Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/*
   2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
   3 *
   4 * started by Ingo Molnar and Thomas Gleixner.
   5 *
   6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
   9 *  Copyright (C) 2006 Esben Nielsen
  10 *
  11 *  See Documentation/rt-mutex-design.txt for details.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/module.h>
  15#include <linux/sched.h>
  16#include <linux/timer.h>
  17
  18#include "rtmutex_common.h"
  19
  20/*
  21 * lock->owner state tracking:
  22 *
  23 * lock->owner holds the task_struct pointer of the owner. Bit 0
  24 * is used to keep track of the "lock has waiters" state.
  25 *
  26 * owner	bit0
  27 * NULL		0	lock is free (fast acquire possible)
  28 * NULL		1	lock is free and has waiters and the top waiter
  29 *				is going to take the lock*
  30 * taskpointer	0	lock is held (fast release possible)
  31 * taskpointer	1	lock is held and has waiters**
  32 *
  33 * The fast atomic compare exchange based acquire and release is only
  34 * possible when bit 0 of lock->owner is 0.
  35 *
  36 * (*) It also can be a transitional state when grabbing the lock
  37 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
  38 * we need to set the bit0 before looking at the lock, and the owner may be
  39 * NULL in this small time, hence this can be a transitional state.
  40 *
  41 * (**) There is a small time when bit 0 is set but there are no
  42 * waiters. This can happen when grabbing the lock in the slow path.
  43 * To prevent a cmpxchg of the owner releasing the lock, we need to
  44 * set this bit before looking at the lock.
  45 */
  46
  47static void
  48rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
  49{
  50	unsigned long val = (unsigned long)owner;
  51
  52	if (rt_mutex_has_waiters(lock))
  53		val |= RT_MUTEX_HAS_WAITERS;
  54
  55	lock->owner = (struct task_struct *)val;
  56}
  57
  58static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
  59{
  60	lock->owner = (struct task_struct *)
  61			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
  62}
  63
  64static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
  65{
  66	if (!rt_mutex_has_waiters(lock))
  67		clear_rt_mutex_waiters(lock);
  68}
  69
  70/*
  71 * We can speed up the acquire/release, if the architecture
  72 * supports cmpxchg and if there's no debugging state to be set up
  73 */
  74#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
  75# define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
  76static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
  77{
  78	unsigned long owner, *p = (unsigned long *) &lock->owner;
  79
  80	do {
  81		owner = *p;
  82	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
  83}
  84#else
  85# define rt_mutex_cmpxchg(l,c,n)	(0)
  86static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
  87{
  88	lock->owner = (struct task_struct *)
  89			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
  90}
  91#endif
  92
  93/*
  94 * Calculate task priority from the waiter list priority
  95 *
  96 * Return task->normal_prio when the waiter list is empty or when
  97 * the waiter is not allowed to do priority boosting
  98 */
  99int rt_mutex_getprio(struct task_struct *task)
 100{
 101	if (likely(!task_has_pi_waiters(task)))
 102		return task->normal_prio;
 103
 104	return min(task_top_pi_waiter(task)->pi_list_entry.prio,
 105		   task->normal_prio);
 106}
 107
 108/*
 109 * Adjust the priority of a task, after its pi_waiters got modified.
 110 *
 111 * This can be both boosting and unboosting. task->pi_lock must be held.
 112 */
 113static void __rt_mutex_adjust_prio(struct task_struct *task)
 114{
 115	int prio = rt_mutex_getprio(task);
 116
 117	if (task->prio != prio)
 118		rt_mutex_setprio(task, prio);
 119}
 120
 121/*
 122 * Adjust task priority (undo boosting). Called from the exit path of
 123 * rt_mutex_slowunlock() and rt_mutex_slowlock().
 124 *
 125 * (Note: We do this outside of the protection of lock->wait_lock to
 126 * allow the lock to be taken while or before we readjust the priority
 127 * of task. We do not use the spin_xx_mutex() variants here as we are
 128 * outside of the debug path.)
 129 */
 130static void rt_mutex_adjust_prio(struct task_struct *task)
 131{
 132	unsigned long flags;
 133
 134	raw_spin_lock_irqsave(&task->pi_lock, flags);
 135	__rt_mutex_adjust_prio(task);
 136	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 137}
 138
 139/*
 140 * Max number of times we'll walk the boosting chain:
 141 */
 142int max_lock_depth = 1024;
 143
 144/*
 145 * Adjust the priority chain. Also used for deadlock detection.
 146 * Decreases task's usage by one - may thus free the task.
 147 * Returns 0 or -EDEADLK.
 148 */
 149static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 150				      int deadlock_detect,
 151				      struct rt_mutex *orig_lock,
 152				      struct rt_mutex_waiter *orig_waiter,
 153				      struct task_struct *top_task)
 154{
 155	struct rt_mutex *lock;
 156	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
 157	int detect_deadlock, ret = 0, depth = 0;
 158	unsigned long flags;
 159
 160	detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
 161							 deadlock_detect);
 162
 163	/*
 164	 * The (de)boosting is a step by step approach with a lot of
 165	 * pitfalls. We want this to be preemptible and we want hold a
 166	 * maximum of two locks per step. So we have to check
 167	 * carefully whether things change under us.
 168	 */
 169 again:
 170	if (++depth > max_lock_depth) {
 171		static int prev_max;
 172
 173		/*
 174		 * Print this only once. If the admin changes the limit,
 175		 * print a new message when reaching the limit again.
 176		 */
 177		if (prev_max != max_lock_depth) {
 178			prev_max = max_lock_depth;
 179			printk(KERN_WARNING "Maximum lock depth %d reached "
 180			       "task: %s (%d)\n", max_lock_depth,
 181			       top_task->comm, task_pid_nr(top_task));
 182		}
 183		put_task_struct(task);
 184
 185		return deadlock_detect ? -EDEADLK : 0;
 186	}
 187 retry:
 188	/*
 189	 * Task can not go away as we did a get_task() before !
 190	 */
 191	raw_spin_lock_irqsave(&task->pi_lock, flags);
 192
 193	waiter = task->pi_blocked_on;
 194	/*
 195	 * Check whether the end of the boosting chain has been
 196	 * reached or the state of the chain has changed while we
 197	 * dropped the locks.
 198	 */
 199	if (!waiter)
 200		goto out_unlock_pi;
 201
 202	/*
 203	 * Check the orig_waiter state. After we dropped the locks,
 204	 * the previous owner of the lock might have released the lock.
 205	 */
 206	if (orig_waiter && !rt_mutex_owner(orig_lock))
 207		goto out_unlock_pi;
 208
 209	/*
 210	 * Drop out, when the task has no waiters. Note,
 211	 * top_waiter can be NULL, when we are in the deboosting
 212	 * mode!
 213	 */
 214	if (top_waiter && (!task_has_pi_waiters(task) ||
 215			   top_waiter != task_top_pi_waiter(task)))
 216		goto out_unlock_pi;
 217
 218	/*
 219	 * When deadlock detection is off then we check, if further
 220	 * priority adjustment is necessary.
 221	 */
 222	if (!detect_deadlock && waiter->list_entry.prio == task->prio)
 223		goto out_unlock_pi;
 224
 225	lock = waiter->lock;
 226	if (!raw_spin_trylock(&lock->wait_lock)) {
 227		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 228		cpu_relax();
 229		goto retry;
 230	}
 231
 232	/* Deadlock detection */
 233	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
 234		debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
 235		raw_spin_unlock(&lock->wait_lock);
 236		ret = deadlock_detect ? -EDEADLK : 0;
 237		goto out_unlock_pi;
 238	}
 239
 240	top_waiter = rt_mutex_top_waiter(lock);
 241
 242	/* Requeue the waiter */
 243	plist_del(&waiter->list_entry, &lock->wait_list);
 244	waiter->list_entry.prio = task->prio;
 245	plist_add(&waiter->list_entry, &lock->wait_list);
 246
 247	/* Release the task */
 248	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 249	if (!rt_mutex_owner(lock)) {
 250		/*
 251		 * If the requeue above changed the top waiter, then we need
 252		 * to wake the new top waiter up to try to get the lock.
 253		 */
 254
 255		if (top_waiter != rt_mutex_top_waiter(lock))
 256			wake_up_process(rt_mutex_top_waiter(lock)->task);
 257		raw_spin_unlock(&lock->wait_lock);
 258		goto out_put_task;
 259	}
 260	put_task_struct(task);
 261
 262	/* Grab the next task */
 263	task = rt_mutex_owner(lock);
 264	get_task_struct(task);
 265	raw_spin_lock_irqsave(&task->pi_lock, flags);
 266
 267	if (waiter == rt_mutex_top_waiter(lock)) {
 268		/* Boost the owner */
 269		plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
 270		waiter->pi_list_entry.prio = waiter->list_entry.prio;
 271		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
 272		__rt_mutex_adjust_prio(task);
 273
 274	} else if (top_waiter == waiter) {
 275		/* Deboost the owner */
 276		plist_del(&waiter->pi_list_entry, &task->pi_waiters);
 277		waiter = rt_mutex_top_waiter(lock);
 278		waiter->pi_list_entry.prio = waiter->list_entry.prio;
 279		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
 280		__rt_mutex_adjust_prio(task);
 281	}
 282
 283	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 284
 285	top_waiter = rt_mutex_top_waiter(lock);
 286	raw_spin_unlock(&lock->wait_lock);
 287
 288	if (!detect_deadlock && waiter != top_waiter)
 289		goto out_put_task;
 290
 291	goto again;
 292
 293 out_unlock_pi:
 294	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 295 out_put_task:
 296	put_task_struct(task);
 297
 298	return ret;
 299}
 300
 301/*
 302 * Try to take an rt-mutex
 303 *
 304 * Must be called with lock->wait_lock held.
 305 *
 306 * @lock:   the lock to be acquired.
 307 * @task:   the task which wants to acquire the lock
 308 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
 309 */
 310static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 311		struct rt_mutex_waiter *waiter)
 312{
 313	/*
 314	 * We have to be careful here if the atomic speedups are
 315	 * enabled, such that, when
 316	 *  - no other waiter is on the lock
 317	 *  - the lock has been released since we did the cmpxchg
 318	 * the lock can be released or taken while we are doing the
 319	 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
 320	 *
 321	 * The atomic acquire/release aware variant of
 322	 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
 323	 * the WAITERS bit, the atomic release / acquire can not
 324	 * happen anymore and lock->wait_lock protects us from the
 325	 * non-atomic case.
 326	 *
 327	 * Note, that this might set lock->owner =
 328	 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
 329	 * any more. This is fixed up when we take the ownership.
 330	 * This is the transitional state explained at the top of this file.
 331	 */
 332	mark_rt_mutex_waiters(lock);
 333
 334	if (rt_mutex_owner(lock))
 335		return 0;
 336
 337	/*
 338	 * It will get the lock because of one of these conditions:
 339	 * 1) there is no waiter
 340	 * 2) higher priority than waiters
 341	 * 3) it is top waiter
 342	 */
 343	if (rt_mutex_has_waiters(lock)) {
 344		if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
 345			if (!waiter || waiter != rt_mutex_top_waiter(lock))
 346				return 0;
 347		}
 348	}
 349
 350	if (waiter || rt_mutex_has_waiters(lock)) {
 351		unsigned long flags;
 352		struct rt_mutex_waiter *top;
 353
 354		raw_spin_lock_irqsave(&task->pi_lock, flags);
 355
 356		/* remove the queued waiter. */
 357		if (waiter) {
 358			plist_del(&waiter->list_entry, &lock->wait_list);
 359			task->pi_blocked_on = NULL;
 360		}
 361
 362		/*
 363		 * We have to enqueue the top waiter(if it exists) into
 364		 * task->pi_waiters list.
 365		 */
 366		if (rt_mutex_has_waiters(lock)) {
 367			top = rt_mutex_top_waiter(lock);
 368			top->pi_list_entry.prio = top->list_entry.prio;
 369			plist_add(&top->pi_list_entry, &task->pi_waiters);
 370		}
 371		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 372	}
 373
 374	/* We got the lock. */
 375	debug_rt_mutex_lock(lock);
 376
 377	rt_mutex_set_owner(lock, task);
 378
 379	rt_mutex_deadlock_account_lock(lock, task);
 380
 381	return 1;
 382}
 383
 384/*
 385 * Task blocks on lock.
 386 *
 387 * Prepare waiter and propagate pi chain
 388 *
 389 * This must be called with lock->wait_lock held.
 390 */
 391static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 392				   struct rt_mutex_waiter *waiter,
 393				   struct task_struct *task,
 394				   int detect_deadlock)
 395{
 396	struct task_struct *owner = rt_mutex_owner(lock);
 397	struct rt_mutex_waiter *top_waiter = waiter;
 398	unsigned long flags;
 399	int chain_walk = 0, res;
 400
 401	raw_spin_lock_irqsave(&task->pi_lock, flags);
 402	__rt_mutex_adjust_prio(task);
 403	waiter->task = task;
 404	waiter->lock = lock;
 405	plist_node_init(&waiter->list_entry, task->prio);
 406	plist_node_init(&waiter->pi_list_entry, task->prio);
 407
 408	/* Get the top priority waiter on the lock */
 409	if (rt_mutex_has_waiters(lock))
 410		top_waiter = rt_mutex_top_waiter(lock);
 411	plist_add(&waiter->list_entry, &lock->wait_list);
 412
 413	task->pi_blocked_on = waiter;
 414
 415	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 416
 417	if (!owner)
 418		return 0;
 419
 420	if (waiter == rt_mutex_top_waiter(lock)) {
 421		raw_spin_lock_irqsave(&owner->pi_lock, flags);
 422		plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
 423		plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
 424
 425		__rt_mutex_adjust_prio(owner);
 426		if (owner->pi_blocked_on)
 427			chain_walk = 1;
 428		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
 429	}
 430	else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
 431		chain_walk = 1;
 432
 433	if (!chain_walk)
 434		return 0;
 435
 436	/*
 437	 * The owner can't disappear while holding a lock,
 438	 * so the owner struct is protected by wait_lock.
 439	 * Gets dropped in rt_mutex_adjust_prio_chain()!
 440	 */
 441	get_task_struct(owner);
 442
 443	raw_spin_unlock(&lock->wait_lock);
 444
 445	res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
 446					 task);
 447
 448	raw_spin_lock(&lock->wait_lock);
 449
 450	return res;
 451}
 452
 453/*
 454 * Wake up the next waiter on the lock.
 455 *
 456 * Remove the top waiter from the current tasks waiter list and wake it up.
 457 *
 458 * Called with lock->wait_lock held.
 459 */
 460static void wakeup_next_waiter(struct rt_mutex *lock)
 461{
 462	struct rt_mutex_waiter *waiter;
 463	unsigned long flags;
 464
 465	raw_spin_lock_irqsave(&current->pi_lock, flags);
 466
 467	waiter = rt_mutex_top_waiter(lock);
 468
 469	/*
 470	 * Remove it from current->pi_waiters. We do not adjust a
 471	 * possible priority boost right now. We execute wakeup in the
 472	 * boosted mode and go back to normal after releasing
 473	 * lock->wait_lock.
 474	 */
 475	plist_del(&waiter->pi_list_entry, &current->pi_waiters);
 476
 477	rt_mutex_set_owner(lock, NULL);
 478
 479	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
 480
 481	wake_up_process(waiter->task);
 482}
 483
 484/*
 485 * Remove a waiter from a lock and give up
 486 *
 487 * Must be called with lock->wait_lock held and
 488 * have just failed to try_to_take_rt_mutex().
 489 */
 490static void remove_waiter(struct rt_mutex *lock,
 491			  struct rt_mutex_waiter *waiter)
 492{
 493	int first = (waiter == rt_mutex_top_waiter(lock));
 494	struct task_struct *owner = rt_mutex_owner(lock);
 495	unsigned long flags;
 496	int chain_walk = 0;
 497
 498	raw_spin_lock_irqsave(&current->pi_lock, flags);
 499	plist_del(&waiter->list_entry, &lock->wait_list);
 500	current->pi_blocked_on = NULL;
 501	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
 502
 503	if (!owner)
 504		return;
 505
 506	if (first) {
 507
 508		raw_spin_lock_irqsave(&owner->pi_lock, flags);
 509
 510		plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
 511
 512		if (rt_mutex_has_waiters(lock)) {
 513			struct rt_mutex_waiter *next;
 514
 515			next = rt_mutex_top_waiter(lock);
 516			plist_add(&next->pi_list_entry, &owner->pi_waiters);
 517		}
 518		__rt_mutex_adjust_prio(owner);
 519
 520		if (owner->pi_blocked_on)
 521			chain_walk = 1;
 522
 523		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
 524	}
 525
 526	WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
 527
 528	if (!chain_walk)
 529		return;
 530
 531	/* gets dropped in rt_mutex_adjust_prio_chain()! */
 532	get_task_struct(owner);
 533
 534	raw_spin_unlock(&lock->wait_lock);
 535
 536	rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
 537
 538	raw_spin_lock(&lock->wait_lock);
 539}
 540
 541/*
 542 * Recheck the pi chain, in case we got a priority setting
 543 *
 544 * Called from sched_setscheduler
 545 */
 546void rt_mutex_adjust_pi(struct task_struct *task)
 547{
 548	struct rt_mutex_waiter *waiter;
 549	unsigned long flags;
 550
 551	raw_spin_lock_irqsave(&task->pi_lock, flags);
 552
 553	waiter = task->pi_blocked_on;
 554	if (!waiter || waiter->list_entry.prio == task->prio) {
 555		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 556		return;
 557	}
 558
 559	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 560
 561	/* gets dropped in rt_mutex_adjust_prio_chain()! */
 562	get_task_struct(task);
 563	rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
 564}
 565
 566/**
 567 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
 568 * @lock:		 the rt_mutex to take
 569 * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
 570 * 			 or TASK_UNINTERRUPTIBLE)
 571 * @timeout:		 the pre-initialized and started timer, or NULL for none
 572 * @waiter:		 the pre-initialized rt_mutex_waiter
 573 *
 574 * lock->wait_lock must be held by the caller.
 575 */
 576static int __sched
 577__rt_mutex_slowlock(struct rt_mutex *lock, int state,
 578		    struct hrtimer_sleeper *timeout,
 579		    struct rt_mutex_waiter *waiter)
 580{
 581	int ret = 0;
 582
 583	for (;;) {
 584		/* Try to acquire the lock: */
 585		if (try_to_take_rt_mutex(lock, current, waiter))
 586			break;
 587
 588		/*
 589		 * TASK_INTERRUPTIBLE checks for signals and
 590		 * timeout. Ignored otherwise.
 591		 */
 592		if (unlikely(state == TASK_INTERRUPTIBLE)) {
 593			/* Signal pending? */
 594			if (signal_pending(current))
 595				ret = -EINTR;
 596			if (timeout && !timeout->task)
 597				ret = -ETIMEDOUT;
 598			if (ret)
 599				break;
 600		}
 601
 602		raw_spin_unlock(&lock->wait_lock);
 603
 604		debug_rt_mutex_print_deadlock(waiter);
 605
 606		schedule_rt_mutex(lock);
 607
 608		raw_spin_lock(&lock->wait_lock);
 609		set_current_state(state);
 610	}
 611
 612	return ret;
 613}
 614
 615/*
 616 * Slow path lock function:
 617 */
 618static int __sched
 619rt_mutex_slowlock(struct rt_mutex *lock, int state,
 620		  struct hrtimer_sleeper *timeout,
 621		  int detect_deadlock)
 622{
 623	struct rt_mutex_waiter waiter;
 624	int ret = 0;
 625
 626	debug_rt_mutex_init_waiter(&waiter);
 627
 628	raw_spin_lock(&lock->wait_lock);
 629
 630	/* Try to acquire the lock again: */
 631	if (try_to_take_rt_mutex(lock, current, NULL)) {
 632		raw_spin_unlock(&lock->wait_lock);
 633		return 0;
 634	}
 635
 636	set_current_state(state);
 637
 638	/* Setup the timer, when timeout != NULL */
 639	if (unlikely(timeout)) {
 640		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
 641		if (!hrtimer_active(&timeout->timer))
 642			timeout->task = NULL;
 643	}
 644
 645	ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
 646
 647	if (likely(!ret))
 648		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
 649
 650	set_current_state(TASK_RUNNING);
 651
 652	if (unlikely(ret))
 653		remove_waiter(lock, &waiter);
 654
 655	/*
 656	 * try_to_take_rt_mutex() sets the waiter bit
 657	 * unconditionally. We might have to fix that up.
 658	 */
 659	fixup_rt_mutex_waiters(lock);
 660
 661	raw_spin_unlock(&lock->wait_lock);
 662
 663	/* Remove pending timer: */
 664	if (unlikely(timeout))
 665		hrtimer_cancel(&timeout->timer);
 666
 667	debug_rt_mutex_free_waiter(&waiter);
 668
 669	return ret;
 670}
 671
 672/*
 673 * Slow path try-lock function:
 674 */
 675static inline int
 676rt_mutex_slowtrylock(struct rt_mutex *lock)
 677{
 678	int ret = 0;
 679
 680	raw_spin_lock(&lock->wait_lock);
 681
 682	if (likely(rt_mutex_owner(lock) != current)) {
 683
 684		ret = try_to_take_rt_mutex(lock, current, NULL);
 685		/*
 686		 * try_to_take_rt_mutex() sets the lock waiters
 687		 * bit unconditionally. Clean this up.
 688		 */
 689		fixup_rt_mutex_waiters(lock);
 690	}
 691
 692	raw_spin_unlock(&lock->wait_lock);
 693
 694	return ret;
 695}
 696
 697/*
 698 * Slow path to release a rt-mutex:
 699 */
 700static void __sched
 701rt_mutex_slowunlock(struct rt_mutex *lock)
 702{
 703	raw_spin_lock(&lock->wait_lock);
 704
 705	debug_rt_mutex_unlock(lock);
 706
 707	rt_mutex_deadlock_account_unlock(current);
 708
 709	if (!rt_mutex_has_waiters(lock)) {
 710		lock->owner = NULL;
 711		raw_spin_unlock(&lock->wait_lock);
 712		return;
 713	}
 714
 715	wakeup_next_waiter(lock);
 716
 717	raw_spin_unlock(&lock->wait_lock);
 718
 719	/* Undo pi boosting if necessary: */
 720	rt_mutex_adjust_prio(current);
 721}
 722
 723/*
 724 * debug aware fast / slowpath lock,trylock,unlock
 725 *
 726 * The atomic acquire/release ops are compiled away, when either the
 727 * architecture does not support cmpxchg or when debugging is enabled.
 728 */
 729static inline int
 730rt_mutex_fastlock(struct rt_mutex *lock, int state,
 731		  int detect_deadlock,
 732		  int (*slowfn)(struct rt_mutex *lock, int state,
 733				struct hrtimer_sleeper *timeout,
 734				int detect_deadlock))
 735{
 736	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 737		rt_mutex_deadlock_account_lock(lock, current);
 738		return 0;
 739	} else
 740		return slowfn(lock, state, NULL, detect_deadlock);
 741}
 742
 743static inline int
 744rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
 745			struct hrtimer_sleeper *timeout, int detect_deadlock,
 746			int (*slowfn)(struct rt_mutex *lock, int state,
 747				      struct hrtimer_sleeper *timeout,
 748				      int detect_deadlock))
 749{
 750	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 751		rt_mutex_deadlock_account_lock(lock, current);
 752		return 0;
 753	} else
 754		return slowfn(lock, state, timeout, detect_deadlock);
 755}
 756
 757static inline int
 758rt_mutex_fasttrylock(struct rt_mutex *lock,
 759		     int (*slowfn)(struct rt_mutex *lock))
 760{
 761	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 762		rt_mutex_deadlock_account_lock(lock, current);
 763		return 1;
 764	}
 765	return slowfn(lock);
 766}
 767
 768static inline void
 769rt_mutex_fastunlock(struct rt_mutex *lock,
 770		    void (*slowfn)(struct rt_mutex *lock))
 771{
 772	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
 773		rt_mutex_deadlock_account_unlock(current);
 774	else
 775		slowfn(lock);
 776}
 777
 778/**
 779 * rt_mutex_lock - lock a rt_mutex
 780 *
 781 * @lock: the rt_mutex to be locked
 782 */
 783void __sched rt_mutex_lock(struct rt_mutex *lock)
 784{
 785	might_sleep();
 786
 787	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
 788}
 789EXPORT_SYMBOL_GPL(rt_mutex_lock);
 790
 791/**
 792 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
 793 *
 794 * @lock: 		the rt_mutex to be locked
 795 * @detect_deadlock:	deadlock detection on/off
 796 *
 797 * Returns:
 798 *  0 		on success
 799 * -EINTR 	when interrupted by a signal
 800 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
 801 */
 802int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
 803						 int detect_deadlock)
 804{
 805	might_sleep();
 806
 807	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
 808				 detect_deadlock, rt_mutex_slowlock);
 809}
 810EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
 811
 812/**
 813 * rt_mutex_timed_lock - lock a rt_mutex interruptible
 814 *			the timeout structure is provided
 815 *			by the caller
 816 *
 817 * @lock: 		the rt_mutex to be locked
 818 * @timeout:		timeout structure or NULL (no timeout)
 819 * @detect_deadlock:	deadlock detection on/off
 820 *
 821 * Returns:
 822 *  0 		on success
 823 * -EINTR 	when interrupted by a signal
 824 * -ETIMEDOUT	when the timeout expired
 825 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
 826 */
 827int
 828rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
 829		    int detect_deadlock)
 830{
 831	might_sleep();
 832
 833	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
 834				       detect_deadlock, rt_mutex_slowlock);
 835}
 836EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
 837
 838/**
 839 * rt_mutex_trylock - try to lock a rt_mutex
 840 *
 841 * @lock:	the rt_mutex to be locked
 842 *
 843 * Returns 1 on success and 0 on contention
 844 */
 845int __sched rt_mutex_trylock(struct rt_mutex *lock)
 846{
 847	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
 848}
 849EXPORT_SYMBOL_GPL(rt_mutex_trylock);
 850
 851/**
 852 * rt_mutex_unlock - unlock a rt_mutex
 853 *
 854 * @lock: the rt_mutex to be unlocked
 855 */
 856void __sched rt_mutex_unlock(struct rt_mutex *lock)
 857{
 858	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
 859}
 860EXPORT_SYMBOL_GPL(rt_mutex_unlock);
 861
 862/**
 863 * rt_mutex_destroy - mark a mutex unusable
 864 * @lock: the mutex to be destroyed
 865 *
 866 * This function marks the mutex uninitialized, and any subsequent
 867 * use of the mutex is forbidden. The mutex must not be locked when
 868 * this function is called.
 869 */
 870void rt_mutex_destroy(struct rt_mutex *lock)
 871{
 872	WARN_ON(rt_mutex_is_locked(lock));
 873#ifdef CONFIG_DEBUG_RT_MUTEXES
 874	lock->magic = NULL;
 875#endif
 876}
 877
 878EXPORT_SYMBOL_GPL(rt_mutex_destroy);
 879
 880/**
 881 * __rt_mutex_init - initialize the rt lock
 882 *
 883 * @lock: the rt lock to be initialized
 884 *
 885 * Initialize the rt lock to unlocked state.
 886 *
 887 * Initializing of a locked rt lock is not allowed
 888 */
 889void __rt_mutex_init(struct rt_mutex *lock, const char *name)
 890{
 891	lock->owner = NULL;
 892	raw_spin_lock_init(&lock->wait_lock);
 893	plist_head_init(&lock->wait_list);
 894
 895	debug_rt_mutex_init(lock, name);
 896}
 897EXPORT_SYMBOL_GPL(__rt_mutex_init);
 898
 899/**
 900 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
 901 *				proxy owner
 902 *
 903 * @lock: 	the rt_mutex to be locked
 904 * @proxy_owner:the task to set as owner
 905 *
 906 * No locking. Caller has to do serializing itself
 907 * Special API call for PI-futex support
 908 */
 909void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
 910				struct task_struct *proxy_owner)
 911{
 912	__rt_mutex_init(lock, NULL);
 913	debug_rt_mutex_proxy_lock(lock, proxy_owner);
 914	rt_mutex_set_owner(lock, proxy_owner);
 915	rt_mutex_deadlock_account_lock(lock, proxy_owner);
 916}
 917
 918/**
 919 * rt_mutex_proxy_unlock - release a lock on behalf of owner
 920 *
 921 * @lock: 	the rt_mutex to be locked
 922 *
 923 * No locking. Caller has to do serializing itself
 924 * Special API call for PI-futex support
 925 */
 926void rt_mutex_proxy_unlock(struct rt_mutex *lock,
 927			   struct task_struct *proxy_owner)
 928{
 929	debug_rt_mutex_proxy_unlock(lock);
 930	rt_mutex_set_owner(lock, NULL);
 931	rt_mutex_deadlock_account_unlock(proxy_owner);
 932}
 933
 934/**
 935 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
 936 * @lock:		the rt_mutex to take
 937 * @waiter:		the pre-initialized rt_mutex_waiter
 938 * @task:		the task to prepare
 939 * @detect_deadlock:	perform deadlock detection (1) or not (0)
 940 *
 941 * Returns:
 942 *  0 - task blocked on lock
 943 *  1 - acquired the lock for task, caller should wake it up
 944 * <0 - error
 945 *
 946 * Special API call for FUTEX_REQUEUE_PI support.
 947 */
 948int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
 949			      struct rt_mutex_waiter *waiter,
 950			      struct task_struct *task, int detect_deadlock)
 951{
 952	int ret;
 953
 954	raw_spin_lock(&lock->wait_lock);
 955
 956	if (try_to_take_rt_mutex(lock, task, NULL)) {
 957		raw_spin_unlock(&lock->wait_lock);
 958		return 1;
 959	}
 960
 961	ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
 962
 963	if (ret && !rt_mutex_owner(lock)) {
 964		/*
 965		 * Reset the return value. We might have
 966		 * returned with -EDEADLK and the owner
 967		 * released the lock while we were walking the
 968		 * pi chain.  Let the waiter sort it out.
 969		 */
 970		ret = 0;
 971	}
 972
 973	if (unlikely(ret))
 974		remove_waiter(lock, waiter);
 975
 976	raw_spin_unlock(&lock->wait_lock);
 977
 978	debug_rt_mutex_print_deadlock(waiter);
 979
 980	return ret;
 981}
 982
 983/**
 984 * rt_mutex_next_owner - return the next owner of the lock
 985 *
 986 * @lock: the rt lock query
 987 *
 988 * Returns the next owner of the lock or NULL
 989 *
 990 * Caller has to serialize against other accessors to the lock
 991 * itself.
 992 *
 993 * Special API call for PI-futex support
 994 */
 995struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
 996{
 997	if (!rt_mutex_has_waiters(lock))
 998		return NULL;
 999
1000	return rt_mutex_top_waiter(lock)->task;
1001}
1002
1003/**
1004 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1005 * @lock:		the rt_mutex we were woken on
1006 * @to:			the timeout, null if none. hrtimer should already have
1007 * 			been started.
1008 * @waiter:		the pre-initialized rt_mutex_waiter
1009 * @detect_deadlock:	perform deadlock detection (1) or not (0)
1010 *
1011 * Complete the lock acquisition started our behalf by another thread.
1012 *
1013 * Returns:
1014 *  0 - success
1015 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1016 *
1017 * Special API call for PI-futex requeue support
1018 */
1019int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1020			       struct hrtimer_sleeper *to,
1021			       struct rt_mutex_waiter *waiter,
1022			       int detect_deadlock)
1023{
1024	int ret;
1025
1026	raw_spin_lock(&lock->wait_lock);
1027
1028	set_current_state(TASK_INTERRUPTIBLE);
1029
1030	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1031
1032	set_current_state(TASK_RUNNING);
1033
1034	if (unlikely(ret))
1035		remove_waiter(lock, waiter);
1036
1037	/*
1038	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1039	 * have to fix that up.
1040	 */
1041	fixup_rt_mutex_waiters(lock);
1042
1043	raw_spin_unlock(&lock->wait_lock);
1044
1045	return ret;
1046}