Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
   6#include <linux/posix-timers.h>
   7#include <linux/errno.h>
   8#include <linux/math64.h>
   9#include <asm/uaccess.h>
  10#include <linux/kernel_stat.h>
  11#include <trace/events/timer.h>
  12#include <linux/random.h>
  13#include <linux/tick.h>
  14#include <linux/workqueue.h>
  15
  16/*
  17 * Called after updating RLIMIT_CPU to run cpu timer and update
  18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  19 * siglock protection since other code may update expiration cache as
  20 * well.
  21 */
  22void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  23{
  24	cputime_t cputime = secs_to_cputime(rlim_new);
  25
  26	spin_lock_irq(&task->sighand->siglock);
  27	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  28	spin_unlock_irq(&task->sighand->siglock);
  29}
  30
  31static int check_clock(const clockid_t which_clock)
  32{
  33	int error = 0;
  34	struct task_struct *p;
  35	const pid_t pid = CPUCLOCK_PID(which_clock);
  36
  37	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  38		return -EINVAL;
  39
  40	if (pid == 0)
  41		return 0;
  42
  43	rcu_read_lock();
  44	p = find_task_by_vpid(pid);
  45	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  46		   same_thread_group(p, current) : has_group_leader_pid(p))) {
  47		error = -EINVAL;
  48	}
  49	rcu_read_unlock();
  50
  51	return error;
  52}
  53
  54static inline unsigned long long
  55timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  56{
  57	unsigned long long ret;
  58
  59	ret = 0;		/* high half always zero when .cpu used */
  60	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  61		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  62	} else {
  63		ret = cputime_to_expires(timespec_to_cputime(tp));
  64	}
  65	return ret;
  66}
  67
  68static void sample_to_timespec(const clockid_t which_clock,
  69			       unsigned long long expires,
  70			       struct timespec *tp)
  71{
  72	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  73		*tp = ns_to_timespec(expires);
  74	else
  75		cputime_to_timespec((__force cputime_t)expires, tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76}
  77
  78/*
  79 * Update expiry time from increment, and increase overrun count,
  80 * given the current clock sample.
  81 */
  82static void bump_cpu_timer(struct k_itimer *timer,
  83			   unsigned long long now)
  84{
  85	int i;
  86	unsigned long long delta, incr;
  87
  88	if (timer->it.cpu.incr == 0)
  89		return;
  90
  91	if (now < timer->it.cpu.expires)
  92		return;
  93
  94	incr = timer->it.cpu.incr;
  95	delta = now + incr - timer->it.cpu.expires;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97	/* Don't use (incr*2 < delta), incr*2 might overflow. */
  98	for (i = 0; incr < delta - incr; i++)
  99		incr = incr << 1;
 100
 101	for (; i >= 0; incr >>= 1, i--) {
 102		if (delta < incr)
 103			continue;
 104
 105		timer->it.cpu.expires += incr;
 106		timer->it_overrun += 1 << i;
 107		delta -= incr;
 
 
 
 
 
 108	}
 109}
 110
 111/**
 112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
 113 *
 114 * @cputime:	The struct to compare.
 115 *
 116 * Checks @cputime to see if all fields are zero.  Returns true if all fields
 117 * are zero, false if any field is nonzero.
 118 */
 119static inline int task_cputime_zero(const struct task_cputime *cputime)
 120{
 121	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 122		return 1;
 123	return 0;
 124}
 125
 126static inline unsigned long long prof_ticks(struct task_struct *p)
 127{
 128	cputime_t utime, stime;
 129
 130	task_cputime(p, &utime, &stime);
 131
 132	return cputime_to_expires(utime + stime);
 133}
 134static inline unsigned long long virt_ticks(struct task_struct *p)
 135{
 136	cputime_t utime;
 137
 138	task_cputime(p, &utime, NULL);
 139
 140	return cputime_to_expires(utime);
 141}
 142
 143static int
 144posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 145{
 146	int error = check_clock(which_clock);
 147	if (!error) {
 148		tp->tv_sec = 0;
 149		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 150		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 151			/*
 152			 * If sched_clock is using a cycle counter, we
 153			 * don't have any idea of its true resolution
 154			 * exported, but it is much more than 1s/HZ.
 155			 */
 156			tp->tv_nsec = 1;
 157		}
 158	}
 159	return error;
 160}
 161
 162static int
 163posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 164{
 165	/*
 166	 * You can never reset a CPU clock, but we check for other errors
 167	 * in the call before failing with EPERM.
 168	 */
 169	int error = check_clock(which_clock);
 170	if (error == 0) {
 171		error = -EPERM;
 172	}
 173	return error;
 174}
 175
 176
 177/*
 178 * Sample a per-thread clock for the given task.
 179 */
 180static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 181			    unsigned long long *sample)
 182{
 183	switch (CPUCLOCK_WHICH(which_clock)) {
 184	default:
 185		return -EINVAL;
 186	case CPUCLOCK_PROF:
 187		*sample = prof_ticks(p);
 188		break;
 189	case CPUCLOCK_VIRT:
 190		*sample = virt_ticks(p);
 191		break;
 192	case CPUCLOCK_SCHED:
 193		*sample = task_sched_runtime(p);
 194		break;
 195	}
 196	return 0;
 197}
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
 200{
 201	if (b->utime > a->utime)
 202		a->utime = b->utime;
 203
 204	if (b->stime > a->stime)
 205		a->stime = b->stime;
 206
 207	if (b->sum_exec_runtime > a->sum_exec_runtime)
 208		a->sum_exec_runtime = b->sum_exec_runtime;
 209}
 210
 211void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 212{
 213	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 214	struct task_cputime sum;
 215	unsigned long flags;
 216
 217	if (!cputimer->running) {
 218		/*
 219		 * The POSIX timer interface allows for absolute time expiry
 220		 * values through the TIMER_ABSTIME flag, therefore we have
 221		 * to synchronize the timer to the clock every time we start
 222		 * it.
 223		 */
 224		thread_group_cputime(tsk, &sum);
 225		raw_spin_lock_irqsave(&cputimer->lock, flags);
 226		cputimer->running = 1;
 227		update_gt_cputime(&cputimer->cputime, &sum);
 228	} else
 229		raw_spin_lock_irqsave(&cputimer->lock, flags);
 230	*times = cputimer->cputime;
 231	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
 232}
 233
 234/*
 235 * Sample a process (thread group) clock for the given group_leader task.
 236 * Must be called with task sighand lock held for safe while_each_thread()
 237 * traversal.
 238 */
 239static int cpu_clock_sample_group(const clockid_t which_clock,
 240				  struct task_struct *p,
 241				  unsigned long long *sample)
 242{
 243	struct task_cputime cputime;
 244
 245	switch (CPUCLOCK_WHICH(which_clock)) {
 246	default:
 247		return -EINVAL;
 248	case CPUCLOCK_PROF:
 249		thread_group_cputime(p, &cputime);
 250		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 251		break;
 252	case CPUCLOCK_VIRT:
 253		thread_group_cputime(p, &cputime);
 254		*sample = cputime_to_expires(cputime.utime);
 255		break;
 256	case CPUCLOCK_SCHED:
 257		thread_group_cputime(p, &cputime);
 258		*sample = cputime.sum_exec_runtime;
 259		break;
 260	}
 261	return 0;
 262}
 263
 264static int posix_cpu_clock_get_task(struct task_struct *tsk,
 265				    const clockid_t which_clock,
 266				    struct timespec *tp)
 267{
 268	int err = -EINVAL;
 269	unsigned long long rtn;
 270
 271	if (CPUCLOCK_PERTHREAD(which_clock)) {
 272		if (same_thread_group(tsk, current))
 273			err = cpu_clock_sample(which_clock, tsk, &rtn);
 274	} else {
 275		unsigned long flags;
 276		struct sighand_struct *sighand;
 277
 278		/*
 279		 * while_each_thread() is not yet entirely RCU safe,
 280		 * keep locking the group while sampling process
 281		 * clock for now.
 282		 */
 283		sighand = lock_task_sighand(tsk, &flags);
 284		if (!sighand)
 285			return err;
 286
 287		if (tsk == current || thread_group_leader(tsk))
 288			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
 289
 290		unlock_task_sighand(tsk, &flags);
 291	}
 292
 293	if (!err)
 294		sample_to_timespec(which_clock, rtn, tp);
 295
 296	return err;
 297}
 298
 299
 300static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 301{
 302	const pid_t pid = CPUCLOCK_PID(which_clock);
 303	int err = -EINVAL;
 
 304
 305	if (pid == 0) {
 306		/*
 307		 * Special case constant value for our own clocks.
 308		 * We don't have to do any lookup to find ourselves.
 309		 */
 310		err = posix_cpu_clock_get_task(current, which_clock, tp);
 
 
 
 
 
 
 
 
 
 
 
 311	} else {
 312		/*
 313		 * Find the given PID, and validate that the caller
 314		 * should be able to see it.
 315		 */
 316		struct task_struct *p;
 317		rcu_read_lock();
 318		p = find_task_by_vpid(pid);
 319		if (p)
 320			err = posix_cpu_clock_get_task(p, which_clock, tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321		rcu_read_unlock();
 322	}
 323
 324	return err;
 
 
 
 325}
 326
 327
 328/*
 329 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 330 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 331 * new timer already all-zeros initialized.
 332 */
 333static int posix_cpu_timer_create(struct k_itimer *new_timer)
 334{
 335	int ret = 0;
 336	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 337	struct task_struct *p;
 338
 339	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 340		return -EINVAL;
 341
 342	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 343
 344	rcu_read_lock();
 345	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 346		if (pid == 0) {
 347			p = current;
 348		} else {
 349			p = find_task_by_vpid(pid);
 350			if (p && !same_thread_group(p, current))
 351				p = NULL;
 352		}
 353	} else {
 354		if (pid == 0) {
 355			p = current->group_leader;
 356		} else {
 357			p = find_task_by_vpid(pid);
 358			if (p && !has_group_leader_pid(p))
 359				p = NULL;
 360		}
 361	}
 362	new_timer->it.cpu.task = p;
 363	if (p) {
 364		get_task_struct(p);
 365	} else {
 366		ret = -EINVAL;
 367	}
 368	rcu_read_unlock();
 369
 370	return ret;
 371}
 372
 373/*
 374 * Clean up a CPU-clock timer that is about to be destroyed.
 375 * This is called from timer deletion with the timer already locked.
 376 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 377 * and try again.  (This happens when the timer is in the middle of firing.)
 378 */
 379static int posix_cpu_timer_del(struct k_itimer *timer)
 380{
 381	int ret = 0;
 382	unsigned long flags;
 383	struct sighand_struct *sighand;
 384	struct task_struct *p = timer->it.cpu.task;
 
 385
 386	WARN_ON_ONCE(p == NULL);
 387
 388	/*
 389	 * Protect against sighand release/switch in exit/exec and process/
 390	 * thread timer list entry concurrent read/writes.
 391	 */
 392	sighand = lock_task_sighand(p, &flags);
 393	if (unlikely(sighand == NULL)) {
 394		/*
 395		 * We raced with the reaping of the task.
 396		 * The deletion should have cleared us off the list.
 397		 */
 398		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
 399	} else {
 400		if (timer->it.cpu.firing)
 401			ret = TIMER_RETRY;
 402		else
 403			list_del(&timer->it.cpu.entry);
 404
 405		unlock_task_sighand(p, &flags);
 
 406	}
 407
 408	if (!ret)
 409		put_task_struct(p);
 410
 411	return ret;
 412}
 413
 414static void cleanup_timers_list(struct list_head *head)
 415{
 416	struct cpu_timer_list *timer, *next;
 417
 418	list_for_each_entry_safe(timer, next, head, entry)
 419		list_del_init(&timer->entry);
 420}
 421
 422/*
 423 * Clean out CPU timers still ticking when a thread exited.  The task
 424 * pointer is cleared, and the expiry time is replaced with the residual
 425 * time for later timer_gettime calls to return.
 426 * This must be called with the siglock held.
 427 */
 428static void cleanup_timers(struct list_head *head)
 
 
 429{
 430	cleanup_timers_list(head);
 431	cleanup_timers_list(++head);
 432	cleanup_timers_list(++head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433}
 434
 435/*
 436 * These are both called with the siglock held, when the current thread
 437 * is being reaped.  When the final (leader) thread in the group is reaped,
 438 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 439 */
 440void posix_cpu_timers_exit(struct task_struct *tsk)
 441{
 442	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 443						sizeof(unsigned long long));
 444	cleanup_timers(tsk->cpu_timers);
 445
 446}
 447void posix_cpu_timers_exit_group(struct task_struct *tsk)
 448{
 449	cleanup_timers(tsk->signal->cpu_timers);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 453{
 454	return expires == 0 || expires > new_exp;
 
 455}
 456
 457/*
 458 * Insert the timer on the appropriate list before any timers that
 459 * expire later.  This must be called with the sighand lock held.
 
 460 */
 461static void arm_timer(struct k_itimer *timer)
 462{
 463	struct task_struct *p = timer->it.cpu.task;
 464	struct list_head *head, *listpos;
 465	struct task_cputime *cputime_expires;
 466	struct cpu_timer_list *const nt = &timer->it.cpu;
 467	struct cpu_timer_list *next;
 468
 469	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 470		head = p->cpu_timers;
 471		cputime_expires = &p->cputime_expires;
 472	} else {
 473		head = p->signal->cpu_timers;
 474		cputime_expires = &p->signal->cputime_expires;
 475	}
 476	head += CPUCLOCK_WHICH(timer->it_clock);
 477
 478	listpos = head;
 479	list_for_each_entry(next, head, entry) {
 480		if (nt->expires < next->expires)
 481			break;
 482		listpos = &next->entry;
 483	}
 484	list_add(&nt->entry, listpos);
 485
 486	if (listpos == head) {
 487		unsigned long long exp = nt->expires;
 488
 489		/*
 490		 * We are the new earliest-expiring POSIX 1.b timer, hence
 491		 * need to update expiration cache. Take into account that
 492		 * for process timers we share expiration cache with itimers
 493		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 494		 */
 495
 496		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 497		case CPUCLOCK_PROF:
 498			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
 499				cputime_expires->prof_exp = expires_to_cputime(exp);
 500			break;
 501		case CPUCLOCK_VIRT:
 502			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
 503				cputime_expires->virt_exp = expires_to_cputime(exp);
 504			break;
 505		case CPUCLOCK_SCHED:
 506			if (cputime_expires->sched_exp == 0 ||
 507			    cputime_expires->sched_exp > exp)
 508				cputime_expires->sched_exp = exp;
 509			break;
 510		}
 511	}
 512}
 513
 514/*
 515 * The timer is locked, fire it and arrange for its reload.
 516 */
 517static void cpu_timer_fire(struct k_itimer *timer)
 518{
 519	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 520		/*
 521		 * User don't want any signal.
 522		 */
 523		timer->it.cpu.expires = 0;
 524	} else if (unlikely(timer->sigq == NULL)) {
 525		/*
 526		 * This a special case for clock_nanosleep,
 527		 * not a normal timer from sys_timer_create.
 528		 */
 529		wake_up_process(timer->it_process);
 530		timer->it.cpu.expires = 0;
 531	} else if (timer->it.cpu.incr == 0) {
 532		/*
 533		 * One-shot timer.  Clear it as soon as it's fired.
 534		 */
 535		posix_timer_event(timer, 0);
 536		timer->it.cpu.expires = 0;
 537	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 538		/*
 539		 * The signal did not get queued because the signal
 540		 * was ignored, so we won't get any callback to
 541		 * reload the timer.  But we need to keep it
 542		 * ticking in case the signal is deliverable next time.
 543		 */
 544		posix_cpu_timer_schedule(timer);
 545	}
 546}
 547
 548/*
 549 * Sample a process (thread group) timer for the given group_leader task.
 550 * Must be called with task sighand lock held for safe while_each_thread()
 551 * traversal.
 552 */
 553static int cpu_timer_sample_group(const clockid_t which_clock,
 554				  struct task_struct *p,
 555				  unsigned long long *sample)
 556{
 557	struct task_cputime cputime;
 558
 559	thread_group_cputimer(p, &cputime);
 560	switch (CPUCLOCK_WHICH(which_clock)) {
 561	default:
 562		return -EINVAL;
 563	case CPUCLOCK_PROF:
 564		*sample = cputime_to_expires(cputime.utime + cputime.stime);
 565		break;
 566	case CPUCLOCK_VIRT:
 567		*sample = cputime_to_expires(cputime.utime);
 568		break;
 569	case CPUCLOCK_SCHED:
 570		*sample = cputime.sum_exec_runtime + task_delta_exec(p);
 571		break;
 572	}
 573	return 0;
 574}
 575
 576#ifdef CONFIG_NO_HZ_FULL
 577static void nohz_kick_work_fn(struct work_struct *work)
 578{
 579	tick_nohz_full_kick_all();
 580}
 581
 582static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
 583
 584/*
 585 * We need the IPIs to be sent from sane process context.
 586 * The posix cpu timers are always set with irqs disabled.
 587 */
 588static void posix_cpu_timer_kick_nohz(void)
 589{
 590	if (context_tracking_is_enabled())
 591		schedule_work(&nohz_kick_work);
 592}
 593
 594bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
 595{
 596	if (!task_cputime_zero(&tsk->cputime_expires))
 597		return false;
 598
 599	if (tsk->signal->cputimer.running)
 600		return false;
 601
 602	return true;
 603}
 604#else
 605static inline void posix_cpu_timer_kick_nohz(void) { }
 606#endif
 607
 608/*
 609 * Guts of sys_timer_settime for CPU timers.
 610 * This is called with the timer locked and interrupts disabled.
 611 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 612 * and try again.  (This happens when the timer is in the middle of firing.)
 613 */
 614static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 615			       struct itimerspec *new, struct itimerspec *old)
 616{
 617	unsigned long flags;
 618	struct sighand_struct *sighand;
 619	struct task_struct *p = timer->it.cpu.task;
 620	unsigned long long old_expires, new_expires, old_incr, val;
 621	int ret;
 622
 623	WARN_ON_ONCE(p == NULL);
 
 
 
 
 
 624
 625	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 626
 
 627	/*
 628	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 629	 * and p->signal->cpu_timers read/write in arm_timer()
 630	 */
 631	sighand = lock_task_sighand(p, &flags);
 632	/*
 633	 * If p has just been reaped, we can no
 634	 * longer get any information about it at all.
 635	 */
 636	if (unlikely(sighand == NULL)) {
 
 
 
 637		return -ESRCH;
 638	}
 639
 640	/*
 641	 * Disarm any old timer after extracting its expiry time.
 642	 */
 643	WARN_ON_ONCE(!irqs_disabled());
 644
 645	ret = 0;
 646	old_incr = timer->it.cpu.incr;
 
 647	old_expires = timer->it.cpu.expires;
 648	if (unlikely(timer->it.cpu.firing)) {
 649		timer->it.cpu.firing = -1;
 650		ret = TIMER_RETRY;
 651	} else
 652		list_del_init(&timer->it.cpu.entry);
 653
 654	/*
 655	 * We need to sample the current value to convert the new
 656	 * value from to relative and absolute, and to convert the
 657	 * old value from absolute to relative.  To set a process
 658	 * timer, we need a sample to balance the thread expiry
 659	 * times (in arm_timer).  With an absolute time, we must
 660	 * check if it's already passed.  In short, we need a sample.
 661	 */
 662	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 663		cpu_clock_sample(timer->it_clock, p, &val);
 664	} else {
 665		cpu_timer_sample_group(timer->it_clock, p, &val);
 666	}
 667
 668	if (old) {
 669		if (old_expires == 0) {
 670			old->it_value.tv_sec = 0;
 671			old->it_value.tv_nsec = 0;
 672		} else {
 673			/*
 674			 * Update the timer in case it has
 675			 * overrun already.  If it has,
 676			 * we'll report it as having overrun
 677			 * and with the next reloaded timer
 678			 * already ticking, though we are
 679			 * swallowing that pending
 680			 * notification here to install the
 681			 * new setting.
 682			 */
 683			bump_cpu_timer(timer, val);
 684			if (val < timer->it.cpu.expires) {
 685				old_expires = timer->it.cpu.expires - val;
 
 
 
 686				sample_to_timespec(timer->it_clock,
 687						   old_expires,
 688						   &old->it_value);
 689			} else {
 690				old->it_value.tv_nsec = 1;
 691				old->it_value.tv_sec = 0;
 692			}
 693		}
 694	}
 695
 696	if (unlikely(ret)) {
 697		/*
 698		 * We are colliding with the timer actually firing.
 699		 * Punt after filling in the timer's old value, and
 700		 * disable this firing since we are already reporting
 701		 * it as an overrun (thanks to bump_cpu_timer above).
 702		 */
 703		unlock_task_sighand(p, &flags);
 
 704		goto out;
 705	}
 706
 707	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 708		new_expires += val;
 709	}
 710
 711	/*
 712	 * Install the new expiry time (or zero).
 713	 * For a timer with no notification action, we don't actually
 714	 * arm the timer (we'll just fake it for timer_gettime).
 715	 */
 716	timer->it.cpu.expires = new_expires;
 717	if (new_expires != 0 && val < new_expires) {
 
 718		arm_timer(timer);
 719	}
 720
 721	unlock_task_sighand(p, &flags);
 
 
 722	/*
 723	 * Install the new reload setting, and
 724	 * set up the signal and overrun bookkeeping.
 725	 */
 726	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 727						&new->it_interval);
 728
 729	/*
 730	 * This acts as a modification timestamp for the timer,
 731	 * so any automatic reload attempt will punt on seeing
 732	 * that we have reset the timer manually.
 733	 */
 734	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 735		~REQUEUE_PENDING;
 736	timer->it_overrun_last = 0;
 737	timer->it_overrun = -1;
 738
 739	if (new_expires != 0 && !(val < new_expires)) {
 
 740		/*
 741		 * The designated time already passed, so we notify
 742		 * immediately, even if the thread never runs to
 743		 * accumulate more time on this clock.
 744		 */
 745		cpu_timer_fire(timer);
 746	}
 747
 748	ret = 0;
 749 out:
 750	if (old) {
 751		sample_to_timespec(timer->it_clock,
 752				   old_incr, &old->it_interval);
 753	}
 754	if (!ret)
 755		posix_cpu_timer_kick_nohz();
 756	return ret;
 757}
 758
 759static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 760{
 761	unsigned long long now;
 762	struct task_struct *p = timer->it.cpu.task;
 763
 764	WARN_ON_ONCE(p == NULL);
 765
 766	/*
 767	 * Easy part: convert the reload time.
 768	 */
 769	sample_to_timespec(timer->it_clock,
 770			   timer->it.cpu.incr, &itp->it_interval);
 771
 772	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
 773		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 774		return;
 775	}
 776
 
 
 
 
 
 
 
 
 
 
 
 777	/*
 778	 * Sample the clock to take the difference with the expiry time.
 779	 */
 780	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 781		cpu_clock_sample(timer->it_clock, p, &now);
 
 782	} else {
 783		struct sighand_struct *sighand;
 784		unsigned long flags;
 785
 786		/*
 787		 * Protect against sighand release/switch in exit/exec and
 788		 * also make timer sampling safe if it ends up calling
 789		 * thread_group_cputime().
 790		 */
 791		sighand = lock_task_sighand(p, &flags);
 792		if (unlikely(sighand == NULL)) {
 793			/*
 794			 * The process has been reaped.
 795			 * We can't even collect a sample any more.
 796			 * Call the timer disarmed, nothing else to do.
 797			 */
 798			timer->it.cpu.expires = 0;
 799			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 800					   &itp->it_value);
 
 
 801		} else {
 802			cpu_timer_sample_group(timer->it_clock, p, &now);
 803			unlock_task_sighand(p, &flags);
 
 804		}
 
 
 
 
 
 
 
 
 
 
 
 805	}
 806
 807	if (now < timer->it.cpu.expires) {
 808		sample_to_timespec(timer->it_clock,
 809				   timer->it.cpu.expires - now,
 
 810				   &itp->it_value);
 811	} else {
 812		/*
 813		 * The timer should have expired already, but the firing
 814		 * hasn't taken place yet.  Say it's just about to expire.
 815		 */
 816		itp->it_value.tv_nsec = 1;
 817		itp->it_value.tv_sec = 0;
 818	}
 819}
 820
 821static unsigned long long
 822check_timers_list(struct list_head *timers,
 823		  struct list_head *firing,
 824		  unsigned long long curr)
 825{
 826	int maxfire = 20;
 827
 828	while (!list_empty(timers)) {
 829		struct cpu_timer_list *t;
 830
 831		t = list_first_entry(timers, struct cpu_timer_list, entry);
 832
 833		if (!--maxfire || curr < t->expires)
 834			return t->expires;
 835
 836		t->firing = 1;
 837		list_move_tail(&t->entry, firing);
 838	}
 839
 840	return 0;
 841}
 842
 843/*
 844 * Check for any per-thread CPU timers that have fired and move them off
 845 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 846 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 847 */
 848static void check_thread_timers(struct task_struct *tsk,
 849				struct list_head *firing)
 850{
 
 851	struct list_head *timers = tsk->cpu_timers;
 852	struct signal_struct *const sig = tsk->signal;
 853	struct task_cputime *tsk_expires = &tsk->cputime_expires;
 854	unsigned long long expires;
 855	unsigned long soft;
 856
 857	expires = check_timers_list(timers, firing, prof_ticks(tsk));
 858	tsk_expires->prof_exp = expires_to_cputime(expires);
 
 
 
 
 
 
 
 
 
 
 
 859
 860	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
 861	tsk_expires->virt_exp = expires_to_cputime(expires);
 
 
 
 
 
 
 
 
 
 
 
 
 862
 863	tsk_expires->sched_exp = check_timers_list(++timers, firing,
 864						   tsk->se.sum_exec_runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 865
 866	/*
 867	 * Check for the special case thread timers.
 868	 */
 869	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 870	if (soft != RLIM_INFINITY) {
 871		unsigned long hard =
 872			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 873
 874		if (hard != RLIM_INFINITY &&
 875		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 876			/*
 877			 * At the hard limit, we just die.
 878			 * No need to calculate anything else now.
 879			 */
 880			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 881			return;
 882		}
 883		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 884			/*
 885			 * At the soft limit, send a SIGXCPU every second.
 886			 */
 887			if (soft < hard) {
 888				soft += USEC_PER_SEC;
 889				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 890			}
 891			printk(KERN_INFO
 892				"RT Watchdog Timeout: %s[%d]\n",
 893				tsk->comm, task_pid_nr(tsk));
 894			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 895		}
 896	}
 897}
 898
 899static void stop_process_timers(struct signal_struct *sig)
 900{
 901	struct thread_group_cputimer *cputimer = &sig->cputimer;
 902	unsigned long flags;
 903
 904	raw_spin_lock_irqsave(&cputimer->lock, flags);
 905	cputimer->running = 0;
 906	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
 907}
 908
 909static u32 onecputick;
 910
 911static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 912			     unsigned long long *expires,
 913			     unsigned long long cur_time, int signo)
 914{
 915	if (!it->expires)
 916		return;
 917
 918	if (cur_time >= it->expires) {
 919		if (it->incr) {
 920			it->expires += it->incr;
 921			it->error += it->incr_error;
 922			if (it->error >= onecputick) {
 923				it->expires -= cputime_one_jiffy;
 
 924				it->error -= onecputick;
 925			}
 926		} else {
 927			it->expires = 0;
 928		}
 929
 930		trace_itimer_expire(signo == SIGPROF ?
 931				    ITIMER_PROF : ITIMER_VIRTUAL,
 932				    tsk->signal->leader_pid, cur_time);
 933		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 934	}
 935
 936	if (it->expires && (!*expires || it->expires < *expires)) {
 
 
 937		*expires = it->expires;
 938	}
 939}
 940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941/*
 942 * Check for any per-thread CPU timers that have fired and move them
 943 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 944 * have already been taken off.
 945 */
 946static void check_process_timers(struct task_struct *tsk,
 947				 struct list_head *firing)
 948{
 
 949	struct signal_struct *const sig = tsk->signal;
 950	unsigned long long utime, ptime, virt_expires, prof_expires;
 951	unsigned long long sum_sched_runtime, sched_expires;
 952	struct list_head *timers = sig->cpu_timers;
 953	struct task_cputime cputime;
 954	unsigned long soft;
 955
 956	/*
 957	 * Collect the current process totals.
 958	 */
 959	thread_group_cputimer(tsk, &cputime);
 960	utime = cputime_to_expires(cputime.utime);
 961	ptime = utime + cputime_to_expires(cputime.stime);
 962	sum_sched_runtime = cputime.sum_exec_runtime;
 
 
 
 
 
 
 
 
 
 
 
 
 
 963
 964	prof_expires = check_timers_list(timers, firing, ptime);
 965	virt_expires = check_timers_list(++timers, firing, utime);
 966	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967
 968	/*
 969	 * Check for the special case process timers.
 970	 */
 971	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 972			 SIGPROF);
 973	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 974			 SIGVTALRM);
 975	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 976	if (soft != RLIM_INFINITY) {
 977		unsigned long psecs = cputime_to_secs(ptime);
 978		unsigned long hard =
 979			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
 980		cputime_t x;
 981		if (psecs >= hard) {
 982			/*
 983			 * At the hard limit, we just die.
 984			 * No need to calculate anything else now.
 985			 */
 986			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 987			return;
 988		}
 989		if (psecs >= soft) {
 990			/*
 991			 * At the soft limit, send a SIGXCPU every second.
 992			 */
 993			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 994			if (soft < hard) {
 995				soft++;
 996				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 997			}
 998		}
 999		x = secs_to_cputime(soft);
1000		if (!prof_expires || x < prof_expires) {
 
1001			prof_expires = x;
1002		}
1003	}
1004
1005	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1006	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1007	sig->cputime_expires.sched_exp = sched_expires;
1008	if (task_cputime_zero(&sig->cputime_expires))
1009		stop_process_timers(sig);
1010}
1011
1012/*
1013 * This is called from the signal code (via do_schedule_next_timer)
1014 * when the last timer signal was delivered and we have to reload the timer.
1015 */
1016void posix_cpu_timer_schedule(struct k_itimer *timer)
1017{
1018	struct sighand_struct *sighand;
1019	unsigned long flags;
1020	struct task_struct *p = timer->it.cpu.task;
1021	unsigned long long now;
1022
1023	WARN_ON_ONCE(p == NULL);
 
 
 
 
1024
1025	/*
1026	 * Fetch the current sample and update the timer's expiry time.
1027	 */
1028	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1029		cpu_clock_sample(timer->it_clock, p, &now);
1030		bump_cpu_timer(timer, now);
1031		if (unlikely(p->exit_state))
1032			goto out;
1033
1034		/* Protect timer list r/w in arm_timer() */
1035		sighand = lock_task_sighand(p, &flags);
1036		if (!sighand)
1037			goto out;
 
 
 
1038	} else {
1039		/*
1040		 * Protect arm_timer() and timer sampling in case of call to
1041		 * thread_group_cputime().
1042		 */
1043		sighand = lock_task_sighand(p, &flags);
1044		if (unlikely(sighand == NULL)) {
1045			/*
1046			 * The process has been reaped.
1047			 * We can't even collect a sample any more.
1048			 */
1049			timer->it.cpu.expires = 0;
1050			goto out;
 
 
1051		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1052			unlock_task_sighand(p, &flags);
1053			/* Optimizations: if the process is dying, no need to rearm */
1054			goto out;
 
 
 
 
1055		}
 
1056		cpu_timer_sample_group(timer->it_clock, p, &now);
1057		bump_cpu_timer(timer, now);
1058		/* Leave the sighand locked for the call below.  */
1059	}
1060
1061	/*
1062	 * Now re-arm for the new expiry time.
1063	 */
1064	WARN_ON_ONCE(!irqs_disabled());
1065	arm_timer(timer);
1066	unlock_task_sighand(p, &flags);
 
 
 
1067
1068	/* Kick full dynticks CPUs in case they need to tick on the new timer */
1069	posix_cpu_timer_kick_nohz();
1070out:
1071	timer->it_overrun_last = timer->it_overrun;
1072	timer->it_overrun = -1;
1073	++timer->it_requeue_pending;
1074}
1075
1076/**
1077 * task_cputime_expired - Compare two task_cputime entities.
1078 *
1079 * @sample:	The task_cputime structure to be checked for expiration.
1080 * @expires:	Expiration times, against which @sample will be checked.
1081 *
1082 * Checks @sample against @expires to see if any field of @sample has expired.
1083 * Returns true if any field of the former is greater than the corresponding
1084 * field of the latter if the latter field is set.  Otherwise returns false.
1085 */
1086static inline int task_cputime_expired(const struct task_cputime *sample,
1087					const struct task_cputime *expires)
1088{
1089	if (expires->utime && sample->utime >= expires->utime)
 
1090		return 1;
1091	if (expires->stime && sample->utime + sample->stime >= expires->stime)
 
 
1092		return 1;
1093	if (expires->sum_exec_runtime != 0 &&
1094	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1095		return 1;
1096	return 0;
1097}
1098
1099/**
1100 * fastpath_timer_check - POSIX CPU timers fast path.
1101 *
1102 * @tsk:	The task (thread) being checked.
1103 *
1104 * Check the task and thread group timers.  If both are zero (there are no
1105 * timers set) return false.  Otherwise snapshot the task and thread group
1106 * timers and compare them with the corresponding expiration times.  Return
1107 * true if a timer has expired, else return false.
1108 */
1109static inline int fastpath_timer_check(struct task_struct *tsk)
1110{
1111	struct signal_struct *sig;
1112	cputime_t utime, stime;
1113
1114	task_cputime(tsk, &utime, &stime);
1115
1116	if (!task_cputime_zero(&tsk->cputime_expires)) {
1117		struct task_cputime task_sample = {
1118			.utime = utime,
1119			.stime = stime,
1120			.sum_exec_runtime = tsk->se.sum_exec_runtime
1121		};
1122
1123		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1124			return 1;
1125	}
1126
1127	sig = tsk->signal;
1128	if (sig->cputimer.running) {
1129		struct task_cputime group_sample;
1130
1131		raw_spin_lock(&sig->cputimer.lock);
1132		group_sample = sig->cputimer.cputime;
1133		raw_spin_unlock(&sig->cputimer.lock);
1134
1135		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1136			return 1;
1137	}
1138
1139	return 0;
1140}
1141
1142/*
1143 * This is called from the timer interrupt handler.  The irq handler has
1144 * already updated our counts.  We need to check if any timers fire now.
1145 * Interrupts are disabled.
1146 */
1147void run_posix_cpu_timers(struct task_struct *tsk)
1148{
1149	LIST_HEAD(firing);
1150	struct k_itimer *timer, *next;
1151	unsigned long flags;
1152
1153	WARN_ON_ONCE(!irqs_disabled());
1154
1155	/*
1156	 * The fast path checks that there are no expired thread or thread
1157	 * group timers.  If that's so, just return.
1158	 */
1159	if (!fastpath_timer_check(tsk))
1160		return;
1161
1162	if (!lock_task_sighand(tsk, &flags))
1163		return;
1164	/*
1165	 * Here we take off tsk->signal->cpu_timers[N] and
1166	 * tsk->cpu_timers[N] all the timers that are firing, and
1167	 * put them on the firing list.
1168	 */
1169	check_thread_timers(tsk, &firing);
1170	/*
1171	 * If there are any active process wide timers (POSIX 1.b, itimers,
1172	 * RLIMIT_CPU) cputimer must be running.
1173	 */
1174	if (tsk->signal->cputimer.running)
1175		check_process_timers(tsk, &firing);
1176
1177	/*
1178	 * We must release these locks before taking any timer's lock.
1179	 * There is a potential race with timer deletion here, as the
1180	 * siglock now protects our private firing list.  We have set
1181	 * the firing flag in each timer, so that a deletion attempt
1182	 * that gets the timer lock before we do will give it up and
1183	 * spin until we've taken care of that timer below.
1184	 */
1185	unlock_task_sighand(tsk, &flags);
1186
1187	/*
1188	 * Now that all the timers on our list have the firing flag,
1189	 * no one will touch their list entries but us.  We'll take
1190	 * each timer's lock before clearing its firing flag, so no
1191	 * timer call will interfere.
1192	 */
1193	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1194		int cpu_firing;
1195
1196		spin_lock(&timer->it_lock);
1197		list_del_init(&timer->it.cpu.entry);
1198		cpu_firing = timer->it.cpu.firing;
1199		timer->it.cpu.firing = 0;
1200		/*
1201		 * The firing flag is -1 if we collided with a reset
1202		 * of the timer, which already reported this
1203		 * almost-firing as an overrun.  So don't generate an event.
1204		 */
1205		if (likely(cpu_firing >= 0))
1206			cpu_timer_fire(timer);
1207		spin_unlock(&timer->it_lock);
1208	}
1209}
1210
1211/*
1212 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1213 * The tsk->sighand->siglock must be held by the caller.
1214 */
1215void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1216			   cputime_t *newval, cputime_t *oldval)
1217{
1218	unsigned long long now;
1219
1220	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1221	cpu_timer_sample_group(clock_idx, tsk, &now);
1222
1223	if (oldval) {
1224		/*
1225		 * We are setting itimer. The *oldval is absolute and we update
1226		 * it to be relative, *newval argument is relative and we update
1227		 * it to be absolute.
1228		 */
1229		if (*oldval) {
1230			if (*oldval <= now) {
1231				/* Just about to fire. */
1232				*oldval = cputime_one_jiffy;
1233			} else {
1234				*oldval -= now;
1235			}
1236		}
1237
1238		if (!*newval)
1239			goto out;
1240		*newval += now;
1241	}
1242
1243	/*
1244	 * Update expiration cache if we are the earliest timer, or eventually
1245	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1246	 */
1247	switch (clock_idx) {
1248	case CPUCLOCK_PROF:
1249		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1250			tsk->signal->cputime_expires.prof_exp = *newval;
1251		break;
1252	case CPUCLOCK_VIRT:
1253		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1254			tsk->signal->cputime_expires.virt_exp = *newval;
1255		break;
1256	}
1257out:
1258	posix_cpu_timer_kick_nohz();
1259}
1260
1261static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1262			    struct timespec *rqtp, struct itimerspec *it)
1263{
1264	struct k_itimer timer;
1265	int error;
1266
1267	/*
1268	 * Set up a temporary timer and then wait for it to go off.
1269	 */
1270	memset(&timer, 0, sizeof timer);
1271	spin_lock_init(&timer.it_lock);
1272	timer.it_clock = which_clock;
1273	timer.it_overrun = -1;
1274	error = posix_cpu_timer_create(&timer);
1275	timer.it_process = current;
1276	if (!error) {
1277		static struct itimerspec zero_it;
1278
1279		memset(it, 0, sizeof *it);
1280		it->it_value = *rqtp;
1281
1282		spin_lock_irq(&timer.it_lock);
1283		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1284		if (error) {
1285			spin_unlock_irq(&timer.it_lock);
1286			return error;
1287		}
1288
1289		while (!signal_pending(current)) {
1290			if (timer.it.cpu.expires == 0) {
1291				/*
1292				 * Our timer fired and was reset, below
1293				 * deletion can not fail.
1294				 */
1295				posix_cpu_timer_del(&timer);
1296				spin_unlock_irq(&timer.it_lock);
1297				return 0;
1298			}
1299
1300			/*
1301			 * Block until cpu_timer_fire (or a signal) wakes us.
1302			 */
1303			__set_current_state(TASK_INTERRUPTIBLE);
1304			spin_unlock_irq(&timer.it_lock);
1305			schedule();
1306			spin_lock_irq(&timer.it_lock);
1307		}
1308
1309		/*
1310		 * We were interrupted by a signal.
1311		 */
1312		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1313		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1314		if (!error) {
1315			/*
1316			 * Timer is now unarmed, deletion can not fail.
1317			 */
1318			posix_cpu_timer_del(&timer);
1319		}
1320		spin_unlock_irq(&timer.it_lock);
1321
1322		while (error == TIMER_RETRY) {
1323			/*
1324			 * We need to handle case when timer was or is in the
1325			 * middle of firing. In other cases we already freed
1326			 * resources.
1327			 */
1328			spin_lock_irq(&timer.it_lock);
1329			error = posix_cpu_timer_del(&timer);
1330			spin_unlock_irq(&timer.it_lock);
1331		}
1332
1333		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1334			/*
1335			 * It actually did fire already.
1336			 */
1337			return 0;
1338		}
1339
1340		error = -ERESTART_RESTARTBLOCK;
1341	}
1342
1343	return error;
1344}
1345
1346static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1347
1348static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1349			    struct timespec *rqtp, struct timespec __user *rmtp)
1350{
1351	struct restart_block *restart_block =
1352		&current_thread_info()->restart_block;
1353	struct itimerspec it;
1354	int error;
1355
1356	/*
1357	 * Diagnose required errors first.
1358	 */
1359	if (CPUCLOCK_PERTHREAD(which_clock) &&
1360	    (CPUCLOCK_PID(which_clock) == 0 ||
1361	     CPUCLOCK_PID(which_clock) == current->pid))
1362		return -EINVAL;
1363
1364	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1365
1366	if (error == -ERESTART_RESTARTBLOCK) {
1367
1368		if (flags & TIMER_ABSTIME)
1369			return -ERESTARTNOHAND;
1370		/*
1371		 * Report back to the user the time still remaining.
1372		 */
1373		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1374			return -EFAULT;
1375
1376		restart_block->fn = posix_cpu_nsleep_restart;
1377		restart_block->nanosleep.clockid = which_clock;
1378		restart_block->nanosleep.rmtp = rmtp;
1379		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1380	}
1381	return error;
1382}
1383
1384static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1385{
1386	clockid_t which_clock = restart_block->nanosleep.clockid;
1387	struct timespec t;
1388	struct itimerspec it;
1389	int error;
1390
1391	t = ns_to_timespec(restart_block->nanosleep.expires);
1392
1393	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1394
1395	if (error == -ERESTART_RESTARTBLOCK) {
1396		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1397		/*
1398		 * Report back to the user the time still remaining.
1399		 */
1400		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1401			return -EFAULT;
1402
1403		restart_block->nanosleep.expires = timespec_to_ns(&t);
1404	}
1405	return error;
1406
1407}
1408
1409#define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1410#define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1411
1412static int process_cpu_clock_getres(const clockid_t which_clock,
1413				    struct timespec *tp)
1414{
1415	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1416}
1417static int process_cpu_clock_get(const clockid_t which_clock,
1418				 struct timespec *tp)
1419{
1420	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1421}
1422static int process_cpu_timer_create(struct k_itimer *timer)
1423{
1424	timer->it_clock = PROCESS_CLOCK;
1425	return posix_cpu_timer_create(timer);
1426}
1427static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1428			      struct timespec *rqtp,
1429			      struct timespec __user *rmtp)
1430{
1431	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1432}
1433static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1434{
1435	return -EINVAL;
1436}
1437static int thread_cpu_clock_getres(const clockid_t which_clock,
1438				   struct timespec *tp)
1439{
1440	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1441}
1442static int thread_cpu_clock_get(const clockid_t which_clock,
1443				struct timespec *tp)
1444{
1445	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1446}
1447static int thread_cpu_timer_create(struct k_itimer *timer)
1448{
1449	timer->it_clock = THREAD_CLOCK;
1450	return posix_cpu_timer_create(timer);
1451}
1452
1453struct k_clock clock_posix_cpu = {
1454	.clock_getres	= posix_cpu_clock_getres,
1455	.clock_set	= posix_cpu_clock_set,
1456	.clock_get	= posix_cpu_clock_get,
1457	.timer_create	= posix_cpu_timer_create,
1458	.nsleep		= posix_cpu_nsleep,
1459	.nsleep_restart	= posix_cpu_nsleep_restart,
1460	.timer_set	= posix_cpu_timer_set,
1461	.timer_del	= posix_cpu_timer_del,
1462	.timer_get	= posix_cpu_timer_get,
1463};
1464
1465static __init int init_posix_cpu_timers(void)
1466{
1467	struct k_clock process = {
1468		.clock_getres	= process_cpu_clock_getres,
1469		.clock_get	= process_cpu_clock_get,
1470		.timer_create	= process_cpu_timer_create,
1471		.nsleep		= process_cpu_nsleep,
1472		.nsleep_restart	= process_cpu_nsleep_restart,
1473	};
1474	struct k_clock thread = {
1475		.clock_getres	= thread_cpu_clock_getres,
1476		.clock_get	= thread_cpu_clock_get,
1477		.timer_create	= thread_cpu_timer_create,
1478	};
1479	struct timespec ts;
1480
1481	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1482	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1483
1484	cputime_to_timespec(cputime_one_jiffy, &ts);
1485	onecputick = ts.tv_nsec;
1486	WARN_ON(ts.tv_sec != 0);
1487
1488	return 0;
1489}
1490__initcall(init_posix_cpu_timers);
v3.1
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
   6#include <linux/posix-timers.h>
   7#include <linux/errno.h>
   8#include <linux/math64.h>
   9#include <asm/uaccess.h>
  10#include <linux/kernel_stat.h>
  11#include <trace/events/timer.h>
 
 
 
  12
  13/*
  14 * Called after updating RLIMIT_CPU to run cpu timer and update
  15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  16 * siglock protection since other code may update expiration cache as
  17 * well.
  18 */
  19void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  20{
  21	cputime_t cputime = secs_to_cputime(rlim_new);
  22
  23	spin_lock_irq(&task->sighand->siglock);
  24	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  25	spin_unlock_irq(&task->sighand->siglock);
  26}
  27
  28static int check_clock(const clockid_t which_clock)
  29{
  30	int error = 0;
  31	struct task_struct *p;
  32	const pid_t pid = CPUCLOCK_PID(which_clock);
  33
  34	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  35		return -EINVAL;
  36
  37	if (pid == 0)
  38		return 0;
  39
  40	rcu_read_lock();
  41	p = find_task_by_vpid(pid);
  42	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  43		   same_thread_group(p, current) : has_group_leader_pid(p))) {
  44		error = -EINVAL;
  45	}
  46	rcu_read_unlock();
  47
  48	return error;
  49}
  50
  51static inline union cpu_time_count
  52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  53{
  54	union cpu_time_count ret;
  55	ret.sched = 0;		/* high half always zero when .cpu used */
 
  56	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  57		ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  58	} else {
  59		ret.cpu = timespec_to_cputime(tp);
  60	}
  61	return ret;
  62}
  63
  64static void sample_to_timespec(const clockid_t which_clock,
  65			       union cpu_time_count cpu,
  66			       struct timespec *tp)
  67{
  68	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  69		*tp = ns_to_timespec(cpu.sched);
  70	else
  71		cputime_to_timespec(cpu.cpu, tp);
  72}
  73
  74static inline int cpu_time_before(const clockid_t which_clock,
  75				  union cpu_time_count now,
  76				  union cpu_time_count then)
  77{
  78	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  79		return now.sched < then.sched;
  80	}  else {
  81		return cputime_lt(now.cpu, then.cpu);
  82	}
  83}
  84static inline void cpu_time_add(const clockid_t which_clock,
  85				union cpu_time_count *acc,
  86			        union cpu_time_count val)
  87{
  88	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  89		acc->sched += val.sched;
  90	}  else {
  91		acc->cpu = cputime_add(acc->cpu, val.cpu);
  92	}
  93}
  94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
  95						union cpu_time_count a,
  96						union cpu_time_count b)
  97{
  98	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  99		a.sched -= b.sched;
 100	}  else {
 101		a.cpu = cputime_sub(a.cpu, b.cpu);
 102	}
 103	return a;
 104}
 105
 106/*
 107 * Divide and limit the result to res >= 1
 108 *
 109 * This is necessary to prevent signal delivery starvation, when the result of
 110 * the division would be rounded down to 0.
 111 */
 112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
 113{
 114	cputime_t res = cputime_div(time, div);
 115
 116	return max_t(cputime_t, res, 1);
 117}
 118
 119/*
 120 * Update expiry time from increment, and increase overrun count,
 121 * given the current clock sample.
 122 */
 123static void bump_cpu_timer(struct k_itimer *timer,
 124				  union cpu_time_count now)
 125{
 126	int i;
 
 127
 128	if (timer->it.cpu.incr.sched == 0)
 129		return;
 130
 131	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 132		unsigned long long delta, incr;
 133
 134		if (now.sched < timer->it.cpu.expires.sched)
 135			return;
 136		incr = timer->it.cpu.incr.sched;
 137		delta = now.sched + incr - timer->it.cpu.expires.sched;
 138		/* Don't use (incr*2 < delta), incr*2 might overflow. */
 139		for (i = 0; incr < delta - incr; i++)
 140			incr = incr << 1;
 141		for (; i >= 0; incr >>= 1, i--) {
 142			if (delta < incr)
 143				continue;
 144			timer->it.cpu.expires.sched += incr;
 145			timer->it_overrun += 1 << i;
 146			delta -= incr;
 147		}
 148	} else {
 149		cputime_t delta, incr;
 150
 151		if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
 152			return;
 153		incr = timer->it.cpu.incr.cpu;
 154		delta = cputime_sub(cputime_add(now.cpu, incr),
 155				    timer->it.cpu.expires.cpu);
 156		/* Don't use (incr*2 < delta), incr*2 might overflow. */
 157		for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
 158			     incr = cputime_add(incr, incr);
 159		for (; i >= 0; incr = cputime_halve(incr), i--) {
 160			if (cputime_lt(delta, incr))
 161				continue;
 162			timer->it.cpu.expires.cpu =
 163				cputime_add(timer->it.cpu.expires.cpu, incr);
 164			timer->it_overrun += 1 << i;
 165			delta = cputime_sub(delta, incr);
 166		}
 167	}
 168}
 169
 170static inline cputime_t prof_ticks(struct task_struct *p)
 
 
 
 
 
 
 
 
 171{
 172	return cputime_add(p->utime, p->stime);
 
 
 173}
 174static inline cputime_t virt_ticks(struct task_struct *p)
 
 175{
 176	return p->utime;
 
 
 
 
 
 
 
 
 
 
 
 
 177}
 178
 179static int
 180posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 181{
 182	int error = check_clock(which_clock);
 183	if (!error) {
 184		tp->tv_sec = 0;
 185		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 186		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 187			/*
 188			 * If sched_clock is using a cycle counter, we
 189			 * don't have any idea of its true resolution
 190			 * exported, but it is much more than 1s/HZ.
 191			 */
 192			tp->tv_nsec = 1;
 193		}
 194	}
 195	return error;
 196}
 197
 198static int
 199posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 200{
 201	/*
 202	 * You can never reset a CPU clock, but we check for other errors
 203	 * in the call before failing with EPERM.
 204	 */
 205	int error = check_clock(which_clock);
 206	if (error == 0) {
 207		error = -EPERM;
 208	}
 209	return error;
 210}
 211
 212
 213/*
 214 * Sample a per-thread clock for the given task.
 215 */
 216static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 217			    union cpu_time_count *cpu)
 218{
 219	switch (CPUCLOCK_WHICH(which_clock)) {
 220	default:
 221		return -EINVAL;
 222	case CPUCLOCK_PROF:
 223		cpu->cpu = prof_ticks(p);
 224		break;
 225	case CPUCLOCK_VIRT:
 226		cpu->cpu = virt_ticks(p);
 227		break;
 228	case CPUCLOCK_SCHED:
 229		cpu->sched = task_sched_runtime(p);
 230		break;
 231	}
 232	return 0;
 233}
 234
 235void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 236{
 237	struct signal_struct *sig = tsk->signal;
 238	struct task_struct *t;
 239
 240	times->utime = sig->utime;
 241	times->stime = sig->stime;
 242	times->sum_exec_runtime = sig->sum_sched_runtime;
 243
 244	rcu_read_lock();
 245	/* make sure we can trust tsk->thread_group list */
 246	if (!likely(pid_alive(tsk)))
 247		goto out;
 248
 249	t = tsk;
 250	do {
 251		times->utime = cputime_add(times->utime, t->utime);
 252		times->stime = cputime_add(times->stime, t->stime);
 253		times->sum_exec_runtime += task_sched_runtime(t);
 254	} while_each_thread(tsk, t);
 255out:
 256	rcu_read_unlock();
 257}
 258
 259static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
 260{
 261	if (cputime_gt(b->utime, a->utime))
 262		a->utime = b->utime;
 263
 264	if (cputime_gt(b->stime, a->stime))
 265		a->stime = b->stime;
 266
 267	if (b->sum_exec_runtime > a->sum_exec_runtime)
 268		a->sum_exec_runtime = b->sum_exec_runtime;
 269}
 270
 271void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 272{
 273	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 274	struct task_cputime sum;
 275	unsigned long flags;
 276
 277	if (!cputimer->running) {
 278		/*
 279		 * The POSIX timer interface allows for absolute time expiry
 280		 * values through the TIMER_ABSTIME flag, therefore we have
 281		 * to synchronize the timer to the clock every time we start
 282		 * it.
 283		 */
 284		thread_group_cputime(tsk, &sum);
 285		spin_lock_irqsave(&cputimer->lock, flags);
 286		cputimer->running = 1;
 287		update_gt_cputime(&cputimer->cputime, &sum);
 288	} else
 289		spin_lock_irqsave(&cputimer->lock, flags);
 290	*times = cputimer->cputime;
 291	spin_unlock_irqrestore(&cputimer->lock, flags);
 292}
 293
 294/*
 295 * Sample a process (thread group) clock for the given group_leader task.
 296 * Must be called with tasklist_lock held for reading.
 
 297 */
 298static int cpu_clock_sample_group(const clockid_t which_clock,
 299				  struct task_struct *p,
 300				  union cpu_time_count *cpu)
 301{
 302	struct task_cputime cputime;
 303
 304	switch (CPUCLOCK_WHICH(which_clock)) {
 305	default:
 306		return -EINVAL;
 307	case CPUCLOCK_PROF:
 308		thread_group_cputime(p, &cputime);
 309		cpu->cpu = cputime_add(cputime.utime, cputime.stime);
 310		break;
 311	case CPUCLOCK_VIRT:
 312		thread_group_cputime(p, &cputime);
 313		cpu->cpu = cputime.utime;
 314		break;
 315	case CPUCLOCK_SCHED:
 316		thread_group_cputime(p, &cputime);
 317		cpu->sched = cputime.sum_exec_runtime;
 318		break;
 319	}
 320	return 0;
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323
 324static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 325{
 326	const pid_t pid = CPUCLOCK_PID(which_clock);
 327	int error = -EINVAL;
 328	union cpu_time_count rtn;
 329
 330	if (pid == 0) {
 331		/*
 332		 * Special case constant value for our own clocks.
 333		 * We don't have to do any lookup to find ourselves.
 334		 */
 335		if (CPUCLOCK_PERTHREAD(which_clock)) {
 336			/*
 337			 * Sampling just ourselves we can do with no locking.
 338			 */
 339			error = cpu_clock_sample(which_clock,
 340						 current, &rtn);
 341		} else {
 342			read_lock(&tasklist_lock);
 343			error = cpu_clock_sample_group(which_clock,
 344						       current, &rtn);
 345			read_unlock(&tasklist_lock);
 346		}
 347	} else {
 348		/*
 349		 * Find the given PID, and validate that the caller
 350		 * should be able to see it.
 351		 */
 352		struct task_struct *p;
 353		rcu_read_lock();
 354		p = find_task_by_vpid(pid);
 355		if (p) {
 356			if (CPUCLOCK_PERTHREAD(which_clock)) {
 357				if (same_thread_group(p, current)) {
 358					error = cpu_clock_sample(which_clock,
 359								 p, &rtn);
 360				}
 361			} else {
 362				read_lock(&tasklist_lock);
 363				if (thread_group_leader(p) && p->sighand) {
 364					error =
 365					    cpu_clock_sample_group(which_clock,
 366							           p, &rtn);
 367				}
 368				read_unlock(&tasklist_lock);
 369			}
 370		}
 371		rcu_read_unlock();
 372	}
 373
 374	if (error)
 375		return error;
 376	sample_to_timespec(which_clock, rtn, tp);
 377	return 0;
 378}
 379
 380
 381/*
 382 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 383 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 384 * new timer already all-zeros initialized.
 385 */
 386static int posix_cpu_timer_create(struct k_itimer *new_timer)
 387{
 388	int ret = 0;
 389	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 390	struct task_struct *p;
 391
 392	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 393		return -EINVAL;
 394
 395	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 396
 397	rcu_read_lock();
 398	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 399		if (pid == 0) {
 400			p = current;
 401		} else {
 402			p = find_task_by_vpid(pid);
 403			if (p && !same_thread_group(p, current))
 404				p = NULL;
 405		}
 406	} else {
 407		if (pid == 0) {
 408			p = current->group_leader;
 409		} else {
 410			p = find_task_by_vpid(pid);
 411			if (p && !has_group_leader_pid(p))
 412				p = NULL;
 413		}
 414	}
 415	new_timer->it.cpu.task = p;
 416	if (p) {
 417		get_task_struct(p);
 418	} else {
 419		ret = -EINVAL;
 420	}
 421	rcu_read_unlock();
 422
 423	return ret;
 424}
 425
 426/*
 427 * Clean up a CPU-clock timer that is about to be destroyed.
 428 * This is called from timer deletion with the timer already locked.
 429 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 430 * and try again.  (This happens when the timer is in the middle of firing.)
 431 */
 432static int posix_cpu_timer_del(struct k_itimer *timer)
 433{
 
 
 
 434	struct task_struct *p = timer->it.cpu.task;
 435	int ret = 0;
 436
 437	if (likely(p != NULL)) {
 438		read_lock(&tasklist_lock);
 439		if (unlikely(p->sighand == NULL)) {
 440			/*
 441			 * We raced with the reaping of the task.
 442			 * The deletion should have cleared us off the list.
 443			 */
 444			BUG_ON(!list_empty(&timer->it.cpu.entry));
 445		} else {
 446			spin_lock(&p->sighand->siglock);
 447			if (timer->it.cpu.firing)
 448				ret = TIMER_RETRY;
 449			else
 450				list_del(&timer->it.cpu.entry);
 451			spin_unlock(&p->sighand->siglock);
 452		}
 453		read_unlock(&tasklist_lock);
 
 454
 455		if (!ret)
 456			put_task_struct(p);
 457	}
 458
 
 
 
 459	return ret;
 460}
 461
 
 
 
 
 
 
 
 
 462/*
 463 * Clean out CPU timers still ticking when a thread exited.  The task
 464 * pointer is cleared, and the expiry time is replaced with the residual
 465 * time for later timer_gettime calls to return.
 466 * This must be called with the siglock held.
 467 */
 468static void cleanup_timers(struct list_head *head,
 469			   cputime_t utime, cputime_t stime,
 470			   unsigned long long sum_exec_runtime)
 471{
 472	struct cpu_timer_list *timer, *next;
 473	cputime_t ptime = cputime_add(utime, stime);
 474
 475	list_for_each_entry_safe(timer, next, head, entry) {
 476		list_del_init(&timer->entry);
 477		if (cputime_lt(timer->expires.cpu, ptime)) {
 478			timer->expires.cpu = cputime_zero;
 479		} else {
 480			timer->expires.cpu = cputime_sub(timer->expires.cpu,
 481							 ptime);
 482		}
 483	}
 484
 485	++head;
 486	list_for_each_entry_safe(timer, next, head, entry) {
 487		list_del_init(&timer->entry);
 488		if (cputime_lt(timer->expires.cpu, utime)) {
 489			timer->expires.cpu = cputime_zero;
 490		} else {
 491			timer->expires.cpu = cputime_sub(timer->expires.cpu,
 492							 utime);
 493		}
 494	}
 495
 496	++head;
 497	list_for_each_entry_safe(timer, next, head, entry) {
 498		list_del_init(&timer->entry);
 499		if (timer->expires.sched < sum_exec_runtime) {
 500			timer->expires.sched = 0;
 501		} else {
 502			timer->expires.sched -= sum_exec_runtime;
 503		}
 504	}
 505}
 506
 507/*
 508 * These are both called with the siglock held, when the current thread
 509 * is being reaped.  When the final (leader) thread in the group is reaped,
 510 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 511 */
 512void posix_cpu_timers_exit(struct task_struct *tsk)
 513{
 514	cleanup_timers(tsk->cpu_timers,
 515		       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
 
 516
 517}
 518void posix_cpu_timers_exit_group(struct task_struct *tsk)
 519{
 520	struct signal_struct *const sig = tsk->signal;
 521
 522	cleanup_timers(tsk->signal->cpu_timers,
 523		       cputime_add(tsk->utime, sig->utime),
 524		       cputime_add(tsk->stime, sig->stime),
 525		       tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
 526}
 527
 528static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
 529{
 530	/*
 531	 * That's all for this thread or process.
 532	 * We leave our residual in expires to be reported.
 533	 */
 534	put_task_struct(timer->it.cpu.task);
 535	timer->it.cpu.task = NULL;
 536	timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
 537					     timer->it.cpu.expires,
 538					     now);
 539}
 540
 541static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 542{
 543	return cputime_eq(expires, cputime_zero) ||
 544	       cputime_gt(expires, new_exp);
 545}
 546
 547/*
 548 * Insert the timer on the appropriate list before any timers that
 549 * expire later.  This must be called with the tasklist_lock held
 550 * for reading, interrupts disabled and p->sighand->siglock taken.
 551 */
 552static void arm_timer(struct k_itimer *timer)
 553{
 554	struct task_struct *p = timer->it.cpu.task;
 555	struct list_head *head, *listpos;
 556	struct task_cputime *cputime_expires;
 557	struct cpu_timer_list *const nt = &timer->it.cpu;
 558	struct cpu_timer_list *next;
 559
 560	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 561		head = p->cpu_timers;
 562		cputime_expires = &p->cputime_expires;
 563	} else {
 564		head = p->signal->cpu_timers;
 565		cputime_expires = &p->signal->cputime_expires;
 566	}
 567	head += CPUCLOCK_WHICH(timer->it_clock);
 568
 569	listpos = head;
 570	list_for_each_entry(next, head, entry) {
 571		if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
 572			break;
 573		listpos = &next->entry;
 574	}
 575	list_add(&nt->entry, listpos);
 576
 577	if (listpos == head) {
 578		union cpu_time_count *exp = &nt->expires;
 579
 580		/*
 581		 * We are the new earliest-expiring POSIX 1.b timer, hence
 582		 * need to update expiration cache. Take into account that
 583		 * for process timers we share expiration cache with itimers
 584		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 585		 */
 586
 587		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 588		case CPUCLOCK_PROF:
 589			if (expires_gt(cputime_expires->prof_exp, exp->cpu))
 590				cputime_expires->prof_exp = exp->cpu;
 591			break;
 592		case CPUCLOCK_VIRT:
 593			if (expires_gt(cputime_expires->virt_exp, exp->cpu))
 594				cputime_expires->virt_exp = exp->cpu;
 595			break;
 596		case CPUCLOCK_SCHED:
 597			if (cputime_expires->sched_exp == 0 ||
 598			    cputime_expires->sched_exp > exp->sched)
 599				cputime_expires->sched_exp = exp->sched;
 600			break;
 601		}
 602	}
 603}
 604
 605/*
 606 * The timer is locked, fire it and arrange for its reload.
 607 */
 608static void cpu_timer_fire(struct k_itimer *timer)
 609{
 610	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 611		/*
 612		 * User don't want any signal.
 613		 */
 614		timer->it.cpu.expires.sched = 0;
 615	} else if (unlikely(timer->sigq == NULL)) {
 616		/*
 617		 * This a special case for clock_nanosleep,
 618		 * not a normal timer from sys_timer_create.
 619		 */
 620		wake_up_process(timer->it_process);
 621		timer->it.cpu.expires.sched = 0;
 622	} else if (timer->it.cpu.incr.sched == 0) {
 623		/*
 624		 * One-shot timer.  Clear it as soon as it's fired.
 625		 */
 626		posix_timer_event(timer, 0);
 627		timer->it.cpu.expires.sched = 0;
 628	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 629		/*
 630		 * The signal did not get queued because the signal
 631		 * was ignored, so we won't get any callback to
 632		 * reload the timer.  But we need to keep it
 633		 * ticking in case the signal is deliverable next time.
 634		 */
 635		posix_cpu_timer_schedule(timer);
 636	}
 637}
 638
 639/*
 640 * Sample a process (thread group) timer for the given group_leader task.
 641 * Must be called with tasklist_lock held for reading.
 
 642 */
 643static int cpu_timer_sample_group(const clockid_t which_clock,
 644				  struct task_struct *p,
 645				  union cpu_time_count *cpu)
 646{
 647	struct task_cputime cputime;
 648
 649	thread_group_cputimer(p, &cputime);
 650	switch (CPUCLOCK_WHICH(which_clock)) {
 651	default:
 652		return -EINVAL;
 653	case CPUCLOCK_PROF:
 654		cpu->cpu = cputime_add(cputime.utime, cputime.stime);
 655		break;
 656	case CPUCLOCK_VIRT:
 657		cpu->cpu = cputime.utime;
 658		break;
 659	case CPUCLOCK_SCHED:
 660		cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
 661		break;
 662	}
 663	return 0;
 664}
 665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666/*
 667 * Guts of sys_timer_settime for CPU timers.
 668 * This is called with the timer locked and interrupts disabled.
 669 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 670 * and try again.  (This happens when the timer is in the middle of firing.)
 671 */
 672static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
 673			       struct itimerspec *new, struct itimerspec *old)
 674{
 
 
 675	struct task_struct *p = timer->it.cpu.task;
 676	union cpu_time_count old_expires, new_expires, old_incr, val;
 677	int ret;
 678
 679	if (unlikely(p == NULL)) {
 680		/*
 681		 * Timer refers to a dead task's clock.
 682		 */
 683		return -ESRCH;
 684	}
 685
 686	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 687
 688	read_lock(&tasklist_lock);
 689	/*
 690	 * We need the tasklist_lock to protect against reaping that
 691	 * clears p->sighand.  If p has just been reaped, we can no
 
 
 
 
 692	 * longer get any information about it at all.
 693	 */
 694	if (unlikely(p->sighand == NULL)) {
 695		read_unlock(&tasklist_lock);
 696		put_task_struct(p);
 697		timer->it.cpu.task = NULL;
 698		return -ESRCH;
 699	}
 700
 701	/*
 702	 * Disarm any old timer after extracting its expiry time.
 703	 */
 704	BUG_ON(!irqs_disabled());
 705
 706	ret = 0;
 707	old_incr = timer->it.cpu.incr;
 708	spin_lock(&p->sighand->siglock);
 709	old_expires = timer->it.cpu.expires;
 710	if (unlikely(timer->it.cpu.firing)) {
 711		timer->it.cpu.firing = -1;
 712		ret = TIMER_RETRY;
 713	} else
 714		list_del_init(&timer->it.cpu.entry);
 715
 716	/*
 717	 * We need to sample the current value to convert the new
 718	 * value from to relative and absolute, and to convert the
 719	 * old value from absolute to relative.  To set a process
 720	 * timer, we need a sample to balance the thread expiry
 721	 * times (in arm_timer).  With an absolute time, we must
 722	 * check if it's already passed.  In short, we need a sample.
 723	 */
 724	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 725		cpu_clock_sample(timer->it_clock, p, &val);
 726	} else {
 727		cpu_timer_sample_group(timer->it_clock, p, &val);
 728	}
 729
 730	if (old) {
 731		if (old_expires.sched == 0) {
 732			old->it_value.tv_sec = 0;
 733			old->it_value.tv_nsec = 0;
 734		} else {
 735			/*
 736			 * Update the timer in case it has
 737			 * overrun already.  If it has,
 738			 * we'll report it as having overrun
 739			 * and with the next reloaded timer
 740			 * already ticking, though we are
 741			 * swallowing that pending
 742			 * notification here to install the
 743			 * new setting.
 744			 */
 745			bump_cpu_timer(timer, val);
 746			if (cpu_time_before(timer->it_clock, val,
 747					    timer->it.cpu.expires)) {
 748				old_expires = cpu_time_sub(
 749					timer->it_clock,
 750					timer->it.cpu.expires, val);
 751				sample_to_timespec(timer->it_clock,
 752						   old_expires,
 753						   &old->it_value);
 754			} else {
 755				old->it_value.tv_nsec = 1;
 756				old->it_value.tv_sec = 0;
 757			}
 758		}
 759	}
 760
 761	if (unlikely(ret)) {
 762		/*
 763		 * We are colliding with the timer actually firing.
 764		 * Punt after filling in the timer's old value, and
 765		 * disable this firing since we are already reporting
 766		 * it as an overrun (thanks to bump_cpu_timer above).
 767		 */
 768		spin_unlock(&p->sighand->siglock);
 769		read_unlock(&tasklist_lock);
 770		goto out;
 771	}
 772
 773	if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
 774		cpu_time_add(timer->it_clock, &new_expires, val);
 775	}
 776
 777	/*
 778	 * Install the new expiry time (or zero).
 779	 * For a timer with no notification action, we don't actually
 780	 * arm the timer (we'll just fake it for timer_gettime).
 781	 */
 782	timer->it.cpu.expires = new_expires;
 783	if (new_expires.sched != 0 &&
 784	    cpu_time_before(timer->it_clock, val, new_expires)) {
 785		arm_timer(timer);
 786	}
 787
 788	spin_unlock(&p->sighand->siglock);
 789	read_unlock(&tasklist_lock);
 790
 791	/*
 792	 * Install the new reload setting, and
 793	 * set up the signal and overrun bookkeeping.
 794	 */
 795	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 796						&new->it_interval);
 797
 798	/*
 799	 * This acts as a modification timestamp for the timer,
 800	 * so any automatic reload attempt will punt on seeing
 801	 * that we have reset the timer manually.
 802	 */
 803	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 804		~REQUEUE_PENDING;
 805	timer->it_overrun_last = 0;
 806	timer->it_overrun = -1;
 807
 808	if (new_expires.sched != 0 &&
 809	    !cpu_time_before(timer->it_clock, val, new_expires)) {
 810		/*
 811		 * The designated time already passed, so we notify
 812		 * immediately, even if the thread never runs to
 813		 * accumulate more time on this clock.
 814		 */
 815		cpu_timer_fire(timer);
 816	}
 817
 818	ret = 0;
 819 out:
 820	if (old) {
 821		sample_to_timespec(timer->it_clock,
 822				   old_incr, &old->it_interval);
 823	}
 
 
 824	return ret;
 825}
 826
 827static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 828{
 829	union cpu_time_count now;
 830	struct task_struct *p = timer->it.cpu.task;
 831	int clear_dead;
 
 832
 833	/*
 834	 * Easy part: convert the reload time.
 835	 */
 836	sample_to_timespec(timer->it_clock,
 837			   timer->it.cpu.incr, &itp->it_interval);
 838
 839	if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */
 840		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 841		return;
 842	}
 843
 844	if (unlikely(p == NULL)) {
 845		/*
 846		 * This task already died and the timer will never fire.
 847		 * In this case, expires is actually the dead value.
 848		 */
 849	dead:
 850		sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 851				   &itp->it_value);
 852		return;
 853	}
 854
 855	/*
 856	 * Sample the clock to take the difference with the expiry time.
 857	 */
 858	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 859		cpu_clock_sample(timer->it_clock, p, &now);
 860		clear_dead = p->exit_state;
 861	} else {
 862		read_lock(&tasklist_lock);
 863		if (unlikely(p->sighand == NULL)) {
 
 
 
 
 
 
 
 
 864			/*
 865			 * The process has been reaped.
 866			 * We can't even collect a sample any more.
 867			 * Call the timer disarmed, nothing else to do.
 868			 */
 869			put_task_struct(p);
 870			timer->it.cpu.task = NULL;
 871			timer->it.cpu.expires.sched = 0;
 872			read_unlock(&tasklist_lock);
 873			goto dead;
 874		} else {
 875			cpu_timer_sample_group(timer->it_clock, p, &now);
 876			clear_dead = (unlikely(p->exit_state) &&
 877				      thread_group_empty(p));
 878		}
 879		read_unlock(&tasklist_lock);
 880	}
 881
 882	if (unlikely(clear_dead)) {
 883		/*
 884		 * We've noticed that the thread is dead, but
 885		 * not yet reaped.  Take this opportunity to
 886		 * drop our task ref.
 887		 */
 888		clear_dead_task(timer, now);
 889		goto dead;
 890	}
 891
 892	if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
 893		sample_to_timespec(timer->it_clock,
 894				   cpu_time_sub(timer->it_clock,
 895						timer->it.cpu.expires, now),
 896				   &itp->it_value);
 897	} else {
 898		/*
 899		 * The timer should have expired already, but the firing
 900		 * hasn't taken place yet.  Say it's just about to expire.
 901		 */
 902		itp->it_value.tv_nsec = 1;
 903		itp->it_value.tv_sec = 0;
 904	}
 905}
 906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907/*
 908 * Check for any per-thread CPU timers that have fired and move them off
 909 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 910 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 911 */
 912static void check_thread_timers(struct task_struct *tsk,
 913				struct list_head *firing)
 914{
 915	int maxfire;
 916	struct list_head *timers = tsk->cpu_timers;
 917	struct signal_struct *const sig = tsk->signal;
 
 
 918	unsigned long soft;
 919
 920	maxfire = 20;
 921	tsk->cputime_expires.prof_exp = cputime_zero;
 922	while (!list_empty(timers)) {
 923		struct cpu_timer_list *t = list_first_entry(timers,
 924						      struct cpu_timer_list,
 925						      entry);
 926		if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
 927			tsk->cputime_expires.prof_exp = t->expires.cpu;
 928			break;
 929		}
 930		t->firing = 1;
 931		list_move_tail(&t->entry, firing);
 932	}
 933
 934	++timers;
 935	maxfire = 20;
 936	tsk->cputime_expires.virt_exp = cputime_zero;
 937	while (!list_empty(timers)) {
 938		struct cpu_timer_list *t = list_first_entry(timers,
 939						      struct cpu_timer_list,
 940						      entry);
 941		if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
 942			tsk->cputime_expires.virt_exp = t->expires.cpu;
 943			break;
 944		}
 945		t->firing = 1;
 946		list_move_tail(&t->entry, firing);
 947	}
 948
 949	++timers;
 950	maxfire = 20;
 951	tsk->cputime_expires.sched_exp = 0;
 952	while (!list_empty(timers)) {
 953		struct cpu_timer_list *t = list_first_entry(timers,
 954						      struct cpu_timer_list,
 955						      entry);
 956		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
 957			tsk->cputime_expires.sched_exp = t->expires.sched;
 958			break;
 959		}
 960		t->firing = 1;
 961		list_move_tail(&t->entry, firing);
 962	}
 963
 964	/*
 965	 * Check for the special case thread timers.
 966	 */
 967	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 968	if (soft != RLIM_INFINITY) {
 969		unsigned long hard =
 970			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 971
 972		if (hard != RLIM_INFINITY &&
 973		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 974			/*
 975			 * At the hard limit, we just die.
 976			 * No need to calculate anything else now.
 977			 */
 978			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 979			return;
 980		}
 981		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 982			/*
 983			 * At the soft limit, send a SIGXCPU every second.
 984			 */
 985			if (soft < hard) {
 986				soft += USEC_PER_SEC;
 987				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 988			}
 989			printk(KERN_INFO
 990				"RT Watchdog Timeout: %s[%d]\n",
 991				tsk->comm, task_pid_nr(tsk));
 992			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 993		}
 994	}
 995}
 996
 997static void stop_process_timers(struct signal_struct *sig)
 998{
 999	struct thread_group_cputimer *cputimer = &sig->cputimer;
1000	unsigned long flags;
1001
1002	spin_lock_irqsave(&cputimer->lock, flags);
1003	cputimer->running = 0;
1004	spin_unlock_irqrestore(&cputimer->lock, flags);
1005}
1006
1007static u32 onecputick;
1008
1009static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1010			     cputime_t *expires, cputime_t cur_time, int signo)
 
1011{
1012	if (cputime_eq(it->expires, cputime_zero))
1013		return;
1014
1015	if (cputime_ge(cur_time, it->expires)) {
1016		if (!cputime_eq(it->incr, cputime_zero)) {
1017			it->expires = cputime_add(it->expires, it->incr);
1018			it->error += it->incr_error;
1019			if (it->error >= onecputick) {
1020				it->expires = cputime_sub(it->expires,
1021							  cputime_one_jiffy);
1022				it->error -= onecputick;
1023			}
1024		} else {
1025			it->expires = cputime_zero;
1026		}
1027
1028		trace_itimer_expire(signo == SIGPROF ?
1029				    ITIMER_PROF : ITIMER_VIRTUAL,
1030				    tsk->signal->leader_pid, cur_time);
1031		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1032	}
1033
1034	if (!cputime_eq(it->expires, cputime_zero) &&
1035	    (cputime_eq(*expires, cputime_zero) ||
1036	     cputime_lt(it->expires, *expires))) {
1037		*expires = it->expires;
1038	}
1039}
1040
1041/**
1042 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1043 *
1044 * @cputime:	The struct to compare.
1045 *
1046 * Checks @cputime to see if all fields are zero.  Returns true if all fields
1047 * are zero, false if any field is nonzero.
1048 */
1049static inline int task_cputime_zero(const struct task_cputime *cputime)
1050{
1051	if (cputime_eq(cputime->utime, cputime_zero) &&
1052	    cputime_eq(cputime->stime, cputime_zero) &&
1053	    cputime->sum_exec_runtime == 0)
1054		return 1;
1055	return 0;
1056}
1057
1058/*
1059 * Check for any per-thread CPU timers that have fired and move them
1060 * off the tsk->*_timers list onto the firing list.  Per-thread timers
1061 * have already been taken off.
1062 */
1063static void check_process_timers(struct task_struct *tsk,
1064				 struct list_head *firing)
1065{
1066	int maxfire;
1067	struct signal_struct *const sig = tsk->signal;
1068	cputime_t utime, ptime, virt_expires, prof_expires;
1069	unsigned long long sum_sched_runtime, sched_expires;
1070	struct list_head *timers = sig->cpu_timers;
1071	struct task_cputime cputime;
1072	unsigned long soft;
1073
1074	/*
1075	 * Collect the current process totals.
1076	 */
1077	thread_group_cputimer(tsk, &cputime);
1078	utime = cputime.utime;
1079	ptime = cputime_add(utime, cputime.stime);
1080	sum_sched_runtime = cputime.sum_exec_runtime;
1081	maxfire = 20;
1082	prof_expires = cputime_zero;
1083	while (!list_empty(timers)) {
1084		struct cpu_timer_list *tl = list_first_entry(timers,
1085						      struct cpu_timer_list,
1086						      entry);
1087		if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1088			prof_expires = tl->expires.cpu;
1089			break;
1090		}
1091		tl->firing = 1;
1092		list_move_tail(&tl->entry, firing);
1093	}
1094
1095	++timers;
1096	maxfire = 20;
1097	virt_expires = cputime_zero;
1098	while (!list_empty(timers)) {
1099		struct cpu_timer_list *tl = list_first_entry(timers,
1100						      struct cpu_timer_list,
1101						      entry);
1102		if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1103			virt_expires = tl->expires.cpu;
1104			break;
1105		}
1106		tl->firing = 1;
1107		list_move_tail(&tl->entry, firing);
1108	}
1109
1110	++timers;
1111	maxfire = 20;
1112	sched_expires = 0;
1113	while (!list_empty(timers)) {
1114		struct cpu_timer_list *tl = list_first_entry(timers,
1115						      struct cpu_timer_list,
1116						      entry);
1117		if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1118			sched_expires = tl->expires.sched;
1119			break;
1120		}
1121		tl->firing = 1;
1122		list_move_tail(&tl->entry, firing);
1123	}
1124
1125	/*
1126	 * Check for the special case process timers.
1127	 */
1128	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1129			 SIGPROF);
1130	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1131			 SIGVTALRM);
1132	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1133	if (soft != RLIM_INFINITY) {
1134		unsigned long psecs = cputime_to_secs(ptime);
1135		unsigned long hard =
1136			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1137		cputime_t x;
1138		if (psecs >= hard) {
1139			/*
1140			 * At the hard limit, we just die.
1141			 * No need to calculate anything else now.
1142			 */
1143			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1144			return;
1145		}
1146		if (psecs >= soft) {
1147			/*
1148			 * At the soft limit, send a SIGXCPU every second.
1149			 */
1150			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1151			if (soft < hard) {
1152				soft++;
1153				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1154			}
1155		}
1156		x = secs_to_cputime(soft);
1157		if (cputime_eq(prof_expires, cputime_zero) ||
1158		    cputime_lt(x, prof_expires)) {
1159			prof_expires = x;
1160		}
1161	}
1162
1163	sig->cputime_expires.prof_exp = prof_expires;
1164	sig->cputime_expires.virt_exp = virt_expires;
1165	sig->cputime_expires.sched_exp = sched_expires;
1166	if (task_cputime_zero(&sig->cputime_expires))
1167		stop_process_timers(sig);
1168}
1169
1170/*
1171 * This is called from the signal code (via do_schedule_next_timer)
1172 * when the last timer signal was delivered and we have to reload the timer.
1173 */
1174void posix_cpu_timer_schedule(struct k_itimer *timer)
1175{
 
 
1176	struct task_struct *p = timer->it.cpu.task;
1177	union cpu_time_count now;
1178
1179	if (unlikely(p == NULL))
1180		/*
1181		 * The task was cleaned up already, no future firings.
1182		 */
1183		goto out;
1184
1185	/*
1186	 * Fetch the current sample and update the timer's expiry time.
1187	 */
1188	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1189		cpu_clock_sample(timer->it_clock, p, &now);
1190		bump_cpu_timer(timer, now);
1191		if (unlikely(p->exit_state)) {
1192			clear_dead_task(timer, now);
 
 
 
 
1193			goto out;
1194		}
1195		read_lock(&tasklist_lock); /* arm_timer needs it.  */
1196		spin_lock(&p->sighand->siglock);
1197	} else {
1198		read_lock(&tasklist_lock);
1199		if (unlikely(p->sighand == NULL)) {
 
 
 
 
1200			/*
1201			 * The process has been reaped.
1202			 * We can't even collect a sample any more.
1203			 */
1204			put_task_struct(p);
1205			timer->it.cpu.task = p = NULL;
1206			timer->it.cpu.expires.sched = 0;
1207			goto out_unlock;
1208		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1209			/*
1210			 * We've noticed that the thread is dead, but
1211			 * not yet reaped.  Take this opportunity to
1212			 * drop our task ref.
1213			 */
1214			clear_dead_task(timer, now);
1215			goto out_unlock;
1216		}
1217		spin_lock(&p->sighand->siglock);
1218		cpu_timer_sample_group(timer->it_clock, p, &now);
1219		bump_cpu_timer(timer, now);
1220		/* Leave the tasklist_lock locked for the call below.  */
1221	}
1222
1223	/*
1224	 * Now re-arm for the new expiry time.
1225	 */
1226	BUG_ON(!irqs_disabled());
1227	arm_timer(timer);
1228	spin_unlock(&p->sighand->siglock);
1229
1230out_unlock:
1231	read_unlock(&tasklist_lock);
1232
 
 
1233out:
1234	timer->it_overrun_last = timer->it_overrun;
1235	timer->it_overrun = -1;
1236	++timer->it_requeue_pending;
1237}
1238
1239/**
1240 * task_cputime_expired - Compare two task_cputime entities.
1241 *
1242 * @sample:	The task_cputime structure to be checked for expiration.
1243 * @expires:	Expiration times, against which @sample will be checked.
1244 *
1245 * Checks @sample against @expires to see if any field of @sample has expired.
1246 * Returns true if any field of the former is greater than the corresponding
1247 * field of the latter if the latter field is set.  Otherwise returns false.
1248 */
1249static inline int task_cputime_expired(const struct task_cputime *sample,
1250					const struct task_cputime *expires)
1251{
1252	if (!cputime_eq(expires->utime, cputime_zero) &&
1253	    cputime_ge(sample->utime, expires->utime))
1254		return 1;
1255	if (!cputime_eq(expires->stime, cputime_zero) &&
1256	    cputime_ge(cputime_add(sample->utime, sample->stime),
1257		       expires->stime))
1258		return 1;
1259	if (expires->sum_exec_runtime != 0 &&
1260	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1261		return 1;
1262	return 0;
1263}
1264
1265/**
1266 * fastpath_timer_check - POSIX CPU timers fast path.
1267 *
1268 * @tsk:	The task (thread) being checked.
1269 *
1270 * Check the task and thread group timers.  If both are zero (there are no
1271 * timers set) return false.  Otherwise snapshot the task and thread group
1272 * timers and compare them with the corresponding expiration times.  Return
1273 * true if a timer has expired, else return false.
1274 */
1275static inline int fastpath_timer_check(struct task_struct *tsk)
1276{
1277	struct signal_struct *sig;
 
 
 
1278
1279	if (!task_cputime_zero(&tsk->cputime_expires)) {
1280		struct task_cputime task_sample = {
1281			.utime = tsk->utime,
1282			.stime = tsk->stime,
1283			.sum_exec_runtime = tsk->se.sum_exec_runtime
1284		};
1285
1286		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1287			return 1;
1288	}
1289
1290	sig = tsk->signal;
1291	if (sig->cputimer.running) {
1292		struct task_cputime group_sample;
1293
1294		spin_lock(&sig->cputimer.lock);
1295		group_sample = sig->cputimer.cputime;
1296		spin_unlock(&sig->cputimer.lock);
1297
1298		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1299			return 1;
1300	}
1301
1302	return 0;
1303}
1304
1305/*
1306 * This is called from the timer interrupt handler.  The irq handler has
1307 * already updated our counts.  We need to check if any timers fire now.
1308 * Interrupts are disabled.
1309 */
1310void run_posix_cpu_timers(struct task_struct *tsk)
1311{
1312	LIST_HEAD(firing);
1313	struct k_itimer *timer, *next;
1314	unsigned long flags;
1315
1316	BUG_ON(!irqs_disabled());
1317
1318	/*
1319	 * The fast path checks that there are no expired thread or thread
1320	 * group timers.  If that's so, just return.
1321	 */
1322	if (!fastpath_timer_check(tsk))
1323		return;
1324
1325	if (!lock_task_sighand(tsk, &flags))
1326		return;
1327	/*
1328	 * Here we take off tsk->signal->cpu_timers[N] and
1329	 * tsk->cpu_timers[N] all the timers that are firing, and
1330	 * put them on the firing list.
1331	 */
1332	check_thread_timers(tsk, &firing);
1333	/*
1334	 * If there are any active process wide timers (POSIX 1.b, itimers,
1335	 * RLIMIT_CPU) cputimer must be running.
1336	 */
1337	if (tsk->signal->cputimer.running)
1338		check_process_timers(tsk, &firing);
1339
1340	/*
1341	 * We must release these locks before taking any timer's lock.
1342	 * There is a potential race with timer deletion here, as the
1343	 * siglock now protects our private firing list.  We have set
1344	 * the firing flag in each timer, so that a deletion attempt
1345	 * that gets the timer lock before we do will give it up and
1346	 * spin until we've taken care of that timer below.
1347	 */
1348	unlock_task_sighand(tsk, &flags);
1349
1350	/*
1351	 * Now that all the timers on our list have the firing flag,
1352	 * no one will touch their list entries but us.  We'll take
1353	 * each timer's lock before clearing its firing flag, so no
1354	 * timer call will interfere.
1355	 */
1356	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1357		int cpu_firing;
1358
1359		spin_lock(&timer->it_lock);
1360		list_del_init(&timer->it.cpu.entry);
1361		cpu_firing = timer->it.cpu.firing;
1362		timer->it.cpu.firing = 0;
1363		/*
1364		 * The firing flag is -1 if we collided with a reset
1365		 * of the timer, which already reported this
1366		 * almost-firing as an overrun.  So don't generate an event.
1367		 */
1368		if (likely(cpu_firing >= 0))
1369			cpu_timer_fire(timer);
1370		spin_unlock(&timer->it_lock);
1371	}
1372}
1373
1374/*
1375 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1376 * The tsk->sighand->siglock must be held by the caller.
1377 */
1378void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1379			   cputime_t *newval, cputime_t *oldval)
1380{
1381	union cpu_time_count now;
1382
1383	BUG_ON(clock_idx == CPUCLOCK_SCHED);
1384	cpu_timer_sample_group(clock_idx, tsk, &now);
1385
1386	if (oldval) {
1387		/*
1388		 * We are setting itimer. The *oldval is absolute and we update
1389		 * it to be relative, *newval argument is relative and we update
1390		 * it to be absolute.
1391		 */
1392		if (!cputime_eq(*oldval, cputime_zero)) {
1393			if (cputime_le(*oldval, now.cpu)) {
1394				/* Just about to fire. */
1395				*oldval = cputime_one_jiffy;
1396			} else {
1397				*oldval = cputime_sub(*oldval, now.cpu);
1398			}
1399		}
1400
1401		if (cputime_eq(*newval, cputime_zero))
1402			return;
1403		*newval = cputime_add(*newval, now.cpu);
1404	}
1405
1406	/*
1407	 * Update expiration cache if we are the earliest timer, or eventually
1408	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1409	 */
1410	switch (clock_idx) {
1411	case CPUCLOCK_PROF:
1412		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1413			tsk->signal->cputime_expires.prof_exp = *newval;
1414		break;
1415	case CPUCLOCK_VIRT:
1416		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1417			tsk->signal->cputime_expires.virt_exp = *newval;
1418		break;
1419	}
 
 
1420}
1421
1422static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1423			    struct timespec *rqtp, struct itimerspec *it)
1424{
1425	struct k_itimer timer;
1426	int error;
1427
1428	/*
1429	 * Set up a temporary timer and then wait for it to go off.
1430	 */
1431	memset(&timer, 0, sizeof timer);
1432	spin_lock_init(&timer.it_lock);
1433	timer.it_clock = which_clock;
1434	timer.it_overrun = -1;
1435	error = posix_cpu_timer_create(&timer);
1436	timer.it_process = current;
1437	if (!error) {
1438		static struct itimerspec zero_it;
1439
1440		memset(it, 0, sizeof *it);
1441		it->it_value = *rqtp;
1442
1443		spin_lock_irq(&timer.it_lock);
1444		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1445		if (error) {
1446			spin_unlock_irq(&timer.it_lock);
1447			return error;
1448		}
1449
1450		while (!signal_pending(current)) {
1451			if (timer.it.cpu.expires.sched == 0) {
1452				/*
1453				 * Our timer fired and was reset.
 
1454				 */
 
1455				spin_unlock_irq(&timer.it_lock);
1456				return 0;
1457			}
1458
1459			/*
1460			 * Block until cpu_timer_fire (or a signal) wakes us.
1461			 */
1462			__set_current_state(TASK_INTERRUPTIBLE);
1463			spin_unlock_irq(&timer.it_lock);
1464			schedule();
1465			spin_lock_irq(&timer.it_lock);
1466		}
1467
1468		/*
1469		 * We were interrupted by a signal.
1470		 */
1471		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1472		posix_cpu_timer_set(&timer, 0, &zero_it, it);
 
 
 
 
 
 
1473		spin_unlock_irq(&timer.it_lock);
 
 
 
 
 
 
 
 
 
 
 
1474
1475		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1476			/*
1477			 * It actually did fire already.
1478			 */
1479			return 0;
1480		}
1481
1482		error = -ERESTART_RESTARTBLOCK;
1483	}
1484
1485	return error;
1486}
1487
1488static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1489
1490static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1491			    struct timespec *rqtp, struct timespec __user *rmtp)
1492{
1493	struct restart_block *restart_block =
1494		&current_thread_info()->restart_block;
1495	struct itimerspec it;
1496	int error;
1497
1498	/*
1499	 * Diagnose required errors first.
1500	 */
1501	if (CPUCLOCK_PERTHREAD(which_clock) &&
1502	    (CPUCLOCK_PID(which_clock) == 0 ||
1503	     CPUCLOCK_PID(which_clock) == current->pid))
1504		return -EINVAL;
1505
1506	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1507
1508	if (error == -ERESTART_RESTARTBLOCK) {
1509
1510		if (flags & TIMER_ABSTIME)
1511			return -ERESTARTNOHAND;
1512		/*
1513		 * Report back to the user the time still remaining.
1514		 */
1515		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1516			return -EFAULT;
1517
1518		restart_block->fn = posix_cpu_nsleep_restart;
1519		restart_block->nanosleep.clockid = which_clock;
1520		restart_block->nanosleep.rmtp = rmtp;
1521		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1522	}
1523	return error;
1524}
1525
1526static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1527{
1528	clockid_t which_clock = restart_block->nanosleep.clockid;
1529	struct timespec t;
1530	struct itimerspec it;
1531	int error;
1532
1533	t = ns_to_timespec(restart_block->nanosleep.expires);
1534
1535	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1536
1537	if (error == -ERESTART_RESTARTBLOCK) {
1538		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1539		/*
1540		 * Report back to the user the time still remaining.
1541		 */
1542		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1543			return -EFAULT;
1544
1545		restart_block->nanosleep.expires = timespec_to_ns(&t);
1546	}
1547	return error;
1548
1549}
1550
1551#define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1552#define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1553
1554static int process_cpu_clock_getres(const clockid_t which_clock,
1555				    struct timespec *tp)
1556{
1557	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1558}
1559static int process_cpu_clock_get(const clockid_t which_clock,
1560				 struct timespec *tp)
1561{
1562	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1563}
1564static int process_cpu_timer_create(struct k_itimer *timer)
1565{
1566	timer->it_clock = PROCESS_CLOCK;
1567	return posix_cpu_timer_create(timer);
1568}
1569static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1570			      struct timespec *rqtp,
1571			      struct timespec __user *rmtp)
1572{
1573	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1574}
1575static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1576{
1577	return -EINVAL;
1578}
1579static int thread_cpu_clock_getres(const clockid_t which_clock,
1580				   struct timespec *tp)
1581{
1582	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1583}
1584static int thread_cpu_clock_get(const clockid_t which_clock,
1585				struct timespec *tp)
1586{
1587	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1588}
1589static int thread_cpu_timer_create(struct k_itimer *timer)
1590{
1591	timer->it_clock = THREAD_CLOCK;
1592	return posix_cpu_timer_create(timer);
1593}
1594
1595struct k_clock clock_posix_cpu = {
1596	.clock_getres	= posix_cpu_clock_getres,
1597	.clock_set	= posix_cpu_clock_set,
1598	.clock_get	= posix_cpu_clock_get,
1599	.timer_create	= posix_cpu_timer_create,
1600	.nsleep		= posix_cpu_nsleep,
1601	.nsleep_restart	= posix_cpu_nsleep_restart,
1602	.timer_set	= posix_cpu_timer_set,
1603	.timer_del	= posix_cpu_timer_del,
1604	.timer_get	= posix_cpu_timer_get,
1605};
1606
1607static __init int init_posix_cpu_timers(void)
1608{
1609	struct k_clock process = {
1610		.clock_getres	= process_cpu_clock_getres,
1611		.clock_get	= process_cpu_clock_get,
1612		.timer_create	= process_cpu_timer_create,
1613		.nsleep		= process_cpu_nsleep,
1614		.nsleep_restart	= process_cpu_nsleep_restart,
1615	};
1616	struct k_clock thread = {
1617		.clock_getres	= thread_cpu_clock_getres,
1618		.clock_get	= thread_cpu_clock_get,
1619		.timer_create	= thread_cpu_timer_create,
1620	};
1621	struct timespec ts;
1622
1623	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1624	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1625
1626	cputime_to_timespec(cputime_one_jiffy, &ts);
1627	onecputick = ts.tv_nsec;
1628	WARN_ON(ts.tv_sec != 0);
1629
1630	return 0;
1631}
1632__initcall(init_posix_cpu_timers);