Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * kernel/sched/debug.c
  3 *
  4 * Print the CFS rbtree
  5 *
  6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/proc_fs.h>
 14#include <linux/sched.h>
 15#include <linux/seq_file.h>
 16#include <linux/kallsyms.h>
 17#include <linux/utsname.h>
 18#include <linux/mempolicy.h>
 19
 20#include "sched.h"
 21
 22static DEFINE_SPINLOCK(sched_debug_lock);
 23
 24/*
 25 * This allows printing both to /proc/sched_debug and
 26 * to the console
 27 */
 28#define SEQ_printf(m, x...)			\
 29 do {						\
 30	if (m)					\
 31		seq_printf(m, x);		\
 32	else					\
 33		printk(x);			\
 34 } while (0)
 35
 36/*
 37 * Ease the printing of nsec fields:
 38 */
 39static long long nsec_high(unsigned long long nsec)
 40{
 41	if ((long long)nsec < 0) {
 42		nsec = -nsec;
 43		do_div(nsec, 1000000);
 44		return -nsec;
 45	}
 46	do_div(nsec, 1000000);
 47
 48	return nsec;
 49}
 50
 51static unsigned long nsec_low(unsigned long long nsec)
 52{
 53	if ((long long)nsec < 0)
 54		nsec = -nsec;
 55
 56	return do_div(nsec, 1000000);
 57}
 58
 59#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
 60
 61#ifdef CONFIG_FAIR_GROUP_SCHED
 62static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 63{
 64	struct sched_entity *se = tg->se[cpu];
 65
 66#define P(F) \
 67	SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
 68#define PN(F) \
 69	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 70
 71	if (!se) {
 72		struct sched_avg *avg = &cpu_rq(cpu)->avg;
 73		P(avg->runnable_avg_sum);
 74		P(avg->runnable_avg_period);
 75		return;
 76	}
 77
 78
 79	PN(se->exec_start);
 80	PN(se->vruntime);
 81	PN(se->sum_exec_runtime);
 82#ifdef CONFIG_SCHEDSTATS
 83	PN(se->statistics.wait_start);
 84	PN(se->statistics.sleep_start);
 85	PN(se->statistics.block_start);
 86	PN(se->statistics.sleep_max);
 87	PN(se->statistics.block_max);
 88	PN(se->statistics.exec_max);
 89	PN(se->statistics.slice_max);
 90	PN(se->statistics.wait_max);
 91	PN(se->statistics.wait_sum);
 92	P(se->statistics.wait_count);
 93#endif
 94	P(se->load.weight);
 95#ifdef CONFIG_SMP
 96	P(se->avg.runnable_avg_sum);
 97	P(se->avg.runnable_avg_period);
 98	P(se->avg.load_avg_contrib);
 99	P(se->avg.decay_count);
100#endif
101#undef PN
102#undef P
103}
104#endif
105
106#ifdef CONFIG_CGROUP_SCHED
107static char group_path[PATH_MAX];
108
109static char *task_group_path(struct task_group *tg)
110{
111	if (autogroup_path(tg, group_path, PATH_MAX))
112		return group_path;
113
114	return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
115}
116#endif
117
118static void
119print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
120{
121	if (rq->curr == p)
122		SEQ_printf(m, "R");
123	else
124		SEQ_printf(m, " ");
125
126	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
127		p->comm, task_pid_nr(p),
128		SPLIT_NS(p->se.vruntime),
129		(long long)(p->nvcsw + p->nivcsw),
130		p->prio);
131#ifdef CONFIG_SCHEDSTATS
132	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
133		SPLIT_NS(p->se.vruntime),
134		SPLIT_NS(p->se.sum_exec_runtime),
135		SPLIT_NS(p->se.statistics.sum_sleep_runtime));
136#else
137	SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
138		0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
139#endif
140#ifdef CONFIG_NUMA_BALANCING
141	SEQ_printf(m, " %d", task_node(p));
142#endif
143#ifdef CONFIG_CGROUP_SCHED
144	SEQ_printf(m, " %s", task_group_path(task_group(p)));
145#endif
146
147	SEQ_printf(m, "\n");
148}
149
150static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
151{
152	struct task_struct *g, *p;
153	unsigned long flags;
154
155	SEQ_printf(m,
156	"\nrunnable tasks:\n"
157	"            task   PID         tree-key  switches  prio"
158	"     exec-runtime         sum-exec        sum-sleep\n"
159	"------------------------------------------------------"
160	"----------------------------------------------------\n");
161
162	read_lock_irqsave(&tasklist_lock, flags);
163
164	do_each_thread(g, p) {
165		if (task_cpu(p) != rq_cpu)
166			continue;
167
168		print_task(m, rq, p);
169	} while_each_thread(g, p);
170
171	read_unlock_irqrestore(&tasklist_lock, flags);
172}
173
174void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
175{
176	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
177		spread, rq0_min_vruntime, spread0;
178	struct rq *rq = cpu_rq(cpu);
179	struct sched_entity *last;
180	unsigned long flags;
181
182#ifdef CONFIG_FAIR_GROUP_SCHED
183	SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
184#else
185	SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
186#endif
187	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
188			SPLIT_NS(cfs_rq->exec_clock));
189
190	raw_spin_lock_irqsave(&rq->lock, flags);
191	if (cfs_rq->rb_leftmost)
192		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
193	last = __pick_last_entity(cfs_rq);
194	if (last)
195		max_vruntime = last->vruntime;
196	min_vruntime = cfs_rq->min_vruntime;
197	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
198	raw_spin_unlock_irqrestore(&rq->lock, flags);
199	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
200			SPLIT_NS(MIN_vruntime));
201	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
202			SPLIT_NS(min_vruntime));
203	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
204			SPLIT_NS(max_vruntime));
205	spread = max_vruntime - MIN_vruntime;
206	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
207			SPLIT_NS(spread));
208	spread0 = min_vruntime - rq0_min_vruntime;
209	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
210			SPLIT_NS(spread0));
211	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
212			cfs_rq->nr_spread_over);
213	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
214	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
215#ifdef CONFIG_SMP
216	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_load_avg",
217			cfs_rq->runnable_load_avg);
218	SEQ_printf(m, "  .%-30s: %ld\n", "blocked_load_avg",
219			cfs_rq->blocked_load_avg);
220#ifdef CONFIG_FAIR_GROUP_SCHED
221	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_contrib",
222			cfs_rq->tg_load_contrib);
223	SEQ_printf(m, "  .%-30s: %d\n", "tg_runnable_contrib",
224			cfs_rq->tg_runnable_contrib);
225	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
226			atomic_long_read(&cfs_rq->tg->load_avg));
227	SEQ_printf(m, "  .%-30s: %d\n", "tg->runnable_avg",
228			atomic_read(&cfs_rq->tg->runnable_avg));
229#endif
230#endif
231#ifdef CONFIG_CFS_BANDWIDTH
232	SEQ_printf(m, "  .%-30s: %d\n", "tg->cfs_bandwidth.timer_active",
233			cfs_rq->tg->cfs_bandwidth.timer_active);
234	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
235			cfs_rq->throttled);
236	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
237			cfs_rq->throttle_count);
238#endif
239
240#ifdef CONFIG_FAIR_GROUP_SCHED
241	print_cfs_group_stats(m, cpu, cfs_rq->tg);
242#endif
243}
244
245void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
246{
247#ifdef CONFIG_RT_GROUP_SCHED
248	SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
249#else
250	SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
251#endif
252
253#define P(x) \
254	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
255#define PN(x) \
256	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
257
258	P(rt_nr_running);
259	P(rt_throttled);
260	PN(rt_time);
261	PN(rt_runtime);
262
263#undef PN
264#undef P
265}
266
267extern __read_mostly int sched_clock_running;
268
269static void print_cpu(struct seq_file *m, int cpu)
270{
271	struct rq *rq = cpu_rq(cpu);
272	unsigned long flags;
273
274#ifdef CONFIG_X86
275	{
276		unsigned int freq = cpu_khz ? : 1;
277
278		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
279			   cpu, freq / 1000, (freq % 1000));
280	}
281#else
282	SEQ_printf(m, "cpu#%d\n", cpu);
283#endif
284
285#define P(x)								\
286do {									\
287	if (sizeof(rq->x) == 4)						\
288		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
289	else								\
290		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
291} while (0)
292
293#define PN(x) \
294	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
295
296	P(nr_running);
297	SEQ_printf(m, "  .%-30s: %lu\n", "load",
298		   rq->load.weight);
299	P(nr_switches);
300	P(nr_load_updates);
301	P(nr_uninterruptible);
302	PN(next_balance);
303	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
304	PN(clock);
305	P(cpu_load[0]);
306	P(cpu_load[1]);
307	P(cpu_load[2]);
308	P(cpu_load[3]);
309	P(cpu_load[4]);
310#undef P
311#undef PN
312
313#ifdef CONFIG_SCHEDSTATS
314#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
315#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
316
317	P(yld_count);
318
319	P(sched_count);
320	P(sched_goidle);
321#ifdef CONFIG_SMP
322	P64(avg_idle);
323	P64(max_idle_balance_cost);
324#endif
325
326	P(ttwu_count);
327	P(ttwu_local);
328
329#undef P
330#undef P64
331#endif
332	spin_lock_irqsave(&sched_debug_lock, flags);
333	print_cfs_stats(m, cpu);
334	print_rt_stats(m, cpu);
335
336	rcu_read_lock();
337	print_rq(m, rq, cpu);
338	rcu_read_unlock();
339	spin_unlock_irqrestore(&sched_debug_lock, flags);
340	SEQ_printf(m, "\n");
341}
342
343static const char *sched_tunable_scaling_names[] = {
344	"none",
345	"logaritmic",
346	"linear"
347};
348
349static void sched_debug_header(struct seq_file *m)
350{
351	u64 ktime, sched_clk, cpu_clk;
352	unsigned long flags;
353
354	local_irq_save(flags);
355	ktime = ktime_to_ns(ktime_get());
356	sched_clk = sched_clock();
357	cpu_clk = local_clock();
358	local_irq_restore(flags);
359
360	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
361		init_utsname()->release,
362		(int)strcspn(init_utsname()->version, " "),
363		init_utsname()->version);
364
365#define P(x) \
366	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
367#define PN(x) \
368	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
369	PN(ktime);
370	PN(sched_clk);
371	PN(cpu_clk);
372	P(jiffies);
373#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
374	P(sched_clock_stable());
375#endif
376#undef PN
377#undef P
378
379	SEQ_printf(m, "\n");
380	SEQ_printf(m, "sysctl_sched\n");
381
382#define P(x) \
383	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
384#define PN(x) \
385	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
386	PN(sysctl_sched_latency);
387	PN(sysctl_sched_min_granularity);
388	PN(sysctl_sched_wakeup_granularity);
389	P(sysctl_sched_child_runs_first);
390	P(sysctl_sched_features);
391#undef PN
392#undef P
393
394	SEQ_printf(m, "  .%-40s: %d (%s)\n",
395		"sysctl_sched_tunable_scaling",
396		sysctl_sched_tunable_scaling,
397		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
398	SEQ_printf(m, "\n");
399}
400
401static int sched_debug_show(struct seq_file *m, void *v)
402{
403	int cpu = (unsigned long)(v - 2);
404
405	if (cpu != -1)
406		print_cpu(m, cpu);
407	else
408		sched_debug_header(m);
409
410	return 0;
411}
412
413void sysrq_sched_debug_show(void)
414{
415	int cpu;
416
417	sched_debug_header(NULL);
418	for_each_online_cpu(cpu)
419		print_cpu(NULL, cpu);
420
421}
422
423/*
424 * This itererator needs some explanation.
425 * It returns 1 for the header position.
426 * This means 2 is cpu 0.
427 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
428 * to use cpumask_* to iterate over the cpus.
429 */
430static void *sched_debug_start(struct seq_file *file, loff_t *offset)
431{
432	unsigned long n = *offset;
433
434	if (n == 0)
435		return (void *) 1;
436
437	n--;
438
439	if (n > 0)
440		n = cpumask_next(n - 1, cpu_online_mask);
441	else
442		n = cpumask_first(cpu_online_mask);
443
444	*offset = n + 1;
445
446	if (n < nr_cpu_ids)
447		return (void *)(unsigned long)(n + 2);
448	return NULL;
449}
450
451static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
452{
453	(*offset)++;
454	return sched_debug_start(file, offset);
455}
456
457static void sched_debug_stop(struct seq_file *file, void *data)
458{
459}
460
461static const struct seq_operations sched_debug_sops = {
462	.start = sched_debug_start,
463	.next = sched_debug_next,
464	.stop = sched_debug_stop,
465	.show = sched_debug_show,
466};
467
468static int sched_debug_release(struct inode *inode, struct file *file)
469{
470	seq_release(inode, file);
471
472	return 0;
473}
474
475static int sched_debug_open(struct inode *inode, struct file *filp)
476{
477	int ret = 0;
478
479	ret = seq_open(filp, &sched_debug_sops);
480
481	return ret;
482}
483
484static const struct file_operations sched_debug_fops = {
485	.open		= sched_debug_open,
486	.read		= seq_read,
487	.llseek		= seq_lseek,
488	.release	= sched_debug_release,
489};
490
491static int __init init_sched_debug_procfs(void)
492{
493	struct proc_dir_entry *pe;
494
495	pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
496	if (!pe)
497		return -ENOMEM;
498	return 0;
499}
500
501__initcall(init_sched_debug_procfs);
502
503#define __P(F) \
504	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
505#define P(F) \
506	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
507#define __PN(F) \
508	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
509#define PN(F) \
510	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
511
512
513static void sched_show_numa(struct task_struct *p, struct seq_file *m)
514{
515#ifdef CONFIG_NUMA_BALANCING
516	struct mempolicy *pol;
517	int node, i;
518
519	if (p->mm)
520		P(mm->numa_scan_seq);
521
522	task_lock(p);
523	pol = p->mempolicy;
524	if (pol && !(pol->flags & MPOL_F_MORON))
525		pol = NULL;
526	mpol_get(pol);
527	task_unlock(p);
528
529	SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0));
530
531	for_each_online_node(node) {
532		for (i = 0; i < 2; i++) {
533			unsigned long nr_faults = -1;
534			int cpu_current, home_node;
535
536			if (p->numa_faults_memory)
537				nr_faults = p->numa_faults_memory[2*node + i];
538
539			cpu_current = !i ? (task_node(p) == node) :
540				(pol && node_isset(node, pol->v.nodes));
541
542			home_node = (p->numa_preferred_nid == node);
543
544			SEQ_printf(m, "numa_faults_memory, %d, %d, %d, %d, %ld\n",
545				i, node, cpu_current, home_node, nr_faults);
546		}
547	}
548
549	mpol_put(pol);
550#endif
551}
552
553void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
554{
555	unsigned long nr_switches;
556
557	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
558						get_nr_threads(p));
559	SEQ_printf(m,
560		"---------------------------------------------------------"
561		"----------\n");
562#define __P(F) \
563	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
564#define P(F) \
565	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
566#define __PN(F) \
567	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
568#define PN(F) \
569	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
570
571	PN(se.exec_start);
572	PN(se.vruntime);
573	PN(se.sum_exec_runtime);
574
575	nr_switches = p->nvcsw + p->nivcsw;
576
577#ifdef CONFIG_SCHEDSTATS
578	PN(se.statistics.wait_start);
579	PN(se.statistics.sleep_start);
580	PN(se.statistics.block_start);
581	PN(se.statistics.sleep_max);
582	PN(se.statistics.block_max);
583	PN(se.statistics.exec_max);
584	PN(se.statistics.slice_max);
585	PN(se.statistics.wait_max);
586	PN(se.statistics.wait_sum);
587	P(se.statistics.wait_count);
588	PN(se.statistics.iowait_sum);
589	P(se.statistics.iowait_count);
590	P(se.nr_migrations);
591	P(se.statistics.nr_migrations_cold);
592	P(se.statistics.nr_failed_migrations_affine);
593	P(se.statistics.nr_failed_migrations_running);
594	P(se.statistics.nr_failed_migrations_hot);
595	P(se.statistics.nr_forced_migrations);
596	P(se.statistics.nr_wakeups);
597	P(se.statistics.nr_wakeups_sync);
598	P(se.statistics.nr_wakeups_migrate);
599	P(se.statistics.nr_wakeups_local);
600	P(se.statistics.nr_wakeups_remote);
601	P(se.statistics.nr_wakeups_affine);
602	P(se.statistics.nr_wakeups_affine_attempts);
603	P(se.statistics.nr_wakeups_passive);
604	P(se.statistics.nr_wakeups_idle);
605
606	{
607		u64 avg_atom, avg_per_cpu;
608
609		avg_atom = p->se.sum_exec_runtime;
610		if (nr_switches)
611			do_div(avg_atom, nr_switches);
612		else
613			avg_atom = -1LL;
614
615		avg_per_cpu = p->se.sum_exec_runtime;
616		if (p->se.nr_migrations) {
617			avg_per_cpu = div64_u64(avg_per_cpu,
618						p->se.nr_migrations);
619		} else {
620			avg_per_cpu = -1LL;
621		}
622
623		__PN(avg_atom);
624		__PN(avg_per_cpu);
625	}
626#endif
627	__P(nr_switches);
628	SEQ_printf(m, "%-45s:%21Ld\n",
629		   "nr_voluntary_switches", (long long)p->nvcsw);
630	SEQ_printf(m, "%-45s:%21Ld\n",
631		   "nr_involuntary_switches", (long long)p->nivcsw);
632
633	P(se.load.weight);
634#ifdef CONFIG_SMP
635	P(se.avg.runnable_avg_sum);
636	P(se.avg.runnable_avg_period);
637	P(se.avg.load_avg_contrib);
638	P(se.avg.decay_count);
639#endif
640	P(policy);
641	P(prio);
642#undef PN
643#undef __PN
644#undef P
645#undef __P
646
647	{
648		unsigned int this_cpu = raw_smp_processor_id();
649		u64 t0, t1;
650
651		t0 = cpu_clock(this_cpu);
652		t1 = cpu_clock(this_cpu);
653		SEQ_printf(m, "%-45s:%21Ld\n",
654			   "clock-delta", (long long)(t1-t0));
655	}
656
657	sched_show_numa(p, m);
658}
659
660void proc_sched_set_task(struct task_struct *p)
661{
662#ifdef CONFIG_SCHEDSTATS
663	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
664#endif
665}