Loading...
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/unistd.h>
17#include <linux/module.h>
18#include <linux/vmalloc.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/mempolicy.h>
22#include <linux/sem.h>
23#include <linux/file.h>
24#include <linux/fdtable.h>
25#include <linux/iocontext.h>
26#include <linux/key.h>
27#include <linux/binfmts.h>
28#include <linux/mman.h>
29#include <linux/mmu_notifier.h>
30#include <linux/fs.h>
31#include <linux/mm.h>
32#include <linux/vmacache.h>
33#include <linux/nsproxy.h>
34#include <linux/capability.h>
35#include <linux/cpu.h>
36#include <linux/cgroup.h>
37#include <linux/security.h>
38#include <linux/hugetlb.h>
39#include <linux/seccomp.h>
40#include <linux/swap.h>
41#include <linux/syscalls.h>
42#include <linux/jiffies.h>
43#include <linux/futex.h>
44#include <linux/compat.h>
45#include <linux/kthread.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/rcupdate.h>
48#include <linux/ptrace.h>
49#include <linux/mount.h>
50#include <linux/audit.h>
51#include <linux/memcontrol.h>
52#include <linux/ftrace.h>
53#include <linux/proc_fs.h>
54#include <linux/profile.h>
55#include <linux/rmap.h>
56#include <linux/ksm.h>
57#include <linux/acct.h>
58#include <linux/tsacct_kern.h>
59#include <linux/cn_proc.h>
60#include <linux/freezer.h>
61#include <linux/delayacct.h>
62#include <linux/taskstats_kern.h>
63#include <linux/random.h>
64#include <linux/tty.h>
65#include <linux/blkdev.h>
66#include <linux/fs_struct.h>
67#include <linux/magic.h>
68#include <linux/perf_event.h>
69#include <linux/posix-timers.h>
70#include <linux/user-return-notifier.h>
71#include <linux/oom.h>
72#include <linux/khugepaged.h>
73#include <linux/signalfd.h>
74#include <linux/uprobes.h>
75#include <linux/aio.h>
76#include <linux/compiler.h>
77
78#include <asm/pgtable.h>
79#include <asm/pgalloc.h>
80#include <asm/uaccess.h>
81#include <asm/mmu_context.h>
82#include <asm/cacheflush.h>
83#include <asm/tlbflush.h>
84
85#include <trace/events/sched.h>
86
87#define CREATE_TRACE_POINTS
88#include <trace/events/task.h>
89
90/*
91 * Protected counters by write_lock_irq(&tasklist_lock)
92 */
93unsigned long total_forks; /* Handle normal Linux uptimes. */
94int nr_threads; /* The idle threads do not count.. */
95
96int max_threads; /* tunable limit on nr_threads */
97
98DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101
102#ifdef CONFIG_PROVE_RCU
103int lockdep_tasklist_lock_is_held(void)
104{
105 return lockdep_is_held(&tasklist_lock);
106}
107EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108#endif /* #ifdef CONFIG_PROVE_RCU */
109
110int nr_processes(void)
111{
112 int cpu;
113 int total = 0;
114
115 for_each_possible_cpu(cpu)
116 total += per_cpu(process_counts, cpu);
117
118 return total;
119}
120
121void __weak arch_release_task_struct(struct task_struct *tsk)
122{
123}
124
125#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126static struct kmem_cache *task_struct_cachep;
127
128static inline struct task_struct *alloc_task_struct_node(int node)
129{
130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131}
132
133static inline void free_task_struct(struct task_struct *tsk)
134{
135 kmem_cache_free(task_struct_cachep, tsk);
136}
137#endif
138
139void __weak arch_release_thread_info(struct thread_info *ti)
140{
141}
142
143#ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145/*
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
148 */
149# if THREAD_SIZE >= PAGE_SIZE
150static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 int node)
152{
153 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
154 THREAD_SIZE_ORDER);
155
156 return page ? page_address(page) : NULL;
157}
158
159static inline void free_thread_info(struct thread_info *ti)
160{
161 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162}
163# else
164static struct kmem_cache *thread_info_cache;
165
166static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 int node)
168{
169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170}
171
172static void free_thread_info(struct thread_info *ti)
173{
174 kmem_cache_free(thread_info_cache, ti);
175}
176
177void thread_info_cache_init(void)
178{
179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 THREAD_SIZE, 0, NULL);
181 BUG_ON(thread_info_cache == NULL);
182}
183# endif
184#endif
185
186/* SLAB cache for signal_struct structures (tsk->signal) */
187static struct kmem_cache *signal_cachep;
188
189/* SLAB cache for sighand_struct structures (tsk->sighand) */
190struct kmem_cache *sighand_cachep;
191
192/* SLAB cache for files_struct structures (tsk->files) */
193struct kmem_cache *files_cachep;
194
195/* SLAB cache for fs_struct structures (tsk->fs) */
196struct kmem_cache *fs_cachep;
197
198/* SLAB cache for vm_area_struct structures */
199struct kmem_cache *vm_area_cachep;
200
201/* SLAB cache for mm_struct structures (tsk->mm) */
202static struct kmem_cache *mm_cachep;
203
204static void account_kernel_stack(struct thread_info *ti, int account)
205{
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209}
210
211void free_task(struct task_struct *tsk)
212{
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221}
222EXPORT_SYMBOL(free_task);
223
224static inline void free_signal_struct(struct signal_struct *sig)
225{
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229}
230
231static inline void put_signal_struct(struct signal_struct *sig)
232{
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235}
236
237void __put_task_struct(struct task_struct *tsk)
238{
239 WARN_ON(!tsk->exit_state);
240 WARN_ON(atomic_read(&tsk->usage));
241 WARN_ON(tsk == current);
242
243 task_numa_free(tsk);
244 security_task_free(tsk);
245 exit_creds(tsk);
246 delayacct_tsk_free(tsk);
247 put_signal_struct(tsk->signal);
248
249 if (!profile_handoff_task(tsk))
250 free_task(tsk);
251}
252EXPORT_SYMBOL_GPL(__put_task_struct);
253
254void __init __weak arch_task_cache_init(void) { }
255
256void __init fork_init(unsigned long mempages)
257{
258#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259#ifndef ARCH_MIN_TASKALIGN
260#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
261#endif
262 /* create a slab on which task_structs can be allocated */
263 task_struct_cachep =
264 kmem_cache_create("task_struct", sizeof(struct task_struct),
265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266#endif
267
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
270
271 /*
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
274 * of memory.
275 */
276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278 /*
279 * we need to allow at least 20 threads to boot a system
280 */
281 if (max_threads < 20)
282 max_threads = 20;
283
284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 init_task.signal->rlim[RLIMIT_NPROC];
288}
289
290int __weak arch_dup_task_struct(struct task_struct *dst,
291 struct task_struct *src)
292{
293 *dst = *src;
294 return 0;
295}
296
297static struct task_struct *dup_task_struct(struct task_struct *orig)
298{
299 struct task_struct *tsk;
300 struct thread_info *ti;
301 unsigned long *stackend;
302 int node = tsk_fork_get_node(orig);
303 int err;
304
305 tsk = alloc_task_struct_node(node);
306 if (!tsk)
307 return NULL;
308
309 ti = alloc_thread_info_node(tsk, node);
310 if (!ti)
311 goto free_tsk;
312
313 err = arch_dup_task_struct(tsk, orig);
314 if (err)
315 goto free_ti;
316
317 tsk->stack = ti;
318
319 setup_thread_stack(tsk, orig);
320 clear_user_return_notifier(tsk);
321 clear_tsk_need_resched(tsk);
322 stackend = end_of_stack(tsk);
323 *stackend = STACK_END_MAGIC; /* for overflow detection */
324
325#ifdef CONFIG_CC_STACKPROTECTOR
326 tsk->stack_canary = get_random_int();
327#endif
328
329 /*
330 * One for us, one for whoever does the "release_task()" (usually
331 * parent)
332 */
333 atomic_set(&tsk->usage, 2);
334#ifdef CONFIG_BLK_DEV_IO_TRACE
335 tsk->btrace_seq = 0;
336#endif
337 tsk->splice_pipe = NULL;
338 tsk->task_frag.page = NULL;
339
340 account_kernel_stack(ti, 1);
341
342 return tsk;
343
344free_ti:
345 free_thread_info(ti);
346free_tsk:
347 free_task_struct(tsk);
348 return NULL;
349}
350
351#ifdef CONFIG_MMU
352static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
353{
354 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
355 struct rb_node **rb_link, *rb_parent;
356 int retval;
357 unsigned long charge;
358
359 uprobe_start_dup_mmap();
360 down_write(&oldmm->mmap_sem);
361 flush_cache_dup_mm(oldmm);
362 uprobe_dup_mmap(oldmm, mm);
363 /*
364 * Not linked in yet - no deadlock potential:
365 */
366 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
367
368 mm->locked_vm = 0;
369 mm->mmap = NULL;
370 mm->vmacache_seqnum = 0;
371 mm->map_count = 0;
372 cpumask_clear(mm_cpumask(mm));
373 mm->mm_rb = RB_ROOT;
374 rb_link = &mm->mm_rb.rb_node;
375 rb_parent = NULL;
376 pprev = &mm->mmap;
377 retval = ksm_fork(mm, oldmm);
378 if (retval)
379 goto out;
380 retval = khugepaged_fork(mm, oldmm);
381 if (retval)
382 goto out;
383
384 prev = NULL;
385 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
386 struct file *file;
387
388 if (mpnt->vm_flags & VM_DONTCOPY) {
389 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
390 -vma_pages(mpnt));
391 continue;
392 }
393 charge = 0;
394 if (mpnt->vm_flags & VM_ACCOUNT) {
395 unsigned long len = vma_pages(mpnt);
396
397 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
398 goto fail_nomem;
399 charge = len;
400 }
401 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
402 if (!tmp)
403 goto fail_nomem;
404 *tmp = *mpnt;
405 INIT_LIST_HEAD(&tmp->anon_vma_chain);
406 retval = vma_dup_policy(mpnt, tmp);
407 if (retval)
408 goto fail_nomem_policy;
409 tmp->vm_mm = mm;
410 if (anon_vma_fork(tmp, mpnt))
411 goto fail_nomem_anon_vma_fork;
412 tmp->vm_flags &= ~VM_LOCKED;
413 tmp->vm_next = tmp->vm_prev = NULL;
414 file = tmp->vm_file;
415 if (file) {
416 struct inode *inode = file_inode(file);
417 struct address_space *mapping = file->f_mapping;
418
419 get_file(file);
420 if (tmp->vm_flags & VM_DENYWRITE)
421 atomic_dec(&inode->i_writecount);
422 mutex_lock(&mapping->i_mmap_mutex);
423 if (tmp->vm_flags & VM_SHARED)
424 mapping->i_mmap_writable++;
425 flush_dcache_mmap_lock(mapping);
426 /* insert tmp into the share list, just after mpnt */
427 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
428 vma_nonlinear_insert(tmp,
429 &mapping->i_mmap_nonlinear);
430 else
431 vma_interval_tree_insert_after(tmp, mpnt,
432 &mapping->i_mmap);
433 flush_dcache_mmap_unlock(mapping);
434 mutex_unlock(&mapping->i_mmap_mutex);
435 }
436
437 /*
438 * Clear hugetlb-related page reserves for children. This only
439 * affects MAP_PRIVATE mappings. Faults generated by the child
440 * are not guaranteed to succeed, even if read-only
441 */
442 if (is_vm_hugetlb_page(tmp))
443 reset_vma_resv_huge_pages(tmp);
444
445 /*
446 * Link in the new vma and copy the page table entries.
447 */
448 *pprev = tmp;
449 pprev = &tmp->vm_next;
450 tmp->vm_prev = prev;
451 prev = tmp;
452
453 __vma_link_rb(mm, tmp, rb_link, rb_parent);
454 rb_link = &tmp->vm_rb.rb_right;
455 rb_parent = &tmp->vm_rb;
456
457 mm->map_count++;
458 retval = copy_page_range(mm, oldmm, mpnt);
459
460 if (tmp->vm_ops && tmp->vm_ops->open)
461 tmp->vm_ops->open(tmp);
462
463 if (retval)
464 goto out;
465 }
466 /* a new mm has just been created */
467 arch_dup_mmap(oldmm, mm);
468 retval = 0;
469out:
470 up_write(&mm->mmap_sem);
471 flush_tlb_mm(oldmm);
472 up_write(&oldmm->mmap_sem);
473 uprobe_end_dup_mmap();
474 return retval;
475fail_nomem_anon_vma_fork:
476 mpol_put(vma_policy(tmp));
477fail_nomem_policy:
478 kmem_cache_free(vm_area_cachep, tmp);
479fail_nomem:
480 retval = -ENOMEM;
481 vm_unacct_memory(charge);
482 goto out;
483}
484
485static inline int mm_alloc_pgd(struct mm_struct *mm)
486{
487 mm->pgd = pgd_alloc(mm);
488 if (unlikely(!mm->pgd))
489 return -ENOMEM;
490 return 0;
491}
492
493static inline void mm_free_pgd(struct mm_struct *mm)
494{
495 pgd_free(mm, mm->pgd);
496}
497#else
498#define dup_mmap(mm, oldmm) (0)
499#define mm_alloc_pgd(mm) (0)
500#define mm_free_pgd(mm)
501#endif /* CONFIG_MMU */
502
503__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
504
505#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
506#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
507
508static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
509
510static int __init coredump_filter_setup(char *s)
511{
512 default_dump_filter =
513 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
514 MMF_DUMP_FILTER_MASK;
515 return 1;
516}
517
518__setup("coredump_filter=", coredump_filter_setup);
519
520#include <linux/init_task.h>
521
522static void mm_init_aio(struct mm_struct *mm)
523{
524#ifdef CONFIG_AIO
525 spin_lock_init(&mm->ioctx_lock);
526 mm->ioctx_table = NULL;
527#endif
528}
529
530static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
531{
532 atomic_set(&mm->mm_users, 1);
533 atomic_set(&mm->mm_count, 1);
534 init_rwsem(&mm->mmap_sem);
535 INIT_LIST_HEAD(&mm->mmlist);
536 mm->core_state = NULL;
537 atomic_long_set(&mm->nr_ptes, 0);
538 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539 spin_lock_init(&mm->page_table_lock);
540 mm_init_aio(mm);
541 mm_init_owner(mm, p);
542 clear_tlb_flush_pending(mm);
543
544 if (current->mm) {
545 mm->flags = current->mm->flags & MMF_INIT_MASK;
546 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
547 } else {
548 mm->flags = default_dump_filter;
549 mm->def_flags = 0;
550 }
551
552 if (likely(!mm_alloc_pgd(mm))) {
553 mmu_notifier_mm_init(mm);
554 return mm;
555 }
556
557 free_mm(mm);
558 return NULL;
559}
560
561static void check_mm(struct mm_struct *mm)
562{
563 int i;
564
565 for (i = 0; i < NR_MM_COUNTERS; i++) {
566 long x = atomic_long_read(&mm->rss_stat.count[i]);
567
568 if (unlikely(x))
569 printk(KERN_ALERT "BUG: Bad rss-counter state "
570 "mm:%p idx:%d val:%ld\n", mm, i, x);
571 }
572
573#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
574 VM_BUG_ON(mm->pmd_huge_pte);
575#endif
576}
577
578/*
579 * Allocate and initialize an mm_struct.
580 */
581struct mm_struct *mm_alloc(void)
582{
583 struct mm_struct *mm;
584
585 mm = allocate_mm();
586 if (!mm)
587 return NULL;
588
589 memset(mm, 0, sizeof(*mm));
590 mm_init_cpumask(mm);
591 return mm_init(mm, current);
592}
593
594/*
595 * Called when the last reference to the mm
596 * is dropped: either by a lazy thread or by
597 * mmput. Free the page directory and the mm.
598 */
599void __mmdrop(struct mm_struct *mm)
600{
601 BUG_ON(mm == &init_mm);
602 mm_free_pgd(mm);
603 destroy_context(mm);
604 mmu_notifier_mm_destroy(mm);
605 check_mm(mm);
606 free_mm(mm);
607}
608EXPORT_SYMBOL_GPL(__mmdrop);
609
610/*
611 * Decrement the use count and release all resources for an mm.
612 */
613void mmput(struct mm_struct *mm)
614{
615 might_sleep();
616
617 if (atomic_dec_and_test(&mm->mm_users)) {
618 uprobe_clear_state(mm);
619 exit_aio(mm);
620 ksm_exit(mm);
621 khugepaged_exit(mm); /* must run before exit_mmap */
622 exit_mmap(mm);
623 set_mm_exe_file(mm, NULL);
624 if (!list_empty(&mm->mmlist)) {
625 spin_lock(&mmlist_lock);
626 list_del(&mm->mmlist);
627 spin_unlock(&mmlist_lock);
628 }
629 if (mm->binfmt)
630 module_put(mm->binfmt->module);
631 mmdrop(mm);
632 }
633}
634EXPORT_SYMBOL_GPL(mmput);
635
636void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
637{
638 if (new_exe_file)
639 get_file(new_exe_file);
640 if (mm->exe_file)
641 fput(mm->exe_file);
642 mm->exe_file = new_exe_file;
643}
644
645struct file *get_mm_exe_file(struct mm_struct *mm)
646{
647 struct file *exe_file;
648
649 /* We need mmap_sem to protect against races with removal of exe_file */
650 down_read(&mm->mmap_sem);
651 exe_file = mm->exe_file;
652 if (exe_file)
653 get_file(exe_file);
654 up_read(&mm->mmap_sem);
655 return exe_file;
656}
657
658static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
659{
660 /* It's safe to write the exe_file pointer without exe_file_lock because
661 * this is called during fork when the task is not yet in /proc */
662 newmm->exe_file = get_mm_exe_file(oldmm);
663}
664
665/**
666 * get_task_mm - acquire a reference to the task's mm
667 *
668 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
669 * this kernel workthread has transiently adopted a user mm with use_mm,
670 * to do its AIO) is not set and if so returns a reference to it, after
671 * bumping up the use count. User must release the mm via mmput()
672 * after use. Typically used by /proc and ptrace.
673 */
674struct mm_struct *get_task_mm(struct task_struct *task)
675{
676 struct mm_struct *mm;
677
678 task_lock(task);
679 mm = task->mm;
680 if (mm) {
681 if (task->flags & PF_KTHREAD)
682 mm = NULL;
683 else
684 atomic_inc(&mm->mm_users);
685 }
686 task_unlock(task);
687 return mm;
688}
689EXPORT_SYMBOL_GPL(get_task_mm);
690
691struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
692{
693 struct mm_struct *mm;
694 int err;
695
696 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
697 if (err)
698 return ERR_PTR(err);
699
700 mm = get_task_mm(task);
701 if (mm && mm != current->mm &&
702 !ptrace_may_access(task, mode)) {
703 mmput(mm);
704 mm = ERR_PTR(-EACCES);
705 }
706 mutex_unlock(&task->signal->cred_guard_mutex);
707
708 return mm;
709}
710
711static void complete_vfork_done(struct task_struct *tsk)
712{
713 struct completion *vfork;
714
715 task_lock(tsk);
716 vfork = tsk->vfork_done;
717 if (likely(vfork)) {
718 tsk->vfork_done = NULL;
719 complete(vfork);
720 }
721 task_unlock(tsk);
722}
723
724static int wait_for_vfork_done(struct task_struct *child,
725 struct completion *vfork)
726{
727 int killed;
728
729 freezer_do_not_count();
730 killed = wait_for_completion_killable(vfork);
731 freezer_count();
732
733 if (killed) {
734 task_lock(child);
735 child->vfork_done = NULL;
736 task_unlock(child);
737 }
738
739 put_task_struct(child);
740 return killed;
741}
742
743/* Please note the differences between mmput and mm_release.
744 * mmput is called whenever we stop holding onto a mm_struct,
745 * error success whatever.
746 *
747 * mm_release is called after a mm_struct has been removed
748 * from the current process.
749 *
750 * This difference is important for error handling, when we
751 * only half set up a mm_struct for a new process and need to restore
752 * the old one. Because we mmput the new mm_struct before
753 * restoring the old one. . .
754 * Eric Biederman 10 January 1998
755 */
756void mm_release(struct task_struct *tsk, struct mm_struct *mm)
757{
758 /* Get rid of any futexes when releasing the mm */
759#ifdef CONFIG_FUTEX
760 if (unlikely(tsk->robust_list)) {
761 exit_robust_list(tsk);
762 tsk->robust_list = NULL;
763 }
764#ifdef CONFIG_COMPAT
765 if (unlikely(tsk->compat_robust_list)) {
766 compat_exit_robust_list(tsk);
767 tsk->compat_robust_list = NULL;
768 }
769#endif
770 if (unlikely(!list_empty(&tsk->pi_state_list)))
771 exit_pi_state_list(tsk);
772#endif
773
774 uprobe_free_utask(tsk);
775
776 /* Get rid of any cached register state */
777 deactivate_mm(tsk, mm);
778
779 /*
780 * If we're exiting normally, clear a user-space tid field if
781 * requested. We leave this alone when dying by signal, to leave
782 * the value intact in a core dump, and to save the unnecessary
783 * trouble, say, a killed vfork parent shouldn't touch this mm.
784 * Userland only wants this done for a sys_exit.
785 */
786 if (tsk->clear_child_tid) {
787 if (!(tsk->flags & PF_SIGNALED) &&
788 atomic_read(&mm->mm_users) > 1) {
789 /*
790 * We don't check the error code - if userspace has
791 * not set up a proper pointer then tough luck.
792 */
793 put_user(0, tsk->clear_child_tid);
794 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
795 1, NULL, NULL, 0);
796 }
797 tsk->clear_child_tid = NULL;
798 }
799
800 /*
801 * All done, finally we can wake up parent and return this mm to him.
802 * Also kthread_stop() uses this completion for synchronization.
803 */
804 if (tsk->vfork_done)
805 complete_vfork_done(tsk);
806}
807
808/*
809 * Allocate a new mm structure and copy contents from the
810 * mm structure of the passed in task structure.
811 */
812static struct mm_struct *dup_mm(struct task_struct *tsk)
813{
814 struct mm_struct *mm, *oldmm = current->mm;
815 int err;
816
817 mm = allocate_mm();
818 if (!mm)
819 goto fail_nomem;
820
821 memcpy(mm, oldmm, sizeof(*mm));
822 mm_init_cpumask(mm);
823
824#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
825 mm->pmd_huge_pte = NULL;
826#endif
827 if (!mm_init(mm, tsk))
828 goto fail_nomem;
829
830 if (init_new_context(tsk, mm))
831 goto fail_nocontext;
832
833 dup_mm_exe_file(oldmm, mm);
834
835 err = dup_mmap(mm, oldmm);
836 if (err)
837 goto free_pt;
838
839 mm->hiwater_rss = get_mm_rss(mm);
840 mm->hiwater_vm = mm->total_vm;
841
842 if (mm->binfmt && !try_module_get(mm->binfmt->module))
843 goto free_pt;
844
845 return mm;
846
847free_pt:
848 /* don't put binfmt in mmput, we haven't got module yet */
849 mm->binfmt = NULL;
850 mmput(mm);
851
852fail_nomem:
853 return NULL;
854
855fail_nocontext:
856 /*
857 * If init_new_context() failed, we cannot use mmput() to free the mm
858 * because it calls destroy_context()
859 */
860 mm_free_pgd(mm);
861 free_mm(mm);
862 return NULL;
863}
864
865static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
866{
867 struct mm_struct *mm, *oldmm;
868 int retval;
869
870 tsk->min_flt = tsk->maj_flt = 0;
871 tsk->nvcsw = tsk->nivcsw = 0;
872#ifdef CONFIG_DETECT_HUNG_TASK
873 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
874#endif
875
876 tsk->mm = NULL;
877 tsk->active_mm = NULL;
878
879 /*
880 * Are we cloning a kernel thread?
881 *
882 * We need to steal a active VM for that..
883 */
884 oldmm = current->mm;
885 if (!oldmm)
886 return 0;
887
888 /* initialize the new vmacache entries */
889 vmacache_flush(tsk);
890
891 if (clone_flags & CLONE_VM) {
892 atomic_inc(&oldmm->mm_users);
893 mm = oldmm;
894 goto good_mm;
895 }
896
897 retval = -ENOMEM;
898 mm = dup_mm(tsk);
899 if (!mm)
900 goto fail_nomem;
901
902good_mm:
903 tsk->mm = mm;
904 tsk->active_mm = mm;
905 return 0;
906
907fail_nomem:
908 return retval;
909}
910
911static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
912{
913 struct fs_struct *fs = current->fs;
914 if (clone_flags & CLONE_FS) {
915 /* tsk->fs is already what we want */
916 spin_lock(&fs->lock);
917 if (fs->in_exec) {
918 spin_unlock(&fs->lock);
919 return -EAGAIN;
920 }
921 fs->users++;
922 spin_unlock(&fs->lock);
923 return 0;
924 }
925 tsk->fs = copy_fs_struct(fs);
926 if (!tsk->fs)
927 return -ENOMEM;
928 return 0;
929}
930
931static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
932{
933 struct files_struct *oldf, *newf;
934 int error = 0;
935
936 /*
937 * A background process may not have any files ...
938 */
939 oldf = current->files;
940 if (!oldf)
941 goto out;
942
943 if (clone_flags & CLONE_FILES) {
944 atomic_inc(&oldf->count);
945 goto out;
946 }
947
948 newf = dup_fd(oldf, &error);
949 if (!newf)
950 goto out;
951
952 tsk->files = newf;
953 error = 0;
954out:
955 return error;
956}
957
958static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
959{
960#ifdef CONFIG_BLOCK
961 struct io_context *ioc = current->io_context;
962 struct io_context *new_ioc;
963
964 if (!ioc)
965 return 0;
966 /*
967 * Share io context with parent, if CLONE_IO is set
968 */
969 if (clone_flags & CLONE_IO) {
970 ioc_task_link(ioc);
971 tsk->io_context = ioc;
972 } else if (ioprio_valid(ioc->ioprio)) {
973 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
974 if (unlikely(!new_ioc))
975 return -ENOMEM;
976
977 new_ioc->ioprio = ioc->ioprio;
978 put_io_context(new_ioc);
979 }
980#endif
981 return 0;
982}
983
984static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
985{
986 struct sighand_struct *sig;
987
988 if (clone_flags & CLONE_SIGHAND) {
989 atomic_inc(¤t->sighand->count);
990 return 0;
991 }
992 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
993 rcu_assign_pointer(tsk->sighand, sig);
994 if (!sig)
995 return -ENOMEM;
996 atomic_set(&sig->count, 1);
997 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
998 return 0;
999}
1000
1001void __cleanup_sighand(struct sighand_struct *sighand)
1002{
1003 if (atomic_dec_and_test(&sighand->count)) {
1004 signalfd_cleanup(sighand);
1005 kmem_cache_free(sighand_cachep, sighand);
1006 }
1007}
1008
1009
1010/*
1011 * Initialize POSIX timer handling for a thread group.
1012 */
1013static void posix_cpu_timers_init_group(struct signal_struct *sig)
1014{
1015 unsigned long cpu_limit;
1016
1017 /* Thread group counters. */
1018 thread_group_cputime_init(sig);
1019
1020 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1021 if (cpu_limit != RLIM_INFINITY) {
1022 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1023 sig->cputimer.running = 1;
1024 }
1025
1026 /* The timer lists. */
1027 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1028 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1029 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1030}
1031
1032static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1033{
1034 struct signal_struct *sig;
1035
1036 if (clone_flags & CLONE_THREAD)
1037 return 0;
1038
1039 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1040 tsk->signal = sig;
1041 if (!sig)
1042 return -ENOMEM;
1043
1044 sig->nr_threads = 1;
1045 atomic_set(&sig->live, 1);
1046 atomic_set(&sig->sigcnt, 1);
1047
1048 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1049 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1050 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1051
1052 init_waitqueue_head(&sig->wait_chldexit);
1053 sig->curr_target = tsk;
1054 init_sigpending(&sig->shared_pending);
1055 INIT_LIST_HEAD(&sig->posix_timers);
1056
1057 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1058 sig->real_timer.function = it_real_fn;
1059
1060 task_lock(current->group_leader);
1061 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1062 task_unlock(current->group_leader);
1063
1064 posix_cpu_timers_init_group(sig);
1065
1066 tty_audit_fork(sig);
1067 sched_autogroup_fork(sig);
1068
1069#ifdef CONFIG_CGROUPS
1070 init_rwsem(&sig->group_rwsem);
1071#endif
1072
1073 sig->oom_score_adj = current->signal->oom_score_adj;
1074 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1075
1076 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1077 current->signal->is_child_subreaper;
1078
1079 mutex_init(&sig->cred_guard_mutex);
1080
1081 return 0;
1082}
1083
1084SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085{
1086 current->clear_child_tid = tidptr;
1087
1088 return task_pid_vnr(current);
1089}
1090
1091static void rt_mutex_init_task(struct task_struct *p)
1092{
1093 raw_spin_lock_init(&p->pi_lock);
1094#ifdef CONFIG_RT_MUTEXES
1095 p->pi_waiters = RB_ROOT;
1096 p->pi_waiters_leftmost = NULL;
1097 p->pi_blocked_on = NULL;
1098 p->pi_top_task = NULL;
1099#endif
1100}
1101
1102#ifdef CONFIG_MM_OWNER
1103void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1104{
1105 mm->owner = p;
1106}
1107#endif /* CONFIG_MM_OWNER */
1108
1109/*
1110 * Initialize POSIX timer handling for a single task.
1111 */
1112static void posix_cpu_timers_init(struct task_struct *tsk)
1113{
1114 tsk->cputime_expires.prof_exp = 0;
1115 tsk->cputime_expires.virt_exp = 0;
1116 tsk->cputime_expires.sched_exp = 0;
1117 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1118 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1119 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1120}
1121
1122static inline void
1123init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1124{
1125 task->pids[type].pid = pid;
1126}
1127
1128/*
1129 * This creates a new process as a copy of the old one,
1130 * but does not actually start it yet.
1131 *
1132 * It copies the registers, and all the appropriate
1133 * parts of the process environment (as per the clone
1134 * flags). The actual kick-off is left to the caller.
1135 */
1136static struct task_struct *copy_process(unsigned long clone_flags,
1137 unsigned long stack_start,
1138 unsigned long stack_size,
1139 int __user *child_tidptr,
1140 struct pid *pid,
1141 int trace)
1142{
1143 int retval;
1144 struct task_struct *p;
1145
1146 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1147 return ERR_PTR(-EINVAL);
1148
1149 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1150 return ERR_PTR(-EINVAL);
1151
1152 /*
1153 * Thread groups must share signals as well, and detached threads
1154 * can only be started up within the thread group.
1155 */
1156 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1157 return ERR_PTR(-EINVAL);
1158
1159 /*
1160 * Shared signal handlers imply shared VM. By way of the above,
1161 * thread groups also imply shared VM. Blocking this case allows
1162 * for various simplifications in other code.
1163 */
1164 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1165 return ERR_PTR(-EINVAL);
1166
1167 /*
1168 * Siblings of global init remain as zombies on exit since they are
1169 * not reaped by their parent (swapper). To solve this and to avoid
1170 * multi-rooted process trees, prevent global and container-inits
1171 * from creating siblings.
1172 */
1173 if ((clone_flags & CLONE_PARENT) &&
1174 current->signal->flags & SIGNAL_UNKILLABLE)
1175 return ERR_PTR(-EINVAL);
1176
1177 /*
1178 * If the new process will be in a different pid or user namespace
1179 * do not allow it to share a thread group or signal handlers or
1180 * parent with the forking task.
1181 */
1182 if (clone_flags & CLONE_SIGHAND) {
1183 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1184 (task_active_pid_ns(current) !=
1185 current->nsproxy->pid_ns_for_children))
1186 return ERR_PTR(-EINVAL);
1187 }
1188
1189 retval = security_task_create(clone_flags);
1190 if (retval)
1191 goto fork_out;
1192
1193 retval = -ENOMEM;
1194 p = dup_task_struct(current);
1195 if (!p)
1196 goto fork_out;
1197
1198 ftrace_graph_init_task(p);
1199 get_seccomp_filter(p);
1200
1201 rt_mutex_init_task(p);
1202
1203#ifdef CONFIG_PROVE_LOCKING
1204 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1205 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1206#endif
1207 retval = -EAGAIN;
1208 if (atomic_read(&p->real_cred->user->processes) >=
1209 task_rlimit(p, RLIMIT_NPROC)) {
1210 if (p->real_cred->user != INIT_USER &&
1211 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1212 goto bad_fork_free;
1213 }
1214 current->flags &= ~PF_NPROC_EXCEEDED;
1215
1216 retval = copy_creds(p, clone_flags);
1217 if (retval < 0)
1218 goto bad_fork_free;
1219
1220 /*
1221 * If multiple threads are within copy_process(), then this check
1222 * triggers too late. This doesn't hurt, the check is only there
1223 * to stop root fork bombs.
1224 */
1225 retval = -EAGAIN;
1226 if (nr_threads >= max_threads)
1227 goto bad_fork_cleanup_count;
1228
1229 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1230 goto bad_fork_cleanup_count;
1231
1232 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1233 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1234 p->flags |= PF_FORKNOEXEC;
1235 INIT_LIST_HEAD(&p->children);
1236 INIT_LIST_HEAD(&p->sibling);
1237 rcu_copy_process(p);
1238 p->vfork_done = NULL;
1239 spin_lock_init(&p->alloc_lock);
1240
1241 init_sigpending(&p->pending);
1242
1243 p->utime = p->stime = p->gtime = 0;
1244 p->utimescaled = p->stimescaled = 0;
1245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1246 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1247#endif
1248#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1249 seqlock_init(&p->vtime_seqlock);
1250 p->vtime_snap = 0;
1251 p->vtime_snap_whence = VTIME_SLEEPING;
1252#endif
1253
1254#if defined(SPLIT_RSS_COUNTING)
1255 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1256#endif
1257
1258 p->default_timer_slack_ns = current->timer_slack_ns;
1259
1260 task_io_accounting_init(&p->ioac);
1261 acct_clear_integrals(p);
1262
1263 posix_cpu_timers_init(p);
1264
1265 do_posix_clock_monotonic_gettime(&p->start_time);
1266 p->real_start_time = p->start_time;
1267 monotonic_to_bootbased(&p->real_start_time);
1268 p->io_context = NULL;
1269 p->audit_context = NULL;
1270 if (clone_flags & CLONE_THREAD)
1271 threadgroup_change_begin(current);
1272 cgroup_fork(p);
1273#ifdef CONFIG_NUMA
1274 p->mempolicy = mpol_dup(p->mempolicy);
1275 if (IS_ERR(p->mempolicy)) {
1276 retval = PTR_ERR(p->mempolicy);
1277 p->mempolicy = NULL;
1278 goto bad_fork_cleanup_threadgroup_lock;
1279 }
1280#endif
1281#ifdef CONFIG_CPUSETS
1282 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1283 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1284 seqcount_init(&p->mems_allowed_seq);
1285#endif
1286#ifdef CONFIG_TRACE_IRQFLAGS
1287 p->irq_events = 0;
1288 p->hardirqs_enabled = 0;
1289 p->hardirq_enable_ip = 0;
1290 p->hardirq_enable_event = 0;
1291 p->hardirq_disable_ip = _THIS_IP_;
1292 p->hardirq_disable_event = 0;
1293 p->softirqs_enabled = 1;
1294 p->softirq_enable_ip = _THIS_IP_;
1295 p->softirq_enable_event = 0;
1296 p->softirq_disable_ip = 0;
1297 p->softirq_disable_event = 0;
1298 p->hardirq_context = 0;
1299 p->softirq_context = 0;
1300#endif
1301#ifdef CONFIG_LOCKDEP
1302 p->lockdep_depth = 0; /* no locks held yet */
1303 p->curr_chain_key = 0;
1304 p->lockdep_recursion = 0;
1305#endif
1306
1307#ifdef CONFIG_DEBUG_MUTEXES
1308 p->blocked_on = NULL; /* not blocked yet */
1309#endif
1310#ifdef CONFIG_MEMCG
1311 p->memcg_batch.do_batch = 0;
1312 p->memcg_batch.memcg = NULL;
1313#endif
1314#ifdef CONFIG_BCACHE
1315 p->sequential_io = 0;
1316 p->sequential_io_avg = 0;
1317#endif
1318
1319 /* Perform scheduler related setup. Assign this task to a CPU. */
1320 retval = sched_fork(clone_flags, p);
1321 if (retval)
1322 goto bad_fork_cleanup_policy;
1323
1324 retval = perf_event_init_task(p);
1325 if (retval)
1326 goto bad_fork_cleanup_policy;
1327 retval = audit_alloc(p);
1328 if (retval)
1329 goto bad_fork_cleanup_policy;
1330 /* copy all the process information */
1331 retval = copy_semundo(clone_flags, p);
1332 if (retval)
1333 goto bad_fork_cleanup_audit;
1334 retval = copy_files(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_semundo;
1337 retval = copy_fs(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_files;
1340 retval = copy_sighand(clone_flags, p);
1341 if (retval)
1342 goto bad_fork_cleanup_fs;
1343 retval = copy_signal(clone_flags, p);
1344 if (retval)
1345 goto bad_fork_cleanup_sighand;
1346 retval = copy_mm(clone_flags, p);
1347 if (retval)
1348 goto bad_fork_cleanup_signal;
1349 retval = copy_namespaces(clone_flags, p);
1350 if (retval)
1351 goto bad_fork_cleanup_mm;
1352 retval = copy_io(clone_flags, p);
1353 if (retval)
1354 goto bad_fork_cleanup_namespaces;
1355 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1356 if (retval)
1357 goto bad_fork_cleanup_io;
1358
1359 if (pid != &init_struct_pid) {
1360 retval = -ENOMEM;
1361 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1362 if (!pid)
1363 goto bad_fork_cleanup_io;
1364 }
1365
1366 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1367 /*
1368 * Clear TID on mm_release()?
1369 */
1370 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1371#ifdef CONFIG_BLOCK
1372 p->plug = NULL;
1373#endif
1374#ifdef CONFIG_FUTEX
1375 p->robust_list = NULL;
1376#ifdef CONFIG_COMPAT
1377 p->compat_robust_list = NULL;
1378#endif
1379 INIT_LIST_HEAD(&p->pi_state_list);
1380 p->pi_state_cache = NULL;
1381#endif
1382 /*
1383 * sigaltstack should be cleared when sharing the same VM
1384 */
1385 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1386 p->sas_ss_sp = p->sas_ss_size = 0;
1387
1388 /*
1389 * Syscall tracing and stepping should be turned off in the
1390 * child regardless of CLONE_PTRACE.
1391 */
1392 user_disable_single_step(p);
1393 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1394#ifdef TIF_SYSCALL_EMU
1395 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1396#endif
1397 clear_all_latency_tracing(p);
1398
1399 /* ok, now we should be set up.. */
1400 p->pid = pid_nr(pid);
1401 if (clone_flags & CLONE_THREAD) {
1402 p->exit_signal = -1;
1403 p->group_leader = current->group_leader;
1404 p->tgid = current->tgid;
1405 } else {
1406 if (clone_flags & CLONE_PARENT)
1407 p->exit_signal = current->group_leader->exit_signal;
1408 else
1409 p->exit_signal = (clone_flags & CSIGNAL);
1410 p->group_leader = p;
1411 p->tgid = p->pid;
1412 }
1413
1414 p->nr_dirtied = 0;
1415 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1416 p->dirty_paused_when = 0;
1417
1418 p->pdeath_signal = 0;
1419 INIT_LIST_HEAD(&p->thread_group);
1420 p->task_works = NULL;
1421
1422 /*
1423 * Make it visible to the rest of the system, but dont wake it up yet.
1424 * Need tasklist lock for parent etc handling!
1425 */
1426 write_lock_irq(&tasklist_lock);
1427
1428 /* CLONE_PARENT re-uses the old parent */
1429 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1430 p->real_parent = current->real_parent;
1431 p->parent_exec_id = current->parent_exec_id;
1432 } else {
1433 p->real_parent = current;
1434 p->parent_exec_id = current->self_exec_id;
1435 }
1436
1437 spin_lock(¤t->sighand->siglock);
1438
1439 /*
1440 * Process group and session signals need to be delivered to just the
1441 * parent before the fork or both the parent and the child after the
1442 * fork. Restart if a signal comes in before we add the new process to
1443 * it's process group.
1444 * A fatal signal pending means that current will exit, so the new
1445 * thread can't slip out of an OOM kill (or normal SIGKILL).
1446 */
1447 recalc_sigpending();
1448 if (signal_pending(current)) {
1449 spin_unlock(¤t->sighand->siglock);
1450 write_unlock_irq(&tasklist_lock);
1451 retval = -ERESTARTNOINTR;
1452 goto bad_fork_free_pid;
1453 }
1454
1455 if (likely(p->pid)) {
1456 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1457
1458 init_task_pid(p, PIDTYPE_PID, pid);
1459 if (thread_group_leader(p)) {
1460 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1461 init_task_pid(p, PIDTYPE_SID, task_session(current));
1462
1463 if (is_child_reaper(pid)) {
1464 ns_of_pid(pid)->child_reaper = p;
1465 p->signal->flags |= SIGNAL_UNKILLABLE;
1466 }
1467
1468 p->signal->leader_pid = pid;
1469 p->signal->tty = tty_kref_get(current->signal->tty);
1470 list_add_tail(&p->sibling, &p->real_parent->children);
1471 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1472 attach_pid(p, PIDTYPE_PGID);
1473 attach_pid(p, PIDTYPE_SID);
1474 __this_cpu_inc(process_counts);
1475 } else {
1476 current->signal->nr_threads++;
1477 atomic_inc(¤t->signal->live);
1478 atomic_inc(¤t->signal->sigcnt);
1479 list_add_tail_rcu(&p->thread_group,
1480 &p->group_leader->thread_group);
1481 list_add_tail_rcu(&p->thread_node,
1482 &p->signal->thread_head);
1483 }
1484 attach_pid(p, PIDTYPE_PID);
1485 nr_threads++;
1486 }
1487
1488 total_forks++;
1489 spin_unlock(¤t->sighand->siglock);
1490 write_unlock_irq(&tasklist_lock);
1491 proc_fork_connector(p);
1492 cgroup_post_fork(p);
1493 if (clone_flags & CLONE_THREAD)
1494 threadgroup_change_end(current);
1495 perf_event_fork(p);
1496
1497 trace_task_newtask(p, clone_flags);
1498 uprobe_copy_process(p, clone_flags);
1499
1500 return p;
1501
1502bad_fork_free_pid:
1503 if (pid != &init_struct_pid)
1504 free_pid(pid);
1505bad_fork_cleanup_io:
1506 if (p->io_context)
1507 exit_io_context(p);
1508bad_fork_cleanup_namespaces:
1509 exit_task_namespaces(p);
1510bad_fork_cleanup_mm:
1511 if (p->mm)
1512 mmput(p->mm);
1513bad_fork_cleanup_signal:
1514 if (!(clone_flags & CLONE_THREAD))
1515 free_signal_struct(p->signal);
1516bad_fork_cleanup_sighand:
1517 __cleanup_sighand(p->sighand);
1518bad_fork_cleanup_fs:
1519 exit_fs(p); /* blocking */
1520bad_fork_cleanup_files:
1521 exit_files(p); /* blocking */
1522bad_fork_cleanup_semundo:
1523 exit_sem(p);
1524bad_fork_cleanup_audit:
1525 audit_free(p);
1526bad_fork_cleanup_policy:
1527 perf_event_free_task(p);
1528#ifdef CONFIG_NUMA
1529 mpol_put(p->mempolicy);
1530bad_fork_cleanup_threadgroup_lock:
1531#endif
1532 if (clone_flags & CLONE_THREAD)
1533 threadgroup_change_end(current);
1534 delayacct_tsk_free(p);
1535 module_put(task_thread_info(p)->exec_domain->module);
1536bad_fork_cleanup_count:
1537 atomic_dec(&p->cred->user->processes);
1538 exit_creds(p);
1539bad_fork_free:
1540 free_task(p);
1541fork_out:
1542 return ERR_PTR(retval);
1543}
1544
1545static inline void init_idle_pids(struct pid_link *links)
1546{
1547 enum pid_type type;
1548
1549 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1550 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1551 links[type].pid = &init_struct_pid;
1552 }
1553}
1554
1555struct task_struct *fork_idle(int cpu)
1556{
1557 struct task_struct *task;
1558 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1559 if (!IS_ERR(task)) {
1560 init_idle_pids(task->pids);
1561 init_idle(task, cpu);
1562 }
1563
1564 return task;
1565}
1566
1567/*
1568 * Ok, this is the main fork-routine.
1569 *
1570 * It copies the process, and if successful kick-starts
1571 * it and waits for it to finish using the VM if required.
1572 */
1573long do_fork(unsigned long clone_flags,
1574 unsigned long stack_start,
1575 unsigned long stack_size,
1576 int __user *parent_tidptr,
1577 int __user *child_tidptr)
1578{
1579 struct task_struct *p;
1580 int trace = 0;
1581 long nr;
1582
1583 /*
1584 * Determine whether and which event to report to ptracer. When
1585 * called from kernel_thread or CLONE_UNTRACED is explicitly
1586 * requested, no event is reported; otherwise, report if the event
1587 * for the type of forking is enabled.
1588 */
1589 if (!(clone_flags & CLONE_UNTRACED)) {
1590 if (clone_flags & CLONE_VFORK)
1591 trace = PTRACE_EVENT_VFORK;
1592 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1593 trace = PTRACE_EVENT_CLONE;
1594 else
1595 trace = PTRACE_EVENT_FORK;
1596
1597 if (likely(!ptrace_event_enabled(current, trace)))
1598 trace = 0;
1599 }
1600
1601 p = copy_process(clone_flags, stack_start, stack_size,
1602 child_tidptr, NULL, trace);
1603 /*
1604 * Do this prior waking up the new thread - the thread pointer
1605 * might get invalid after that point, if the thread exits quickly.
1606 */
1607 if (!IS_ERR(p)) {
1608 struct completion vfork;
1609
1610 trace_sched_process_fork(current, p);
1611
1612 nr = task_pid_vnr(p);
1613
1614 if (clone_flags & CLONE_PARENT_SETTID)
1615 put_user(nr, parent_tidptr);
1616
1617 if (clone_flags & CLONE_VFORK) {
1618 p->vfork_done = &vfork;
1619 init_completion(&vfork);
1620 get_task_struct(p);
1621 }
1622
1623 wake_up_new_task(p);
1624
1625 /* forking complete and child started to run, tell ptracer */
1626 if (unlikely(trace))
1627 ptrace_event(trace, nr);
1628
1629 if (clone_flags & CLONE_VFORK) {
1630 if (!wait_for_vfork_done(p, &vfork))
1631 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1632 }
1633 } else {
1634 nr = PTR_ERR(p);
1635 }
1636 return nr;
1637}
1638
1639/*
1640 * Create a kernel thread.
1641 */
1642pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1643{
1644 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1645 (unsigned long)arg, NULL, NULL);
1646}
1647
1648#ifdef __ARCH_WANT_SYS_FORK
1649SYSCALL_DEFINE0(fork)
1650{
1651#ifdef CONFIG_MMU
1652 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1653#else
1654 /* can not support in nommu mode */
1655 return -EINVAL;
1656#endif
1657}
1658#endif
1659
1660#ifdef __ARCH_WANT_SYS_VFORK
1661SYSCALL_DEFINE0(vfork)
1662{
1663 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1664 0, NULL, NULL);
1665}
1666#endif
1667
1668#ifdef __ARCH_WANT_SYS_CLONE
1669#ifdef CONFIG_CLONE_BACKWARDS
1670SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1671 int __user *, parent_tidptr,
1672 int, tls_val,
1673 int __user *, child_tidptr)
1674#elif defined(CONFIG_CLONE_BACKWARDS2)
1675SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1676 int __user *, parent_tidptr,
1677 int __user *, child_tidptr,
1678 int, tls_val)
1679#elif defined(CONFIG_CLONE_BACKWARDS3)
1680SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1681 int, stack_size,
1682 int __user *, parent_tidptr,
1683 int __user *, child_tidptr,
1684 int, tls_val)
1685#else
1686SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1687 int __user *, parent_tidptr,
1688 int __user *, child_tidptr,
1689 int, tls_val)
1690#endif
1691{
1692 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1693}
1694#endif
1695
1696#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1697#define ARCH_MIN_MMSTRUCT_ALIGN 0
1698#endif
1699
1700static void sighand_ctor(void *data)
1701{
1702 struct sighand_struct *sighand = data;
1703
1704 spin_lock_init(&sighand->siglock);
1705 init_waitqueue_head(&sighand->signalfd_wqh);
1706}
1707
1708void __init proc_caches_init(void)
1709{
1710 sighand_cachep = kmem_cache_create("sighand_cache",
1711 sizeof(struct sighand_struct), 0,
1712 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1713 SLAB_NOTRACK, sighand_ctor);
1714 signal_cachep = kmem_cache_create("signal_cache",
1715 sizeof(struct signal_struct), 0,
1716 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1717 files_cachep = kmem_cache_create("files_cache",
1718 sizeof(struct files_struct), 0,
1719 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1720 fs_cachep = kmem_cache_create("fs_cache",
1721 sizeof(struct fs_struct), 0,
1722 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1723 /*
1724 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1725 * whole struct cpumask for the OFFSTACK case. We could change
1726 * this to *only* allocate as much of it as required by the
1727 * maximum number of CPU's we can ever have. The cpumask_allocation
1728 * is at the end of the structure, exactly for that reason.
1729 */
1730 mm_cachep = kmem_cache_create("mm_struct",
1731 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1732 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1733 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1734 mmap_init();
1735 nsproxy_cache_init();
1736}
1737
1738/*
1739 * Check constraints on flags passed to the unshare system call.
1740 */
1741static int check_unshare_flags(unsigned long unshare_flags)
1742{
1743 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1744 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1745 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1746 CLONE_NEWUSER|CLONE_NEWPID))
1747 return -EINVAL;
1748 /*
1749 * Not implemented, but pretend it works if there is nothing to
1750 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1751 * needs to unshare vm.
1752 */
1753 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1754 /* FIXME: get_task_mm() increments ->mm_users */
1755 if (atomic_read(¤t->mm->mm_users) > 1)
1756 return -EINVAL;
1757 }
1758
1759 return 0;
1760}
1761
1762/*
1763 * Unshare the filesystem structure if it is being shared
1764 */
1765static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1766{
1767 struct fs_struct *fs = current->fs;
1768
1769 if (!(unshare_flags & CLONE_FS) || !fs)
1770 return 0;
1771
1772 /* don't need lock here; in the worst case we'll do useless copy */
1773 if (fs->users == 1)
1774 return 0;
1775
1776 *new_fsp = copy_fs_struct(fs);
1777 if (!*new_fsp)
1778 return -ENOMEM;
1779
1780 return 0;
1781}
1782
1783/*
1784 * Unshare file descriptor table if it is being shared
1785 */
1786static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1787{
1788 struct files_struct *fd = current->files;
1789 int error = 0;
1790
1791 if ((unshare_flags & CLONE_FILES) &&
1792 (fd && atomic_read(&fd->count) > 1)) {
1793 *new_fdp = dup_fd(fd, &error);
1794 if (!*new_fdp)
1795 return error;
1796 }
1797
1798 return 0;
1799}
1800
1801/*
1802 * unshare allows a process to 'unshare' part of the process
1803 * context which was originally shared using clone. copy_*
1804 * functions used by do_fork() cannot be used here directly
1805 * because they modify an inactive task_struct that is being
1806 * constructed. Here we are modifying the current, active,
1807 * task_struct.
1808 */
1809SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1810{
1811 struct fs_struct *fs, *new_fs = NULL;
1812 struct files_struct *fd, *new_fd = NULL;
1813 struct cred *new_cred = NULL;
1814 struct nsproxy *new_nsproxy = NULL;
1815 int do_sysvsem = 0;
1816 int err;
1817
1818 /*
1819 * If unsharing a user namespace must also unshare the thread.
1820 */
1821 if (unshare_flags & CLONE_NEWUSER)
1822 unshare_flags |= CLONE_THREAD | CLONE_FS;
1823 /*
1824 * If unsharing a thread from a thread group, must also unshare vm.
1825 */
1826 if (unshare_flags & CLONE_THREAD)
1827 unshare_flags |= CLONE_VM;
1828 /*
1829 * If unsharing vm, must also unshare signal handlers.
1830 */
1831 if (unshare_flags & CLONE_VM)
1832 unshare_flags |= CLONE_SIGHAND;
1833 /*
1834 * If unsharing namespace, must also unshare filesystem information.
1835 */
1836 if (unshare_flags & CLONE_NEWNS)
1837 unshare_flags |= CLONE_FS;
1838
1839 err = check_unshare_flags(unshare_flags);
1840 if (err)
1841 goto bad_unshare_out;
1842 /*
1843 * CLONE_NEWIPC must also detach from the undolist: after switching
1844 * to a new ipc namespace, the semaphore arrays from the old
1845 * namespace are unreachable.
1846 */
1847 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1848 do_sysvsem = 1;
1849 err = unshare_fs(unshare_flags, &new_fs);
1850 if (err)
1851 goto bad_unshare_out;
1852 err = unshare_fd(unshare_flags, &new_fd);
1853 if (err)
1854 goto bad_unshare_cleanup_fs;
1855 err = unshare_userns(unshare_flags, &new_cred);
1856 if (err)
1857 goto bad_unshare_cleanup_fd;
1858 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1859 new_cred, new_fs);
1860 if (err)
1861 goto bad_unshare_cleanup_cred;
1862
1863 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1864 if (do_sysvsem) {
1865 /*
1866 * CLONE_SYSVSEM is equivalent to sys_exit().
1867 */
1868 exit_sem(current);
1869 }
1870
1871 if (new_nsproxy)
1872 switch_task_namespaces(current, new_nsproxy);
1873
1874 task_lock(current);
1875
1876 if (new_fs) {
1877 fs = current->fs;
1878 spin_lock(&fs->lock);
1879 current->fs = new_fs;
1880 if (--fs->users)
1881 new_fs = NULL;
1882 else
1883 new_fs = fs;
1884 spin_unlock(&fs->lock);
1885 }
1886
1887 if (new_fd) {
1888 fd = current->files;
1889 current->files = new_fd;
1890 new_fd = fd;
1891 }
1892
1893 task_unlock(current);
1894
1895 if (new_cred) {
1896 /* Install the new user namespace */
1897 commit_creds(new_cred);
1898 new_cred = NULL;
1899 }
1900 }
1901
1902bad_unshare_cleanup_cred:
1903 if (new_cred)
1904 put_cred(new_cred);
1905bad_unshare_cleanup_fd:
1906 if (new_fd)
1907 put_files_struct(new_fd);
1908
1909bad_unshare_cleanup_fs:
1910 if (new_fs)
1911 free_fs_struct(new_fs);
1912
1913bad_unshare_out:
1914 return err;
1915}
1916
1917/*
1918 * Helper to unshare the files of the current task.
1919 * We don't want to expose copy_files internals to
1920 * the exec layer of the kernel.
1921 */
1922
1923int unshare_files(struct files_struct **displaced)
1924{
1925 struct task_struct *task = current;
1926 struct files_struct *copy = NULL;
1927 int error;
1928
1929 error = unshare_fd(CLONE_FILES, ©);
1930 if (error || !copy) {
1931 *displaced = NULL;
1932 return error;
1933 }
1934 *displaced = task->files;
1935 task_lock(task);
1936 task->files = copy;
1937 task_unlock(task);
1938 return 0;
1939}
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/unistd.h>
17#include <linux/module.h>
18#include <linux/vmalloc.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/mempolicy.h>
22#include <linux/sem.h>
23#include <linux/file.h>
24#include <linux/fdtable.h>
25#include <linux/iocontext.h>
26#include <linux/key.h>
27#include <linux/binfmts.h>
28#include <linux/mman.h>
29#include <linux/mmu_notifier.h>
30#include <linux/fs.h>
31#include <linux/nsproxy.h>
32#include <linux/capability.h>
33#include <linux/cpu.h>
34#include <linux/cgroup.h>
35#include <linux/security.h>
36#include <linux/hugetlb.h>
37#include <linux/swap.h>
38#include <linux/syscalls.h>
39#include <linux/jiffies.h>
40#include <linux/futex.h>
41#include <linux/compat.h>
42#include <linux/kthread.h>
43#include <linux/task_io_accounting_ops.h>
44#include <linux/rcupdate.h>
45#include <linux/ptrace.h>
46#include <linux/mount.h>
47#include <linux/audit.h>
48#include <linux/memcontrol.h>
49#include <linux/ftrace.h>
50#include <linux/profile.h>
51#include <linux/rmap.h>
52#include <linux/ksm.h>
53#include <linux/acct.h>
54#include <linux/tsacct_kern.h>
55#include <linux/cn_proc.h>
56#include <linux/freezer.h>
57#include <linux/delayacct.h>
58#include <linux/taskstats_kern.h>
59#include <linux/random.h>
60#include <linux/tty.h>
61#include <linux/blkdev.h>
62#include <linux/fs_struct.h>
63#include <linux/magic.h>
64#include <linux/perf_event.h>
65#include <linux/posix-timers.h>
66#include <linux/user-return-notifier.h>
67#include <linux/oom.h>
68#include <linux/khugepaged.h>
69
70#include <asm/pgtable.h>
71#include <asm/pgalloc.h>
72#include <asm/uaccess.h>
73#include <asm/mmu_context.h>
74#include <asm/cacheflush.h>
75#include <asm/tlbflush.h>
76
77#include <trace/events/sched.h>
78
79/*
80 * Protected counters by write_lock_irq(&tasklist_lock)
81 */
82unsigned long total_forks; /* Handle normal Linux uptimes. */
83int nr_threads; /* The idle threads do not count.. */
84
85int max_threads; /* tunable limit on nr_threads */
86
87DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88
89__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
90
91#ifdef CONFIG_PROVE_RCU
92int lockdep_tasklist_lock_is_held(void)
93{
94 return lockdep_is_held(&tasklist_lock);
95}
96EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97#endif /* #ifdef CONFIG_PROVE_RCU */
98
99int nr_processes(void)
100{
101 int cpu;
102 int total = 0;
103
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
106
107 return total;
108}
109
110#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111# define alloc_task_struct_node(node) \
112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113# define free_task_struct(tsk) \
114 kmem_cache_free(task_struct_cachep, (tsk))
115static struct kmem_cache *task_struct_cachep;
116#endif
117
118#ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120 int node)
121{
122#ifdef CONFIG_DEBUG_STACK_USAGE
123 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124#else
125 gfp_t mask = GFP_KERNEL;
126#endif
127 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
128
129 return page ? page_address(page) : NULL;
130}
131
132static inline void free_thread_info(struct thread_info *ti)
133{
134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135}
136#endif
137
138/* SLAB cache for signal_struct structures (tsk->signal) */
139static struct kmem_cache *signal_cachep;
140
141/* SLAB cache for sighand_struct structures (tsk->sighand) */
142struct kmem_cache *sighand_cachep;
143
144/* SLAB cache for files_struct structures (tsk->files) */
145struct kmem_cache *files_cachep;
146
147/* SLAB cache for fs_struct structures (tsk->fs) */
148struct kmem_cache *fs_cachep;
149
150/* SLAB cache for vm_area_struct structures */
151struct kmem_cache *vm_area_cachep;
152
153/* SLAB cache for mm_struct structures (tsk->mm) */
154static struct kmem_cache *mm_cachep;
155
156static void account_kernel_stack(struct thread_info *ti, int account)
157{
158 struct zone *zone = page_zone(virt_to_page(ti));
159
160 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
161}
162
163void free_task(struct task_struct *tsk)
164{
165 prop_local_destroy_single(&tsk->dirties);
166 account_kernel_stack(tsk->stack, -1);
167 free_thread_info(tsk->stack);
168 rt_mutex_debug_task_free(tsk);
169 ftrace_graph_exit_task(tsk);
170 free_task_struct(tsk);
171}
172EXPORT_SYMBOL(free_task);
173
174static inline void free_signal_struct(struct signal_struct *sig)
175{
176 taskstats_tgid_free(sig);
177 sched_autogroup_exit(sig);
178 kmem_cache_free(signal_cachep, sig);
179}
180
181static inline void put_signal_struct(struct signal_struct *sig)
182{
183 if (atomic_dec_and_test(&sig->sigcnt))
184 free_signal_struct(sig);
185}
186
187void __put_task_struct(struct task_struct *tsk)
188{
189 WARN_ON(!tsk->exit_state);
190 WARN_ON(atomic_read(&tsk->usage));
191 WARN_ON(tsk == current);
192
193 exit_creds(tsk);
194 delayacct_tsk_free(tsk);
195 put_signal_struct(tsk->signal);
196
197 if (!profile_handoff_task(tsk))
198 free_task(tsk);
199}
200EXPORT_SYMBOL_GPL(__put_task_struct);
201
202/*
203 * macro override instead of weak attribute alias, to workaround
204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
205 */
206#ifndef arch_task_cache_init
207#define arch_task_cache_init()
208#endif
209
210void __init fork_init(unsigned long mempages)
211{
212#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
213#ifndef ARCH_MIN_TASKALIGN
214#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
215#endif
216 /* create a slab on which task_structs can be allocated */
217 task_struct_cachep =
218 kmem_cache_create("task_struct", sizeof(struct task_struct),
219 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
220#endif
221
222 /* do the arch specific task caches init */
223 arch_task_cache_init();
224
225 /*
226 * The default maximum number of threads is set to a safe
227 * value: the thread structures can take up at most half
228 * of memory.
229 */
230 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
231
232 /*
233 * we need to allow at least 20 threads to boot a system
234 */
235 if (max_threads < 20)
236 max_threads = 20;
237
238 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
239 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
240 init_task.signal->rlim[RLIMIT_SIGPENDING] =
241 init_task.signal->rlim[RLIMIT_NPROC];
242}
243
244int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
245 struct task_struct *src)
246{
247 *dst = *src;
248 return 0;
249}
250
251static struct task_struct *dup_task_struct(struct task_struct *orig)
252{
253 struct task_struct *tsk;
254 struct thread_info *ti;
255 unsigned long *stackend;
256 int node = tsk_fork_get_node(orig);
257 int err;
258
259 prepare_to_copy(orig);
260
261 tsk = alloc_task_struct_node(node);
262 if (!tsk)
263 return NULL;
264
265 ti = alloc_thread_info_node(tsk, node);
266 if (!ti) {
267 free_task_struct(tsk);
268 return NULL;
269 }
270
271 err = arch_dup_task_struct(tsk, orig);
272 if (err)
273 goto out;
274
275 tsk->stack = ti;
276
277 err = prop_local_init_single(&tsk->dirties);
278 if (err)
279 goto out;
280
281 setup_thread_stack(tsk, orig);
282 clear_user_return_notifier(tsk);
283 clear_tsk_need_resched(tsk);
284 stackend = end_of_stack(tsk);
285 *stackend = STACK_END_MAGIC; /* for overflow detection */
286
287#ifdef CONFIG_CC_STACKPROTECTOR
288 tsk->stack_canary = get_random_int();
289#endif
290
291 /*
292 * One for us, one for whoever does the "release_task()" (usually
293 * parent)
294 */
295 atomic_set(&tsk->usage, 2);
296#ifdef CONFIG_BLK_DEV_IO_TRACE
297 tsk->btrace_seq = 0;
298#endif
299 tsk->splice_pipe = NULL;
300
301 account_kernel_stack(ti, 1);
302
303 return tsk;
304
305out:
306 free_thread_info(ti);
307 free_task_struct(tsk);
308 return NULL;
309}
310
311#ifdef CONFIG_MMU
312static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313{
314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 struct rb_node **rb_link, *rb_parent;
316 int retval;
317 unsigned long charge;
318 struct mempolicy *pol;
319
320 down_write(&oldmm->mmap_sem);
321 flush_cache_dup_mm(oldmm);
322 /*
323 * Not linked in yet - no deadlock potential:
324 */
325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326
327 mm->locked_vm = 0;
328 mm->mmap = NULL;
329 mm->mmap_cache = NULL;
330 mm->free_area_cache = oldmm->mmap_base;
331 mm->cached_hole_size = ~0UL;
332 mm->map_count = 0;
333 cpumask_clear(mm_cpumask(mm));
334 mm->mm_rb = RB_ROOT;
335 rb_link = &mm->mm_rb.rb_node;
336 rb_parent = NULL;
337 pprev = &mm->mmap;
338 retval = ksm_fork(mm, oldmm);
339 if (retval)
340 goto out;
341 retval = khugepaged_fork(mm, oldmm);
342 if (retval)
343 goto out;
344
345 prev = NULL;
346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 struct file *file;
348
349 if (mpnt->vm_flags & VM_DONTCOPY) {
350 long pages = vma_pages(mpnt);
351 mm->total_vm -= pages;
352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 -pages);
354 continue;
355 }
356 charge = 0;
357 if (mpnt->vm_flags & VM_ACCOUNT) {
358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 if (security_vm_enough_memory(len))
360 goto fail_nomem;
361 charge = len;
362 }
363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 if (!tmp)
365 goto fail_nomem;
366 *tmp = *mpnt;
367 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 pol = mpol_dup(vma_policy(mpnt));
369 retval = PTR_ERR(pol);
370 if (IS_ERR(pol))
371 goto fail_nomem_policy;
372 vma_set_policy(tmp, pol);
373 tmp->vm_mm = mm;
374 if (anon_vma_fork(tmp, mpnt))
375 goto fail_nomem_anon_vma_fork;
376 tmp->vm_flags &= ~VM_LOCKED;
377 tmp->vm_next = tmp->vm_prev = NULL;
378 file = tmp->vm_file;
379 if (file) {
380 struct inode *inode = file->f_path.dentry->d_inode;
381 struct address_space *mapping = file->f_mapping;
382
383 get_file(file);
384 if (tmp->vm_flags & VM_DENYWRITE)
385 atomic_dec(&inode->i_writecount);
386 mutex_lock(&mapping->i_mmap_mutex);
387 if (tmp->vm_flags & VM_SHARED)
388 mapping->i_mmap_writable++;
389 flush_dcache_mmap_lock(mapping);
390 /* insert tmp into the share list, just after mpnt */
391 vma_prio_tree_add(tmp, mpnt);
392 flush_dcache_mmap_unlock(mapping);
393 mutex_unlock(&mapping->i_mmap_mutex);
394 }
395
396 /*
397 * Clear hugetlb-related page reserves for children. This only
398 * affects MAP_PRIVATE mappings. Faults generated by the child
399 * are not guaranteed to succeed, even if read-only
400 */
401 if (is_vm_hugetlb_page(tmp))
402 reset_vma_resv_huge_pages(tmp);
403
404 /*
405 * Link in the new vma and copy the page table entries.
406 */
407 *pprev = tmp;
408 pprev = &tmp->vm_next;
409 tmp->vm_prev = prev;
410 prev = tmp;
411
412 __vma_link_rb(mm, tmp, rb_link, rb_parent);
413 rb_link = &tmp->vm_rb.rb_right;
414 rb_parent = &tmp->vm_rb;
415
416 mm->map_count++;
417 retval = copy_page_range(mm, oldmm, mpnt);
418
419 if (tmp->vm_ops && tmp->vm_ops->open)
420 tmp->vm_ops->open(tmp);
421
422 if (retval)
423 goto out;
424 }
425 /* a new mm has just been created */
426 arch_dup_mmap(oldmm, mm);
427 retval = 0;
428out:
429 up_write(&mm->mmap_sem);
430 flush_tlb_mm(oldmm);
431 up_write(&oldmm->mmap_sem);
432 return retval;
433fail_nomem_anon_vma_fork:
434 mpol_put(pol);
435fail_nomem_policy:
436 kmem_cache_free(vm_area_cachep, tmp);
437fail_nomem:
438 retval = -ENOMEM;
439 vm_unacct_memory(charge);
440 goto out;
441}
442
443static inline int mm_alloc_pgd(struct mm_struct *mm)
444{
445 mm->pgd = pgd_alloc(mm);
446 if (unlikely(!mm->pgd))
447 return -ENOMEM;
448 return 0;
449}
450
451static inline void mm_free_pgd(struct mm_struct *mm)
452{
453 pgd_free(mm, mm->pgd);
454}
455#else
456#define dup_mmap(mm, oldmm) (0)
457#define mm_alloc_pgd(mm) (0)
458#define mm_free_pgd(mm)
459#endif /* CONFIG_MMU */
460
461__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462
463#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
465
466static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467
468static int __init coredump_filter_setup(char *s)
469{
470 default_dump_filter =
471 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 MMF_DUMP_FILTER_MASK;
473 return 1;
474}
475
476__setup("coredump_filter=", coredump_filter_setup);
477
478#include <linux/init_task.h>
479
480static void mm_init_aio(struct mm_struct *mm)
481{
482#ifdef CONFIG_AIO
483 spin_lock_init(&mm->ioctx_lock);
484 INIT_HLIST_HEAD(&mm->ioctx_list);
485#endif
486}
487
488static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
489{
490 atomic_set(&mm->mm_users, 1);
491 atomic_set(&mm->mm_count, 1);
492 init_rwsem(&mm->mmap_sem);
493 INIT_LIST_HEAD(&mm->mmlist);
494 mm->flags = (current->mm) ?
495 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496 mm->core_state = NULL;
497 mm->nr_ptes = 0;
498 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499 spin_lock_init(&mm->page_table_lock);
500 mm->free_area_cache = TASK_UNMAPPED_BASE;
501 mm->cached_hole_size = ~0UL;
502 mm_init_aio(mm);
503 mm_init_owner(mm, p);
504 atomic_set(&mm->oom_disable_count, 0);
505
506 if (likely(!mm_alloc_pgd(mm))) {
507 mm->def_flags = 0;
508 mmu_notifier_mm_init(mm);
509 return mm;
510 }
511
512 free_mm(mm);
513 return NULL;
514}
515
516/*
517 * Allocate and initialize an mm_struct.
518 */
519struct mm_struct *mm_alloc(void)
520{
521 struct mm_struct *mm;
522
523 mm = allocate_mm();
524 if (!mm)
525 return NULL;
526
527 memset(mm, 0, sizeof(*mm));
528 mm_init_cpumask(mm);
529 return mm_init(mm, current);
530}
531
532/*
533 * Called when the last reference to the mm
534 * is dropped: either by a lazy thread or by
535 * mmput. Free the page directory and the mm.
536 */
537void __mmdrop(struct mm_struct *mm)
538{
539 BUG_ON(mm == &init_mm);
540 mm_free_pgd(mm);
541 destroy_context(mm);
542 mmu_notifier_mm_destroy(mm);
543#ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 VM_BUG_ON(mm->pmd_huge_pte);
545#endif
546 free_mm(mm);
547}
548EXPORT_SYMBOL_GPL(__mmdrop);
549
550/*
551 * Decrement the use count and release all resources for an mm.
552 */
553void mmput(struct mm_struct *mm)
554{
555 might_sleep();
556
557 if (atomic_dec_and_test(&mm->mm_users)) {
558 exit_aio(mm);
559 ksm_exit(mm);
560 khugepaged_exit(mm); /* must run before exit_mmap */
561 exit_mmap(mm);
562 set_mm_exe_file(mm, NULL);
563 if (!list_empty(&mm->mmlist)) {
564 spin_lock(&mmlist_lock);
565 list_del(&mm->mmlist);
566 spin_unlock(&mmlist_lock);
567 }
568 put_swap_token(mm);
569 if (mm->binfmt)
570 module_put(mm->binfmt->module);
571 mmdrop(mm);
572 }
573}
574EXPORT_SYMBOL_GPL(mmput);
575
576/*
577 * We added or removed a vma mapping the executable. The vmas are only mapped
578 * during exec and are not mapped with the mmap system call.
579 * Callers must hold down_write() on the mm's mmap_sem for these
580 */
581void added_exe_file_vma(struct mm_struct *mm)
582{
583 mm->num_exe_file_vmas++;
584}
585
586void removed_exe_file_vma(struct mm_struct *mm)
587{
588 mm->num_exe_file_vmas--;
589 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
590 fput(mm->exe_file);
591 mm->exe_file = NULL;
592 }
593
594}
595
596void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
597{
598 if (new_exe_file)
599 get_file(new_exe_file);
600 if (mm->exe_file)
601 fput(mm->exe_file);
602 mm->exe_file = new_exe_file;
603 mm->num_exe_file_vmas = 0;
604}
605
606struct file *get_mm_exe_file(struct mm_struct *mm)
607{
608 struct file *exe_file;
609
610 /* We need mmap_sem to protect against races with removal of
611 * VM_EXECUTABLE vmas */
612 down_read(&mm->mmap_sem);
613 exe_file = mm->exe_file;
614 if (exe_file)
615 get_file(exe_file);
616 up_read(&mm->mmap_sem);
617 return exe_file;
618}
619
620static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
621{
622 /* It's safe to write the exe_file pointer without exe_file_lock because
623 * this is called during fork when the task is not yet in /proc */
624 newmm->exe_file = get_mm_exe_file(oldmm);
625}
626
627/**
628 * get_task_mm - acquire a reference to the task's mm
629 *
630 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
631 * this kernel workthread has transiently adopted a user mm with use_mm,
632 * to do its AIO) is not set and if so returns a reference to it, after
633 * bumping up the use count. User must release the mm via mmput()
634 * after use. Typically used by /proc and ptrace.
635 */
636struct mm_struct *get_task_mm(struct task_struct *task)
637{
638 struct mm_struct *mm;
639
640 task_lock(task);
641 mm = task->mm;
642 if (mm) {
643 if (task->flags & PF_KTHREAD)
644 mm = NULL;
645 else
646 atomic_inc(&mm->mm_users);
647 }
648 task_unlock(task);
649 return mm;
650}
651EXPORT_SYMBOL_GPL(get_task_mm);
652
653/* Please note the differences between mmput and mm_release.
654 * mmput is called whenever we stop holding onto a mm_struct,
655 * error success whatever.
656 *
657 * mm_release is called after a mm_struct has been removed
658 * from the current process.
659 *
660 * This difference is important for error handling, when we
661 * only half set up a mm_struct for a new process and need to restore
662 * the old one. Because we mmput the new mm_struct before
663 * restoring the old one. . .
664 * Eric Biederman 10 January 1998
665 */
666void mm_release(struct task_struct *tsk, struct mm_struct *mm)
667{
668 struct completion *vfork_done = tsk->vfork_done;
669
670 /* Get rid of any futexes when releasing the mm */
671#ifdef CONFIG_FUTEX
672 if (unlikely(tsk->robust_list)) {
673 exit_robust_list(tsk);
674 tsk->robust_list = NULL;
675 }
676#ifdef CONFIG_COMPAT
677 if (unlikely(tsk->compat_robust_list)) {
678 compat_exit_robust_list(tsk);
679 tsk->compat_robust_list = NULL;
680 }
681#endif
682 if (unlikely(!list_empty(&tsk->pi_state_list)))
683 exit_pi_state_list(tsk);
684#endif
685
686 /* Get rid of any cached register state */
687 deactivate_mm(tsk, mm);
688
689 /* notify parent sleeping on vfork() */
690 if (vfork_done) {
691 tsk->vfork_done = NULL;
692 complete(vfork_done);
693 }
694
695 /*
696 * If we're exiting normally, clear a user-space tid field if
697 * requested. We leave this alone when dying by signal, to leave
698 * the value intact in a core dump, and to save the unnecessary
699 * trouble otherwise. Userland only wants this done for a sys_exit.
700 */
701 if (tsk->clear_child_tid) {
702 if (!(tsk->flags & PF_SIGNALED) &&
703 atomic_read(&mm->mm_users) > 1) {
704 /*
705 * We don't check the error code - if userspace has
706 * not set up a proper pointer then tough luck.
707 */
708 put_user(0, tsk->clear_child_tid);
709 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
710 1, NULL, NULL, 0);
711 }
712 tsk->clear_child_tid = NULL;
713 }
714}
715
716/*
717 * Allocate a new mm structure and copy contents from the
718 * mm structure of the passed in task structure.
719 */
720struct mm_struct *dup_mm(struct task_struct *tsk)
721{
722 struct mm_struct *mm, *oldmm = current->mm;
723 int err;
724
725 if (!oldmm)
726 return NULL;
727
728 mm = allocate_mm();
729 if (!mm)
730 goto fail_nomem;
731
732 memcpy(mm, oldmm, sizeof(*mm));
733 mm_init_cpumask(mm);
734
735 /* Initializing for Swap token stuff */
736 mm->token_priority = 0;
737 mm->last_interval = 0;
738
739#ifdef CONFIG_TRANSPARENT_HUGEPAGE
740 mm->pmd_huge_pte = NULL;
741#endif
742
743 if (!mm_init(mm, tsk))
744 goto fail_nomem;
745
746 if (init_new_context(tsk, mm))
747 goto fail_nocontext;
748
749 dup_mm_exe_file(oldmm, mm);
750
751 err = dup_mmap(mm, oldmm);
752 if (err)
753 goto free_pt;
754
755 mm->hiwater_rss = get_mm_rss(mm);
756 mm->hiwater_vm = mm->total_vm;
757
758 if (mm->binfmt && !try_module_get(mm->binfmt->module))
759 goto free_pt;
760
761 return mm;
762
763free_pt:
764 /* don't put binfmt in mmput, we haven't got module yet */
765 mm->binfmt = NULL;
766 mmput(mm);
767
768fail_nomem:
769 return NULL;
770
771fail_nocontext:
772 /*
773 * If init_new_context() failed, we cannot use mmput() to free the mm
774 * because it calls destroy_context()
775 */
776 mm_free_pgd(mm);
777 free_mm(mm);
778 return NULL;
779}
780
781static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
782{
783 struct mm_struct *mm, *oldmm;
784 int retval;
785
786 tsk->min_flt = tsk->maj_flt = 0;
787 tsk->nvcsw = tsk->nivcsw = 0;
788#ifdef CONFIG_DETECT_HUNG_TASK
789 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
790#endif
791
792 tsk->mm = NULL;
793 tsk->active_mm = NULL;
794
795 /*
796 * Are we cloning a kernel thread?
797 *
798 * We need to steal a active VM for that..
799 */
800 oldmm = current->mm;
801 if (!oldmm)
802 return 0;
803
804 if (clone_flags & CLONE_VM) {
805 atomic_inc(&oldmm->mm_users);
806 mm = oldmm;
807 goto good_mm;
808 }
809
810 retval = -ENOMEM;
811 mm = dup_mm(tsk);
812 if (!mm)
813 goto fail_nomem;
814
815good_mm:
816 /* Initializing for Swap token stuff */
817 mm->token_priority = 0;
818 mm->last_interval = 0;
819 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
820 atomic_inc(&mm->oom_disable_count);
821
822 tsk->mm = mm;
823 tsk->active_mm = mm;
824 return 0;
825
826fail_nomem:
827 return retval;
828}
829
830static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
831{
832 struct fs_struct *fs = current->fs;
833 if (clone_flags & CLONE_FS) {
834 /* tsk->fs is already what we want */
835 spin_lock(&fs->lock);
836 if (fs->in_exec) {
837 spin_unlock(&fs->lock);
838 return -EAGAIN;
839 }
840 fs->users++;
841 spin_unlock(&fs->lock);
842 return 0;
843 }
844 tsk->fs = copy_fs_struct(fs);
845 if (!tsk->fs)
846 return -ENOMEM;
847 return 0;
848}
849
850static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
851{
852 struct files_struct *oldf, *newf;
853 int error = 0;
854
855 /*
856 * A background process may not have any files ...
857 */
858 oldf = current->files;
859 if (!oldf)
860 goto out;
861
862 if (clone_flags & CLONE_FILES) {
863 atomic_inc(&oldf->count);
864 goto out;
865 }
866
867 newf = dup_fd(oldf, &error);
868 if (!newf)
869 goto out;
870
871 tsk->files = newf;
872 error = 0;
873out:
874 return error;
875}
876
877static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
878{
879#ifdef CONFIG_BLOCK
880 struct io_context *ioc = current->io_context;
881
882 if (!ioc)
883 return 0;
884 /*
885 * Share io context with parent, if CLONE_IO is set
886 */
887 if (clone_flags & CLONE_IO) {
888 tsk->io_context = ioc_task_link(ioc);
889 if (unlikely(!tsk->io_context))
890 return -ENOMEM;
891 } else if (ioprio_valid(ioc->ioprio)) {
892 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
893 if (unlikely(!tsk->io_context))
894 return -ENOMEM;
895
896 tsk->io_context->ioprio = ioc->ioprio;
897 }
898#endif
899 return 0;
900}
901
902static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
903{
904 struct sighand_struct *sig;
905
906 if (clone_flags & CLONE_SIGHAND) {
907 atomic_inc(¤t->sighand->count);
908 return 0;
909 }
910 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
911 rcu_assign_pointer(tsk->sighand, sig);
912 if (!sig)
913 return -ENOMEM;
914 atomic_set(&sig->count, 1);
915 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
916 return 0;
917}
918
919void __cleanup_sighand(struct sighand_struct *sighand)
920{
921 if (atomic_dec_and_test(&sighand->count))
922 kmem_cache_free(sighand_cachep, sighand);
923}
924
925
926/*
927 * Initialize POSIX timer handling for a thread group.
928 */
929static void posix_cpu_timers_init_group(struct signal_struct *sig)
930{
931 unsigned long cpu_limit;
932
933 /* Thread group counters. */
934 thread_group_cputime_init(sig);
935
936 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
937 if (cpu_limit != RLIM_INFINITY) {
938 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
939 sig->cputimer.running = 1;
940 }
941
942 /* The timer lists. */
943 INIT_LIST_HEAD(&sig->cpu_timers[0]);
944 INIT_LIST_HEAD(&sig->cpu_timers[1]);
945 INIT_LIST_HEAD(&sig->cpu_timers[2]);
946}
947
948static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
949{
950 struct signal_struct *sig;
951
952 if (clone_flags & CLONE_THREAD)
953 return 0;
954
955 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
956 tsk->signal = sig;
957 if (!sig)
958 return -ENOMEM;
959
960 sig->nr_threads = 1;
961 atomic_set(&sig->live, 1);
962 atomic_set(&sig->sigcnt, 1);
963 init_waitqueue_head(&sig->wait_chldexit);
964 if (clone_flags & CLONE_NEWPID)
965 sig->flags |= SIGNAL_UNKILLABLE;
966 sig->curr_target = tsk;
967 init_sigpending(&sig->shared_pending);
968 INIT_LIST_HEAD(&sig->posix_timers);
969
970 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
971 sig->real_timer.function = it_real_fn;
972
973 task_lock(current->group_leader);
974 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
975 task_unlock(current->group_leader);
976
977 posix_cpu_timers_init_group(sig);
978
979 tty_audit_fork(sig);
980 sched_autogroup_fork(sig);
981
982#ifdef CONFIG_CGROUPS
983 init_rwsem(&sig->threadgroup_fork_lock);
984#endif
985
986 sig->oom_adj = current->signal->oom_adj;
987 sig->oom_score_adj = current->signal->oom_score_adj;
988 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
989
990 mutex_init(&sig->cred_guard_mutex);
991
992 return 0;
993}
994
995static void copy_flags(unsigned long clone_flags, struct task_struct *p)
996{
997 unsigned long new_flags = p->flags;
998
999 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1000 new_flags |= PF_FORKNOEXEC;
1001 new_flags |= PF_STARTING;
1002 p->flags = new_flags;
1003 clear_freeze_flag(p);
1004}
1005
1006SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1007{
1008 current->clear_child_tid = tidptr;
1009
1010 return task_pid_vnr(current);
1011}
1012
1013static void rt_mutex_init_task(struct task_struct *p)
1014{
1015 raw_spin_lock_init(&p->pi_lock);
1016#ifdef CONFIG_RT_MUTEXES
1017 plist_head_init(&p->pi_waiters);
1018 p->pi_blocked_on = NULL;
1019#endif
1020}
1021
1022#ifdef CONFIG_MM_OWNER
1023void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1024{
1025 mm->owner = p;
1026}
1027#endif /* CONFIG_MM_OWNER */
1028
1029/*
1030 * Initialize POSIX timer handling for a single task.
1031 */
1032static void posix_cpu_timers_init(struct task_struct *tsk)
1033{
1034 tsk->cputime_expires.prof_exp = cputime_zero;
1035 tsk->cputime_expires.virt_exp = cputime_zero;
1036 tsk->cputime_expires.sched_exp = 0;
1037 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1038 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1039 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1040}
1041
1042/*
1043 * This creates a new process as a copy of the old one,
1044 * but does not actually start it yet.
1045 *
1046 * It copies the registers, and all the appropriate
1047 * parts of the process environment (as per the clone
1048 * flags). The actual kick-off is left to the caller.
1049 */
1050static struct task_struct *copy_process(unsigned long clone_flags,
1051 unsigned long stack_start,
1052 struct pt_regs *regs,
1053 unsigned long stack_size,
1054 int __user *child_tidptr,
1055 struct pid *pid,
1056 int trace)
1057{
1058 int retval;
1059 struct task_struct *p;
1060 int cgroup_callbacks_done = 0;
1061
1062 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1063 return ERR_PTR(-EINVAL);
1064
1065 /*
1066 * Thread groups must share signals as well, and detached threads
1067 * can only be started up within the thread group.
1068 */
1069 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1070 return ERR_PTR(-EINVAL);
1071
1072 /*
1073 * Shared signal handlers imply shared VM. By way of the above,
1074 * thread groups also imply shared VM. Blocking this case allows
1075 * for various simplifications in other code.
1076 */
1077 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1078 return ERR_PTR(-EINVAL);
1079
1080 /*
1081 * Siblings of global init remain as zombies on exit since they are
1082 * not reaped by their parent (swapper). To solve this and to avoid
1083 * multi-rooted process trees, prevent global and container-inits
1084 * from creating siblings.
1085 */
1086 if ((clone_flags & CLONE_PARENT) &&
1087 current->signal->flags & SIGNAL_UNKILLABLE)
1088 return ERR_PTR(-EINVAL);
1089
1090 retval = security_task_create(clone_flags);
1091 if (retval)
1092 goto fork_out;
1093
1094 retval = -ENOMEM;
1095 p = dup_task_struct(current);
1096 if (!p)
1097 goto fork_out;
1098
1099 ftrace_graph_init_task(p);
1100
1101 rt_mutex_init_task(p);
1102
1103#ifdef CONFIG_PROVE_LOCKING
1104 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1105 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1106#endif
1107 retval = -EAGAIN;
1108 if (atomic_read(&p->real_cred->user->processes) >=
1109 task_rlimit(p, RLIMIT_NPROC)) {
1110 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1111 p->real_cred->user != INIT_USER)
1112 goto bad_fork_free;
1113 }
1114 current->flags &= ~PF_NPROC_EXCEEDED;
1115
1116 retval = copy_creds(p, clone_flags);
1117 if (retval < 0)
1118 goto bad_fork_free;
1119
1120 /*
1121 * If multiple threads are within copy_process(), then this check
1122 * triggers too late. This doesn't hurt, the check is only there
1123 * to stop root fork bombs.
1124 */
1125 retval = -EAGAIN;
1126 if (nr_threads >= max_threads)
1127 goto bad_fork_cleanup_count;
1128
1129 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1130 goto bad_fork_cleanup_count;
1131
1132 p->did_exec = 0;
1133 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1134 copy_flags(clone_flags, p);
1135 INIT_LIST_HEAD(&p->children);
1136 INIT_LIST_HEAD(&p->sibling);
1137 rcu_copy_process(p);
1138 p->vfork_done = NULL;
1139 spin_lock_init(&p->alloc_lock);
1140
1141 init_sigpending(&p->pending);
1142
1143 p->utime = cputime_zero;
1144 p->stime = cputime_zero;
1145 p->gtime = cputime_zero;
1146 p->utimescaled = cputime_zero;
1147 p->stimescaled = cputime_zero;
1148#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1149 p->prev_utime = cputime_zero;
1150 p->prev_stime = cputime_zero;
1151#endif
1152#if defined(SPLIT_RSS_COUNTING)
1153 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1154#endif
1155
1156 p->default_timer_slack_ns = current->timer_slack_ns;
1157
1158 task_io_accounting_init(&p->ioac);
1159 acct_clear_integrals(p);
1160
1161 posix_cpu_timers_init(p);
1162
1163 do_posix_clock_monotonic_gettime(&p->start_time);
1164 p->real_start_time = p->start_time;
1165 monotonic_to_bootbased(&p->real_start_time);
1166 p->io_context = NULL;
1167 p->audit_context = NULL;
1168 if (clone_flags & CLONE_THREAD)
1169 threadgroup_fork_read_lock(current);
1170 cgroup_fork(p);
1171#ifdef CONFIG_NUMA
1172 p->mempolicy = mpol_dup(p->mempolicy);
1173 if (IS_ERR(p->mempolicy)) {
1174 retval = PTR_ERR(p->mempolicy);
1175 p->mempolicy = NULL;
1176 goto bad_fork_cleanup_cgroup;
1177 }
1178 mpol_fix_fork_child_flag(p);
1179#endif
1180#ifdef CONFIG_CPUSETS
1181 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1182 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1183#endif
1184#ifdef CONFIG_TRACE_IRQFLAGS
1185 p->irq_events = 0;
1186#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1187 p->hardirqs_enabled = 1;
1188#else
1189 p->hardirqs_enabled = 0;
1190#endif
1191 p->hardirq_enable_ip = 0;
1192 p->hardirq_enable_event = 0;
1193 p->hardirq_disable_ip = _THIS_IP_;
1194 p->hardirq_disable_event = 0;
1195 p->softirqs_enabled = 1;
1196 p->softirq_enable_ip = _THIS_IP_;
1197 p->softirq_enable_event = 0;
1198 p->softirq_disable_ip = 0;
1199 p->softirq_disable_event = 0;
1200 p->hardirq_context = 0;
1201 p->softirq_context = 0;
1202#endif
1203#ifdef CONFIG_LOCKDEP
1204 p->lockdep_depth = 0; /* no locks held yet */
1205 p->curr_chain_key = 0;
1206 p->lockdep_recursion = 0;
1207#endif
1208
1209#ifdef CONFIG_DEBUG_MUTEXES
1210 p->blocked_on = NULL; /* not blocked yet */
1211#endif
1212#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1213 p->memcg_batch.do_batch = 0;
1214 p->memcg_batch.memcg = NULL;
1215#endif
1216
1217 /* Perform scheduler related setup. Assign this task to a CPU. */
1218 sched_fork(p);
1219
1220 retval = perf_event_init_task(p);
1221 if (retval)
1222 goto bad_fork_cleanup_policy;
1223 retval = audit_alloc(p);
1224 if (retval)
1225 goto bad_fork_cleanup_policy;
1226 /* copy all the process information */
1227 retval = copy_semundo(clone_flags, p);
1228 if (retval)
1229 goto bad_fork_cleanup_audit;
1230 retval = copy_files(clone_flags, p);
1231 if (retval)
1232 goto bad_fork_cleanup_semundo;
1233 retval = copy_fs(clone_flags, p);
1234 if (retval)
1235 goto bad_fork_cleanup_files;
1236 retval = copy_sighand(clone_flags, p);
1237 if (retval)
1238 goto bad_fork_cleanup_fs;
1239 retval = copy_signal(clone_flags, p);
1240 if (retval)
1241 goto bad_fork_cleanup_sighand;
1242 retval = copy_mm(clone_flags, p);
1243 if (retval)
1244 goto bad_fork_cleanup_signal;
1245 retval = copy_namespaces(clone_flags, p);
1246 if (retval)
1247 goto bad_fork_cleanup_mm;
1248 retval = copy_io(clone_flags, p);
1249 if (retval)
1250 goto bad_fork_cleanup_namespaces;
1251 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1252 if (retval)
1253 goto bad_fork_cleanup_io;
1254
1255 if (pid != &init_struct_pid) {
1256 retval = -ENOMEM;
1257 pid = alloc_pid(p->nsproxy->pid_ns);
1258 if (!pid)
1259 goto bad_fork_cleanup_io;
1260 }
1261
1262 p->pid = pid_nr(pid);
1263 p->tgid = p->pid;
1264 if (clone_flags & CLONE_THREAD)
1265 p->tgid = current->tgid;
1266
1267 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1268 /*
1269 * Clear TID on mm_release()?
1270 */
1271 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1272#ifdef CONFIG_BLOCK
1273 p->plug = NULL;
1274#endif
1275#ifdef CONFIG_FUTEX
1276 p->robust_list = NULL;
1277#ifdef CONFIG_COMPAT
1278 p->compat_robust_list = NULL;
1279#endif
1280 INIT_LIST_HEAD(&p->pi_state_list);
1281 p->pi_state_cache = NULL;
1282#endif
1283 /*
1284 * sigaltstack should be cleared when sharing the same VM
1285 */
1286 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1287 p->sas_ss_sp = p->sas_ss_size = 0;
1288
1289 /*
1290 * Syscall tracing and stepping should be turned off in the
1291 * child regardless of CLONE_PTRACE.
1292 */
1293 user_disable_single_step(p);
1294 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1295#ifdef TIF_SYSCALL_EMU
1296 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1297#endif
1298 clear_all_latency_tracing(p);
1299
1300 /* ok, now we should be set up.. */
1301 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1302 p->pdeath_signal = 0;
1303 p->exit_state = 0;
1304
1305 /*
1306 * Ok, make it visible to the rest of the system.
1307 * We dont wake it up yet.
1308 */
1309 p->group_leader = p;
1310 INIT_LIST_HEAD(&p->thread_group);
1311
1312 /* Now that the task is set up, run cgroup callbacks if
1313 * necessary. We need to run them before the task is visible
1314 * on the tasklist. */
1315 cgroup_fork_callbacks(p);
1316 cgroup_callbacks_done = 1;
1317
1318 /* Need tasklist lock for parent etc handling! */
1319 write_lock_irq(&tasklist_lock);
1320
1321 /* CLONE_PARENT re-uses the old parent */
1322 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1323 p->real_parent = current->real_parent;
1324 p->parent_exec_id = current->parent_exec_id;
1325 } else {
1326 p->real_parent = current;
1327 p->parent_exec_id = current->self_exec_id;
1328 }
1329
1330 spin_lock(¤t->sighand->siglock);
1331
1332 /*
1333 * Process group and session signals need to be delivered to just the
1334 * parent before the fork or both the parent and the child after the
1335 * fork. Restart if a signal comes in before we add the new process to
1336 * it's process group.
1337 * A fatal signal pending means that current will exit, so the new
1338 * thread can't slip out of an OOM kill (or normal SIGKILL).
1339 */
1340 recalc_sigpending();
1341 if (signal_pending(current)) {
1342 spin_unlock(¤t->sighand->siglock);
1343 write_unlock_irq(&tasklist_lock);
1344 retval = -ERESTARTNOINTR;
1345 goto bad_fork_free_pid;
1346 }
1347
1348 if (clone_flags & CLONE_THREAD) {
1349 current->signal->nr_threads++;
1350 atomic_inc(¤t->signal->live);
1351 atomic_inc(¤t->signal->sigcnt);
1352 p->group_leader = current->group_leader;
1353 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1354 }
1355
1356 if (likely(p->pid)) {
1357 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1358
1359 if (thread_group_leader(p)) {
1360 if (is_child_reaper(pid))
1361 p->nsproxy->pid_ns->child_reaper = p;
1362
1363 p->signal->leader_pid = pid;
1364 p->signal->tty = tty_kref_get(current->signal->tty);
1365 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1366 attach_pid(p, PIDTYPE_SID, task_session(current));
1367 list_add_tail(&p->sibling, &p->real_parent->children);
1368 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1369 __this_cpu_inc(process_counts);
1370 }
1371 attach_pid(p, PIDTYPE_PID, pid);
1372 nr_threads++;
1373 }
1374
1375 total_forks++;
1376 spin_unlock(¤t->sighand->siglock);
1377 write_unlock_irq(&tasklist_lock);
1378 proc_fork_connector(p);
1379 cgroup_post_fork(p);
1380 if (clone_flags & CLONE_THREAD)
1381 threadgroup_fork_read_unlock(current);
1382 perf_event_fork(p);
1383 return p;
1384
1385bad_fork_free_pid:
1386 if (pid != &init_struct_pid)
1387 free_pid(pid);
1388bad_fork_cleanup_io:
1389 if (p->io_context)
1390 exit_io_context(p);
1391bad_fork_cleanup_namespaces:
1392 exit_task_namespaces(p);
1393bad_fork_cleanup_mm:
1394 if (p->mm) {
1395 task_lock(p);
1396 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1397 atomic_dec(&p->mm->oom_disable_count);
1398 task_unlock(p);
1399 mmput(p->mm);
1400 }
1401bad_fork_cleanup_signal:
1402 if (!(clone_flags & CLONE_THREAD))
1403 free_signal_struct(p->signal);
1404bad_fork_cleanup_sighand:
1405 __cleanup_sighand(p->sighand);
1406bad_fork_cleanup_fs:
1407 exit_fs(p); /* blocking */
1408bad_fork_cleanup_files:
1409 exit_files(p); /* blocking */
1410bad_fork_cleanup_semundo:
1411 exit_sem(p);
1412bad_fork_cleanup_audit:
1413 audit_free(p);
1414bad_fork_cleanup_policy:
1415 perf_event_free_task(p);
1416#ifdef CONFIG_NUMA
1417 mpol_put(p->mempolicy);
1418bad_fork_cleanup_cgroup:
1419#endif
1420 if (clone_flags & CLONE_THREAD)
1421 threadgroup_fork_read_unlock(current);
1422 cgroup_exit(p, cgroup_callbacks_done);
1423 delayacct_tsk_free(p);
1424 module_put(task_thread_info(p)->exec_domain->module);
1425bad_fork_cleanup_count:
1426 atomic_dec(&p->cred->user->processes);
1427 exit_creds(p);
1428bad_fork_free:
1429 free_task(p);
1430fork_out:
1431 return ERR_PTR(retval);
1432}
1433
1434noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1435{
1436 memset(regs, 0, sizeof(struct pt_regs));
1437 return regs;
1438}
1439
1440static inline void init_idle_pids(struct pid_link *links)
1441{
1442 enum pid_type type;
1443
1444 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1445 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1446 links[type].pid = &init_struct_pid;
1447 }
1448}
1449
1450struct task_struct * __cpuinit fork_idle(int cpu)
1451{
1452 struct task_struct *task;
1453 struct pt_regs regs;
1454
1455 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL,
1456 &init_struct_pid, 0);
1457 if (!IS_ERR(task)) {
1458 init_idle_pids(task->pids);
1459 init_idle(task, cpu);
1460 }
1461
1462 return task;
1463}
1464
1465/*
1466 * Ok, this is the main fork-routine.
1467 *
1468 * It copies the process, and if successful kick-starts
1469 * it and waits for it to finish using the VM if required.
1470 */
1471long do_fork(unsigned long clone_flags,
1472 unsigned long stack_start,
1473 struct pt_regs *regs,
1474 unsigned long stack_size,
1475 int __user *parent_tidptr,
1476 int __user *child_tidptr)
1477{
1478 struct task_struct *p;
1479 int trace = 0;
1480 long nr;
1481
1482 /*
1483 * Do some preliminary argument and permissions checking before we
1484 * actually start allocating stuff
1485 */
1486 if (clone_flags & CLONE_NEWUSER) {
1487 if (clone_flags & CLONE_THREAD)
1488 return -EINVAL;
1489 /* hopefully this check will go away when userns support is
1490 * complete
1491 */
1492 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1493 !capable(CAP_SETGID))
1494 return -EPERM;
1495 }
1496
1497 /*
1498 * Determine whether and which event to report to ptracer. When
1499 * called from kernel_thread or CLONE_UNTRACED is explicitly
1500 * requested, no event is reported; otherwise, report if the event
1501 * for the type of forking is enabled.
1502 */
1503 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1504 if (clone_flags & CLONE_VFORK)
1505 trace = PTRACE_EVENT_VFORK;
1506 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1507 trace = PTRACE_EVENT_CLONE;
1508 else
1509 trace = PTRACE_EVENT_FORK;
1510
1511 if (likely(!ptrace_event_enabled(current, trace)))
1512 trace = 0;
1513 }
1514
1515 p = copy_process(clone_flags, stack_start, regs, stack_size,
1516 child_tidptr, NULL, trace);
1517 /*
1518 * Do this prior waking up the new thread - the thread pointer
1519 * might get invalid after that point, if the thread exits quickly.
1520 */
1521 if (!IS_ERR(p)) {
1522 struct completion vfork;
1523
1524 trace_sched_process_fork(current, p);
1525
1526 nr = task_pid_vnr(p);
1527
1528 if (clone_flags & CLONE_PARENT_SETTID)
1529 put_user(nr, parent_tidptr);
1530
1531 if (clone_flags & CLONE_VFORK) {
1532 p->vfork_done = &vfork;
1533 init_completion(&vfork);
1534 }
1535
1536 audit_finish_fork(p);
1537
1538 /*
1539 * We set PF_STARTING at creation in case tracing wants to
1540 * use this to distinguish a fully live task from one that
1541 * hasn't finished SIGSTOP raising yet. Now we clear it
1542 * and set the child going.
1543 */
1544 p->flags &= ~PF_STARTING;
1545
1546 wake_up_new_task(p);
1547
1548 /* forking complete and child started to run, tell ptracer */
1549 if (unlikely(trace))
1550 ptrace_event(trace, nr);
1551
1552 if (clone_flags & CLONE_VFORK) {
1553 freezer_do_not_count();
1554 wait_for_completion(&vfork);
1555 freezer_count();
1556 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1557 }
1558 } else {
1559 nr = PTR_ERR(p);
1560 }
1561 return nr;
1562}
1563
1564#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1565#define ARCH_MIN_MMSTRUCT_ALIGN 0
1566#endif
1567
1568static void sighand_ctor(void *data)
1569{
1570 struct sighand_struct *sighand = data;
1571
1572 spin_lock_init(&sighand->siglock);
1573 init_waitqueue_head(&sighand->signalfd_wqh);
1574}
1575
1576void __init proc_caches_init(void)
1577{
1578 sighand_cachep = kmem_cache_create("sighand_cache",
1579 sizeof(struct sighand_struct), 0,
1580 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1581 SLAB_NOTRACK, sighand_ctor);
1582 signal_cachep = kmem_cache_create("signal_cache",
1583 sizeof(struct signal_struct), 0,
1584 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1585 files_cachep = kmem_cache_create("files_cache",
1586 sizeof(struct files_struct), 0,
1587 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1588 fs_cachep = kmem_cache_create("fs_cache",
1589 sizeof(struct fs_struct), 0,
1590 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1591 /*
1592 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1593 * whole struct cpumask for the OFFSTACK case. We could change
1594 * this to *only* allocate as much of it as required by the
1595 * maximum number of CPU's we can ever have. The cpumask_allocation
1596 * is at the end of the structure, exactly for that reason.
1597 */
1598 mm_cachep = kmem_cache_create("mm_struct",
1599 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1600 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1601 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1602 mmap_init();
1603 nsproxy_cache_init();
1604}
1605
1606/*
1607 * Check constraints on flags passed to the unshare system call.
1608 */
1609static int check_unshare_flags(unsigned long unshare_flags)
1610{
1611 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1612 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1613 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1614 return -EINVAL;
1615 /*
1616 * Not implemented, but pretend it works if there is nothing to
1617 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1618 * needs to unshare vm.
1619 */
1620 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1621 /* FIXME: get_task_mm() increments ->mm_users */
1622 if (atomic_read(¤t->mm->mm_users) > 1)
1623 return -EINVAL;
1624 }
1625
1626 return 0;
1627}
1628
1629/*
1630 * Unshare the filesystem structure if it is being shared
1631 */
1632static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1633{
1634 struct fs_struct *fs = current->fs;
1635
1636 if (!(unshare_flags & CLONE_FS) || !fs)
1637 return 0;
1638
1639 /* don't need lock here; in the worst case we'll do useless copy */
1640 if (fs->users == 1)
1641 return 0;
1642
1643 *new_fsp = copy_fs_struct(fs);
1644 if (!*new_fsp)
1645 return -ENOMEM;
1646
1647 return 0;
1648}
1649
1650/*
1651 * Unshare file descriptor table if it is being shared
1652 */
1653static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1654{
1655 struct files_struct *fd = current->files;
1656 int error = 0;
1657
1658 if ((unshare_flags & CLONE_FILES) &&
1659 (fd && atomic_read(&fd->count) > 1)) {
1660 *new_fdp = dup_fd(fd, &error);
1661 if (!*new_fdp)
1662 return error;
1663 }
1664
1665 return 0;
1666}
1667
1668/*
1669 * unshare allows a process to 'unshare' part of the process
1670 * context which was originally shared using clone. copy_*
1671 * functions used by do_fork() cannot be used here directly
1672 * because they modify an inactive task_struct that is being
1673 * constructed. Here we are modifying the current, active,
1674 * task_struct.
1675 */
1676SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1677{
1678 struct fs_struct *fs, *new_fs = NULL;
1679 struct files_struct *fd, *new_fd = NULL;
1680 struct nsproxy *new_nsproxy = NULL;
1681 int do_sysvsem = 0;
1682 int err;
1683
1684 err = check_unshare_flags(unshare_flags);
1685 if (err)
1686 goto bad_unshare_out;
1687
1688 /*
1689 * If unsharing namespace, must also unshare filesystem information.
1690 */
1691 if (unshare_flags & CLONE_NEWNS)
1692 unshare_flags |= CLONE_FS;
1693 /*
1694 * CLONE_NEWIPC must also detach from the undolist: after switching
1695 * to a new ipc namespace, the semaphore arrays from the old
1696 * namespace are unreachable.
1697 */
1698 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1699 do_sysvsem = 1;
1700 err = unshare_fs(unshare_flags, &new_fs);
1701 if (err)
1702 goto bad_unshare_out;
1703 err = unshare_fd(unshare_flags, &new_fd);
1704 if (err)
1705 goto bad_unshare_cleanup_fs;
1706 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1707 if (err)
1708 goto bad_unshare_cleanup_fd;
1709
1710 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1711 if (do_sysvsem) {
1712 /*
1713 * CLONE_SYSVSEM is equivalent to sys_exit().
1714 */
1715 exit_sem(current);
1716 }
1717
1718 if (new_nsproxy) {
1719 switch_task_namespaces(current, new_nsproxy);
1720 new_nsproxy = NULL;
1721 }
1722
1723 task_lock(current);
1724
1725 if (new_fs) {
1726 fs = current->fs;
1727 spin_lock(&fs->lock);
1728 current->fs = new_fs;
1729 if (--fs->users)
1730 new_fs = NULL;
1731 else
1732 new_fs = fs;
1733 spin_unlock(&fs->lock);
1734 }
1735
1736 if (new_fd) {
1737 fd = current->files;
1738 current->files = new_fd;
1739 new_fd = fd;
1740 }
1741
1742 task_unlock(current);
1743 }
1744
1745 if (new_nsproxy)
1746 put_nsproxy(new_nsproxy);
1747
1748bad_unshare_cleanup_fd:
1749 if (new_fd)
1750 put_files_struct(new_fd);
1751
1752bad_unshare_cleanup_fs:
1753 if (new_fs)
1754 free_fs_struct(new_fs);
1755
1756bad_unshare_out:
1757 return err;
1758}
1759
1760/*
1761 * Helper to unshare the files of the current task.
1762 * We don't want to expose copy_files internals to
1763 * the exec layer of the kernel.
1764 */
1765
1766int unshare_files(struct files_struct **displaced)
1767{
1768 struct task_struct *task = current;
1769 struct files_struct *copy = NULL;
1770 int error;
1771
1772 error = unshare_fd(CLONE_FILES, ©);
1773 if (error || !copy) {
1774 *displaced = NULL;
1775 return error;
1776 }
1777 *displaced = task->files;
1778 task_lock(task);
1779 task->files = copy;
1780 task_unlock(task);
1781 return 0;
1782}