Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/export.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/proc_fs.h>
 41
 42#define pid_hashfn(nr, ns)	\
 43	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
 44static struct hlist_head *pid_hash;
 45static unsigned int pidhash_shift = 4;
 46struct pid init_struct_pid = INIT_STRUCT_PID;
 47
 48int pid_max = PID_MAX_DEFAULT;
 49
 50#define RESERVED_PIDS		300
 51
 52int pid_max_min = RESERVED_PIDS + 1;
 53int pid_max_max = PID_MAX_LIMIT;
 54
 
 
 
 55static inline int mk_pid(struct pid_namespace *pid_ns,
 56		struct pidmap *map, int off)
 57{
 58	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
 59}
 60
 61#define find_next_offset(map, off)					\
 62		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 63
 64/*
 65 * PID-map pages start out as NULL, they get allocated upon
 66 * first use and are never deallocated. This way a low pid_max
 67 * value does not cause lots of bitmaps to be allocated, but
 68 * the scheme scales to up to 4 million PIDs, runtime.
 69 */
 70struct pid_namespace init_pid_ns = {
 71	.kref = {
 72		.refcount       = ATOMIC_INIT(2),
 73	},
 74	.pidmap = {
 75		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 76	},
 77	.last_pid = 0,
 78	.nr_hashed = PIDNS_HASH_ADDING,
 79	.level = 0,
 80	.child_reaper = &init_task,
 81	.user_ns = &init_user_ns,
 82	.proc_inum = PROC_PID_INIT_INO,
 83};
 84EXPORT_SYMBOL_GPL(init_pid_ns);
 85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86/*
 87 * Note: disable interrupts while the pidmap_lock is held as an
 88 * interrupt might come in and do read_lock(&tasklist_lock).
 89 *
 90 * If we don't disable interrupts there is a nasty deadlock between
 91 * detach_pid()->free_pid() and another cpu that does
 92 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 93 * read_lock(&tasklist_lock);
 94 *
 95 * After we clean up the tasklist_lock and know there are no
 96 * irq handlers that take it we can leave the interrupts enabled.
 97 * For now it is easier to be safe than to prove it can't happen.
 98 */
 99
100static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
101
102static void free_pidmap(struct upid *upid)
103{
104	int nr = upid->nr;
105	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
106	int offset = nr & BITS_PER_PAGE_MASK;
107
108	clear_bit(offset, map->page);
109	atomic_inc(&map->nr_free);
110}
111
112/*
113 * If we started walking pids at 'base', is 'a' seen before 'b'?
114 */
115static int pid_before(int base, int a, int b)
116{
117	/*
118	 * This is the same as saying
119	 *
120	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
121	 * and that mapping orders 'a' and 'b' with respect to 'base'.
122	 */
123	return (unsigned)(a - base) < (unsigned)(b - base);
124}
125
126/*
127 * We might be racing with someone else trying to set pid_ns->last_pid
128 * at the pid allocation time (there's also a sysctl for this, but racing
129 * with this one is OK, see comment in kernel/pid_namespace.c about it).
130 * We want the winner to have the "later" value, because if the
131 * "earlier" value prevails, then a pid may get reused immediately.
132 *
133 * Since pids rollover, it is not sufficient to just pick the bigger
134 * value.  We have to consider where we started counting from.
135 *
136 * 'base' is the value of pid_ns->last_pid that we observed when
137 * we started looking for a pid.
138 *
139 * 'pid' is the pid that we eventually found.
140 */
141static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
142{
143	int prev;
144	int last_write = base;
145	do {
146		prev = last_write;
147		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
148	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
149}
150
151static int alloc_pidmap(struct pid_namespace *pid_ns)
152{
153	int i, offset, max_scan, pid, last = pid_ns->last_pid;
154	struct pidmap *map;
155
156	pid = last + 1;
157	if (pid >= pid_max)
158		pid = RESERVED_PIDS;
159	offset = pid & BITS_PER_PAGE_MASK;
160	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
161	/*
162	 * If last_pid points into the middle of the map->page we
163	 * want to scan this bitmap block twice, the second time
164	 * we start with offset == 0 (or RESERVED_PIDS).
165	 */
166	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
167	for (i = 0; i <= max_scan; ++i) {
168		if (unlikely(!map->page)) {
169			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
170			/*
171			 * Free the page if someone raced with us
172			 * installing it:
173			 */
174			spin_lock_irq(&pidmap_lock);
175			if (!map->page) {
176				map->page = page;
177				page = NULL;
178			}
179			spin_unlock_irq(&pidmap_lock);
180			kfree(page);
181			if (unlikely(!map->page))
182				break;
183		}
184		if (likely(atomic_read(&map->nr_free))) {
185			for ( ; ; ) {
186				if (!test_and_set_bit(offset, map->page)) {
187					atomic_dec(&map->nr_free);
188					set_last_pid(pid_ns, last, pid);
189					return pid;
190				}
191				offset = find_next_offset(map, offset);
192				if (offset >= BITS_PER_PAGE)
193					break;
194				pid = mk_pid(pid_ns, map, offset);
195				if (pid >= pid_max)
196					break;
197			}
198		}
199		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
200			++map;
201			offset = 0;
202		} else {
203			map = &pid_ns->pidmap[0];
204			offset = RESERVED_PIDS;
205			if (unlikely(last == offset))
206				break;
207		}
208		pid = mk_pid(pid_ns, map, offset);
209	}
210	return -1;
211}
212
213int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
214{
215	int offset;
216	struct pidmap *map, *end;
217
218	if (last >= PID_MAX_LIMIT)
219		return -1;
220
221	offset = (last + 1) & BITS_PER_PAGE_MASK;
222	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
223	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
224	for (; map < end; map++, offset = 0) {
225		if (unlikely(!map->page))
226			continue;
227		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
228		if (offset < BITS_PER_PAGE)
229			return mk_pid(pid_ns, map, offset);
230	}
231	return -1;
232}
233
234void put_pid(struct pid *pid)
235{
236	struct pid_namespace *ns;
237
238	if (!pid)
239		return;
240
241	ns = pid->numbers[pid->level].ns;
242	if ((atomic_read(&pid->count) == 1) ||
243	     atomic_dec_and_test(&pid->count)) {
244		kmem_cache_free(ns->pid_cachep, pid);
245		put_pid_ns(ns);
246	}
247}
248EXPORT_SYMBOL_GPL(put_pid);
249
250static void delayed_put_pid(struct rcu_head *rhp)
251{
252	struct pid *pid = container_of(rhp, struct pid, rcu);
253	put_pid(pid);
254}
255
256void free_pid(struct pid *pid)
257{
258	/* We can be called with write_lock_irq(&tasklist_lock) held */
259	int i;
260	unsigned long flags;
261
262	spin_lock_irqsave(&pidmap_lock, flags);
263	for (i = 0; i <= pid->level; i++) {
264		struct upid *upid = pid->numbers + i;
265		struct pid_namespace *ns = upid->ns;
266		hlist_del_rcu(&upid->pid_chain);
267		switch(--ns->nr_hashed) {
268		case 2:
269		case 1:
270			/* When all that is left in the pid namespace
271			 * is the reaper wake up the reaper.  The reaper
272			 * may be sleeping in zap_pid_ns_processes().
273			 */
274			wake_up_process(ns->child_reaper);
275			break;
276		case PIDNS_HASH_ADDING:
277			/* Handle a fork failure of the first process */
278			WARN_ON(ns->child_reaper);
279			ns->nr_hashed = 0;
280			/* fall through */
281		case 0:
282			schedule_work(&ns->proc_work);
283			break;
284		}
285	}
286	spin_unlock_irqrestore(&pidmap_lock, flags);
287
288	for (i = 0; i <= pid->level; i++)
289		free_pidmap(pid->numbers + i);
290
291	call_rcu(&pid->rcu, delayed_put_pid);
292}
293
294struct pid *alloc_pid(struct pid_namespace *ns)
295{
296	struct pid *pid;
297	enum pid_type type;
298	int i, nr;
299	struct pid_namespace *tmp;
300	struct upid *upid;
301
302	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
303	if (!pid)
304		goto out;
305
306	tmp = ns;
307	pid->level = ns->level;
308	for (i = ns->level; i >= 0; i--) {
309		nr = alloc_pidmap(tmp);
310		if (nr < 0)
311			goto out_free;
312
313		pid->numbers[i].nr = nr;
314		pid->numbers[i].ns = tmp;
315		tmp = tmp->parent;
316	}
317
318	if (unlikely(is_child_reaper(pid))) {
319		if (pid_ns_prepare_proc(ns))
320			goto out_free;
321	}
322
323	get_pid_ns(ns);
 
324	atomic_set(&pid->count, 1);
325	for (type = 0; type < PIDTYPE_MAX; ++type)
326		INIT_HLIST_HEAD(&pid->tasks[type]);
327
328	upid = pid->numbers + ns->level;
329	spin_lock_irq(&pidmap_lock);
330	if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
331		goto out_unlock;
332	for ( ; upid >= pid->numbers; --upid) {
333		hlist_add_head_rcu(&upid->pid_chain,
334				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
335		upid->ns->nr_hashed++;
336	}
337	spin_unlock_irq(&pidmap_lock);
338
339out:
340	return pid;
341
342out_unlock:
343	spin_unlock_irq(&pidmap_lock);
344out_free:
345	while (++i <= ns->level)
346		free_pidmap(pid->numbers + i);
347
348	kmem_cache_free(ns->pid_cachep, pid);
349	pid = NULL;
350	goto out;
351}
352
353void disable_pid_allocation(struct pid_namespace *ns)
354{
355	spin_lock_irq(&pidmap_lock);
356	ns->nr_hashed &= ~PIDNS_HASH_ADDING;
357	spin_unlock_irq(&pidmap_lock);
358}
359
360struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
361{
 
362	struct upid *pnr;
363
364	hlist_for_each_entry_rcu(pnr,
365			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
366		if (pnr->nr == nr && pnr->ns == ns)
367			return container_of(pnr, struct pid,
368					numbers[ns->level]);
369
370	return NULL;
371}
372EXPORT_SYMBOL_GPL(find_pid_ns);
373
374struct pid *find_vpid(int nr)
375{
376	return find_pid_ns(nr, task_active_pid_ns(current));
377}
378EXPORT_SYMBOL_GPL(find_vpid);
379
380/*
381 * attach_pid() must be called with the tasklist_lock write-held.
382 */
383void attach_pid(struct task_struct *task, enum pid_type type)
 
384{
385	struct pid_link *link = &task->pids[type];
386	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
 
 
 
387}
388
389static void __change_pid(struct task_struct *task, enum pid_type type,
390			struct pid *new)
391{
392	struct pid_link *link;
393	struct pid *pid;
394	int tmp;
395
396	link = &task->pids[type];
397	pid = link->pid;
398
399	hlist_del_rcu(&link->node);
400	link->pid = new;
401
402	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
403		if (!hlist_empty(&pid->tasks[tmp]))
404			return;
405
406	free_pid(pid);
407}
408
409void detach_pid(struct task_struct *task, enum pid_type type)
410{
411	__change_pid(task, type, NULL);
412}
413
414void change_pid(struct task_struct *task, enum pid_type type,
415		struct pid *pid)
416{
417	__change_pid(task, type, pid);
418	attach_pid(task, type);
419}
420
421/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
422void transfer_pid(struct task_struct *old, struct task_struct *new,
423			   enum pid_type type)
424{
425	new->pids[type].pid = old->pids[type].pid;
426	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
427}
428
429struct task_struct *pid_task(struct pid *pid, enum pid_type type)
430{
431	struct task_struct *result = NULL;
432	if (pid) {
433		struct hlist_node *first;
434		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
435					      lockdep_tasklist_lock_is_held());
436		if (first)
437			result = hlist_entry(first, struct task_struct, pids[(type)].node);
438	}
439	return result;
440}
441EXPORT_SYMBOL(pid_task);
442
443/*
444 * Must be called under rcu_read_lock().
445 */
446struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
447{
448	rcu_lockdep_assert(rcu_read_lock_held(),
449			   "find_task_by_pid_ns() needs rcu_read_lock()"
450			   " protection");
451	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
452}
453
454struct task_struct *find_task_by_vpid(pid_t vnr)
455{
456	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
457}
458
459struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
460{
461	struct pid *pid;
462	rcu_read_lock();
463	if (type != PIDTYPE_PID)
464		task = task->group_leader;
465	pid = get_pid(task->pids[type].pid);
466	rcu_read_unlock();
467	return pid;
468}
469EXPORT_SYMBOL_GPL(get_task_pid);
470
471struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
472{
473	struct task_struct *result;
474	rcu_read_lock();
475	result = pid_task(pid, type);
476	if (result)
477		get_task_struct(result);
478	rcu_read_unlock();
479	return result;
480}
481EXPORT_SYMBOL_GPL(get_pid_task);
482
483struct pid *find_get_pid(pid_t nr)
484{
485	struct pid *pid;
486
487	rcu_read_lock();
488	pid = get_pid(find_vpid(nr));
489	rcu_read_unlock();
490
491	return pid;
492}
493EXPORT_SYMBOL_GPL(find_get_pid);
494
495pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
496{
497	struct upid *upid;
498	pid_t nr = 0;
499
500	if (pid && ns->level <= pid->level) {
501		upid = &pid->numbers[ns->level];
502		if (upid->ns == ns)
503			nr = upid->nr;
504	}
505	return nr;
506}
507EXPORT_SYMBOL_GPL(pid_nr_ns);
508
509pid_t pid_vnr(struct pid *pid)
510{
511	return pid_nr_ns(pid, task_active_pid_ns(current));
512}
513EXPORT_SYMBOL_GPL(pid_vnr);
514
515pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
516			struct pid_namespace *ns)
517{
518	pid_t nr = 0;
519
520	rcu_read_lock();
521	if (!ns)
522		ns = task_active_pid_ns(current);
523	if (likely(pid_alive(task))) {
524		if (type != PIDTYPE_PID)
525			task = task->group_leader;
526		nr = pid_nr_ns(task->pids[type].pid, ns);
527	}
528	rcu_read_unlock();
529
530	return nr;
531}
532EXPORT_SYMBOL(__task_pid_nr_ns);
533
534pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
535{
536	return pid_nr_ns(task_tgid(tsk), ns);
537}
538EXPORT_SYMBOL(task_tgid_nr_ns);
539
540struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
541{
542	return ns_of_pid(task_pid(tsk));
543}
544EXPORT_SYMBOL_GPL(task_active_pid_ns);
545
546/*
547 * Used by proc to find the first pid that is greater than or equal to nr.
548 *
549 * If there is a pid at nr this function is exactly the same as find_pid_ns.
550 */
551struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
552{
553	struct pid *pid;
554
555	do {
556		pid = find_pid_ns(nr, ns);
557		if (pid)
558			break;
559		nr = next_pidmap(ns, nr);
560	} while (nr > 0);
561
562	return pid;
563}
564
565/*
566 * The pid hash table is scaled according to the amount of memory in the
567 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
568 * more.
569 */
570void __init pidhash_init(void)
571{
572	unsigned int i, pidhash_size;
573
574	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
575					   HASH_EARLY | HASH_SMALL,
576					   &pidhash_shift, NULL,
577					   0, 4096);
578	pidhash_size = 1U << pidhash_shift;
579
580	for (i = 0; i < pidhash_size; i++)
581		INIT_HLIST_HEAD(&pid_hash[i]);
582}
583
584void __init pidmap_init(void)
585{
586	/* Veryify no one has done anything silly */
587	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
588
589	/* bump default and minimum pid_max based on number of cpus */
590	pid_max = min(pid_max_max, max_t(int, pid_max,
591				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
592	pid_max_min = max_t(int, pid_max_min,
593				PIDS_PER_CPU_MIN * num_possible_cpus());
594	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
595
596	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
597	/* Reserve PID 0. We never call free_pidmap(0) */
598	set_bit(0, init_pid_ns.pidmap[0].page);
599	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
600
601	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
602			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
603}
v3.1
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 William Irwin, IBM
  5 * (C) 2004 William Irwin, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/module.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 
 
 39
 40#define pid_hashfn(nr, ns)	\
 41	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
 42static struct hlist_head *pid_hash;
 43static unsigned int pidhash_shift = 4;
 44struct pid init_struct_pid = INIT_STRUCT_PID;
 45
 46int pid_max = PID_MAX_DEFAULT;
 47
 48#define RESERVED_PIDS		300
 49
 50int pid_max_min = RESERVED_PIDS + 1;
 51int pid_max_max = PID_MAX_LIMIT;
 52
 53#define BITS_PER_PAGE		(PAGE_SIZE*8)
 54#define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
 55
 56static inline int mk_pid(struct pid_namespace *pid_ns,
 57		struct pidmap *map, int off)
 58{
 59	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
 60}
 61
 62#define find_next_offset(map, off)					\
 63		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 64
 65/*
 66 * PID-map pages start out as NULL, they get allocated upon
 67 * first use and are never deallocated. This way a low pid_max
 68 * value does not cause lots of bitmaps to be allocated, but
 69 * the scheme scales to up to 4 million PIDs, runtime.
 70 */
 71struct pid_namespace init_pid_ns = {
 72	.kref = {
 73		.refcount       = ATOMIC_INIT(2),
 74	},
 75	.pidmap = {
 76		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 77	},
 78	.last_pid = 0,
 
 79	.level = 0,
 80	.child_reaper = &init_task,
 
 
 81};
 82EXPORT_SYMBOL_GPL(init_pid_ns);
 83
 84int is_container_init(struct task_struct *tsk)
 85{
 86	int ret = 0;
 87	struct pid *pid;
 88
 89	rcu_read_lock();
 90	pid = task_pid(tsk);
 91	if (pid != NULL && pid->numbers[pid->level].nr == 1)
 92		ret = 1;
 93	rcu_read_unlock();
 94
 95	return ret;
 96}
 97EXPORT_SYMBOL(is_container_init);
 98
 99/*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
112
113static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
115static void free_pidmap(struct upid *upid)
116{
117	int nr = upid->nr;
118	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119	int offset = nr & BITS_PER_PAGE_MASK;
120
121	clear_bit(offset, map->page);
122	atomic_inc(&map->nr_free);
123}
124
125/*
126 * If we started walking pids at 'base', is 'a' seen before 'b'?
127 */
128static int pid_before(int base, int a, int b)
129{
130	/*
131	 * This is the same as saying
132	 *
133	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
134	 * and that mapping orders 'a' and 'b' with respect to 'base'.
135	 */
136	return (unsigned)(a - base) < (unsigned)(b - base);
137}
138
139/*
140 * We might be racing with someone else trying to set pid_ns->last_pid.
 
 
141 * We want the winner to have the "later" value, because if the
142 * "earlier" value prevails, then a pid may get reused immediately.
143 *
144 * Since pids rollover, it is not sufficient to just pick the bigger
145 * value.  We have to consider where we started counting from.
146 *
147 * 'base' is the value of pid_ns->last_pid that we observed when
148 * we started looking for a pid.
149 *
150 * 'pid' is the pid that we eventually found.
151 */
152static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
153{
154	int prev;
155	int last_write = base;
156	do {
157		prev = last_write;
158		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
159	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
160}
161
162static int alloc_pidmap(struct pid_namespace *pid_ns)
163{
164	int i, offset, max_scan, pid, last = pid_ns->last_pid;
165	struct pidmap *map;
166
167	pid = last + 1;
168	if (pid >= pid_max)
169		pid = RESERVED_PIDS;
170	offset = pid & BITS_PER_PAGE_MASK;
171	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
172	/*
173	 * If last_pid points into the middle of the map->page we
174	 * want to scan this bitmap block twice, the second time
175	 * we start with offset == 0 (or RESERVED_PIDS).
176	 */
177	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
178	for (i = 0; i <= max_scan; ++i) {
179		if (unlikely(!map->page)) {
180			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
181			/*
182			 * Free the page if someone raced with us
183			 * installing it:
184			 */
185			spin_lock_irq(&pidmap_lock);
186			if (!map->page) {
187				map->page = page;
188				page = NULL;
189			}
190			spin_unlock_irq(&pidmap_lock);
191			kfree(page);
192			if (unlikely(!map->page))
193				break;
194		}
195		if (likely(atomic_read(&map->nr_free))) {
196			do {
197				if (!test_and_set_bit(offset, map->page)) {
198					atomic_dec(&map->nr_free);
199					set_last_pid(pid_ns, last, pid);
200					return pid;
201				}
202				offset = find_next_offset(map, offset);
 
 
203				pid = mk_pid(pid_ns, map, offset);
204			} while (offset < BITS_PER_PAGE && pid < pid_max);
 
 
205		}
206		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
207			++map;
208			offset = 0;
209		} else {
210			map = &pid_ns->pidmap[0];
211			offset = RESERVED_PIDS;
212			if (unlikely(last == offset))
213				break;
214		}
215		pid = mk_pid(pid_ns, map, offset);
216	}
217	return -1;
218}
219
220int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
221{
222	int offset;
223	struct pidmap *map, *end;
224
225	if (last >= PID_MAX_LIMIT)
226		return -1;
227
228	offset = (last + 1) & BITS_PER_PAGE_MASK;
229	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
230	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
231	for (; map < end; map++, offset = 0) {
232		if (unlikely(!map->page))
233			continue;
234		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
235		if (offset < BITS_PER_PAGE)
236			return mk_pid(pid_ns, map, offset);
237	}
238	return -1;
239}
240
241void put_pid(struct pid *pid)
242{
243	struct pid_namespace *ns;
244
245	if (!pid)
246		return;
247
248	ns = pid->numbers[pid->level].ns;
249	if ((atomic_read(&pid->count) == 1) ||
250	     atomic_dec_and_test(&pid->count)) {
251		kmem_cache_free(ns->pid_cachep, pid);
252		put_pid_ns(ns);
253	}
254}
255EXPORT_SYMBOL_GPL(put_pid);
256
257static void delayed_put_pid(struct rcu_head *rhp)
258{
259	struct pid *pid = container_of(rhp, struct pid, rcu);
260	put_pid(pid);
261}
262
263void free_pid(struct pid *pid)
264{
265	/* We can be called with write_lock_irq(&tasklist_lock) held */
266	int i;
267	unsigned long flags;
268
269	spin_lock_irqsave(&pidmap_lock, flags);
270	for (i = 0; i <= pid->level; i++)
271		hlist_del_rcu(&pid->numbers[i].pid_chain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272	spin_unlock_irqrestore(&pidmap_lock, flags);
273
274	for (i = 0; i <= pid->level; i++)
275		free_pidmap(pid->numbers + i);
276
277	call_rcu(&pid->rcu, delayed_put_pid);
278}
279
280struct pid *alloc_pid(struct pid_namespace *ns)
281{
282	struct pid *pid;
283	enum pid_type type;
284	int i, nr;
285	struct pid_namespace *tmp;
286	struct upid *upid;
287
288	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
289	if (!pid)
290		goto out;
291
292	tmp = ns;
 
293	for (i = ns->level; i >= 0; i--) {
294		nr = alloc_pidmap(tmp);
295		if (nr < 0)
296			goto out_free;
297
298		pid->numbers[i].nr = nr;
299		pid->numbers[i].ns = tmp;
300		tmp = tmp->parent;
301	}
302
 
 
 
 
 
303	get_pid_ns(ns);
304	pid->level = ns->level;
305	atomic_set(&pid->count, 1);
306	for (type = 0; type < PIDTYPE_MAX; ++type)
307		INIT_HLIST_HEAD(&pid->tasks[type]);
308
309	upid = pid->numbers + ns->level;
310	spin_lock_irq(&pidmap_lock);
311	for ( ; upid >= pid->numbers; --upid)
 
 
312		hlist_add_head_rcu(&upid->pid_chain,
313				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
 
 
314	spin_unlock_irq(&pidmap_lock);
315
316out:
317	return pid;
318
 
 
319out_free:
320	while (++i <= ns->level)
321		free_pidmap(pid->numbers + i);
322
323	kmem_cache_free(ns->pid_cachep, pid);
324	pid = NULL;
325	goto out;
326}
327
 
 
 
 
 
 
 
328struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
329{
330	struct hlist_node *elem;
331	struct upid *pnr;
332
333	hlist_for_each_entry_rcu(pnr, elem,
334			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
335		if (pnr->nr == nr && pnr->ns == ns)
336			return container_of(pnr, struct pid,
337					numbers[ns->level]);
338
339	return NULL;
340}
341EXPORT_SYMBOL_GPL(find_pid_ns);
342
343struct pid *find_vpid(int nr)
344{
345	return find_pid_ns(nr, current->nsproxy->pid_ns);
346}
347EXPORT_SYMBOL_GPL(find_vpid);
348
349/*
350 * attach_pid() must be called with the tasklist_lock write-held.
351 */
352void attach_pid(struct task_struct *task, enum pid_type type,
353		struct pid *pid)
354{
355	struct pid_link *link;
356
357	link = &task->pids[type];
358	link->pid = pid;
359	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
360}
361
362static void __change_pid(struct task_struct *task, enum pid_type type,
363			struct pid *new)
364{
365	struct pid_link *link;
366	struct pid *pid;
367	int tmp;
368
369	link = &task->pids[type];
370	pid = link->pid;
371
372	hlist_del_rcu(&link->node);
373	link->pid = new;
374
375	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
376		if (!hlist_empty(&pid->tasks[tmp]))
377			return;
378
379	free_pid(pid);
380}
381
382void detach_pid(struct task_struct *task, enum pid_type type)
383{
384	__change_pid(task, type, NULL);
385}
386
387void change_pid(struct task_struct *task, enum pid_type type,
388		struct pid *pid)
389{
390	__change_pid(task, type, pid);
391	attach_pid(task, type, pid);
392}
393
394/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
395void transfer_pid(struct task_struct *old, struct task_struct *new,
396			   enum pid_type type)
397{
398	new->pids[type].pid = old->pids[type].pid;
399	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
400}
401
402struct task_struct *pid_task(struct pid *pid, enum pid_type type)
403{
404	struct task_struct *result = NULL;
405	if (pid) {
406		struct hlist_node *first;
407		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
408					      lockdep_tasklist_lock_is_held());
409		if (first)
410			result = hlist_entry(first, struct task_struct, pids[(type)].node);
411	}
412	return result;
413}
414EXPORT_SYMBOL(pid_task);
415
416/*
417 * Must be called under rcu_read_lock().
418 */
419struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
420{
421	rcu_lockdep_assert(rcu_read_lock_held());
 
 
422	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
423}
424
425struct task_struct *find_task_by_vpid(pid_t vnr)
426{
427	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
428}
429
430struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
431{
432	struct pid *pid;
433	rcu_read_lock();
434	if (type != PIDTYPE_PID)
435		task = task->group_leader;
436	pid = get_pid(task->pids[type].pid);
437	rcu_read_unlock();
438	return pid;
439}
440EXPORT_SYMBOL_GPL(get_task_pid);
441
442struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
443{
444	struct task_struct *result;
445	rcu_read_lock();
446	result = pid_task(pid, type);
447	if (result)
448		get_task_struct(result);
449	rcu_read_unlock();
450	return result;
451}
452EXPORT_SYMBOL_GPL(get_pid_task);
453
454struct pid *find_get_pid(pid_t nr)
455{
456	struct pid *pid;
457
458	rcu_read_lock();
459	pid = get_pid(find_vpid(nr));
460	rcu_read_unlock();
461
462	return pid;
463}
464EXPORT_SYMBOL_GPL(find_get_pid);
465
466pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
467{
468	struct upid *upid;
469	pid_t nr = 0;
470
471	if (pid && ns->level <= pid->level) {
472		upid = &pid->numbers[ns->level];
473		if (upid->ns == ns)
474			nr = upid->nr;
475	}
476	return nr;
477}
 
478
479pid_t pid_vnr(struct pid *pid)
480{
481	return pid_nr_ns(pid, current->nsproxy->pid_ns);
482}
483EXPORT_SYMBOL_GPL(pid_vnr);
484
485pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
486			struct pid_namespace *ns)
487{
488	pid_t nr = 0;
489
490	rcu_read_lock();
491	if (!ns)
492		ns = current->nsproxy->pid_ns;
493	if (likely(pid_alive(task))) {
494		if (type != PIDTYPE_PID)
495			task = task->group_leader;
496		nr = pid_nr_ns(task->pids[type].pid, ns);
497	}
498	rcu_read_unlock();
499
500	return nr;
501}
502EXPORT_SYMBOL(__task_pid_nr_ns);
503
504pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
505{
506	return pid_nr_ns(task_tgid(tsk), ns);
507}
508EXPORT_SYMBOL(task_tgid_nr_ns);
509
510struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
511{
512	return ns_of_pid(task_pid(tsk));
513}
514EXPORT_SYMBOL_GPL(task_active_pid_ns);
515
516/*
517 * Used by proc to find the first pid that is greater than or equal to nr.
518 *
519 * If there is a pid at nr this function is exactly the same as find_pid_ns.
520 */
521struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
522{
523	struct pid *pid;
524
525	do {
526		pid = find_pid_ns(nr, ns);
527		if (pid)
528			break;
529		nr = next_pidmap(ns, nr);
530	} while (nr > 0);
531
532	return pid;
533}
534
535/*
536 * The pid hash table is scaled according to the amount of memory in the
537 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
538 * more.
539 */
540void __init pidhash_init(void)
541{
542	int i, pidhash_size;
543
544	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
545					   HASH_EARLY | HASH_SMALL,
546					   &pidhash_shift, NULL, 4096);
547	pidhash_size = 1 << pidhash_shift;
 
548
549	for (i = 0; i < pidhash_size; i++)
550		INIT_HLIST_HEAD(&pid_hash[i]);
551}
552
553void __init pidmap_init(void)
554{
 
 
 
555	/* bump default and minimum pid_max based on number of cpus */
556	pid_max = min(pid_max_max, max_t(int, pid_max,
557				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
558	pid_max_min = max_t(int, pid_max_min,
559				PIDS_PER_CPU_MIN * num_possible_cpus());
560	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
561
562	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
563	/* Reserve PID 0. We never call free_pidmap(0) */
564	set_bit(0, init_pid_ns.pidmap[0].page);
565	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
566
567	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
568			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
569}