&
849	    (time_status & STA_FREQHOLD) == 0) {
850		time_freq = pps_freq;
851		ntp_update_frequency();
852	}
853
854	return delta;
855}
856
857/* correct REALTIME clock phase error against PPS signal */
858static void hardpps_update_phase(long error)
859{
860	long correction = -error;
861	long jitter;
862
863	/* add the sample to the median filter */
864	pps_phase_filter_add(correction);
865	correction = pps_phase_filter_get(&jitter);
866
867	/* Nominal jitter is due to PPS signal noise. If it exceeds the
868	 * threshold, the sample is discarded; otherwise, if so enabled,
869	 * the time offset is updated.
870	 */
871	if (jitter > (pps_jitter << PPS_POPCORN)) {
872		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
873		       jitter, (pps_jitter << PPS_POPCORN));
874		time_status |= STA_PPSJITTER;
875		pps_jitcnt++;
876	} else if (time_status & STA_PPSTIME) {
877		/* correct the time using the phase offset */
878		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
879				NTP_INTERVAL_FREQ);
880		/* cancel running adjtime() */
881		time_adjust = 0;
882	}
883	/* update jitter */
884	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
885}
886
887/*
888 * hardpps() - discipline CPU clock oscillator to external PPS signal
889 *
890 * This routine is called at each PPS signal arrival in order to
891 * discipline the CPU clock oscillator to the PPS signal. It takes two
892 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
893 * is used to correct clock phase error and the latter is used to
894 * correct the frequency.
895 *
896 * This code is based on David Mills's reference nanokernel
897 * implementation. It was mostly rewritten but keeps the same idea.
898 */
899void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
900{
901	struct pps_normtime pts_norm, freq_norm;
902	unsigned long flags;
903
904	pts_norm = pps_normalize_ts(*phase_ts);
905
906	write_seqlock_irqsave(&xtime_lock, flags);
907
908	/* clear the error bits, they will be set again if needed */
909	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
910
911	/* indicate signal presence */
912	time_status |= STA_PPSSIGNAL;
913	pps_valid = PPS_VALID;
914
915	/* when called for the first time,
916	 * just start the frequency interval */
917	if (unlikely(pps_fbase.tv_sec == 0)) {
918		pps_fbase = *raw_ts;
919		write_sequnlock_irqrestore(&xtime_lock, flags);
920		return;
921	}
922
923	/* ok, now we have a base for frequency calculation */
924	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
925
926	/* check that the signal is in the range
927	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
928	if ((freq_norm.sec == 0) ||
929			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
930			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
931		time_status |= STA_PPSJITTER;
932		/* restart the frequency calibration interval */
933		pps_fbase = *raw_ts;
934		write_sequnlock_irqrestore(&xtime_lock, flags);
935		pr_err("hardpps: PPSJITTER: bad pulse\n");
936		return;
937	}
938
939	/* signal is ok */
940
941	/* check if the current frequency interval is finished */
942	if (freq_norm.sec >= (1 << pps_shift)) {
943		pps_calcnt++;
944		/* restart the frequency calibration interval */
945		pps_fbase = *raw_ts;
946		hardpps_update_freq(freq_norm);
947	}
948
949	hardpps_update_phase(pts_norm.nsec);
950
951	write_sequnlock_irqrestore(&xtime_lock, flags);
952}
953EXPORT_SYMBOL(hardpps);
954
955#endif	/* CONFIG_NTP_PPS */
956
957static int __init ntp_tick_adj_setup(char *str)
958{
959	ntp_tick_adj = simple_strtol(str, NULL, 0);
960	ntp_tick_adj <<= NTP_SCALE_SHIFT;
961
962	return 1;
963}
964
965__setup("ntp_tick_adj=", ntp_tick_adj_setup);
966
967void __init ntp_init(void)
968{
969	ntp_clear();
970	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
971	leap_timer.function = ntp_leap_second;
972}