Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v3.15
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/perf_event.h>
  38#include <linux/ftrace_event.h>
  39#include <linux/hw_breakpoint.h>
  40#include <linux/mm_types.h>
  41#include <linux/cgroup.h>
  42
  43#include "internal.h"
  44
  45#include <asm/irq_regs.h>
  46
  47struct remote_function_call {
  48	struct task_struct	*p;
  49	int			(*func)(void *info);
  50	void			*info;
  51	int			ret;
  52};
  53
  54static void remote_function(void *data)
  55{
  56	struct remote_function_call *tfc = data;
  57	struct task_struct *p = tfc->p;
  58
  59	if (p) {
  60		tfc->ret = -EAGAIN;
  61		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  62			return;
  63	}
  64
  65	tfc->ret = tfc->func(tfc->info);
  66}
  67
  68/**
  69 * task_function_call - call a function on the cpu on which a task runs
  70 * @p:		the task to evaluate
  71 * @func:	the function to be called
  72 * @info:	the function call argument
  73 *
  74 * Calls the function @func when the task is currently running. This might
  75 * be on the current CPU, which just calls the function directly
  76 *
  77 * returns: @func return value, or
  78 *	    -ESRCH  - when the process isn't running
  79 *	    -EAGAIN - when the process moved away
  80 */
  81static int
  82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  83{
  84	struct remote_function_call data = {
  85		.p	= p,
  86		.func	= func,
  87		.info	= info,
  88		.ret	= -ESRCH, /* No such (running) process */
  89	};
  90
  91	if (task_curr(p))
  92		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  93
  94	return data.ret;
  95}
  96
  97/**
  98 * cpu_function_call - call a function on the cpu
  99 * @func:	the function to be called
 100 * @info:	the function call argument
 101 *
 102 * Calls the function @func on the remote cpu.
 103 *
 104 * returns: @func return value or -ENXIO when the cpu is offline
 105 */
 106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 107{
 108	struct remote_function_call data = {
 109		.p	= NULL,
 110		.func	= func,
 111		.info	= info,
 112		.ret	= -ENXIO, /* No such CPU */
 113	};
 114
 115	smp_call_function_single(cpu, remote_function, &data, 1);
 116
 117	return data.ret;
 118}
 119
 120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 121		       PERF_FLAG_FD_OUTPUT  |\
 122		       PERF_FLAG_PID_CGROUP |\
 123		       PERF_FLAG_FD_CLOEXEC)
 124
 125/*
 126 * branch priv levels that need permission checks
 127 */
 128#define PERF_SAMPLE_BRANCH_PERM_PLM \
 129	(PERF_SAMPLE_BRANCH_KERNEL |\
 130	 PERF_SAMPLE_BRANCH_HV)
 131
 132enum event_type_t {
 133	EVENT_FLEXIBLE = 0x1,
 134	EVENT_PINNED = 0x2,
 135	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 136};
 137
 138/*
 139 * perf_sched_events : >0 events exist
 140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 141 */
 142struct static_key_deferred perf_sched_events __read_mostly;
 143static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 144static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
 145
 146static atomic_t nr_mmap_events __read_mostly;
 147static atomic_t nr_comm_events __read_mostly;
 148static atomic_t nr_task_events __read_mostly;
 149static atomic_t nr_freq_events __read_mostly;
 150
 151static LIST_HEAD(pmus);
 152static DEFINE_MUTEX(pmus_lock);
 153static struct srcu_struct pmus_srcu;
 154
 155/*
 156 * perf event paranoia level:
 157 *  -1 - not paranoid at all
 158 *   0 - disallow raw tracepoint access for unpriv
 159 *   1 - disallow cpu events for unpriv
 160 *   2 - disallow kernel profiling for unpriv
 161 */
 162int sysctl_perf_event_paranoid __read_mostly = 1;
 163
 164/* Minimum for 512 kiB + 1 user control page */
 165int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 166
 167/*
 168 * max perf event sample rate
 169 */
 170#define DEFAULT_MAX_SAMPLE_RATE		100000
 171#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 172#define DEFAULT_CPU_TIME_MAX_PERCENT	25
 173
 174int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
 175
 176static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 177static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
 178
 179static int perf_sample_allowed_ns __read_mostly =
 180	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 181
 182void update_perf_cpu_limits(void)
 183{
 184	u64 tmp = perf_sample_period_ns;
 185
 186	tmp *= sysctl_perf_cpu_time_max_percent;
 187	do_div(tmp, 100);
 188	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
 189}
 190
 191static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 192
 193int perf_proc_update_handler(struct ctl_table *table, int write,
 194		void __user *buffer, size_t *lenp,
 195		loff_t *ppos)
 196{
 197	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 198
 199	if (ret || !write)
 200		return ret;
 201
 202	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 203	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 204	update_perf_cpu_limits();
 205
 206	return 0;
 207}
 208
 209int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 210
 211int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 212				void __user *buffer, size_t *lenp,
 213				loff_t *ppos)
 214{
 215	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 216
 217	if (ret || !write)
 218		return ret;
 219
 220	update_perf_cpu_limits();
 221
 222	return 0;
 223}
 224
 225/*
 226 * perf samples are done in some very critical code paths (NMIs).
 227 * If they take too much CPU time, the system can lock up and not
 228 * get any real work done.  This will drop the sample rate when
 229 * we detect that events are taking too long.
 230 */
 231#define NR_ACCUMULATED_SAMPLES 128
 232static DEFINE_PER_CPU(u64, running_sample_length);
 233
 234static void perf_duration_warn(struct irq_work *w)
 235{
 236	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
 237	u64 avg_local_sample_len;
 238	u64 local_samples_len;
 239
 240	local_samples_len = __get_cpu_var(running_sample_length);
 241	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
 242
 243	printk_ratelimited(KERN_WARNING
 244			"perf interrupt took too long (%lld > %lld), lowering "
 245			"kernel.perf_event_max_sample_rate to %d\n",
 246			avg_local_sample_len, allowed_ns >> 1,
 247			sysctl_perf_event_sample_rate);
 248}
 249
 250static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 251
 252void perf_sample_event_took(u64 sample_len_ns)
 253{
 254	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
 255	u64 avg_local_sample_len;
 256	u64 local_samples_len;
 257
 258	if (allowed_ns == 0)
 259		return;
 260
 261	/* decay the counter by 1 average sample */
 262	local_samples_len = __get_cpu_var(running_sample_length);
 263	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
 264	local_samples_len += sample_len_ns;
 265	__get_cpu_var(running_sample_length) = local_samples_len;
 266
 267	/*
 268	 * note: this will be biased artifically low until we have
 269	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
 270	 * from having to maintain a count.
 271	 */
 272	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
 273
 274	if (avg_local_sample_len <= allowed_ns)
 275		return;
 276
 277	if (max_samples_per_tick <= 1)
 278		return;
 279
 280	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
 281	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
 282	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 283
 284	update_perf_cpu_limits();
 285
 286	if (!irq_work_queue(&perf_duration_work)) {
 287		early_printk("perf interrupt took too long (%lld > %lld), lowering "
 288			     "kernel.perf_event_max_sample_rate to %d\n",
 289			     avg_local_sample_len, allowed_ns >> 1,
 290			     sysctl_perf_event_sample_rate);
 291	}
 292}
 293
 294static atomic64_t perf_event_id;
 295
 296static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 297			      enum event_type_t event_type);
 298
 299static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 300			     enum event_type_t event_type,
 301			     struct task_struct *task);
 302
 303static void update_context_time(struct perf_event_context *ctx);
 304static u64 perf_event_time(struct perf_event *event);
 305
 306void __weak perf_event_print_debug(void)	{ }
 307
 308extern __weak const char *perf_pmu_name(void)
 309{
 310	return "pmu";
 311}
 312
 313static inline u64 perf_clock(void)
 314{
 315	return local_clock();
 316}
 317
 318static inline struct perf_cpu_context *
 319__get_cpu_context(struct perf_event_context *ctx)
 320{
 321	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 322}
 323
 324static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 325			  struct perf_event_context *ctx)
 326{
 327	raw_spin_lock(&cpuctx->ctx.lock);
 328	if (ctx)
 329		raw_spin_lock(&ctx->lock);
 330}
 331
 332static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 333			    struct perf_event_context *ctx)
 334{
 335	if (ctx)
 336		raw_spin_unlock(&ctx->lock);
 337	raw_spin_unlock(&cpuctx->ctx.lock);
 338}
 339
 340#ifdef CONFIG_CGROUP_PERF
 341
 342/*
 343 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 344 * This is a per-cpu dynamically allocated data structure.
 345 */
 346struct perf_cgroup_info {
 347	u64				time;
 348	u64				timestamp;
 349};
 350
 351struct perf_cgroup {
 352	struct cgroup_subsys_state	css;
 353	struct perf_cgroup_info	__percpu *info;
 354};
 355
 356/*
 357 * Must ensure cgroup is pinned (css_get) before calling
 358 * this function. In other words, we cannot call this function
 359 * if there is no cgroup event for the current CPU context.
 360 */
 361static inline struct perf_cgroup *
 362perf_cgroup_from_task(struct task_struct *task)
 363{
 364	return container_of(task_css(task, perf_event_cgrp_id),
 365			    struct perf_cgroup, css);
 366}
 367
 368static inline bool
 369perf_cgroup_match(struct perf_event *event)
 370{
 371	struct perf_event_context *ctx = event->ctx;
 372	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 373
 374	/* @event doesn't care about cgroup */
 375	if (!event->cgrp)
 376		return true;
 377
 378	/* wants specific cgroup scope but @cpuctx isn't associated with any */
 379	if (!cpuctx->cgrp)
 380		return false;
 381
 382	/*
 383	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
 384	 * also enabled for all its descendant cgroups.  If @cpuctx's
 385	 * cgroup is a descendant of @event's (the test covers identity
 386	 * case), it's a match.
 387	 */
 388	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 389				    event->cgrp->css.cgroup);
 390}
 391
 392static inline void perf_put_cgroup(struct perf_event *event)
 393{
 394	css_put(&event->cgrp->css);
 395}
 396
 397static inline void perf_detach_cgroup(struct perf_event *event)
 398{
 399	perf_put_cgroup(event);
 400	event->cgrp = NULL;
 401}
 402
 403static inline int is_cgroup_event(struct perf_event *event)
 404{
 405	return event->cgrp != NULL;
 406}
 407
 408static inline u64 perf_cgroup_event_time(struct perf_event *event)
 409{
 410	struct perf_cgroup_info *t;
 411
 412	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 413	return t->time;
 414}
 415
 416static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 417{
 418	struct perf_cgroup_info *info;
 419	u64 now;
 420
 421	now = perf_clock();
 422
 423	info = this_cpu_ptr(cgrp->info);
 424
 425	info->time += now - info->timestamp;
 426	info->timestamp = now;
 427}
 428
 429static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 430{
 431	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 432	if (cgrp_out)
 433		__update_cgrp_time(cgrp_out);
 434}
 435
 436static inline void update_cgrp_time_from_event(struct perf_event *event)
 437{
 438	struct perf_cgroup *cgrp;
 439
 440	/*
 441	 * ensure we access cgroup data only when needed and
 442	 * when we know the cgroup is pinned (css_get)
 443	 */
 444	if (!is_cgroup_event(event))
 445		return;
 446
 447	cgrp = perf_cgroup_from_task(current);
 448	/*
 449	 * Do not update time when cgroup is not active
 450	 */
 451	if (cgrp == event->cgrp)
 452		__update_cgrp_time(event->cgrp);
 453}
 454
 455static inline void
 456perf_cgroup_set_timestamp(struct task_struct *task,
 457			  struct perf_event_context *ctx)
 458{
 459	struct perf_cgroup *cgrp;
 460	struct perf_cgroup_info *info;
 461
 462	/*
 463	 * ctx->lock held by caller
 464	 * ensure we do not access cgroup data
 465	 * unless we have the cgroup pinned (css_get)
 466	 */
 467	if (!task || !ctx->nr_cgroups)
 468		return;
 469
 470	cgrp = perf_cgroup_from_task(task);
 471	info = this_cpu_ptr(cgrp->info);
 472	info->timestamp = ctx->timestamp;
 473}
 474
 475#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
 476#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
 477
 478/*
 479 * reschedule events based on the cgroup constraint of task.
 480 *
 481 * mode SWOUT : schedule out everything
 482 * mode SWIN : schedule in based on cgroup for next
 483 */
 484void perf_cgroup_switch(struct task_struct *task, int mode)
 485{
 486	struct perf_cpu_context *cpuctx;
 487	struct pmu *pmu;
 488	unsigned long flags;
 489
 490	/*
 491	 * disable interrupts to avoid geting nr_cgroup
 492	 * changes via __perf_event_disable(). Also
 493	 * avoids preemption.
 494	 */
 495	local_irq_save(flags);
 496
 497	/*
 498	 * we reschedule only in the presence of cgroup
 499	 * constrained events.
 500	 */
 501	rcu_read_lock();
 502
 503	list_for_each_entry_rcu(pmu, &pmus, entry) {
 504		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 505		if (cpuctx->unique_pmu != pmu)
 506			continue; /* ensure we process each cpuctx once */
 507
 508		/*
 509		 * perf_cgroup_events says at least one
 510		 * context on this CPU has cgroup events.
 511		 *
 512		 * ctx->nr_cgroups reports the number of cgroup
 513		 * events for a context.
 514		 */
 515		if (cpuctx->ctx.nr_cgroups > 0) {
 516			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 517			perf_pmu_disable(cpuctx->ctx.pmu);
 518
 519			if (mode & PERF_CGROUP_SWOUT) {
 520				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 521				/*
 522				 * must not be done before ctxswout due
 523				 * to event_filter_match() in event_sched_out()
 524				 */
 525				cpuctx->cgrp = NULL;
 526			}
 527
 528			if (mode & PERF_CGROUP_SWIN) {
 529				WARN_ON_ONCE(cpuctx->cgrp);
 530				/*
 531				 * set cgrp before ctxsw in to allow
 532				 * event_filter_match() to not have to pass
 533				 * task around
 534				 */
 535				cpuctx->cgrp = perf_cgroup_from_task(task);
 536				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 537			}
 538			perf_pmu_enable(cpuctx->ctx.pmu);
 539			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 540		}
 541	}
 542
 543	rcu_read_unlock();
 544
 545	local_irq_restore(flags);
 546}
 547
 548static inline void perf_cgroup_sched_out(struct task_struct *task,
 549					 struct task_struct *next)
 550{
 551	struct perf_cgroup *cgrp1;
 552	struct perf_cgroup *cgrp2 = NULL;
 553
 554	/*
 555	 * we come here when we know perf_cgroup_events > 0
 556	 */
 557	cgrp1 = perf_cgroup_from_task(task);
 558
 559	/*
 560	 * next is NULL when called from perf_event_enable_on_exec()
 561	 * that will systematically cause a cgroup_switch()
 562	 */
 563	if (next)
 564		cgrp2 = perf_cgroup_from_task(next);
 565
 566	/*
 567	 * only schedule out current cgroup events if we know
 568	 * that we are switching to a different cgroup. Otherwise,
 569	 * do no touch the cgroup events.
 570	 */
 571	if (cgrp1 != cgrp2)
 572		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 573}
 574
 575static inline void perf_cgroup_sched_in(struct task_struct *prev,
 576					struct task_struct *task)
 577{
 578	struct perf_cgroup *cgrp1;
 579	struct perf_cgroup *cgrp2 = NULL;
 580
 581	/*
 582	 * we come here when we know perf_cgroup_events > 0
 583	 */
 584	cgrp1 = perf_cgroup_from_task(task);
 585
 586	/* prev can never be NULL */
 587	cgrp2 = perf_cgroup_from_task(prev);
 588
 589	/*
 590	 * only need to schedule in cgroup events if we are changing
 591	 * cgroup during ctxsw. Cgroup events were not scheduled
 592	 * out of ctxsw out if that was not the case.
 593	 */
 594	if (cgrp1 != cgrp2)
 595		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 596}
 597
 598static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 599				      struct perf_event_attr *attr,
 600				      struct perf_event *group_leader)
 601{
 602	struct perf_cgroup *cgrp;
 603	struct cgroup_subsys_state *css;
 604	struct fd f = fdget(fd);
 605	int ret = 0;
 606
 607	if (!f.file)
 
 608		return -EBADF;
 609
 610	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
 611	if (IS_ERR(css)) {
 612		ret = PTR_ERR(css);
 613		goto out;
 614	}
 615
 616	cgrp = container_of(css, struct perf_cgroup, css);
 617	event->cgrp = cgrp;
 618
 
 
 
 619	/*
 620	 * all events in a group must monitor
 621	 * the same cgroup because a task belongs
 622	 * to only one perf cgroup at a time
 623	 */
 624	if (group_leader && group_leader->cgrp != cgrp) {
 625		perf_detach_cgroup(event);
 626		ret = -EINVAL;
 627	}
 628out:
 629	fdput(f);
 630	return ret;
 631}
 632
 633static inline void
 634perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 635{
 636	struct perf_cgroup_info *t;
 637	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 638	event->shadow_ctx_time = now - t->timestamp;
 639}
 640
 641static inline void
 642perf_cgroup_defer_enabled(struct perf_event *event)
 643{
 644	/*
 645	 * when the current task's perf cgroup does not match
 646	 * the event's, we need to remember to call the
 647	 * perf_mark_enable() function the first time a task with
 648	 * a matching perf cgroup is scheduled in.
 649	 */
 650	if (is_cgroup_event(event) && !perf_cgroup_match(event))
 651		event->cgrp_defer_enabled = 1;
 652}
 653
 654static inline void
 655perf_cgroup_mark_enabled(struct perf_event *event,
 656			 struct perf_event_context *ctx)
 657{
 658	struct perf_event *sub;
 659	u64 tstamp = perf_event_time(event);
 660
 661	if (!event->cgrp_defer_enabled)
 662		return;
 663
 664	event->cgrp_defer_enabled = 0;
 665
 666	event->tstamp_enabled = tstamp - event->total_time_enabled;
 667	list_for_each_entry(sub, &event->sibling_list, group_entry) {
 668		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 669			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 670			sub->cgrp_defer_enabled = 0;
 671		}
 672	}
 673}
 674#else /* !CONFIG_CGROUP_PERF */
 675
 676static inline bool
 677perf_cgroup_match(struct perf_event *event)
 678{
 679	return true;
 680}
 681
 682static inline void perf_detach_cgroup(struct perf_event *event)
 683{}
 684
 685static inline int is_cgroup_event(struct perf_event *event)
 686{
 687	return 0;
 688}
 689
 690static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 691{
 692	return 0;
 693}
 694
 695static inline void update_cgrp_time_from_event(struct perf_event *event)
 696{
 697}
 698
 699static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 700{
 701}
 702
 703static inline void perf_cgroup_sched_out(struct task_struct *task,
 704					 struct task_struct *next)
 705{
 706}
 707
 708static inline void perf_cgroup_sched_in(struct task_struct *prev,
 709					struct task_struct *task)
 710{
 711}
 712
 713static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 714				      struct perf_event_attr *attr,
 715				      struct perf_event *group_leader)
 716{
 717	return -EINVAL;
 718}
 719
 720static inline void
 721perf_cgroup_set_timestamp(struct task_struct *task,
 722			  struct perf_event_context *ctx)
 723{
 724}
 725
 726void
 727perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 728{
 729}
 730
 731static inline void
 732perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 733{
 734}
 735
 736static inline u64 perf_cgroup_event_time(struct perf_event *event)
 737{
 738	return 0;
 739}
 740
 741static inline void
 742perf_cgroup_defer_enabled(struct perf_event *event)
 743{
 744}
 745
 746static inline void
 747perf_cgroup_mark_enabled(struct perf_event *event,
 748			 struct perf_event_context *ctx)
 749{
 750}
 751#endif
 752
 753/*
 754 * set default to be dependent on timer tick just
 755 * like original code
 756 */
 757#define PERF_CPU_HRTIMER (1000 / HZ)
 758/*
 759 * function must be called with interrupts disbled
 760 */
 761static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
 762{
 763	struct perf_cpu_context *cpuctx;
 764	enum hrtimer_restart ret = HRTIMER_NORESTART;
 765	int rotations = 0;
 766
 767	WARN_ON(!irqs_disabled());
 768
 769	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
 770
 771	rotations = perf_rotate_context(cpuctx);
 772
 773	/*
 774	 * arm timer if needed
 775	 */
 776	if (rotations) {
 777		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
 778		ret = HRTIMER_RESTART;
 779	}
 780
 781	return ret;
 782}
 783
 784/* CPU is going down */
 785void perf_cpu_hrtimer_cancel(int cpu)
 786{
 787	struct perf_cpu_context *cpuctx;
 788	struct pmu *pmu;
 789	unsigned long flags;
 790
 791	if (WARN_ON(cpu != smp_processor_id()))
 792		return;
 793
 794	local_irq_save(flags);
 795
 796	rcu_read_lock();
 797
 798	list_for_each_entry_rcu(pmu, &pmus, entry) {
 799		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 800
 801		if (pmu->task_ctx_nr == perf_sw_context)
 802			continue;
 803
 804		hrtimer_cancel(&cpuctx->hrtimer);
 805	}
 806
 807	rcu_read_unlock();
 808
 809	local_irq_restore(flags);
 810}
 811
 812static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
 813{
 814	struct hrtimer *hr = &cpuctx->hrtimer;
 815	struct pmu *pmu = cpuctx->ctx.pmu;
 816	int timer;
 817
 818	/* no multiplexing needed for SW PMU */
 819	if (pmu->task_ctx_nr == perf_sw_context)
 820		return;
 821
 822	/*
 823	 * check default is sane, if not set then force to
 824	 * default interval (1/tick)
 825	 */
 826	timer = pmu->hrtimer_interval_ms;
 827	if (timer < 1)
 828		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
 829
 830	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
 831
 832	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 833	hr->function = perf_cpu_hrtimer_handler;
 834}
 835
 836static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
 837{
 838	struct hrtimer *hr = &cpuctx->hrtimer;
 839	struct pmu *pmu = cpuctx->ctx.pmu;
 840
 841	/* not for SW PMU */
 842	if (pmu->task_ctx_nr == perf_sw_context)
 843		return;
 844
 845	if (hrtimer_active(hr))
 846		return;
 847
 848	if (!hrtimer_callback_running(hr))
 849		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
 850					 0, HRTIMER_MODE_REL_PINNED, 0);
 851}
 852
 853void perf_pmu_disable(struct pmu *pmu)
 854{
 855	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 856	if (!(*count)++)
 857		pmu->pmu_disable(pmu);
 858}
 859
 860void perf_pmu_enable(struct pmu *pmu)
 861{
 862	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 863	if (!--(*count))
 864		pmu->pmu_enable(pmu);
 865}
 866
 867static DEFINE_PER_CPU(struct list_head, rotation_list);
 868
 869/*
 870 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 871 * because they're strictly cpu affine and rotate_start is called with IRQs
 872 * disabled, while rotate_context is called from IRQ context.
 873 */
 874static void perf_pmu_rotate_start(struct pmu *pmu)
 875{
 876	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 877	struct list_head *head = &__get_cpu_var(rotation_list);
 878
 879	WARN_ON(!irqs_disabled());
 880
 881	if (list_empty(&cpuctx->rotation_list))
 882		list_add(&cpuctx->rotation_list, head);
 883}
 884
 885static void get_ctx(struct perf_event_context *ctx)
 886{
 887	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 888}
 889
 890static void put_ctx(struct perf_event_context *ctx)
 891{
 892	if (atomic_dec_and_test(&ctx->refcount)) {
 893		if (ctx->parent_ctx)
 894			put_ctx(ctx->parent_ctx);
 895		if (ctx->task)
 896			put_task_struct(ctx->task);
 897		kfree_rcu(ctx, rcu_head);
 898	}
 899}
 900
 901static void unclone_ctx(struct perf_event_context *ctx)
 902{
 903	if (ctx->parent_ctx) {
 904		put_ctx(ctx->parent_ctx);
 905		ctx->parent_ctx = NULL;
 906	}
 907	ctx->generation++;
 908}
 909
 910static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 911{
 912	/*
 913	 * only top level events have the pid namespace they were created in
 914	 */
 915	if (event->parent)
 916		event = event->parent;
 917
 918	return task_tgid_nr_ns(p, event->ns);
 919}
 920
 921static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 922{
 923	/*
 924	 * only top level events have the pid namespace they were created in
 925	 */
 926	if (event->parent)
 927		event = event->parent;
 928
 929	return task_pid_nr_ns(p, event->ns);
 930}
 931
 932/*
 933 * If we inherit events we want to return the parent event id
 934 * to userspace.
 935 */
 936static u64 primary_event_id(struct perf_event *event)
 937{
 938	u64 id = event->id;
 939
 940	if (event->parent)
 941		id = event->parent->id;
 942
 943	return id;
 944}
 945
 946/*
 947 * Get the perf_event_context for a task and lock it.
 948 * This has to cope with with the fact that until it is locked,
 949 * the context could get moved to another task.
 950 */
 951static struct perf_event_context *
 952perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 953{
 954	struct perf_event_context *ctx;
 955
 956retry:
 957	/*
 958	 * One of the few rules of preemptible RCU is that one cannot do
 959	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
 960	 * part of the read side critical section was preemptible -- see
 961	 * rcu_read_unlock_special().
 962	 *
 963	 * Since ctx->lock nests under rq->lock we must ensure the entire read
 964	 * side critical section is non-preemptible.
 965	 */
 966	preempt_disable();
 967	rcu_read_lock();
 
 968	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 969	if (ctx) {
 970		/*
 971		 * If this context is a clone of another, it might
 972		 * get swapped for another underneath us by
 973		 * perf_event_task_sched_out, though the
 974		 * rcu_read_lock() protects us from any context
 975		 * getting freed.  Lock the context and check if it
 976		 * got swapped before we could get the lock, and retry
 977		 * if so.  If we locked the right context, then it
 978		 * can't get swapped on us any more.
 979		 */
 980		raw_spin_lock_irqsave(&ctx->lock, *flags);
 981		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 982			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 983			rcu_read_unlock();
 984			preempt_enable();
 985			goto retry;
 986		}
 987
 988		if (!atomic_inc_not_zero(&ctx->refcount)) {
 989			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 990			ctx = NULL;
 991		}
 992	}
 993	rcu_read_unlock();
 994	preempt_enable();
 995	return ctx;
 996}
 997
 998/*
 999 * Get the context for a task and increment its pin_count so it
1000 * can't get swapped to another task.  This also increments its
1001 * reference count so that the context can't get freed.
1002 */
1003static struct perf_event_context *
1004perf_pin_task_context(struct task_struct *task, int ctxn)
1005{
1006	struct perf_event_context *ctx;
1007	unsigned long flags;
1008
1009	ctx = perf_lock_task_context(task, ctxn, &flags);
1010	if (ctx) {
1011		++ctx->pin_count;
1012		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1013	}
1014	return ctx;
1015}
1016
1017static void perf_unpin_context(struct perf_event_context *ctx)
1018{
1019	unsigned long flags;
1020
1021	raw_spin_lock_irqsave(&ctx->lock, flags);
1022	--ctx->pin_count;
1023	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1024}
1025
1026/*
1027 * Update the record of the current time in a context.
1028 */
1029static void update_context_time(struct perf_event_context *ctx)
1030{
1031	u64 now = perf_clock();
1032
1033	ctx->time += now - ctx->timestamp;
1034	ctx->timestamp = now;
1035}
1036
1037static u64 perf_event_time(struct perf_event *event)
1038{
1039	struct perf_event_context *ctx = event->ctx;
1040
1041	if (is_cgroup_event(event))
1042		return perf_cgroup_event_time(event);
1043
1044	return ctx ? ctx->time : 0;
1045}
1046
1047/*
1048 * Update the total_time_enabled and total_time_running fields for a event.
1049 * The caller of this function needs to hold the ctx->lock.
1050 */
1051static void update_event_times(struct perf_event *event)
1052{
1053	struct perf_event_context *ctx = event->ctx;
1054	u64 run_end;
1055
1056	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1057	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1058		return;
1059	/*
1060	 * in cgroup mode, time_enabled represents
1061	 * the time the event was enabled AND active
1062	 * tasks were in the monitored cgroup. This is
1063	 * independent of the activity of the context as
1064	 * there may be a mix of cgroup and non-cgroup events.
1065	 *
1066	 * That is why we treat cgroup events differently
1067	 * here.
1068	 */
1069	if (is_cgroup_event(event))
1070		run_end = perf_cgroup_event_time(event);
1071	else if (ctx->is_active)
1072		run_end = ctx->time;
1073	else
1074		run_end = event->tstamp_stopped;
1075
1076	event->total_time_enabled = run_end - event->tstamp_enabled;
1077
1078	if (event->state == PERF_EVENT_STATE_INACTIVE)
1079		run_end = event->tstamp_stopped;
1080	else
1081		run_end = perf_event_time(event);
1082
1083	event->total_time_running = run_end - event->tstamp_running;
1084
1085}
1086
1087/*
1088 * Update total_time_enabled and total_time_running for all events in a group.
1089 */
1090static void update_group_times(struct perf_event *leader)
1091{
1092	struct perf_event *event;
1093
1094	update_event_times(leader);
1095	list_for_each_entry(event, &leader->sibling_list, group_entry)
1096		update_event_times(event);
1097}
1098
1099static struct list_head *
1100ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1101{
1102	if (event->attr.pinned)
1103		return &ctx->pinned_groups;
1104	else
1105		return &ctx->flexible_groups;
1106}
1107
1108/*
1109 * Add a event from the lists for its context.
1110 * Must be called with ctx->mutex and ctx->lock held.
1111 */
1112static void
1113list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1114{
1115	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1116	event->attach_state |= PERF_ATTACH_CONTEXT;
1117
1118	/*
1119	 * If we're a stand alone event or group leader, we go to the context
1120	 * list, group events are kept attached to the group so that
1121	 * perf_group_detach can, at all times, locate all siblings.
1122	 */
1123	if (event->group_leader == event) {
1124		struct list_head *list;
1125
1126		if (is_software_event(event))
1127			event->group_flags |= PERF_GROUP_SOFTWARE;
1128
1129		list = ctx_group_list(event, ctx);
1130		list_add_tail(&event->group_entry, list);
1131	}
1132
1133	if (is_cgroup_event(event))
1134		ctx->nr_cgroups++;
1135
1136	if (has_branch_stack(event))
1137		ctx->nr_branch_stack++;
1138
1139	list_add_rcu(&event->event_entry, &ctx->event_list);
1140	if (!ctx->nr_events)
1141		perf_pmu_rotate_start(ctx->pmu);
1142	ctx->nr_events++;
1143	if (event->attr.inherit_stat)
1144		ctx->nr_stat++;
1145
1146	ctx->generation++;
1147}
1148
1149/*
1150 * Initialize event state based on the perf_event_attr::disabled.
1151 */
1152static inline void perf_event__state_init(struct perf_event *event)
1153{
1154	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1155					      PERF_EVENT_STATE_INACTIVE;
1156}
1157
1158/*
1159 * Called at perf_event creation and when events are attached/detached from a
1160 * group.
1161 */
1162static void perf_event__read_size(struct perf_event *event)
1163{
1164	int entry = sizeof(u64); /* value */
1165	int size = 0;
1166	int nr = 1;
1167
1168	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1169		size += sizeof(u64);
1170
1171	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1172		size += sizeof(u64);
1173
1174	if (event->attr.read_format & PERF_FORMAT_ID)
1175		entry += sizeof(u64);
1176
1177	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1178		nr += event->group_leader->nr_siblings;
1179		size += sizeof(u64);
1180	}
1181
1182	size += entry * nr;
1183	event->read_size = size;
1184}
1185
1186static void perf_event__header_size(struct perf_event *event)
1187{
1188	struct perf_sample_data *data;
1189	u64 sample_type = event->attr.sample_type;
1190	u16 size = 0;
1191
1192	perf_event__read_size(event);
1193
1194	if (sample_type & PERF_SAMPLE_IP)
1195		size += sizeof(data->ip);
1196
1197	if (sample_type & PERF_SAMPLE_ADDR)
1198		size += sizeof(data->addr);
1199
1200	if (sample_type & PERF_SAMPLE_PERIOD)
1201		size += sizeof(data->period);
1202
1203	if (sample_type & PERF_SAMPLE_WEIGHT)
1204		size += sizeof(data->weight);
1205
1206	if (sample_type & PERF_SAMPLE_READ)
1207		size += event->read_size;
1208
1209	if (sample_type & PERF_SAMPLE_DATA_SRC)
1210		size += sizeof(data->data_src.val);
1211
1212	if (sample_type & PERF_SAMPLE_TRANSACTION)
1213		size += sizeof(data->txn);
1214
1215	event->header_size = size;
1216}
1217
1218static void perf_event__id_header_size(struct perf_event *event)
1219{
1220	struct perf_sample_data *data;
1221	u64 sample_type = event->attr.sample_type;
1222	u16 size = 0;
1223
1224	if (sample_type & PERF_SAMPLE_TID)
1225		size += sizeof(data->tid_entry);
1226
1227	if (sample_type & PERF_SAMPLE_TIME)
1228		size += sizeof(data->time);
1229
1230	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1231		size += sizeof(data->id);
1232
1233	if (sample_type & PERF_SAMPLE_ID)
1234		size += sizeof(data->id);
1235
1236	if (sample_type & PERF_SAMPLE_STREAM_ID)
1237		size += sizeof(data->stream_id);
1238
1239	if (sample_type & PERF_SAMPLE_CPU)
1240		size += sizeof(data->cpu_entry);
1241
1242	event->id_header_size = size;
1243}
1244
1245static void perf_group_attach(struct perf_event *event)
1246{
1247	struct perf_event *group_leader = event->group_leader, *pos;
1248
1249	/*
1250	 * We can have double attach due to group movement in perf_event_open.
1251	 */
1252	if (event->attach_state & PERF_ATTACH_GROUP)
1253		return;
1254
1255	event->attach_state |= PERF_ATTACH_GROUP;
1256
1257	if (group_leader == event)
1258		return;
1259
1260	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1261			!is_software_event(event))
1262		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1263
1264	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1265	group_leader->nr_siblings++;
1266
1267	perf_event__header_size(group_leader);
1268
1269	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1270		perf_event__header_size(pos);
1271}
1272
1273/*
1274 * Remove a event from the lists for its context.
1275 * Must be called with ctx->mutex and ctx->lock held.
1276 */
1277static void
1278list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1279{
1280	struct perf_cpu_context *cpuctx;
1281	/*
1282	 * We can have double detach due to exit/hot-unplug + close.
1283	 */
1284	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1285		return;
1286
1287	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1288
1289	if (is_cgroup_event(event)) {
1290		ctx->nr_cgroups--;
1291		cpuctx = __get_cpu_context(ctx);
1292		/*
1293		 * if there are no more cgroup events
1294		 * then cler cgrp to avoid stale pointer
1295		 * in update_cgrp_time_from_cpuctx()
1296		 */
1297		if (!ctx->nr_cgroups)
1298			cpuctx->cgrp = NULL;
1299	}
1300
1301	if (has_branch_stack(event))
1302		ctx->nr_branch_stack--;
1303
1304	ctx->nr_events--;
1305	if (event->attr.inherit_stat)
1306		ctx->nr_stat--;
1307
1308	list_del_rcu(&event->event_entry);
1309
1310	if (event->group_leader == event)
1311		list_del_init(&event->group_entry);
1312
1313	update_group_times(event);
1314
1315	/*
1316	 * If event was in error state, then keep it
1317	 * that way, otherwise bogus counts will be
1318	 * returned on read(). The only way to get out
1319	 * of error state is by explicit re-enabling
1320	 * of the event
1321	 */
1322	if (event->state > PERF_EVENT_STATE_OFF)
1323		event->state = PERF_EVENT_STATE_OFF;
1324
1325	ctx->generation++;
1326}
1327
1328static void perf_group_detach(struct perf_event *event)
1329{
1330	struct perf_event *sibling, *tmp;
1331	struct list_head *list = NULL;
1332
1333	/*
1334	 * We can have double detach due to exit/hot-unplug + close.
1335	 */
1336	if (!(event->attach_state & PERF_ATTACH_GROUP))
1337		return;
1338
1339	event->attach_state &= ~PERF_ATTACH_GROUP;
1340
1341	/*
1342	 * If this is a sibling, remove it from its group.
1343	 */
1344	if (event->group_leader != event) {
1345		list_del_init(&event->group_entry);
1346		event->group_leader->nr_siblings--;
1347		goto out;
1348	}
1349
1350	if (!list_empty(&event->group_entry))
1351		list = &event->group_entry;
1352
1353	/*
1354	 * If this was a group event with sibling events then
1355	 * upgrade the siblings to singleton events by adding them
1356	 * to whatever list we are on.
1357	 */
1358	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1359		if (list)
1360			list_move_tail(&sibling->group_entry, list);
1361		sibling->group_leader = sibling;
1362
1363		/* Inherit group flags from the previous leader */
1364		sibling->group_flags = event->group_flags;
1365	}
1366
1367out:
1368	perf_event__header_size(event->group_leader);
1369
1370	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1371		perf_event__header_size(tmp);
1372}
1373
1374static inline int
1375event_filter_match(struct perf_event *event)
1376{
1377	return (event->cpu == -1 || event->cpu == smp_processor_id())
1378	    && perf_cgroup_match(event);
1379}
1380
1381static void
1382event_sched_out(struct perf_event *event,
1383		  struct perf_cpu_context *cpuctx,
1384		  struct perf_event_context *ctx)
1385{
1386	u64 tstamp = perf_event_time(event);
1387	u64 delta;
1388	/*
1389	 * An event which could not be activated because of
1390	 * filter mismatch still needs to have its timings
1391	 * maintained, otherwise bogus information is return
1392	 * via read() for time_enabled, time_running:
1393	 */
1394	if (event->state == PERF_EVENT_STATE_INACTIVE
1395	    && !event_filter_match(event)) {
1396		delta = tstamp - event->tstamp_stopped;
1397		event->tstamp_running += delta;
1398		event->tstamp_stopped = tstamp;
1399	}
1400
1401	if (event->state != PERF_EVENT_STATE_ACTIVE)
1402		return;
1403
1404	perf_pmu_disable(event->pmu);
1405
1406	event->state = PERF_EVENT_STATE_INACTIVE;
1407	if (event->pending_disable) {
1408		event->pending_disable = 0;
1409		event->state = PERF_EVENT_STATE_OFF;
1410	}
1411	event->tstamp_stopped = tstamp;
1412	event->pmu->del(event, 0);
1413	event->oncpu = -1;
1414
1415	if (!is_software_event(event))
1416		cpuctx->active_oncpu--;
1417	ctx->nr_active--;
1418	if (event->attr.freq && event->attr.sample_freq)
1419		ctx->nr_freq--;
1420	if (event->attr.exclusive || !cpuctx->active_oncpu)
1421		cpuctx->exclusive = 0;
1422
1423	perf_pmu_enable(event->pmu);
1424}
1425
1426static void
1427group_sched_out(struct perf_event *group_event,
1428		struct perf_cpu_context *cpuctx,
1429		struct perf_event_context *ctx)
1430{
1431	struct perf_event *event;
1432	int state = group_event->state;
1433
1434	event_sched_out(group_event, cpuctx, ctx);
1435
1436	/*
1437	 * Schedule out siblings (if any):
1438	 */
1439	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1440		event_sched_out(event, cpuctx, ctx);
1441
1442	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1443		cpuctx->exclusive = 0;
1444}
1445
1446struct remove_event {
1447	struct perf_event *event;
1448	bool detach_group;
1449};
1450
1451/*
1452 * Cross CPU call to remove a performance event
1453 *
1454 * We disable the event on the hardware level first. After that we
1455 * remove it from the context list.
1456 */
1457static int __perf_remove_from_context(void *info)
1458{
1459	struct remove_event *re = info;
1460	struct perf_event *event = re->event;
1461	struct perf_event_context *ctx = event->ctx;
1462	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1463
1464	raw_spin_lock(&ctx->lock);
1465	event_sched_out(event, cpuctx, ctx);
1466	if (re->detach_group)
1467		perf_group_detach(event);
1468	list_del_event(event, ctx);
1469	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1470		ctx->is_active = 0;
1471		cpuctx->task_ctx = NULL;
1472	}
1473	raw_spin_unlock(&ctx->lock);
1474
1475	return 0;
1476}
1477
1478
1479/*
1480 * Remove the event from a task's (or a CPU's) list of events.
1481 *
1482 * CPU events are removed with a smp call. For task events we only
1483 * call when the task is on a CPU.
1484 *
1485 * If event->ctx is a cloned context, callers must make sure that
1486 * every task struct that event->ctx->task could possibly point to
1487 * remains valid.  This is OK when called from perf_release since
1488 * that only calls us on the top-level context, which can't be a clone.
1489 * When called from perf_event_exit_task, it's OK because the
1490 * context has been detached from its task.
1491 */
1492static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1493{
1494	struct perf_event_context *ctx = event->ctx;
1495	struct task_struct *task = ctx->task;
1496	struct remove_event re = {
1497		.event = event,
1498		.detach_group = detach_group,
1499	};
1500
1501	lockdep_assert_held(&ctx->mutex);
1502
1503	if (!task) {
1504		/*
1505		 * Per cpu events are removed via an smp call and
1506		 * the removal is always successful.
1507		 */
1508		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1509		return;
1510	}
1511
1512retry:
1513	if (!task_function_call(task, __perf_remove_from_context, &re))
1514		return;
1515
1516	raw_spin_lock_irq(&ctx->lock);
1517	/*
1518	 * If we failed to find a running task, but find the context active now
1519	 * that we've acquired the ctx->lock, retry.
1520	 */
1521	if (ctx->is_active) {
1522		raw_spin_unlock_irq(&ctx->lock);
1523		goto retry;
1524	}
1525
1526	/*
1527	 * Since the task isn't running, its safe to remove the event, us
1528	 * holding the ctx->lock ensures the task won't get scheduled in.
1529	 */
1530	if (detach_group)
1531		perf_group_detach(event);
1532	list_del_event(event, ctx);
1533	raw_spin_unlock_irq(&ctx->lock);
1534}
1535
1536/*
1537 * Cross CPU call to disable a performance event
1538 */
1539int __perf_event_disable(void *info)
1540{
1541	struct perf_event *event = info;
1542	struct perf_event_context *ctx = event->ctx;
1543	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1544
1545	/*
1546	 * If this is a per-task event, need to check whether this
1547	 * event's task is the current task on this cpu.
1548	 *
1549	 * Can trigger due to concurrent perf_event_context_sched_out()
1550	 * flipping contexts around.
1551	 */
1552	if (ctx->task && cpuctx->task_ctx != ctx)
1553		return -EINVAL;
1554
1555	raw_spin_lock(&ctx->lock);
1556
1557	/*
1558	 * If the event is on, turn it off.
1559	 * If it is in error state, leave it in error state.
1560	 */
1561	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1562		update_context_time(ctx);
1563		update_cgrp_time_from_event(event);
1564		update_group_times(event);
1565		if (event == event->group_leader)
1566			group_sched_out(event, cpuctx, ctx);
1567		else
1568			event_sched_out(event, cpuctx, ctx);
1569		event->state = PERF_EVENT_STATE_OFF;
1570	}
1571
1572	raw_spin_unlock(&ctx->lock);
1573
1574	return 0;
1575}
1576
1577/*
1578 * Disable a event.
1579 *
1580 * If event->ctx is a cloned context, callers must make sure that
1581 * every task struct that event->ctx->task could possibly point to
1582 * remains valid.  This condition is satisifed when called through
1583 * perf_event_for_each_child or perf_event_for_each because they
1584 * hold the top-level event's child_mutex, so any descendant that
1585 * goes to exit will block in sync_child_event.
1586 * When called from perf_pending_event it's OK because event->ctx
1587 * is the current context on this CPU and preemption is disabled,
1588 * hence we can't get into perf_event_task_sched_out for this context.
1589 */
1590void perf_event_disable(struct perf_event *event)
1591{
1592	struct perf_event_context *ctx = event->ctx;
1593	struct task_struct *task = ctx->task;
1594
1595	if (!task) {
1596		/*
1597		 * Disable the event on the cpu that it's on
1598		 */
1599		cpu_function_call(event->cpu, __perf_event_disable, event);
1600		return;
1601	}
1602
1603retry:
1604	if (!task_function_call(task, __perf_event_disable, event))
1605		return;
1606
1607	raw_spin_lock_irq(&ctx->lock);
1608	/*
1609	 * If the event is still active, we need to retry the cross-call.
1610	 */
1611	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1612		raw_spin_unlock_irq(&ctx->lock);
1613		/*
1614		 * Reload the task pointer, it might have been changed by
1615		 * a concurrent perf_event_context_sched_out().
1616		 */
1617		task = ctx->task;
1618		goto retry;
1619	}
1620
1621	/*
1622	 * Since we have the lock this context can't be scheduled
1623	 * in, so we can change the state safely.
1624	 */
1625	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1626		update_group_times(event);
1627		event->state = PERF_EVENT_STATE_OFF;
1628	}
1629	raw_spin_unlock_irq(&ctx->lock);
1630}
1631EXPORT_SYMBOL_GPL(perf_event_disable);
1632
1633static void perf_set_shadow_time(struct perf_event *event,
1634				 struct perf_event_context *ctx,
1635				 u64 tstamp)
1636{
1637	/*
1638	 * use the correct time source for the time snapshot
1639	 *
1640	 * We could get by without this by leveraging the
1641	 * fact that to get to this function, the caller
1642	 * has most likely already called update_context_time()
1643	 * and update_cgrp_time_xx() and thus both timestamp
1644	 * are identical (or very close). Given that tstamp is,
1645	 * already adjusted for cgroup, we could say that:
1646	 *    tstamp - ctx->timestamp
1647	 * is equivalent to
1648	 *    tstamp - cgrp->timestamp.
1649	 *
1650	 * Then, in perf_output_read(), the calculation would
1651	 * work with no changes because:
1652	 * - event is guaranteed scheduled in
1653	 * - no scheduled out in between
1654	 * - thus the timestamp would be the same
1655	 *
1656	 * But this is a bit hairy.
1657	 *
1658	 * So instead, we have an explicit cgroup call to remain
1659	 * within the time time source all along. We believe it
1660	 * is cleaner and simpler to understand.
1661	 */
1662	if (is_cgroup_event(event))
1663		perf_cgroup_set_shadow_time(event, tstamp);
1664	else
1665		event->shadow_ctx_time = tstamp - ctx->timestamp;
1666}
1667
1668#define MAX_INTERRUPTS (~0ULL)
1669
1670static void perf_log_throttle(struct perf_event *event, int enable);
1671
1672static int
1673event_sched_in(struct perf_event *event,
1674		 struct perf_cpu_context *cpuctx,
1675		 struct perf_event_context *ctx)
1676{
1677	u64 tstamp = perf_event_time(event);
1678	int ret = 0;
1679
1680	if (event->state <= PERF_EVENT_STATE_OFF)
1681		return 0;
1682
1683	event->state = PERF_EVENT_STATE_ACTIVE;
1684	event->oncpu = smp_processor_id();
1685
1686	/*
1687	 * Unthrottle events, since we scheduled we might have missed several
1688	 * ticks already, also for a heavily scheduling task there is little
1689	 * guarantee it'll get a tick in a timely manner.
1690	 */
1691	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1692		perf_log_throttle(event, 1);
1693		event->hw.interrupts = 0;
1694	}
1695
1696	/*
1697	 * The new state must be visible before we turn it on in the hardware:
1698	 */
1699	smp_wmb();
1700
1701	perf_pmu_disable(event->pmu);
1702
1703	if (event->pmu->add(event, PERF_EF_START)) {
1704		event->state = PERF_EVENT_STATE_INACTIVE;
1705		event->oncpu = -1;
1706		ret = -EAGAIN;
1707		goto out;
1708	}
1709
1710	event->tstamp_running += tstamp - event->tstamp_stopped;
1711
1712	perf_set_shadow_time(event, ctx, tstamp);
1713
1714	if (!is_software_event(event))
1715		cpuctx->active_oncpu++;
1716	ctx->nr_active++;
1717	if (event->attr.freq && event->attr.sample_freq)
1718		ctx->nr_freq++;
1719
1720	if (event->attr.exclusive)
1721		cpuctx->exclusive = 1;
1722
1723out:
1724	perf_pmu_enable(event->pmu);
1725
1726	return ret;
1727}
1728
1729static int
1730group_sched_in(struct perf_event *group_event,
1731	       struct perf_cpu_context *cpuctx,
1732	       struct perf_event_context *ctx)
1733{
1734	struct perf_event *event, *partial_group = NULL;
1735	struct pmu *pmu = ctx->pmu;
1736	u64 now = ctx->time;
1737	bool simulate = false;
1738
1739	if (group_event->state == PERF_EVENT_STATE_OFF)
1740		return 0;
1741
1742	pmu->start_txn(pmu);
1743
1744	if (event_sched_in(group_event, cpuctx, ctx)) {
1745		pmu->cancel_txn(pmu);
1746		perf_cpu_hrtimer_restart(cpuctx);
1747		return -EAGAIN;
1748	}
1749
1750	/*
1751	 * Schedule in siblings as one group (if any):
1752	 */
1753	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1754		if (event_sched_in(event, cpuctx, ctx)) {
1755			partial_group = event;
1756			goto group_error;
1757		}
1758	}
1759
1760	if (!pmu->commit_txn(pmu))
1761		return 0;
1762
1763group_error:
1764	/*
1765	 * Groups can be scheduled in as one unit only, so undo any
1766	 * partial group before returning:
1767	 * The events up to the failed event are scheduled out normally,
1768	 * tstamp_stopped will be updated.
1769	 *
1770	 * The failed events and the remaining siblings need to have
1771	 * their timings updated as if they had gone thru event_sched_in()
1772	 * and event_sched_out(). This is required to get consistent timings
1773	 * across the group. This also takes care of the case where the group
1774	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1775	 * the time the event was actually stopped, such that time delta
1776	 * calculation in update_event_times() is correct.
1777	 */
1778	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1779		if (event == partial_group)
1780			simulate = true;
1781
1782		if (simulate) {
1783			event->tstamp_running += now - event->tstamp_stopped;
1784			event->tstamp_stopped = now;
1785		} else {
1786			event_sched_out(event, cpuctx, ctx);
1787		}
1788	}
1789	event_sched_out(group_event, cpuctx, ctx);
1790
1791	pmu->cancel_txn(pmu);
1792
1793	perf_cpu_hrtimer_restart(cpuctx);
1794
1795	return -EAGAIN;
1796}
1797
1798/*
1799 * Work out whether we can put this event group on the CPU now.
1800 */
1801static int group_can_go_on(struct perf_event *event,
1802			   struct perf_cpu_context *cpuctx,
1803			   int can_add_hw)
1804{
1805	/*
1806	 * Groups consisting entirely of software events can always go on.
1807	 */
1808	if (event->group_flags & PERF_GROUP_SOFTWARE)
1809		return 1;
1810	/*
1811	 * If an exclusive group is already on, no other hardware
1812	 * events can go on.
1813	 */
1814	if (cpuctx->exclusive)
1815		return 0;
1816	/*
1817	 * If this group is exclusive and there are already
1818	 * events on the CPU, it can't go on.
1819	 */
1820	if (event->attr.exclusive && cpuctx->active_oncpu)
1821		return 0;
1822	/*
1823	 * Otherwise, try to add it if all previous groups were able
1824	 * to go on.
1825	 */
1826	return can_add_hw;
1827}
1828
1829static void add_event_to_ctx(struct perf_event *event,
1830			       struct perf_event_context *ctx)
1831{
1832	u64 tstamp = perf_event_time(event);
1833
1834	list_add_event(event, ctx);
1835	perf_group_attach(event);
1836	event->tstamp_enabled = tstamp;
1837	event->tstamp_running = tstamp;
1838	event->tstamp_stopped = tstamp;
1839}
1840
1841static void task_ctx_sched_out(struct perf_event_context *ctx);
1842static void
1843ctx_sched_in(struct perf_event_context *ctx,
1844	     struct perf_cpu_context *cpuctx,
1845	     enum event_type_t event_type,
1846	     struct task_struct *task);
1847
1848static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1849				struct perf_event_context *ctx,
1850				struct task_struct *task)
1851{
1852	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1853	if (ctx)
1854		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1855	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1856	if (ctx)
1857		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1858}
1859
1860/*
1861 * Cross CPU call to install and enable a performance event
1862 *
1863 * Must be called with ctx->mutex held
1864 */
1865static int  __perf_install_in_context(void *info)
1866{
1867	struct perf_event *event = info;
1868	struct perf_event_context *ctx = event->ctx;
1869	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1870	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1871	struct task_struct *task = current;
1872
1873	perf_ctx_lock(cpuctx, task_ctx);
1874	perf_pmu_disable(cpuctx->ctx.pmu);
1875
1876	/*
1877	 * If there was an active task_ctx schedule it out.
1878	 */
1879	if (task_ctx)
1880		task_ctx_sched_out(task_ctx);
1881
1882	/*
1883	 * If the context we're installing events in is not the
1884	 * active task_ctx, flip them.
1885	 */
1886	if (ctx->task && task_ctx != ctx) {
1887		if (task_ctx)
1888			raw_spin_unlock(&task_ctx->lock);
1889		raw_spin_lock(&ctx->lock);
1890		task_ctx = ctx;
1891	}
1892
1893	if (task_ctx) {
1894		cpuctx->task_ctx = task_ctx;
1895		task = task_ctx->task;
1896	}
1897
1898	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1899
1900	update_context_time(ctx);
1901	/*
1902	 * update cgrp time only if current cgrp
1903	 * matches event->cgrp. Must be done before
1904	 * calling add_event_to_ctx()
1905	 */
1906	update_cgrp_time_from_event(event);
1907
1908	add_event_to_ctx(event, ctx);
1909
1910	/*
1911	 * Schedule everything back in
1912	 */
1913	perf_event_sched_in(cpuctx, task_ctx, task);
1914
1915	perf_pmu_enable(cpuctx->ctx.pmu);
1916	perf_ctx_unlock(cpuctx, task_ctx);
1917
1918	return 0;
1919}
1920
1921/*
1922 * Attach a performance event to a context
1923 *
1924 * First we add the event to the list with the hardware enable bit
1925 * in event->hw_config cleared.
1926 *
1927 * If the event is attached to a task which is on a CPU we use a smp
1928 * call to enable it in the task context. The task might have been
1929 * scheduled away, but we check this in the smp call again.
1930 */
1931static void
1932perf_install_in_context(struct perf_event_context *ctx,
1933			struct perf_event *event,
1934			int cpu)
1935{
1936	struct task_struct *task = ctx->task;
1937
1938	lockdep_assert_held(&ctx->mutex);
1939
1940	event->ctx = ctx;
1941	if (event->cpu != -1)
1942		event->cpu = cpu;
1943
1944	if (!task) {
1945		/*
1946		 * Per cpu events are installed via an smp call and
1947		 * the install is always successful.
1948		 */
1949		cpu_function_call(cpu, __perf_install_in_context, event);
1950		return;
1951	}
1952
1953retry:
1954	if (!task_function_call(task, __perf_install_in_context, event))
1955		return;
1956
1957	raw_spin_lock_irq(&ctx->lock);
1958	/*
1959	 * If we failed to find a running task, but find the context active now
1960	 * that we've acquired the ctx->lock, retry.
1961	 */
1962	if (ctx->is_active) {
1963		raw_spin_unlock_irq(&ctx->lock);
1964		goto retry;
1965	}
1966
1967	/*
1968	 * Since the task isn't running, its safe to add the event, us holding
1969	 * the ctx->lock ensures the task won't get scheduled in.
1970	 */
1971	add_event_to_ctx(event, ctx);
1972	raw_spin_unlock_irq(&ctx->lock);
1973}
1974
1975/*
1976 * Put a event into inactive state and update time fields.
1977 * Enabling the leader of a group effectively enables all
1978 * the group members that aren't explicitly disabled, so we
1979 * have to update their ->tstamp_enabled also.
1980 * Note: this works for group members as well as group leaders
1981 * since the non-leader members' sibling_lists will be empty.
1982 */
1983static void __perf_event_mark_enabled(struct perf_event *event)
 
1984{
1985	struct perf_event *sub;
1986	u64 tstamp = perf_event_time(event);
1987
1988	event->state = PERF_EVENT_STATE_INACTIVE;
1989	event->tstamp_enabled = tstamp - event->total_time_enabled;
1990	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1991		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1992			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1993	}
1994}
1995
1996/*
1997 * Cross CPU call to enable a performance event
1998 */
1999static int __perf_event_enable(void *info)
2000{
2001	struct perf_event *event = info;
2002	struct perf_event_context *ctx = event->ctx;
2003	struct perf_event *leader = event->group_leader;
2004	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2005	int err;
2006
2007	/*
2008	 * There's a time window between 'ctx->is_active' check
2009	 * in perf_event_enable function and this place having:
2010	 *   - IRQs on
2011	 *   - ctx->lock unlocked
2012	 *
2013	 * where the task could be killed and 'ctx' deactivated
2014	 * by perf_event_exit_task.
2015	 */
2016	if (!ctx->is_active)
2017		return -EINVAL;
2018
2019	raw_spin_lock(&ctx->lock);
2020	update_context_time(ctx);
2021
2022	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2023		goto unlock;
2024
2025	/*
2026	 * set current task's cgroup time reference point
2027	 */
2028	perf_cgroup_set_timestamp(current, ctx);
2029
2030	__perf_event_mark_enabled(event);
2031
2032	if (!event_filter_match(event)) {
2033		if (is_cgroup_event(event))
2034			perf_cgroup_defer_enabled(event);
2035		goto unlock;
2036	}
2037
2038	/*
2039	 * If the event is in a group and isn't the group leader,
2040	 * then don't put it on unless the group is on.
2041	 */
2042	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2043		goto unlock;
2044
2045	if (!group_can_go_on(event, cpuctx, 1)) {
2046		err = -EEXIST;
2047	} else {
2048		if (event == leader)
2049			err = group_sched_in(event, cpuctx, ctx);
2050		else
2051			err = event_sched_in(event, cpuctx, ctx);
2052	}
2053
2054	if (err) {
2055		/*
2056		 * If this event can't go on and it's part of a
2057		 * group, then the whole group has to come off.
2058		 */
2059		if (leader != event) {
2060			group_sched_out(leader, cpuctx, ctx);
2061			perf_cpu_hrtimer_restart(cpuctx);
2062		}
2063		if (leader->attr.pinned) {
2064			update_group_times(leader);
2065			leader->state = PERF_EVENT_STATE_ERROR;
2066		}
2067	}
2068
2069unlock:
2070	raw_spin_unlock(&ctx->lock);
2071
2072	return 0;
2073}
2074
2075/*
2076 * Enable a event.
2077 *
2078 * If event->ctx is a cloned context, callers must make sure that
2079 * every task struct that event->ctx->task could possibly point to
2080 * remains valid.  This condition is satisfied when called through
2081 * perf_event_for_each_child or perf_event_for_each as described
2082 * for perf_event_disable.
2083 */
2084void perf_event_enable(struct perf_event *event)
2085{
2086	struct perf_event_context *ctx = event->ctx;
2087	struct task_struct *task = ctx->task;
2088
2089	if (!task) {
2090		/*
2091		 * Enable the event on the cpu that it's on
2092		 */
2093		cpu_function_call(event->cpu, __perf_event_enable, event);
2094		return;
2095	}
2096
2097	raw_spin_lock_irq(&ctx->lock);
2098	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2099		goto out;
2100
2101	/*
2102	 * If the event is in error state, clear that first.
2103	 * That way, if we see the event in error state below, we
2104	 * know that it has gone back into error state, as distinct
2105	 * from the task having been scheduled away before the
2106	 * cross-call arrived.
2107	 */
2108	if (event->state == PERF_EVENT_STATE_ERROR)
2109		event->state = PERF_EVENT_STATE_OFF;
2110
2111retry:
2112	if (!ctx->is_active) {
2113		__perf_event_mark_enabled(event);
2114		goto out;
2115	}
2116
2117	raw_spin_unlock_irq(&ctx->lock);
2118
2119	if (!task_function_call(task, __perf_event_enable, event))
2120		return;
2121
2122	raw_spin_lock_irq(&ctx->lock);
2123
2124	/*
2125	 * If the context is active and the event is still off,
2126	 * we need to retry the cross-call.
2127	 */
2128	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2129		/*
2130		 * task could have been flipped by a concurrent
2131		 * perf_event_context_sched_out()
2132		 */
2133		task = ctx->task;
2134		goto retry;
2135	}
2136
2137out:
2138	raw_spin_unlock_irq(&ctx->lock);
2139}
2140EXPORT_SYMBOL_GPL(perf_event_enable);
2141
2142int perf_event_refresh(struct perf_event *event, int refresh)
2143{
2144	/*
2145	 * not supported on inherited events
2146	 */
2147	if (event->attr.inherit || !is_sampling_event(event))
2148		return -EINVAL;
2149
2150	atomic_add(refresh, &event->event_limit);
2151	perf_event_enable(event);
2152
2153	return 0;
2154}
2155EXPORT_SYMBOL_GPL(perf_event_refresh);
2156
2157static void ctx_sched_out(struct perf_event_context *ctx,
2158			  struct perf_cpu_context *cpuctx,
2159			  enum event_type_t event_type)
2160{
2161	struct perf_event *event;
2162	int is_active = ctx->is_active;
2163
2164	ctx->is_active &= ~event_type;
2165	if (likely(!ctx->nr_events))
2166		return;
2167
2168	update_context_time(ctx);
2169	update_cgrp_time_from_cpuctx(cpuctx);
2170	if (!ctx->nr_active)
2171		return;
2172
2173	perf_pmu_disable(ctx->pmu);
2174	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2175		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2176			group_sched_out(event, cpuctx, ctx);
2177	}
2178
2179	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2180		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2181			group_sched_out(event, cpuctx, ctx);
2182	}
2183	perf_pmu_enable(ctx->pmu);
2184}
2185
2186/*
2187 * Test whether two contexts are equivalent, i.e. whether they have both been
2188 * cloned from the same version of the same context.
2189 *
2190 * Equivalence is measured using a generation number in the context that is
2191 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2192 * and list_del_event().
 
 
 
2193 */
2194static int context_equiv(struct perf_event_context *ctx1,
2195			 struct perf_event_context *ctx2)
2196{
2197	/* Pinning disables the swap optimization */
2198	if (ctx1->pin_count || ctx2->pin_count)
2199		return 0;
2200
2201	/* If ctx1 is the parent of ctx2 */
2202	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2203		return 1;
2204
2205	/* If ctx2 is the parent of ctx1 */
2206	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2207		return 1;
2208
2209	/*
2210	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2211	 * hierarchy, see perf_event_init_context().
2212	 */
2213	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2214			ctx1->parent_gen == ctx2->parent_gen)
2215		return 1;
2216
2217	/* Unmatched */
2218	return 0;
2219}
2220
2221static void __perf_event_sync_stat(struct perf_event *event,
2222				     struct perf_event *next_event)
2223{
2224	u64 value;
2225
2226	if (!event->attr.inherit_stat)
2227		return;
2228
2229	/*
2230	 * Update the event value, we cannot use perf_event_read()
2231	 * because we're in the middle of a context switch and have IRQs
2232	 * disabled, which upsets smp_call_function_single(), however
2233	 * we know the event must be on the current CPU, therefore we
2234	 * don't need to use it.
2235	 */
2236	switch (event->state) {
2237	case PERF_EVENT_STATE_ACTIVE:
2238		event->pmu->read(event);
2239		/* fall-through */
2240
2241	case PERF_EVENT_STATE_INACTIVE:
2242		update_event_times(event);
2243		break;
2244
2245	default:
2246		break;
2247	}
2248
2249	/*
2250	 * In order to keep per-task stats reliable we need to flip the event
2251	 * values when we flip the contexts.
2252	 */
2253	value = local64_read(&next_event->count);
2254	value = local64_xchg(&event->count, value);
2255	local64_set(&next_event->count, value);
2256
2257	swap(event->total_time_enabled, next_event->total_time_enabled);
2258	swap(event->total_time_running, next_event->total_time_running);
2259
2260	/*
2261	 * Since we swizzled the values, update the user visible data too.
2262	 */
2263	perf_event_update_userpage(event);
2264	perf_event_update_userpage(next_event);
2265}
2266
 
 
 
2267static void perf_event_sync_stat(struct perf_event_context *ctx,
2268				   struct perf_event_context *next_ctx)
2269{
2270	struct perf_event *event, *next_event;
2271
2272	if (!ctx->nr_stat)
2273		return;
2274
2275	update_context_time(ctx);
2276
2277	event = list_first_entry(&ctx->event_list,
2278				   struct perf_event, event_entry);
2279
2280	next_event = list_first_entry(&next_ctx->event_list,
2281					struct perf_event, event_entry);
2282
2283	while (&event->event_entry != &ctx->event_list &&
2284	       &next_event->event_entry != &next_ctx->event_list) {
2285
2286		__perf_event_sync_stat(event, next_event);
2287
2288		event = list_next_entry(event, event_entry);
2289		next_event = list_next_entry(next_event, event_entry);
2290	}
2291}
2292
2293static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2294					 struct task_struct *next)
2295{
2296	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2297	struct perf_event_context *next_ctx;
2298	struct perf_event_context *parent, *next_parent;
2299	struct perf_cpu_context *cpuctx;
2300	int do_switch = 1;
2301
2302	if (likely(!ctx))
2303		return;
2304
2305	cpuctx = __get_cpu_context(ctx);
2306	if (!cpuctx->task_ctx)
2307		return;
2308
2309	rcu_read_lock();
2310	next_ctx = next->perf_event_ctxp[ctxn];
2311	if (!next_ctx)
2312		goto unlock;
2313
2314	parent = rcu_dereference(ctx->parent_ctx);
2315	next_parent = rcu_dereference(next_ctx->parent_ctx);
2316
2317	/* If neither context have a parent context; they cannot be clones. */
2318	if (!parent && !next_parent)
2319		goto unlock;
2320
2321	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2322		/*
2323		 * Looks like the two contexts are clones, so we might be
2324		 * able to optimize the context switch.  We lock both
2325		 * contexts and check that they are clones under the
2326		 * lock (including re-checking that neither has been
2327		 * uncloned in the meantime).  It doesn't matter which
2328		 * order we take the locks because no other cpu could
2329		 * be trying to lock both of these tasks.
2330		 */
2331		raw_spin_lock(&ctx->lock);
2332		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2333		if (context_equiv(ctx, next_ctx)) {
2334			/*
2335			 * XXX do we need a memory barrier of sorts
2336			 * wrt to rcu_dereference() of perf_event_ctxp
2337			 */
2338			task->perf_event_ctxp[ctxn] = next_ctx;
2339			next->perf_event_ctxp[ctxn] = ctx;
2340			ctx->task = next;
2341			next_ctx->task = task;
2342			do_switch = 0;
2343
2344			perf_event_sync_stat(ctx, next_ctx);
2345		}
2346		raw_spin_unlock(&next_ctx->lock);
2347		raw_spin_unlock(&ctx->lock);
2348	}
2349unlock:
2350	rcu_read_unlock();
2351
2352	if (do_switch) {
2353		raw_spin_lock(&ctx->lock);
2354		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2355		cpuctx->task_ctx = NULL;
2356		raw_spin_unlock(&ctx->lock);
2357	}
2358}
2359
2360#define for_each_task_context_nr(ctxn)					\
2361	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2362
2363/*
2364 * Called from scheduler to remove the events of the current task,
2365 * with interrupts disabled.
2366 *
2367 * We stop each event and update the event value in event->count.
2368 *
2369 * This does not protect us against NMI, but disable()
2370 * sets the disabled bit in the control field of event _before_
2371 * accessing the event control register. If a NMI hits, then it will
2372 * not restart the event.
2373 */
2374void __perf_event_task_sched_out(struct task_struct *task,
2375				 struct task_struct *next)
2376{
2377	int ctxn;
2378
2379	for_each_task_context_nr(ctxn)
2380		perf_event_context_sched_out(task, ctxn, next);
2381
2382	/*
2383	 * if cgroup events exist on this CPU, then we need
2384	 * to check if we have to switch out PMU state.
2385	 * cgroup event are system-wide mode only
2386	 */
2387	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2388		perf_cgroup_sched_out(task, next);
2389}
2390
2391static void task_ctx_sched_out(struct perf_event_context *ctx)
2392{
2393	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2394
2395	if (!cpuctx->task_ctx)
2396		return;
2397
2398	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2399		return;
2400
2401	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2402	cpuctx->task_ctx = NULL;
2403}
2404
2405/*
2406 * Called with IRQs disabled
2407 */
2408static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2409			      enum event_type_t event_type)
2410{
2411	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2412}
2413
2414static void
2415ctx_pinned_sched_in(struct perf_event_context *ctx,
2416		    struct perf_cpu_context *cpuctx)
2417{
2418	struct perf_event *event;
2419
2420	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2421		if (event->state <= PERF_EVENT_STATE_OFF)
2422			continue;
2423		if (!event_filter_match(event))
2424			continue;
2425
2426		/* may need to reset tstamp_enabled */
2427		if (is_cgroup_event(event))
2428			perf_cgroup_mark_enabled(event, ctx);
2429
2430		if (group_can_go_on(event, cpuctx, 1))
2431			group_sched_in(event, cpuctx, ctx);
2432
2433		/*
2434		 * If this pinned group hasn't been scheduled,
2435		 * put it in error state.
2436		 */
2437		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2438			update_group_times(event);
2439			event->state = PERF_EVENT_STATE_ERROR;
2440		}
2441	}
2442}
2443
2444static void
2445ctx_flexible_sched_in(struct perf_event_context *ctx,
2446		      struct perf_cpu_context *cpuctx)
2447{
2448	struct perf_event *event;
2449	int can_add_hw = 1;
2450
2451	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2452		/* Ignore events in OFF or ERROR state */
2453		if (event->state <= PERF_EVENT_STATE_OFF)
2454			continue;
2455		/*
2456		 * Listen to the 'cpu' scheduling filter constraint
2457		 * of events:
2458		 */
2459		if (!event_filter_match(event))
2460			continue;
2461
2462		/* may need to reset tstamp_enabled */
2463		if (is_cgroup_event(event))
2464			perf_cgroup_mark_enabled(event, ctx);
2465
2466		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2467			if (group_sched_in(event, cpuctx, ctx))
2468				can_add_hw = 0;
2469		}
2470	}
2471}
2472
2473static void
2474ctx_sched_in(struct perf_event_context *ctx,
2475	     struct perf_cpu_context *cpuctx,
2476	     enum event_type_t event_type,
2477	     struct task_struct *task)
2478{
2479	u64 now;
2480	int is_active = ctx->is_active;
2481
2482	ctx->is_active |= event_type;
2483	if (likely(!ctx->nr_events))
2484		return;
2485
2486	now = perf_clock();
2487	ctx->timestamp = now;
2488	perf_cgroup_set_timestamp(task, ctx);
2489	/*
2490	 * First go through the list and put on any pinned groups
2491	 * in order to give them the best chance of going on.
2492	 */
2493	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2494		ctx_pinned_sched_in(ctx, cpuctx);
2495
2496	/* Then walk through the lower prio flexible groups */
2497	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2498		ctx_flexible_sched_in(ctx, cpuctx);
2499}
2500
2501static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2502			     enum event_type_t event_type,
2503			     struct task_struct *task)
2504{
2505	struct perf_event_context *ctx = &cpuctx->ctx;
2506
2507	ctx_sched_in(ctx, cpuctx, event_type, task);
2508}
2509
2510static void perf_event_context_sched_in(struct perf_event_context *ctx,
2511					struct task_struct *task)
2512{
2513	struct perf_cpu_context *cpuctx;
2514
2515	cpuctx = __get_cpu_context(ctx);
2516	if (cpuctx->task_ctx == ctx)
2517		return;
2518
2519	perf_ctx_lock(cpuctx, ctx);
2520	perf_pmu_disable(ctx->pmu);
2521	/*
2522	 * We want to keep the following priority order:
2523	 * cpu pinned (that don't need to move), task pinned,
2524	 * cpu flexible, task flexible.
2525	 */
2526	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2527
2528	if (ctx->nr_events)
2529		cpuctx->task_ctx = ctx;
2530
2531	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2532
2533	perf_pmu_enable(ctx->pmu);
2534	perf_ctx_unlock(cpuctx, ctx);
2535
2536	/*
2537	 * Since these rotations are per-cpu, we need to ensure the
2538	 * cpu-context we got scheduled on is actually rotating.
2539	 */
2540	perf_pmu_rotate_start(ctx->pmu);
2541}
2542
2543/*
2544 * When sampling the branck stack in system-wide, it may be necessary
2545 * to flush the stack on context switch. This happens when the branch
2546 * stack does not tag its entries with the pid of the current task.
2547 * Otherwise it becomes impossible to associate a branch entry with a
2548 * task. This ambiguity is more likely to appear when the branch stack
2549 * supports priv level filtering and the user sets it to monitor only
2550 * at the user level (which could be a useful measurement in system-wide
2551 * mode). In that case, the risk is high of having a branch stack with
2552 * branch from multiple tasks. Flushing may mean dropping the existing
2553 * entries or stashing them somewhere in the PMU specific code layer.
2554 *
2555 * This function provides the context switch callback to the lower code
2556 * layer. It is invoked ONLY when there is at least one system-wide context
2557 * with at least one active event using taken branch sampling.
2558 */
2559static void perf_branch_stack_sched_in(struct task_struct *prev,
2560				       struct task_struct *task)
2561{
2562	struct perf_cpu_context *cpuctx;
2563	struct pmu *pmu;
2564	unsigned long flags;
2565
2566	/* no need to flush branch stack if not changing task */
2567	if (prev == task)
2568		return;
2569
2570	local_irq_save(flags);
2571
2572	rcu_read_lock();
2573
2574	list_for_each_entry_rcu(pmu, &pmus, entry) {
2575		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2576
2577		/*
2578		 * check if the context has at least one
2579		 * event using PERF_SAMPLE_BRANCH_STACK
2580		 */
2581		if (cpuctx->ctx.nr_branch_stack > 0
2582		    && pmu->flush_branch_stack) {
2583
2584			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2585
2586			perf_pmu_disable(pmu);
2587
2588			pmu->flush_branch_stack();
2589
2590			perf_pmu_enable(pmu);
2591
2592			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2593		}
2594	}
2595
2596	rcu_read_unlock();
2597
2598	local_irq_restore(flags);
2599}
2600
2601/*
2602 * Called from scheduler to add the events of the current task
2603 * with interrupts disabled.
2604 *
2605 * We restore the event value and then enable it.
2606 *
2607 * This does not protect us against NMI, but enable()
2608 * sets the enabled bit in the control field of event _before_
2609 * accessing the event control register. If a NMI hits, then it will
2610 * keep the event running.
2611 */
2612void __perf_event_task_sched_in(struct task_struct *prev,
2613				struct task_struct *task)
2614{
2615	struct perf_event_context *ctx;
2616	int ctxn;
2617
2618	for_each_task_context_nr(ctxn) {
2619		ctx = task->perf_event_ctxp[ctxn];
2620		if (likely(!ctx))
2621			continue;
2622
2623		perf_event_context_sched_in(ctx, task);
2624	}
2625	/*
2626	 * if cgroup events exist on this CPU, then we need
2627	 * to check if we have to switch in PMU state.
2628	 * cgroup event are system-wide mode only
2629	 */
2630	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2631		perf_cgroup_sched_in(prev, task);
2632
2633	/* check for system-wide branch_stack events */
2634	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2635		perf_branch_stack_sched_in(prev, task);
2636}
2637
2638static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2639{
2640	u64 frequency = event->attr.sample_freq;
2641	u64 sec = NSEC_PER_SEC;
2642	u64 divisor, dividend;
2643
2644	int count_fls, nsec_fls, frequency_fls, sec_fls;
2645
2646	count_fls = fls64(count);
2647	nsec_fls = fls64(nsec);
2648	frequency_fls = fls64(frequency);
2649	sec_fls = 30;
2650
2651	/*
2652	 * We got @count in @nsec, with a target of sample_freq HZ
2653	 * the target period becomes:
2654	 *
2655	 *             @count * 10^9
2656	 * period = -------------------
2657	 *          @nsec * sample_freq
2658	 *
2659	 */
2660
2661	/*
2662	 * Reduce accuracy by one bit such that @a and @b converge
2663	 * to a similar magnitude.
2664	 */
2665#define REDUCE_FLS(a, b)		\
2666do {					\
2667	if (a##_fls > b##_fls) {	\
2668		a >>= 1;		\
2669		a##_fls--;		\
2670	} else {			\
2671		b >>= 1;		\
2672		b##_fls--;		\
2673	}				\
2674} while (0)
2675
2676	/*
2677	 * Reduce accuracy until either term fits in a u64, then proceed with
2678	 * the other, so that finally we can do a u64/u64 division.
2679	 */
2680	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2681		REDUCE_FLS(nsec, frequency);
2682		REDUCE_FLS(sec, count);
2683	}
2684
2685	if (count_fls + sec_fls > 64) {
2686		divisor = nsec * frequency;
2687
2688		while (count_fls + sec_fls > 64) {
2689			REDUCE_FLS(count, sec);
2690			divisor >>= 1;
2691		}
2692
2693		dividend = count * sec;
2694	} else {
2695		dividend = count * sec;
2696
2697		while (nsec_fls + frequency_fls > 64) {
2698			REDUCE_FLS(nsec, frequency);
2699			dividend >>= 1;
2700		}
2701
2702		divisor = nsec * frequency;
2703	}
2704
2705	if (!divisor)
2706		return dividend;
2707
2708	return div64_u64(dividend, divisor);
2709}
2710
2711static DEFINE_PER_CPU(int, perf_throttled_count);
2712static DEFINE_PER_CPU(u64, perf_throttled_seq);
2713
2714static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2715{
2716	struct hw_perf_event *hwc = &event->hw;
2717	s64 period, sample_period;
2718	s64 delta;
2719
2720	period = perf_calculate_period(event, nsec, count);
2721
2722	delta = (s64)(period - hwc->sample_period);
2723	delta = (delta + 7) / 8; /* low pass filter */
2724
2725	sample_period = hwc->sample_period + delta;
2726
2727	if (!sample_period)
2728		sample_period = 1;
2729
2730	hwc->sample_period = sample_period;
2731
2732	if (local64_read(&hwc->period_left) > 8*sample_period) {
2733		if (disable)
2734			event->pmu->stop(event, PERF_EF_UPDATE);
2735
2736		local64_set(&hwc->period_left, 0);
2737
2738		if (disable)
2739			event->pmu->start(event, PERF_EF_RELOAD);
2740	}
2741}
2742
2743/*
2744 * combine freq adjustment with unthrottling to avoid two passes over the
2745 * events. At the same time, make sure, having freq events does not change
2746 * the rate of unthrottling as that would introduce bias.
2747 */
2748static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2749					   int needs_unthr)
2750{
2751	struct perf_event *event;
2752	struct hw_perf_event *hwc;
2753	u64 now, period = TICK_NSEC;
2754	s64 delta;
2755
2756	/*
2757	 * only need to iterate over all events iff:
2758	 * - context have events in frequency mode (needs freq adjust)
2759	 * - there are events to unthrottle on this cpu
2760	 */
2761	if (!(ctx->nr_freq || needs_unthr))
2762		return;
2763
2764	raw_spin_lock(&ctx->lock);
2765	perf_pmu_disable(ctx->pmu);
2766
2767	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2768		if (event->state != PERF_EVENT_STATE_ACTIVE)
2769			continue;
2770
2771		if (!event_filter_match(event))
2772			continue;
2773
2774		perf_pmu_disable(event->pmu);
2775
2776		hwc = &event->hw;
2777
2778		if (hwc->interrupts == MAX_INTERRUPTS) {
2779			hwc->interrupts = 0;
 
 
 
 
 
2780			perf_log_throttle(event, 1);
2781			event->pmu->start(event, 0);
2782		}
2783
2784		if (!event->attr.freq || !event->attr.sample_freq)
2785			goto next;
2786
2787		/*
2788		 * stop the event and update event->count
2789		 */
2790		event->pmu->stop(event, PERF_EF_UPDATE);
2791
 
2792		now = local64_read(&event->count);
2793		delta = now - hwc->freq_count_stamp;
2794		hwc->freq_count_stamp = now;
2795
2796		/*
2797		 * restart the event
2798		 * reload only if value has changed
2799		 * we have stopped the event so tell that
2800		 * to perf_adjust_period() to avoid stopping it
2801		 * twice.
2802		 */
2803		if (delta > 0)
2804			perf_adjust_period(event, period, delta, false);
2805
2806		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2807	next:
2808		perf_pmu_enable(event->pmu);
2809	}
2810
2811	perf_pmu_enable(ctx->pmu);
2812	raw_spin_unlock(&ctx->lock);
2813}
2814
2815/*
2816 * Round-robin a context's events:
2817 */
2818static void rotate_ctx(struct perf_event_context *ctx)
2819{
2820	/*
2821	 * Rotate the first entry last of non-pinned groups. Rotation might be
2822	 * disabled by the inheritance code.
2823	 */
2824	if (!ctx->rotate_disable)
2825		list_rotate_left(&ctx->flexible_groups);
2826}
2827
2828/*
2829 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2830 * because they're strictly cpu affine and rotate_start is called with IRQs
2831 * disabled, while rotate_context is called from IRQ context.
2832 */
2833static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2834{
 
2835	struct perf_event_context *ctx = NULL;
2836	int rotate = 0, remove = 1;
2837
2838	if (cpuctx->ctx.nr_events) {
2839		remove = 0;
2840		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2841			rotate = 1;
2842	}
2843
2844	ctx = cpuctx->task_ctx;
2845	if (ctx && ctx->nr_events) {
2846		remove = 0;
2847		if (ctx->nr_events != ctx->nr_active)
2848			rotate = 1;
2849	}
2850
2851	if (!rotate)
2852		goto done;
2853
2854	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2855	perf_pmu_disable(cpuctx->ctx.pmu);
 
 
 
 
 
 
2856
2857	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2858	if (ctx)
2859		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2860
2861	rotate_ctx(&cpuctx->ctx);
2862	if (ctx)
2863		rotate_ctx(ctx);
2864
2865	perf_event_sched_in(cpuctx, ctx, current);
2866
2867	perf_pmu_enable(cpuctx->ctx.pmu);
2868	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2869done:
2870	if (remove)
2871		list_del_init(&cpuctx->rotation_list);
2872
2873	return rotate;
2874}
2875
2876#ifdef CONFIG_NO_HZ_FULL
2877bool perf_event_can_stop_tick(void)
2878{
2879	if (atomic_read(&nr_freq_events) ||
2880	    __this_cpu_read(perf_throttled_count))
2881		return false;
2882	else
2883		return true;
2884}
2885#endif
2886
2887void perf_event_task_tick(void)
2888{
2889	struct list_head *head = &__get_cpu_var(rotation_list);
2890	struct perf_cpu_context *cpuctx, *tmp;
2891	struct perf_event_context *ctx;
2892	int throttled;
2893
2894	WARN_ON(!irqs_disabled());
2895
2896	__this_cpu_inc(perf_throttled_seq);
2897	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2898
2899	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2900		ctx = &cpuctx->ctx;
2901		perf_adjust_freq_unthr_context(ctx, throttled);
2902
2903		ctx = cpuctx->task_ctx;
2904		if (ctx)
2905			perf_adjust_freq_unthr_context(ctx, throttled);
2906	}
2907}
2908
2909static int event_enable_on_exec(struct perf_event *event,
2910				struct perf_event_context *ctx)
2911{
2912	if (!event->attr.enable_on_exec)
2913		return 0;
2914
2915	event->attr.enable_on_exec = 0;
2916	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2917		return 0;
2918
2919	__perf_event_mark_enabled(event);
2920
2921	return 1;
2922}
2923
2924/*
2925 * Enable all of a task's events that have been marked enable-on-exec.
2926 * This expects task == current.
2927 */
2928static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2929{
2930	struct perf_event *event;
2931	unsigned long flags;
2932	int enabled = 0;
2933	int ret;
2934
2935	local_irq_save(flags);
2936	if (!ctx || !ctx->nr_events)
2937		goto out;
2938
2939	/*
2940	 * We must ctxsw out cgroup events to avoid conflict
2941	 * when invoking perf_task_event_sched_in() later on
2942	 * in this function. Otherwise we end up trying to
2943	 * ctxswin cgroup events which are already scheduled
2944	 * in.
2945	 */
2946	perf_cgroup_sched_out(current, NULL);
2947
2948	raw_spin_lock(&ctx->lock);
2949	task_ctx_sched_out(ctx);
2950
2951	list_for_each_entry(event, &ctx->event_list, event_entry) {
 
 
 
 
 
 
2952		ret = event_enable_on_exec(event, ctx);
2953		if (ret)
2954			enabled = 1;
2955	}
2956
2957	/*
2958	 * Unclone this context if we enabled any event.
2959	 */
2960	if (enabled)
2961		unclone_ctx(ctx);
2962
2963	raw_spin_unlock(&ctx->lock);
2964
2965	/*
2966	 * Also calls ctxswin for cgroup events, if any:
2967	 */
2968	perf_event_context_sched_in(ctx, ctx->task);
2969out:
2970	local_irq_restore(flags);
2971}
2972
2973/*
2974 * Cross CPU call to read the hardware event
2975 */
2976static void __perf_event_read(void *info)
2977{
2978	struct perf_event *event = info;
2979	struct perf_event_context *ctx = event->ctx;
2980	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2981
2982	/*
2983	 * If this is a task context, we need to check whether it is
2984	 * the current task context of this cpu.  If not it has been
2985	 * scheduled out before the smp call arrived.  In that case
2986	 * event->count would have been updated to a recent sample
2987	 * when the event was scheduled out.
2988	 */
2989	if (ctx->task && cpuctx->task_ctx != ctx)
2990		return;
2991
2992	raw_spin_lock(&ctx->lock);
2993	if (ctx->is_active) {
2994		update_context_time(ctx);
2995		update_cgrp_time_from_event(event);
2996	}
2997	update_event_times(event);
2998	if (event->state == PERF_EVENT_STATE_ACTIVE)
2999		event->pmu->read(event);
3000	raw_spin_unlock(&ctx->lock);
3001}
3002
3003static inline u64 perf_event_count(struct perf_event *event)
3004{
3005	return local64_read(&event->count) + atomic64_read(&event->child_count);
3006}
3007
3008static u64 perf_event_read(struct perf_event *event)
3009{
3010	/*
3011	 * If event is enabled and currently active on a CPU, update the
3012	 * value in the event structure:
3013	 */
3014	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3015		smp_call_function_single(event->oncpu,
3016					 __perf_event_read, event, 1);
3017	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3018		struct perf_event_context *ctx = event->ctx;
3019		unsigned long flags;
3020
3021		raw_spin_lock_irqsave(&ctx->lock, flags);
3022		/*
3023		 * may read while context is not active
3024		 * (e.g., thread is blocked), in that case
3025		 * we cannot update context time
3026		 */
3027		if (ctx->is_active) {
3028			update_context_time(ctx);
3029			update_cgrp_time_from_event(event);
3030		}
3031		update_event_times(event);
3032		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3033	}
3034
3035	return perf_event_count(event);
3036}
3037
3038/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3039 * Initialize the perf_event context in a task_struct:
3040 */
3041static void __perf_event_init_context(struct perf_event_context *ctx)
3042{
3043	raw_spin_lock_init(&ctx->lock);
3044	mutex_init(&ctx->mutex);
3045	INIT_LIST_HEAD(&ctx->pinned_groups);
3046	INIT_LIST_HEAD(&ctx->flexible_groups);
3047	INIT_LIST_HEAD(&ctx->event_list);
3048	atomic_set(&ctx->refcount, 1);
3049}
3050
3051static struct perf_event_context *
3052alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3053{
3054	struct perf_event_context *ctx;
3055
3056	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3057	if (!ctx)
3058		return NULL;
3059
3060	__perf_event_init_context(ctx);
3061	if (task) {
3062		ctx->task = task;
3063		get_task_struct(task);
3064	}
3065	ctx->pmu = pmu;
3066
3067	return ctx;
3068}
3069
3070static struct task_struct *
3071find_lively_task_by_vpid(pid_t vpid)
3072{
3073	struct task_struct *task;
3074	int err;
3075
3076	rcu_read_lock();
3077	if (!vpid)
3078		task = current;
3079	else
3080		task = find_task_by_vpid(vpid);
3081	if (task)
3082		get_task_struct(task);
3083	rcu_read_unlock();
3084
3085	if (!task)
3086		return ERR_PTR(-ESRCH);
3087
3088	/* Reuse ptrace permission checks for now. */
3089	err = -EACCES;
3090	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3091		goto errout;
3092
3093	return task;
3094errout:
3095	put_task_struct(task);
3096	return ERR_PTR(err);
3097
3098}
3099
3100/*
3101 * Returns a matching context with refcount and pincount.
3102 */
3103static struct perf_event_context *
3104find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3105{
3106	struct perf_event_context *ctx;
3107	struct perf_cpu_context *cpuctx;
3108	unsigned long flags;
3109	int ctxn, err;
3110
3111	if (!task) {
3112		/* Must be root to operate on a CPU event: */
3113		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3114			return ERR_PTR(-EACCES);
3115
3116		/*
3117		 * We could be clever and allow to attach a event to an
3118		 * offline CPU and activate it when the CPU comes up, but
3119		 * that's for later.
3120		 */
3121		if (!cpu_online(cpu))
3122			return ERR_PTR(-ENODEV);
3123
3124		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3125		ctx = &cpuctx->ctx;
3126		get_ctx(ctx);
3127		++ctx->pin_count;
3128
3129		return ctx;
3130	}
3131
3132	err = -EINVAL;
3133	ctxn = pmu->task_ctx_nr;
3134	if (ctxn < 0)
3135		goto errout;
3136
3137retry:
3138	ctx = perf_lock_task_context(task, ctxn, &flags);
3139	if (ctx) {
3140		unclone_ctx(ctx);
3141		++ctx->pin_count;
3142		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3143	} else {
3144		ctx = alloc_perf_context(pmu, task);
3145		err = -ENOMEM;
3146		if (!ctx)
3147			goto errout;
3148
3149		err = 0;
3150		mutex_lock(&task->perf_event_mutex);
3151		/*
3152		 * If it has already passed perf_event_exit_task().
3153		 * we must see PF_EXITING, it takes this mutex too.
3154		 */
3155		if (task->flags & PF_EXITING)
3156			err = -ESRCH;
3157		else if (task->perf_event_ctxp[ctxn])
3158			err = -EAGAIN;
3159		else {
3160			get_ctx(ctx);
3161			++ctx->pin_count;
3162			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3163		}
3164		mutex_unlock(&task->perf_event_mutex);
3165
3166		if (unlikely(err)) {
3167			put_ctx(ctx);
3168
3169			if (err == -EAGAIN)
3170				goto retry;
3171			goto errout;
3172		}
3173	}
3174
3175	return ctx;
3176
3177errout:
3178	return ERR_PTR(err);
3179}
3180
3181static void perf_event_free_filter(struct perf_event *event);
3182
3183static void free_event_rcu(struct rcu_head *head)
3184{
3185	struct perf_event *event;
3186
3187	event = container_of(head, struct perf_event, rcu_head);
3188	if (event->ns)
3189		put_pid_ns(event->ns);
3190	perf_event_free_filter(event);
3191	kfree(event);
3192}
3193
3194static void ring_buffer_put(struct ring_buffer *rb);
3195static void ring_buffer_attach(struct perf_event *event,
3196			       struct ring_buffer *rb);
3197
3198static void unaccount_event_cpu(struct perf_event *event, int cpu)
3199{
3200	if (event->parent)
3201		return;
3202
3203	if (has_branch_stack(event)) {
3204		if (!(event->attach_state & PERF_ATTACH_TASK))
3205			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3206	}
3207	if (is_cgroup_event(event))
3208		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3209}
3210
3211static void unaccount_event(struct perf_event *event)
3212{
3213	if (event->parent)
3214		return;
3215
3216	if (event->attach_state & PERF_ATTACH_TASK)
3217		static_key_slow_dec_deferred(&perf_sched_events);
3218	if (event->attr.mmap || event->attr.mmap_data)
3219		atomic_dec(&nr_mmap_events);
3220	if (event->attr.comm)
3221		atomic_dec(&nr_comm_events);
3222	if (event->attr.task)
3223		atomic_dec(&nr_task_events);
3224	if (event->attr.freq)
3225		atomic_dec(&nr_freq_events);
3226	if (is_cgroup_event(event))
3227		static_key_slow_dec_deferred(&perf_sched_events);
3228	if (has_branch_stack(event))
3229		static_key_slow_dec_deferred(&perf_sched_events);
3230
3231	unaccount_event_cpu(event, event->cpu);
3232}
3233
3234static void __free_event(struct perf_event *event)
3235{
3236	if (!event->parent) {
 
 
 
 
 
 
 
 
3237		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3238			put_callchain_buffers();
 
 
 
 
3239	}
3240
3241	if (event->destroy)
3242		event->destroy(event);
3243
3244	if (event->ctx)
3245		put_ctx(event->ctx);
3246
3247	call_rcu(&event->rcu_head, free_event_rcu);
3248}
3249static void free_event(struct perf_event *event)
3250{
3251	irq_work_sync(&event->pending);
3252
3253	unaccount_event(event);
3254
3255	if (event->rb) {
3256		/*
3257		 * Can happen when we close an event with re-directed output.
3258		 *
3259		 * Since we have a 0 refcount, perf_mmap_close() will skip
3260		 * over us; possibly making our ring_buffer_put() the last.
3261		 */
3262		mutex_lock(&event->mmap_mutex);
3263		ring_buffer_attach(event, NULL);
3264		mutex_unlock(&event->mmap_mutex);
3265	}
3266
3267	if (is_cgroup_event(event))
3268		perf_detach_cgroup(event);
3269
 
 
3270
3271	__free_event(event);
 
 
 
3272}
3273
3274int perf_event_release_kernel(struct perf_event *event)
3275{
3276	struct perf_event_context *ctx = event->ctx;
3277
3278	WARN_ON_ONCE(ctx->parent_ctx);
3279	/*
3280	 * There are two ways this annotation is useful:
3281	 *
3282	 *  1) there is a lock recursion from perf_event_exit_task
3283	 *     see the comment there.
3284	 *
3285	 *  2) there is a lock-inversion with mmap_sem through
3286	 *     perf_event_read_group(), which takes faults while
3287	 *     holding ctx->mutex, however this is called after
3288	 *     the last filedesc died, so there is no possibility
3289	 *     to trigger the AB-BA case.
3290	 */
3291	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3292	perf_remove_from_context(event, true);
 
 
 
3293	mutex_unlock(&ctx->mutex);
3294
3295	free_event(event);
3296
3297	return 0;
3298}
3299EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3300
3301/*
3302 * Called when the last reference to the file is gone.
3303 */
3304static void put_event(struct perf_event *event)
3305{
 
3306	struct task_struct *owner;
3307
3308	if (!atomic_long_dec_and_test(&event->refcount))
3309		return;
3310
3311	rcu_read_lock();
3312	owner = ACCESS_ONCE(event->owner);
3313	/*
3314	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3315	 * !owner it means the list deletion is complete and we can indeed
3316	 * free this event, otherwise we need to serialize on
3317	 * owner->perf_event_mutex.
3318	 */
3319	smp_read_barrier_depends();
3320	if (owner) {
3321		/*
3322		 * Since delayed_put_task_struct() also drops the last
3323		 * task reference we can safely take a new reference
3324		 * while holding the rcu_read_lock().
3325		 */
3326		get_task_struct(owner);
3327	}
3328	rcu_read_unlock();
3329
3330	if (owner) {
3331		mutex_lock(&owner->perf_event_mutex);
3332		/*
3333		 * We have to re-check the event->owner field, if it is cleared
3334		 * we raced with perf_event_exit_task(), acquiring the mutex
3335		 * ensured they're done, and we can proceed with freeing the
3336		 * event.
3337		 */
3338		if (event->owner)
3339			list_del_init(&event->owner_entry);
3340		mutex_unlock(&owner->perf_event_mutex);
3341		put_task_struct(owner);
3342	}
3343
3344	perf_event_release_kernel(event);
3345}
3346
3347static int perf_release(struct inode *inode, struct file *file)
3348{
3349	put_event(file->private_data);
3350	return 0;
3351}
3352
3353u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3354{
3355	struct perf_event *child;
3356	u64 total = 0;
3357
3358	*enabled = 0;
3359	*running = 0;
3360
3361	mutex_lock(&event->child_mutex);
3362	total += perf_event_read(event);
3363	*enabled += event->total_time_enabled +
3364			atomic64_read(&event->child_total_time_enabled);
3365	*running += event->total_time_running +
3366			atomic64_read(&event->child_total_time_running);
3367
3368	list_for_each_entry(child, &event->child_list, child_list) {
3369		total += perf_event_read(child);
3370		*enabled += child->total_time_enabled;
3371		*running += child->total_time_running;
3372	}
3373	mutex_unlock(&event->child_mutex);
3374
3375	return total;
3376}
3377EXPORT_SYMBOL_GPL(perf_event_read_value);
3378
3379static int perf_event_read_group(struct perf_event *event,
3380				   u64 read_format, char __user *buf)
3381{
3382	struct perf_event *leader = event->group_leader, *sub;
3383	int n = 0, size = 0, ret = -EFAULT;
3384	struct perf_event_context *ctx = leader->ctx;
3385	u64 values[5];
3386	u64 count, enabled, running;
3387
3388	mutex_lock(&ctx->mutex);
3389	count = perf_event_read_value(leader, &enabled, &running);
3390
3391	values[n++] = 1 + leader->nr_siblings;
3392	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3393		values[n++] = enabled;
3394	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3395		values[n++] = running;
3396	values[n++] = count;
3397	if (read_format & PERF_FORMAT_ID)
3398		values[n++] = primary_event_id(leader);
3399
3400	size = n * sizeof(u64);
3401
3402	if (copy_to_user(buf, values, size))
3403		goto unlock;
3404
3405	ret = size;
3406
3407	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3408		n = 0;
3409
3410		values[n++] = perf_event_read_value(sub, &enabled, &running);
3411		if (read_format & PERF_FORMAT_ID)
3412			values[n++] = primary_event_id(sub);
3413
3414		size = n * sizeof(u64);
3415
3416		if (copy_to_user(buf + ret, values, size)) {
3417			ret = -EFAULT;
3418			goto unlock;
3419		}
3420
3421		ret += size;
3422	}
3423unlock:
3424	mutex_unlock(&ctx->mutex);
3425
3426	return ret;
3427}
3428
3429static int perf_event_read_one(struct perf_event *event,
3430				 u64 read_format, char __user *buf)
3431{
3432	u64 enabled, running;
3433	u64 values[4];
3434	int n = 0;
3435
3436	values[n++] = perf_event_read_value(event, &enabled, &running);
3437	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3438		values[n++] = enabled;
3439	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3440		values[n++] = running;
3441	if (read_format & PERF_FORMAT_ID)
3442		values[n++] = primary_event_id(event);
3443
3444	if (copy_to_user(buf, values, n * sizeof(u64)))
3445		return -EFAULT;
3446
3447	return n * sizeof(u64);
3448}
3449
3450/*
3451 * Read the performance event - simple non blocking version for now
3452 */
3453static ssize_t
3454perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3455{
3456	u64 read_format = event->attr.read_format;
3457	int ret;
3458
3459	/*
3460	 * Return end-of-file for a read on a event that is in
3461	 * error state (i.e. because it was pinned but it couldn't be
3462	 * scheduled on to the CPU at some point).
3463	 */
3464	if (event->state == PERF_EVENT_STATE_ERROR)
3465		return 0;
3466
3467	if (count < event->read_size)
3468		return -ENOSPC;
3469
3470	WARN_ON_ONCE(event->ctx->parent_ctx);
3471	if (read_format & PERF_FORMAT_GROUP)
3472		ret = perf_event_read_group(event, read_format, buf);
3473	else
3474		ret = perf_event_read_one(event, read_format, buf);
3475
3476	return ret;
3477}
3478
3479static ssize_t
3480perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3481{
3482	struct perf_event *event = file->private_data;
3483
3484	return perf_read_hw(event, buf, count);
3485}
3486
3487static unsigned int perf_poll(struct file *file, poll_table *wait)
3488{
3489	struct perf_event *event = file->private_data;
3490	struct ring_buffer *rb;
3491	unsigned int events = POLL_HUP;
3492
3493	/*
3494	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3495	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3496	 */
3497	mutex_lock(&event->mmap_mutex);
3498	rb = event->rb;
3499	if (rb)
3500		events = atomic_xchg(&rb->poll, 0);
3501	mutex_unlock(&event->mmap_mutex);
3502
3503	poll_wait(file, &event->waitq, wait);
3504
3505	return events;
3506}
3507
3508static void perf_event_reset(struct perf_event *event)
3509{
3510	(void)perf_event_read(event);
3511	local64_set(&event->count, 0);
3512	perf_event_update_userpage(event);
3513}
3514
3515/*
3516 * Holding the top-level event's child_mutex means that any
3517 * descendant process that has inherited this event will block
3518 * in sync_child_event if it goes to exit, thus satisfying the
3519 * task existence requirements of perf_event_enable/disable.
3520 */
3521static void perf_event_for_each_child(struct perf_event *event,
3522					void (*func)(struct perf_event *))
3523{
3524	struct perf_event *child;
3525
3526	WARN_ON_ONCE(event->ctx->parent_ctx);
3527	mutex_lock(&event->child_mutex);
3528	func(event);
3529	list_for_each_entry(child, &event->child_list, child_list)
3530		func(child);
3531	mutex_unlock(&event->child_mutex);
3532}
3533
3534static void perf_event_for_each(struct perf_event *event,
3535				  void (*func)(struct perf_event *))
3536{
3537	struct perf_event_context *ctx = event->ctx;
3538	struct perf_event *sibling;
3539
3540	WARN_ON_ONCE(ctx->parent_ctx);
3541	mutex_lock(&ctx->mutex);
3542	event = event->group_leader;
3543
3544	perf_event_for_each_child(event, func);
 
3545	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3546		perf_event_for_each_child(sibling, func);
3547	mutex_unlock(&ctx->mutex);
3548}
3549
3550static int perf_event_period(struct perf_event *event, u64 __user *arg)
3551{
3552	struct perf_event_context *ctx = event->ctx;
3553	int ret = 0, active;
3554	u64 value;
3555
3556	if (!is_sampling_event(event))
3557		return -EINVAL;
3558
3559	if (copy_from_user(&value, arg, sizeof(value)))
3560		return -EFAULT;
3561
3562	if (!value)
3563		return -EINVAL;
3564
3565	raw_spin_lock_irq(&ctx->lock);
3566	if (event->attr.freq) {
3567		if (value > sysctl_perf_event_sample_rate) {
3568			ret = -EINVAL;
3569			goto unlock;
3570		}
3571
3572		event->attr.sample_freq = value;
3573	} else {
3574		event->attr.sample_period = value;
3575		event->hw.sample_period = value;
3576	}
3577
3578	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3579	if (active) {
3580		perf_pmu_disable(ctx->pmu);
3581		event->pmu->stop(event, PERF_EF_UPDATE);
3582	}
3583
3584	local64_set(&event->hw.period_left, 0);
3585
3586	if (active) {
3587		event->pmu->start(event, PERF_EF_RELOAD);
3588		perf_pmu_enable(ctx->pmu);
3589	}
3590
3591unlock:
3592	raw_spin_unlock_irq(&ctx->lock);
3593
3594	return ret;
3595}
3596
3597static const struct file_operations perf_fops;
3598
3599static inline int perf_fget_light(int fd, struct fd *p)
3600{
3601	struct fd f = fdget(fd);
3602	if (!f.file)
3603		return -EBADF;
3604
3605	if (f.file->f_op != &perf_fops) {
3606		fdput(f);
3607		return -EBADF;
 
 
 
 
 
3608	}
3609	*p = f;
3610	return 0;
3611}
3612
3613static int perf_event_set_output(struct perf_event *event,
3614				 struct perf_event *output_event);
3615static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3616
3617static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3618{
3619	struct perf_event *event = file->private_data;
3620	void (*func)(struct perf_event *);
3621	u32 flags = arg;
3622
3623	switch (cmd) {
3624	case PERF_EVENT_IOC_ENABLE:
3625		func = perf_event_enable;
3626		break;
3627	case PERF_EVENT_IOC_DISABLE:
3628		func = perf_event_disable;
3629		break;
3630	case PERF_EVENT_IOC_RESET:
3631		func = perf_event_reset;
3632		break;
3633
3634	case PERF_EVENT_IOC_REFRESH:
3635		return perf_event_refresh(event, arg);
3636
3637	case PERF_EVENT_IOC_PERIOD:
3638		return perf_event_period(event, (u64 __user *)arg);
3639
3640	case PERF_EVENT_IOC_ID:
3641	{
3642		u64 id = primary_event_id(event);
3643
3644		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3645			return -EFAULT;
3646		return 0;
3647	}
3648
3649	case PERF_EVENT_IOC_SET_OUTPUT:
3650	{
 
 
3651		int ret;
 
3652		if (arg != -1) {
3653			struct perf_event *output_event;
3654			struct fd output;
3655			ret = perf_fget_light(arg, &output);
3656			if (ret)
3657				return ret;
3658			output_event = output.file->private_data;
3659			ret = perf_event_set_output(event, output_event);
3660			fdput(output);
3661		} else {
3662			ret = perf_event_set_output(event, NULL);
3663		}
 
 
 
 
 
3664		return ret;
3665	}
3666
3667	case PERF_EVENT_IOC_SET_FILTER:
3668		return perf_event_set_filter(event, (void __user *)arg);
3669
3670	default:
3671		return -ENOTTY;
3672	}
3673
3674	if (flags & PERF_IOC_FLAG_GROUP)
3675		perf_event_for_each(event, func);
3676	else
3677		perf_event_for_each_child(event, func);
3678
3679	return 0;
3680}
3681
3682int perf_event_task_enable(void)
3683{
3684	struct perf_event *event;
3685
3686	mutex_lock(&current->perf_event_mutex);
3687	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3688		perf_event_for_each_child(event, perf_event_enable);
3689	mutex_unlock(&current->perf_event_mutex);
3690
3691	return 0;
3692}
3693
3694int perf_event_task_disable(void)
3695{
3696	struct perf_event *event;
3697
3698	mutex_lock(&current->perf_event_mutex);
3699	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3700		perf_event_for_each_child(event, perf_event_disable);
3701	mutex_unlock(&current->perf_event_mutex);
3702
3703	return 0;
3704}
3705
 
 
 
 
3706static int perf_event_index(struct perf_event *event)
3707{
3708	if (event->hw.state & PERF_HES_STOPPED)
3709		return 0;
3710
3711	if (event->state != PERF_EVENT_STATE_ACTIVE)
3712		return 0;
3713
3714	return event->pmu->event_idx(event);
3715}
3716
3717static void calc_timer_values(struct perf_event *event,
3718				u64 *now,
3719				u64 *enabled,
3720				u64 *running)
3721{
3722	u64 ctx_time;
3723
3724	*now = perf_clock();
3725	ctx_time = event->shadow_ctx_time + *now;
3726	*enabled = ctx_time - event->tstamp_enabled;
3727	*running = ctx_time - event->tstamp_running;
3728}
3729
3730static void perf_event_init_userpage(struct perf_event *event)
3731{
3732	struct perf_event_mmap_page *userpg;
3733	struct ring_buffer *rb;
3734
3735	rcu_read_lock();
3736	rb = rcu_dereference(event->rb);
3737	if (!rb)
3738		goto unlock;
3739
3740	userpg = rb->user_page;
3741
3742	/* Allow new userspace to detect that bit 0 is deprecated */
3743	userpg->cap_bit0_is_deprecated = 1;
3744	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3745
3746unlock:
3747	rcu_read_unlock();
3748}
3749
3750void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3751{
3752}
3753
3754/*
3755 * Callers need to ensure there can be no nesting of this function, otherwise
3756 * the seqlock logic goes bad. We can not serialize this because the arch
3757 * code calls this from NMI context.
3758 */
3759void perf_event_update_userpage(struct perf_event *event)
3760{
3761	struct perf_event_mmap_page *userpg;
3762	struct ring_buffer *rb;
3763	u64 enabled, running, now;
3764
3765	rcu_read_lock();
3766	rb = rcu_dereference(event->rb);
3767	if (!rb)
3768		goto unlock;
3769
3770	/*
3771	 * compute total_time_enabled, total_time_running
3772	 * based on snapshot values taken when the event
3773	 * was last scheduled in.
3774	 *
3775	 * we cannot simply called update_context_time()
3776	 * because of locking issue as we can be called in
3777	 * NMI context
3778	 */
3779	calc_timer_values(event, &now, &enabled, &running);
 
 
 
3780
3781	userpg = rb->user_page;
 
3782	/*
3783	 * Disable preemption so as to not let the corresponding user-space
3784	 * spin too long if we get preempted.
3785	 */
3786	preempt_disable();
3787	++userpg->lock;
3788	barrier();
3789	userpg->index = perf_event_index(event);
3790	userpg->offset = perf_event_count(event);
3791	if (userpg->index)
3792		userpg->offset -= local64_read(&event->hw.prev_count);
3793
3794	userpg->time_enabled = enabled +
3795			atomic64_read(&event->child_total_time_enabled);
3796
3797	userpg->time_running = running +
3798			atomic64_read(&event->child_total_time_running);
3799
3800	arch_perf_update_userpage(userpg, now);
3801
3802	barrier();
3803	++userpg->lock;
3804	preempt_enable();
3805unlock:
3806	rcu_read_unlock();
3807}
3808
3809static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3810{
3811	struct perf_event *event = vma->vm_file->private_data;
3812	struct ring_buffer *rb;
3813	int ret = VM_FAULT_SIGBUS;
3814
3815	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3816		if (vmf->pgoff == 0)
3817			ret = 0;
3818		return ret;
3819	}
3820
3821	rcu_read_lock();
3822	rb = rcu_dereference(event->rb);
3823	if (!rb)
3824		goto unlock;
3825
3826	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3827		goto unlock;
3828
3829	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3830	if (!vmf->page)
3831		goto unlock;
3832
3833	get_page(vmf->page);
3834	vmf->page->mapping = vma->vm_file->f_mapping;
3835	vmf->page->index   = vmf->pgoff;
3836
3837	ret = 0;
3838unlock:
3839	rcu_read_unlock();
3840
3841	return ret;
3842}
3843
3844static void ring_buffer_attach(struct perf_event *event,
3845			       struct ring_buffer *rb)
3846{
3847	struct ring_buffer *old_rb = NULL;
3848	unsigned long flags;
3849
3850	if (event->rb) {
3851		/*
3852		 * Should be impossible, we set this when removing
3853		 * event->rb_entry and wait/clear when adding event->rb_entry.
3854		 */
3855		WARN_ON_ONCE(event->rcu_pending);
3856
3857		old_rb = event->rb;
3858		event->rcu_batches = get_state_synchronize_rcu();
3859		event->rcu_pending = 1;
3860
3861		spin_lock_irqsave(&old_rb->event_lock, flags);
3862		list_del_rcu(&event->rb_entry);
3863		spin_unlock_irqrestore(&old_rb->event_lock, flags);
3864	}
3865
3866	if (event->rcu_pending && rb) {
3867		cond_synchronize_rcu(event->rcu_batches);
3868		event->rcu_pending = 0;
3869	}
3870
3871	if (rb) {
3872		spin_lock_irqsave(&rb->event_lock, flags);
3873		list_add_rcu(&event->rb_entry, &rb->event_list);
3874		spin_unlock_irqrestore(&rb->event_lock, flags);
3875	}
3876
3877	rcu_assign_pointer(event->rb, rb);
3878
3879	if (old_rb) {
3880		ring_buffer_put(old_rb);
3881		/*
3882		 * Since we detached before setting the new rb, so that we
3883		 * could attach the new rb, we could have missed a wakeup.
3884		 * Provide it now.
3885		 */
3886		wake_up_all(&event->waitq);
3887	}
3888}
3889
3890static void ring_buffer_wakeup(struct perf_event *event)
3891{
3892	struct ring_buffer *rb;
3893
3894	rcu_read_lock();
3895	rb = rcu_dereference(event->rb);
3896	if (rb) {
3897		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3898			wake_up_all(&event->waitq);
3899	}
3900	rcu_read_unlock();
3901}
3902
3903static void rb_free_rcu(struct rcu_head *rcu_head)
3904{
3905	struct ring_buffer *rb;
3906
3907	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3908	rb_free(rb);
3909}
3910
3911static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3912{
3913	struct ring_buffer *rb;
3914
3915	rcu_read_lock();
3916	rb = rcu_dereference(event->rb);
3917	if (rb) {
3918		if (!atomic_inc_not_zero(&rb->refcount))
3919			rb = NULL;
3920	}
3921	rcu_read_unlock();
3922
3923	return rb;
3924}
3925
3926static void ring_buffer_put(struct ring_buffer *rb)
3927{
3928	if (!atomic_dec_and_test(&rb->refcount))
3929		return;
3930
3931	WARN_ON_ONCE(!list_empty(&rb->event_list));
3932
3933	call_rcu(&rb->rcu_head, rb_free_rcu);
3934}
3935
3936static void perf_mmap_open(struct vm_area_struct *vma)
3937{
3938	struct perf_event *event = vma->vm_file->private_data;
3939
3940	atomic_inc(&event->mmap_count);
3941	atomic_inc(&event->rb->mmap_count);
3942}
3943
3944/*
3945 * A buffer can be mmap()ed multiple times; either directly through the same
3946 * event, or through other events by use of perf_event_set_output().
3947 *
3948 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3949 * the buffer here, where we still have a VM context. This means we need
3950 * to detach all events redirecting to us.
3951 */
3952static void perf_mmap_close(struct vm_area_struct *vma)
3953{
3954	struct perf_event *event = vma->vm_file->private_data;
3955
3956	struct ring_buffer *rb = ring_buffer_get(event);
3957	struct user_struct *mmap_user = rb->mmap_user;
3958	int mmap_locked = rb->mmap_locked;
3959	unsigned long size = perf_data_size(rb);
3960
3961	atomic_dec(&rb->mmap_count);
3962
3963	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3964		goto out_put;
3965
3966	ring_buffer_attach(event, NULL);
3967	mutex_unlock(&event->mmap_mutex);
3968
3969	/* If there's still other mmap()s of this buffer, we're done. */
3970	if (atomic_read(&rb->mmap_count))
3971		goto out_put;
3972
3973	/*
3974	 * No other mmap()s, detach from all other events that might redirect
3975	 * into the now unreachable buffer. Somewhat complicated by the
3976	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3977	 */
3978again:
3979	rcu_read_lock();
3980	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3981		if (!atomic_long_inc_not_zero(&event->refcount)) {
3982			/*
3983			 * This event is en-route to free_event() which will
3984			 * detach it and remove it from the list.
3985			 */
3986			continue;
3987		}
3988		rcu_read_unlock();
3989
3990		mutex_lock(&event->mmap_mutex);
3991		/*
3992		 * Check we didn't race with perf_event_set_output() which can
3993		 * swizzle the rb from under us while we were waiting to
3994		 * acquire mmap_mutex.
3995		 *
3996		 * If we find a different rb; ignore this event, a next
3997		 * iteration will no longer find it on the list. We have to
3998		 * still restart the iteration to make sure we're not now
3999		 * iterating the wrong list.
4000		 */
4001		if (event->rb == rb)
4002			ring_buffer_attach(event, NULL);
4003
4004		mutex_unlock(&event->mmap_mutex);
4005		put_event(event);
4006
4007		/*
4008		 * Restart the iteration; either we're on the wrong list or
4009		 * destroyed its integrity by doing a deletion.
4010		 */
4011		goto again;
4012	}
4013	rcu_read_unlock();
4014
4015	/*
4016	 * It could be there's still a few 0-ref events on the list; they'll
4017	 * get cleaned up by free_event() -- they'll also still have their
4018	 * ref on the rb and will free it whenever they are done with it.
4019	 *
4020	 * Aside from that, this buffer is 'fully' detached and unmapped,
4021	 * undo the VM accounting.
4022	 */
4023
4024	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4025	vma->vm_mm->pinned_vm -= mmap_locked;
4026	free_uid(mmap_user);
4027
4028out_put:
4029	ring_buffer_put(rb); /* could be last */
4030}
4031
4032static const struct vm_operations_struct perf_mmap_vmops = {
4033	.open		= perf_mmap_open,
4034	.close		= perf_mmap_close,
4035	.fault		= perf_mmap_fault,
4036	.page_mkwrite	= perf_mmap_fault,
4037};
4038
4039static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4040{
4041	struct perf_event *event = file->private_data;
4042	unsigned long user_locked, user_lock_limit;
4043	struct user_struct *user = current_user();
4044	unsigned long locked, lock_limit;
4045	struct ring_buffer *rb;
4046	unsigned long vma_size;
4047	unsigned long nr_pages;
4048	long user_extra, extra;
4049	int ret = 0, flags = 0;
4050
4051	/*
4052	 * Don't allow mmap() of inherited per-task counters. This would
4053	 * create a performance issue due to all children writing to the
4054	 * same rb.
4055	 */
4056	if (event->cpu == -1 && event->attr.inherit)
4057		return -EINVAL;
4058
4059	if (!(vma->vm_flags & VM_SHARED))
4060		return -EINVAL;
4061
4062	vma_size = vma->vm_end - vma->vm_start;
4063	nr_pages = (vma_size / PAGE_SIZE) - 1;
4064
4065	/*
4066	 * If we have rb pages ensure they're a power-of-two number, so we
4067	 * can do bitmasks instead of modulo.
4068	 */
4069	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4070		return -EINVAL;
4071
4072	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4073		return -EINVAL;
4074
4075	if (vma->vm_pgoff != 0)
4076		return -EINVAL;
4077
4078	WARN_ON_ONCE(event->ctx->parent_ctx);
4079again:
4080	mutex_lock(&event->mmap_mutex);
4081	if (event->rb) {
4082		if (event->rb->nr_pages != nr_pages) {
 
 
4083			ret = -EINVAL;
4084			goto unlock;
4085		}
4086
4087		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4088			/*
4089			 * Raced against perf_mmap_close() through
4090			 * perf_event_set_output(). Try again, hope for better
4091			 * luck.
4092			 */
4093			mutex_unlock(&event->mmap_mutex);
4094			goto again;
4095		}
4096
4097		goto unlock;
4098	}
4099
4100	user_extra = nr_pages + 1;
4101	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4102
4103	/*
4104	 * Increase the limit linearly with more CPUs:
4105	 */
4106	user_lock_limit *= num_online_cpus();
4107
4108	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4109
4110	extra = 0;
4111	if (user_locked > user_lock_limit)
4112		extra = user_locked - user_lock_limit;
4113
4114	lock_limit = rlimit(RLIMIT_MEMLOCK);
4115	lock_limit >>= PAGE_SHIFT;
4116	locked = vma->vm_mm->pinned_vm + extra;
4117
4118	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4119		!capable(CAP_IPC_LOCK)) {
4120		ret = -EPERM;
4121		goto unlock;
4122	}
4123
4124	WARN_ON(event->rb);
4125
4126	if (vma->vm_flags & VM_WRITE)
4127		flags |= RING_BUFFER_WRITABLE;
4128
4129	rb = rb_alloc(nr_pages, 
4130		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4131		event->cpu, flags);
4132
4133	if (!rb) {
4134		ret = -ENOMEM;
4135		goto unlock;
4136	}
4137
4138	atomic_set(&rb->mmap_count, 1);
4139	rb->mmap_locked = extra;
4140	rb->mmap_user = get_current_user();
4141
4142	atomic_long_add(user_extra, &user->locked_vm);
4143	vma->vm_mm->pinned_vm += extra;
4144
4145	ring_buffer_attach(event, rb);
4146
4147	perf_event_init_userpage(event);
4148	perf_event_update_userpage(event);
4149
4150unlock:
4151	if (!ret)
4152		atomic_inc(&event->mmap_count);
4153	mutex_unlock(&event->mmap_mutex);
4154
4155	/*
4156	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4157	 * vma.
4158	 */
4159	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4160	vma->vm_ops = &perf_mmap_vmops;
4161
4162	return ret;
4163}
4164
4165static int perf_fasync(int fd, struct file *filp, int on)
4166{
4167	struct inode *inode = file_inode(filp);
4168	struct perf_event *event = filp->private_data;
4169	int retval;
4170
4171	mutex_lock(&inode->i_mutex);
4172	retval = fasync_helper(fd, filp, on, &event->fasync);
4173	mutex_unlock(&inode->i_mutex);
4174
4175	if (retval < 0)
4176		return retval;
4177
4178	return 0;
4179}
4180
4181static const struct file_operations perf_fops = {
4182	.llseek			= no_llseek,
4183	.release		= perf_release,
4184	.read			= perf_read,
4185	.poll			= perf_poll,
4186	.unlocked_ioctl		= perf_ioctl,
4187	.compat_ioctl		= perf_ioctl,
4188	.mmap			= perf_mmap,
4189	.fasync			= perf_fasync,
4190};
4191
4192/*
4193 * Perf event wakeup
4194 *
4195 * If there's data, ensure we set the poll() state and publish everything
4196 * to user-space before waking everybody up.
4197 */
4198
4199void perf_event_wakeup(struct perf_event *event)
4200{
4201	ring_buffer_wakeup(event);
4202
4203	if (event->pending_kill) {
4204		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4205		event->pending_kill = 0;
4206	}
4207}
4208
4209static void perf_pending_event(struct irq_work *entry)
4210{
4211	struct perf_event *event = container_of(entry,
4212			struct perf_event, pending);
4213
4214	if (event->pending_disable) {
4215		event->pending_disable = 0;
4216		__perf_event_disable(event);
4217	}
4218
4219	if (event->pending_wakeup) {
4220		event->pending_wakeup = 0;
4221		perf_event_wakeup(event);
4222	}
4223}
4224
4225/*
4226 * We assume there is only KVM supporting the callbacks.
4227 * Later on, we might change it to a list if there is
4228 * another virtualization implementation supporting the callbacks.
4229 */
4230struct perf_guest_info_callbacks *perf_guest_cbs;
4231
4232int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4233{
4234	perf_guest_cbs = cbs;
4235	return 0;
4236}
4237EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4238
4239int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4240{
4241	perf_guest_cbs = NULL;
4242	return 0;
4243}
4244EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4245
4246static void
4247perf_output_sample_regs(struct perf_output_handle *handle,
4248			struct pt_regs *regs, u64 mask)
4249{
4250	int bit;
4251
4252	for_each_set_bit(bit, (const unsigned long *) &mask,
4253			 sizeof(mask) * BITS_PER_BYTE) {
4254		u64 val;
4255
4256		val = perf_reg_value(regs, bit);
4257		perf_output_put(handle, val);
4258	}
4259}
4260
4261static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4262				  struct pt_regs *regs)
4263{
4264	if (!user_mode(regs)) {
4265		if (current->mm)
4266			regs = task_pt_regs(current);
4267		else
4268			regs = NULL;
4269	}
4270
4271	if (regs) {
4272		regs_user->regs = regs;
4273		regs_user->abi  = perf_reg_abi(current);
4274	}
4275}
4276
4277/*
4278 * Get remaining task size from user stack pointer.
4279 *
4280 * It'd be better to take stack vma map and limit this more
4281 * precisly, but there's no way to get it safely under interrupt,
4282 * so using TASK_SIZE as limit.
4283 */
4284static u64 perf_ustack_task_size(struct pt_regs *regs)
4285{
4286	unsigned long addr = perf_user_stack_pointer(regs);
4287
4288	if (!addr || addr >= TASK_SIZE)
4289		return 0;
4290
4291	return TASK_SIZE - addr;
4292}
4293
4294static u16
4295perf_sample_ustack_size(u16 stack_size, u16 header_size,
4296			struct pt_regs *regs)
4297{
4298	u64 task_size;
4299
4300	/* No regs, no stack pointer, no dump. */
4301	if (!regs)
4302		return 0;
4303
4304	/*
4305	 * Check if we fit in with the requested stack size into the:
4306	 * - TASK_SIZE
4307	 *   If we don't, we limit the size to the TASK_SIZE.
4308	 *
4309	 * - remaining sample size
4310	 *   If we don't, we customize the stack size to
4311	 *   fit in to the remaining sample size.
4312	 */
4313
4314	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4315	stack_size = min(stack_size, (u16) task_size);
4316
4317	/* Current header size plus static size and dynamic size. */
4318	header_size += 2 * sizeof(u64);
4319
4320	/* Do we fit in with the current stack dump size? */
4321	if ((u16) (header_size + stack_size) < header_size) {
4322		/*
4323		 * If we overflow the maximum size for the sample,
4324		 * we customize the stack dump size to fit in.
4325		 */
4326		stack_size = USHRT_MAX - header_size - sizeof(u64);
4327		stack_size = round_up(stack_size, sizeof(u64));
4328	}
4329
4330	return stack_size;
4331}
4332
4333static void
4334perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4335			  struct pt_regs *regs)
4336{
4337	/* Case of a kernel thread, nothing to dump */
4338	if (!regs) {
4339		u64 size = 0;
4340		perf_output_put(handle, size);
4341	} else {
4342		unsigned long sp;
4343		unsigned int rem;
4344		u64 dyn_size;
4345
4346		/*
4347		 * We dump:
4348		 * static size
4349		 *   - the size requested by user or the best one we can fit
4350		 *     in to the sample max size
4351		 * data
4352		 *   - user stack dump data
4353		 * dynamic size
4354		 *   - the actual dumped size
4355		 */
4356
4357		/* Static size. */
4358		perf_output_put(handle, dump_size);
4359
4360		/* Data. */
4361		sp = perf_user_stack_pointer(regs);
4362		rem = __output_copy_user(handle, (void *) sp, dump_size);
4363		dyn_size = dump_size - rem;
4364
4365		perf_output_skip(handle, rem);
4366
4367		/* Dynamic size. */
4368		perf_output_put(handle, dyn_size);
4369	}
4370}
4371
4372static void __perf_event_header__init_id(struct perf_event_header *header,
4373					 struct perf_sample_data *data,
4374					 struct perf_event *event)
4375{
4376	u64 sample_type = event->attr.sample_type;
4377
4378	data->type = sample_type;
4379	header->size += event->id_header_size;
4380
4381	if (sample_type & PERF_SAMPLE_TID) {
4382		/* namespace issues */
4383		data->tid_entry.pid = perf_event_pid(event, current);
4384		data->tid_entry.tid = perf_event_tid(event, current);
4385	}
4386
4387	if (sample_type & PERF_SAMPLE_TIME)
4388		data->time = perf_clock();
4389
4390	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4391		data->id = primary_event_id(event);
4392
4393	if (sample_type & PERF_SAMPLE_STREAM_ID)
4394		data->stream_id = event->id;
4395
4396	if (sample_type & PERF_SAMPLE_CPU) {
4397		data->cpu_entry.cpu	 = raw_smp_processor_id();
4398		data->cpu_entry.reserved = 0;
4399	}
4400}
4401
4402void perf_event_header__init_id(struct perf_event_header *header,
4403				struct perf_sample_data *data,
4404				struct perf_event *event)
4405{
4406	if (event->attr.sample_id_all)
4407		__perf_event_header__init_id(header, data, event);
4408}
4409
4410static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4411					   struct perf_sample_data *data)
4412{
4413	u64 sample_type = data->type;
4414
4415	if (sample_type & PERF_SAMPLE_TID)
4416		perf_output_put(handle, data->tid_entry);
4417
4418	if (sample_type & PERF_SAMPLE_TIME)
4419		perf_output_put(handle, data->time);
4420
4421	if (sample_type & PERF_SAMPLE_ID)
4422		perf_output_put(handle, data->id);
4423
4424	if (sample_type & PERF_SAMPLE_STREAM_ID)
4425		perf_output_put(handle, data->stream_id);
4426
4427	if (sample_type & PERF_SAMPLE_CPU)
4428		perf_output_put(handle, data->cpu_entry);
4429
4430	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4431		perf_output_put(handle, data->id);
4432}
4433
4434void perf_event__output_id_sample(struct perf_event *event,
4435				  struct perf_output_handle *handle,
4436				  struct perf_sample_data *sample)
4437{
4438	if (event->attr.sample_id_all)
4439		__perf_event__output_id_sample(handle, sample);
4440}
4441
4442static void perf_output_read_one(struct perf_output_handle *handle,
4443				 struct perf_event *event,
4444				 u64 enabled, u64 running)
4445{
4446	u64 read_format = event->attr.read_format;
4447	u64 values[4];
4448	int n = 0;
4449
4450	values[n++] = perf_event_count(event);
4451	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4452		values[n++] = enabled +
4453			atomic64_read(&event->child_total_time_enabled);
4454	}
4455	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4456		values[n++] = running +
4457			atomic64_read(&event->child_total_time_running);
4458	}
4459	if (read_format & PERF_FORMAT_ID)
4460		values[n++] = primary_event_id(event);
4461
4462	__output_copy(handle, values, n * sizeof(u64));
4463}
4464
4465/*
4466 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4467 */
4468static void perf_output_read_group(struct perf_output_handle *handle,
4469			    struct perf_event *event,
4470			    u64 enabled, u64 running)
4471{
4472	struct perf_event *leader = event->group_leader, *sub;
4473	u64 read_format = event->attr.read_format;
4474	u64 values[5];
4475	int n = 0;
4476
4477	values[n++] = 1 + leader->nr_siblings;
4478
4479	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4480		values[n++] = enabled;
4481
4482	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4483		values[n++] = running;
4484
4485	if (leader != event)
4486		leader->pmu->read(leader);
4487
4488	values[n++] = perf_event_count(leader);
4489	if (read_format & PERF_FORMAT_ID)
4490		values[n++] = primary_event_id(leader);
4491
4492	__output_copy(handle, values, n * sizeof(u64));
4493
4494	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4495		n = 0;
4496
4497		if ((sub != event) &&
4498		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4499			sub->pmu->read(sub);
4500
4501		values[n++] = perf_event_count(sub);
4502		if (read_format & PERF_FORMAT_ID)
4503			values[n++] = primary_event_id(sub);
4504
4505		__output_copy(handle, values, n * sizeof(u64));
4506	}
4507}
4508
4509#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4510				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4511
4512static void perf_output_read(struct perf_output_handle *handle,
4513			     struct perf_event *event)
4514{
4515	u64 enabled = 0, running = 0, now;
4516	u64 read_format = event->attr.read_format;
4517
4518	/*
4519	 * compute total_time_enabled, total_time_running
4520	 * based on snapshot values taken when the event
4521	 * was last scheduled in.
4522	 *
4523	 * we cannot simply called update_context_time()
4524	 * because of locking issue as we are called in
4525	 * NMI context
4526	 */
4527	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4528		calc_timer_values(event, &now, &enabled, &running);
4529
4530	if (event->attr.read_format & PERF_FORMAT_GROUP)
4531		perf_output_read_group(handle, event, enabled, running);
4532	else
4533		perf_output_read_one(handle, event, enabled, running);
4534}
4535
4536void perf_output_sample(struct perf_output_handle *handle,
4537			struct perf_event_header *header,
4538			struct perf_sample_data *data,
4539			struct perf_event *event)
4540{
4541	u64 sample_type = data->type;
4542
4543	perf_output_put(handle, *header);
4544
4545	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4546		perf_output_put(handle, data->id);
4547
4548	if (sample_type & PERF_SAMPLE_IP)
4549		perf_output_put(handle, data->ip);
4550
4551	if (sample_type & PERF_SAMPLE_TID)
4552		perf_output_put(handle, data->tid_entry);
4553
4554	if (sample_type & PERF_SAMPLE_TIME)
4555		perf_output_put(handle, data->time);
4556
4557	if (sample_type & PERF_SAMPLE_ADDR)
4558		perf_output_put(handle, data->addr);
4559
4560	if (sample_type & PERF_SAMPLE_ID)
4561		perf_output_put(handle, data->id);
4562
4563	if (sample_type & PERF_SAMPLE_STREAM_ID)
4564		perf_output_put(handle, data->stream_id);
4565
4566	if (sample_type & PERF_SAMPLE_CPU)
4567		perf_output_put(handle, data->cpu_entry);
4568
4569	if (sample_type & PERF_SAMPLE_PERIOD)
4570		perf_output_put(handle, data->period);
4571
4572	if (sample_type & PERF_SAMPLE_READ)
4573		perf_output_read(handle, event);
4574
4575	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4576		if (data->callchain) {
4577			int size = 1;
4578
4579			if (data->callchain)
4580				size += data->callchain->nr;
4581
4582			size *= sizeof(u64);
4583
4584			__output_copy(handle, data->callchain, size);
4585		} else {
4586			u64 nr = 0;
4587			perf_output_put(handle, nr);
4588		}
4589	}
4590
4591	if (sample_type & PERF_SAMPLE_RAW) {
4592		if (data->raw) {
4593			perf_output_put(handle, data->raw->size);
4594			__output_copy(handle, data->raw->data,
4595					   data->raw->size);
4596		} else {
4597			struct {
4598				u32	size;
4599				u32	data;
4600			} raw = {
4601				.size = sizeof(u32),
4602				.data = 0,
4603			};
4604			perf_output_put(handle, raw);
4605		}
4606	}
4607
4608	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4609		if (data->br_stack) {
4610			size_t size;
4611
4612			size = data->br_stack->nr
4613			     * sizeof(struct perf_branch_entry);
4614
4615			perf_output_put(handle, data->br_stack->nr);
4616			perf_output_copy(handle, data->br_stack->entries, size);
4617		} else {
4618			/*
4619			 * we always store at least the value of nr
4620			 */
4621			u64 nr = 0;
4622			perf_output_put(handle, nr);
4623		}
4624	}
4625
4626	if (sample_type & PERF_SAMPLE_REGS_USER) {
4627		u64 abi = data->regs_user.abi;
4628
4629		/*
4630		 * If there are no regs to dump, notice it through
4631		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4632		 */
4633		perf_output_put(handle, abi);
4634
4635		if (abi) {
4636			u64 mask = event->attr.sample_regs_user;
4637			perf_output_sample_regs(handle,
4638						data->regs_user.regs,
4639						mask);
4640		}
4641	}
4642
4643	if (sample_type & PERF_SAMPLE_STACK_USER) {
4644		perf_output_sample_ustack(handle,
4645					  data->stack_user_size,
4646					  data->regs_user.regs);
4647	}
4648
4649	if (sample_type & PERF_SAMPLE_WEIGHT)
4650		perf_output_put(handle, data->weight);
4651
4652	if (sample_type & PERF_SAMPLE_DATA_SRC)
4653		perf_output_put(handle, data->data_src.val);
4654
4655	if (sample_type & PERF_SAMPLE_TRANSACTION)
4656		perf_output_put(handle, data->txn);
4657
4658	if (!event->attr.watermark) {
4659		int wakeup_events = event->attr.wakeup_events;
4660
4661		if (wakeup_events) {
4662			struct ring_buffer *rb = handle->rb;
4663			int events = local_inc_return(&rb->events);
4664
4665			if (events >= wakeup_events) {
4666				local_sub(wakeup_events, &rb->events);
4667				local_inc(&rb->wakeup);
4668			}
4669		}
4670	}
4671}
4672
4673void perf_prepare_sample(struct perf_event_header *header,
4674			 struct perf_sample_data *data,
4675			 struct perf_event *event,
4676			 struct pt_regs *regs)
4677{
4678	u64 sample_type = event->attr.sample_type;
4679
4680	header->type = PERF_RECORD_SAMPLE;
4681	header->size = sizeof(*header) + event->header_size;
4682
4683	header->misc = 0;
4684	header->misc |= perf_misc_flags(regs);
4685
4686	__perf_event_header__init_id(header, data, event);
4687
4688	if (sample_type & PERF_SAMPLE_IP)
4689		data->ip = perf_instruction_pointer(regs);
4690
4691	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4692		int size = 1;
4693
4694		data->callchain = perf_callchain(event, regs);
4695
4696		if (data->callchain)
4697			size += data->callchain->nr;
4698
4699		header->size += size * sizeof(u64);
4700	}
4701
4702	if (sample_type & PERF_SAMPLE_RAW) {
4703		int size = sizeof(u32);
4704
4705		if (data->raw)
4706			size += data->raw->size;
4707		else
4708			size += sizeof(u32);
4709
4710		WARN_ON_ONCE(size & (sizeof(u64)-1));
4711		header->size += size;
4712	}
4713
4714	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4715		int size = sizeof(u64); /* nr */
4716		if (data->br_stack) {
4717			size += data->br_stack->nr
4718			      * sizeof(struct perf_branch_entry);
4719		}
4720		header->size += size;
4721	}
4722
4723	if (sample_type & PERF_SAMPLE_REGS_USER) {
4724		/* regs dump ABI info */
4725		int size = sizeof(u64);
4726
4727		perf_sample_regs_user(&data->regs_user, regs);
4728
4729		if (data->regs_user.regs) {
4730			u64 mask = event->attr.sample_regs_user;
4731			size += hweight64(mask) * sizeof(u64);
4732		}
4733
4734		header->size += size;
4735	}
4736
4737	if (sample_type & PERF_SAMPLE_STACK_USER) {
4738		/*
4739		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4740		 * processed as the last one or have additional check added
4741		 * in case new sample type is added, because we could eat
4742		 * up the rest of the sample size.
4743		 */
4744		struct perf_regs_user *uregs = &data->regs_user;
4745		u16 stack_size = event->attr.sample_stack_user;
4746		u16 size = sizeof(u64);
4747
4748		if (!uregs->abi)
4749			perf_sample_regs_user(uregs, regs);
4750
4751		stack_size = perf_sample_ustack_size(stack_size, header->size,
4752						     uregs->regs);
4753
4754		/*
4755		 * If there is something to dump, add space for the dump
4756		 * itself and for the field that tells the dynamic size,
4757		 * which is how many have been actually dumped.
4758		 */
4759		if (stack_size)
4760			size += sizeof(u64) + stack_size;
4761
4762		data->stack_user_size = stack_size;
4763		header->size += size;
4764	}
4765}
4766
4767static void perf_event_output(struct perf_event *event,
4768				struct perf_sample_data *data,
4769				struct pt_regs *regs)
4770{
4771	struct perf_output_handle handle;
4772	struct perf_event_header header;
4773
4774	/* protect the callchain buffers */
4775	rcu_read_lock();
4776
4777	perf_prepare_sample(&header, data, event, regs);
4778
4779	if (perf_output_begin(&handle, event, header.size))
4780		goto exit;
4781
4782	perf_output_sample(&handle, &header, data, event);
4783
4784	perf_output_end(&handle);
4785
4786exit:
4787	rcu_read_unlock();
4788}
4789
4790/*
4791 * read event_id
4792 */
4793
4794struct perf_read_event {
4795	struct perf_event_header	header;
4796
4797	u32				pid;
4798	u32				tid;
4799};
4800
4801static void
4802perf_event_read_event(struct perf_event *event,
4803			struct task_struct *task)
4804{
4805	struct perf_output_handle handle;
4806	struct perf_sample_data sample;
4807	struct perf_read_event read_event = {
4808		.header = {
4809			.type = PERF_RECORD_READ,
4810			.misc = 0,
4811			.size = sizeof(read_event) + event->read_size,
4812		},
4813		.pid = perf_event_pid(event, task),
4814		.tid = perf_event_tid(event, task),
4815	};
4816	int ret;
4817
4818	perf_event_header__init_id(&read_event.header, &sample, event);
4819	ret = perf_output_begin(&handle, event, read_event.header.size);
4820	if (ret)
4821		return;
4822
4823	perf_output_put(&handle, read_event);
4824	perf_output_read(&handle, event);
4825	perf_event__output_id_sample(event, &handle, &sample);
4826
4827	perf_output_end(&handle);
4828}
4829
4830typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4831
4832static void
4833perf_event_aux_ctx(struct perf_event_context *ctx,
4834		   perf_event_aux_output_cb output,
4835		   void *data)
4836{
4837	struct perf_event *event;
4838
4839	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4840		if (event->state < PERF_EVENT_STATE_INACTIVE)
4841			continue;
4842		if (!event_filter_match(event))
4843			continue;
4844		output(event, data);
4845	}
4846}
4847
4848static void
4849perf_event_aux(perf_event_aux_output_cb output, void *data,
4850	       struct perf_event_context *task_ctx)
4851{
4852	struct perf_cpu_context *cpuctx;
4853	struct perf_event_context *ctx;
4854	struct pmu *pmu;
4855	int ctxn;
4856
4857	rcu_read_lock();
4858	list_for_each_entry_rcu(pmu, &pmus, entry) {
4859		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4860		if (cpuctx->unique_pmu != pmu)
4861			goto next;
4862		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4863		if (task_ctx)
4864			goto next;
4865		ctxn = pmu->task_ctx_nr;
4866		if (ctxn < 0)
4867			goto next;
4868		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4869		if (ctx)
4870			perf_event_aux_ctx(ctx, output, data);
4871next:
4872		put_cpu_ptr(pmu->pmu_cpu_context);
4873	}
4874
4875	if (task_ctx) {
4876		preempt_disable();
4877		perf_event_aux_ctx(task_ctx, output, data);
4878		preempt_enable();
4879	}
4880	rcu_read_unlock();
4881}
4882
4883/*
4884 * task tracking -- fork/exit
4885 *
4886 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4887 */
4888
4889struct perf_task_event {
4890	struct task_struct		*task;
4891	struct perf_event_context	*task_ctx;
4892
4893	struct {
4894		struct perf_event_header	header;
4895
4896		u32				pid;
4897		u32				ppid;
4898		u32				tid;
4899		u32				ptid;
4900		u64				time;
4901	} event_id;
4902};
4903
4904static int perf_event_task_match(struct perf_event *event)
4905{
4906	return event->attr.comm  || event->attr.mmap ||
4907	       event->attr.mmap2 || event->attr.mmap_data ||
4908	       event->attr.task;
4909}
4910
4911static void perf_event_task_output(struct perf_event *event,
4912				   void *data)
4913{
4914	struct perf_task_event *task_event = data;
4915	struct perf_output_handle handle;
4916	struct perf_sample_data	sample;
4917	struct task_struct *task = task_event->task;
4918	int ret, size = task_event->event_id.header.size;
4919
4920	if (!perf_event_task_match(event))
4921		return;
4922
4923	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4924
4925	ret = perf_output_begin(&handle, event,
4926				task_event->event_id.header.size);
4927	if (ret)
4928		goto out;
4929
4930	task_event->event_id.pid = perf_event_pid(event, task);
4931	task_event->event_id.ppid = perf_event_pid(event, current);
4932
4933	task_event->event_id.tid = perf_event_tid(event, task);
4934	task_event->event_id.ptid = perf_event_tid(event, current);
4935
4936	perf_output_put(&handle, task_event->event_id);
4937
4938	perf_event__output_id_sample(event, &handle, &sample);
4939
4940	perf_output_end(&handle);
4941out:
4942	task_event->event_id.header.size = size;
4943}
4944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4945static void perf_event_task(struct task_struct *task,
4946			      struct perf_event_context *task_ctx,
4947			      int new)
4948{
4949	struct perf_task_event task_event;
4950
4951	if (!atomic_read(&nr_comm_events) &&
4952	    !atomic_read(&nr_mmap_events) &&
4953	    !atomic_read(&nr_task_events))
4954		return;
4955
4956	task_event = (struct perf_task_event){
4957		.task	  = task,
4958		.task_ctx = task_ctx,
4959		.event_id    = {
4960			.header = {
4961				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4962				.misc = 0,
4963				.size = sizeof(task_event.event_id),
4964			},
4965			/* .pid  */
4966			/* .ppid */
4967			/* .tid  */
4968			/* .ptid */
4969			.time = perf_clock(),
4970		},
4971	};
4972
4973	perf_event_aux(perf_event_task_output,
4974		       &task_event,
4975		       task_ctx);
4976}
4977
4978void perf_event_fork(struct task_struct *task)
4979{
4980	perf_event_task(task, NULL, 1);
4981}
4982
4983/*
4984 * comm tracking
4985 */
4986
4987struct perf_comm_event {
4988	struct task_struct	*task;
4989	char			*comm;
4990	int			comm_size;
4991
4992	struct {
4993		struct perf_event_header	header;
4994
4995		u32				pid;
4996		u32				tid;
4997	} event_id;
4998};
4999
5000static int perf_event_comm_match(struct perf_event *event)
5001{
5002	return event->attr.comm;
5003}
5004
5005static void perf_event_comm_output(struct perf_event *event,
5006				   void *data)
5007{
5008	struct perf_comm_event *comm_event = data;
5009	struct perf_output_handle handle;
5010	struct perf_sample_data sample;
5011	int size = comm_event->event_id.header.size;
5012	int ret;
5013
5014	if (!perf_event_comm_match(event))
5015		return;
5016
5017	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5018	ret = perf_output_begin(&handle, event,
5019				comm_event->event_id.header.size);
5020
5021	if (ret)
5022		goto out;
5023
5024	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5025	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5026
5027	perf_output_put(&handle, comm_event->event_id);
5028	__output_copy(&handle, comm_event->comm,
5029				   comm_event->comm_size);
5030
5031	perf_event__output_id_sample(event, &handle, &sample);
5032
5033	perf_output_end(&handle);
5034out:
5035	comm_event->event_id.header.size = size;
5036}
5037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5038static void perf_event_comm_event(struct perf_comm_event *comm_event)
5039{
 
 
5040	char comm[TASK_COMM_LEN];
5041	unsigned int size;
 
 
5042
5043	memset(comm, 0, sizeof(comm));
5044	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5045	size = ALIGN(strlen(comm)+1, sizeof(u64));
5046
5047	comm_event->comm = comm;
5048	comm_event->comm_size = size;
5049
5050	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
 
 
 
 
 
 
5051
5052	perf_event_aux(perf_event_comm_output,
5053		       comm_event,
5054		       NULL);
 
 
 
 
 
 
 
 
5055}
5056
5057void perf_event_comm(struct task_struct *task)
5058{
5059	struct perf_comm_event comm_event;
5060	struct perf_event_context *ctx;
5061	int ctxn;
5062
5063	rcu_read_lock();
5064	for_each_task_context_nr(ctxn) {
5065		ctx = task->perf_event_ctxp[ctxn];
5066		if (!ctx)
5067			continue;
5068
5069		perf_event_enable_on_exec(ctx);
5070	}
5071	rcu_read_unlock();
5072
5073	if (!atomic_read(&nr_comm_events))
5074		return;
5075
5076	comm_event = (struct perf_comm_event){
5077		.task	= task,
5078		/* .comm      */
5079		/* .comm_size */
5080		.event_id  = {
5081			.header = {
5082				.type = PERF_RECORD_COMM,
5083				.misc = 0,
5084				/* .size */
5085			},
5086			/* .pid */
5087			/* .tid */
5088		},
5089	};
5090
5091	perf_event_comm_event(&comm_event);
5092}
5093
5094/*
5095 * mmap tracking
5096 */
5097
5098struct perf_mmap_event {
5099	struct vm_area_struct	*vma;
5100
5101	const char		*file_name;
5102	int			file_size;
5103	int			maj, min;
5104	u64			ino;
5105	u64			ino_generation;
5106
5107	struct {
5108		struct perf_event_header	header;
5109
5110		u32				pid;
5111		u32				tid;
5112		u64				start;
5113		u64				len;
5114		u64				pgoff;
5115	} event_id;
5116};
5117
5118static int perf_event_mmap_match(struct perf_event *event,
5119				 void *data)
5120{
5121	struct perf_mmap_event *mmap_event = data;
5122	struct vm_area_struct *vma = mmap_event->vma;
5123	int executable = vma->vm_flags & VM_EXEC;
5124
5125	return (!executable && event->attr.mmap_data) ||
5126	       (executable && (event->attr.mmap || event->attr.mmap2));
5127}
5128
5129static void perf_event_mmap_output(struct perf_event *event,
5130				   void *data)
5131{
5132	struct perf_mmap_event *mmap_event = data;
5133	struct perf_output_handle handle;
5134	struct perf_sample_data sample;
5135	int size = mmap_event->event_id.header.size;
5136	int ret;
5137
5138	if (!perf_event_mmap_match(event, data))
5139		return;
5140
5141	if (event->attr.mmap2) {
5142		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5143		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5144		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5145		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5146		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5147	}
5148
5149	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5150	ret = perf_output_begin(&handle, event,
5151				mmap_event->event_id.header.size);
5152	if (ret)
5153		goto out;
5154
5155	mmap_event->event_id.pid = perf_event_pid(event, current);
5156	mmap_event->event_id.tid = perf_event_tid(event, current);
5157
5158	perf_output_put(&handle, mmap_event->event_id);
5159
5160	if (event->attr.mmap2) {
5161		perf_output_put(&handle, mmap_event->maj);
5162		perf_output_put(&handle, mmap_event->min);
5163		perf_output_put(&handle, mmap_event->ino);
5164		perf_output_put(&handle, mmap_event->ino_generation);
5165	}
5166
5167	__output_copy(&handle, mmap_event->file_name,
5168				   mmap_event->file_size);
5169
5170	perf_event__output_id_sample(event, &handle, &sample);
5171
5172	perf_output_end(&handle);
5173out:
5174	mmap_event->event_id.header.size = size;
5175}
5176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5177static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5178{
 
 
5179	struct vm_area_struct *vma = mmap_event->vma;
5180	struct file *file = vma->vm_file;
5181	int maj = 0, min = 0;
5182	u64 ino = 0, gen = 0;
5183	unsigned int size;
5184	char tmp[16];
5185	char *buf = NULL;
5186	char *name;
 
 
5187
5188	if (file) {
5189		struct inode *inode;
5190		dev_t dev;
5191
5192		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5193		if (!buf) {
5194			name = "//enomem";
5195			goto cpy_name;
5196		}
5197		/*
5198		 * d_path() works from the end of the rb backwards, so we
5199		 * need to add enough zero bytes after the string to handle
5200		 * the 64bit alignment we do later.
5201		 */
5202		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
 
 
 
 
 
5203		if (IS_ERR(name)) {
5204			name = "//toolong";
5205			goto cpy_name;
5206		}
5207		inode = file_inode(vma->vm_file);
5208		dev = inode->i_sb->s_dev;
5209		ino = inode->i_ino;
5210		gen = inode->i_generation;
5211		maj = MAJOR(dev);
5212		min = MINOR(dev);
5213		goto got_name;
5214	} else {
5215		name = (char *)arch_vma_name(vma);
5216		if (name)
5217			goto cpy_name;
 
 
5218
5219		if (vma->vm_start <= vma->vm_mm->start_brk &&
 
 
 
5220				vma->vm_end >= vma->vm_mm->brk) {
5221			name = "[heap]";
5222			goto cpy_name;
5223		}
5224		if (vma->vm_start <= vma->vm_mm->start_stack &&
5225				vma->vm_end >= vma->vm_mm->start_stack) {
5226			name = "[stack]";
5227			goto cpy_name;
5228		}
5229
5230		name = "//anon";
5231		goto cpy_name;
5232	}
5233
5234cpy_name:
5235	strlcpy(tmp, name, sizeof(tmp));
5236	name = tmp;
5237got_name:
5238	/*
5239	 * Since our buffer works in 8 byte units we need to align our string
5240	 * size to a multiple of 8. However, we must guarantee the tail end is
5241	 * zero'd out to avoid leaking random bits to userspace.
5242	 */
5243	size = strlen(name)+1;
5244	while (!IS_ALIGNED(size, sizeof(u64)))
5245		name[size++] = '\0';
5246
5247	mmap_event->file_name = name;
5248	mmap_event->file_size = size;
5249	mmap_event->maj = maj;
5250	mmap_event->min = min;
5251	mmap_event->ino = ino;
5252	mmap_event->ino_generation = gen;
5253
5254	if (!(vma->vm_flags & VM_EXEC))
5255		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5256
5257	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5258
5259	perf_event_aux(perf_event_mmap_output,
5260		       mmap_event,
5261		       NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5262
5263	kfree(buf);
5264}
5265
5266void perf_event_mmap(struct vm_area_struct *vma)
5267{
5268	struct perf_mmap_event mmap_event;
5269
5270	if (!atomic_read(&nr_mmap_events))
5271		return;
5272
5273	mmap_event = (struct perf_mmap_event){
5274		.vma	= vma,
5275		/* .file_name */
5276		/* .file_size */
5277		.event_id  = {
5278			.header = {
5279				.type = PERF_RECORD_MMAP,
5280				.misc = PERF_RECORD_MISC_USER,
5281				/* .size */
5282			},
5283			/* .pid */
5284			/* .tid */
5285			.start  = vma->vm_start,
5286			.len    = vma->vm_end - vma->vm_start,
5287			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5288		},
5289		/* .maj (attr_mmap2 only) */
5290		/* .min (attr_mmap2 only) */
5291		/* .ino (attr_mmap2 only) */
5292		/* .ino_generation (attr_mmap2 only) */
5293	};
5294
5295	perf_event_mmap_event(&mmap_event);
5296}
5297
5298/*
5299 * IRQ throttle logging
5300 */
5301
5302static void perf_log_throttle(struct perf_event *event, int enable)
5303{
5304	struct perf_output_handle handle;
5305	struct perf_sample_data sample;
5306	int ret;
5307
5308	struct {
5309		struct perf_event_header	header;
5310		u64				time;
5311		u64				id;
5312		u64				stream_id;
5313	} throttle_event = {
5314		.header = {
5315			.type = PERF_RECORD_THROTTLE,
5316			.misc = 0,
5317			.size = sizeof(throttle_event),
5318		},
5319		.time		= perf_clock(),
5320		.id		= primary_event_id(event),
5321		.stream_id	= event->id,
5322	};
5323
5324	if (enable)
5325		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5326
5327	perf_event_header__init_id(&throttle_event.header, &sample, event);
5328
5329	ret = perf_output_begin(&handle, event,
5330				throttle_event.header.size);
5331	if (ret)
5332		return;
5333
5334	perf_output_put(&handle, throttle_event);
5335	perf_event__output_id_sample(event, &handle, &sample);
5336	perf_output_end(&handle);
5337}
5338
5339/*
5340 * Generic event overflow handling, sampling.
5341 */
5342
5343static int __perf_event_overflow(struct perf_event *event,
5344				   int throttle, struct perf_sample_data *data,
5345				   struct pt_regs *regs)
5346{
5347	int events = atomic_read(&event->event_limit);
5348	struct hw_perf_event *hwc = &event->hw;
5349	u64 seq;
5350	int ret = 0;
5351
5352	/*
5353	 * Non-sampling counters might still use the PMI to fold short
5354	 * hardware counters, ignore those.
5355	 */
5356	if (unlikely(!is_sampling_event(event)))
5357		return 0;
5358
5359	seq = __this_cpu_read(perf_throttled_seq);
5360	if (seq != hwc->interrupts_seq) {
5361		hwc->interrupts_seq = seq;
5362		hwc->interrupts = 1;
5363	} else {
5364		hwc->interrupts++;
5365		if (unlikely(throttle
5366			     && hwc->interrupts >= max_samples_per_tick)) {
5367			__this_cpu_inc(perf_throttled_count);
5368			hwc->interrupts = MAX_INTERRUPTS;
5369			perf_log_throttle(event, 0);
5370			tick_nohz_full_kick();
5371			ret = 1;
5372		}
5373	}
 
5374
5375	if (event->attr.freq) {
5376		u64 now = perf_clock();
5377		s64 delta = now - hwc->freq_time_stamp;
5378
5379		hwc->freq_time_stamp = now;
5380
5381		if (delta > 0 && delta < 2*TICK_NSEC)
5382			perf_adjust_period(event, delta, hwc->last_period, true);
5383	}
5384
5385	/*
5386	 * XXX event_limit might not quite work as expected on inherited
5387	 * events
5388	 */
5389
5390	event->pending_kill = POLL_IN;
5391	if (events && atomic_dec_and_test(&event->event_limit)) {
5392		ret = 1;
5393		event->pending_kill = POLL_HUP;
5394		event->pending_disable = 1;
5395		irq_work_queue(&event->pending);
5396	}
5397
5398	if (event->overflow_handler)
5399		event->overflow_handler(event, data, regs);
5400	else
5401		perf_event_output(event, data, regs);
5402
5403	if (event->fasync && event->pending_kill) {
5404		event->pending_wakeup = 1;
5405		irq_work_queue(&event->pending);
5406	}
5407
5408	return ret;
5409}
5410
5411int perf_event_overflow(struct perf_event *event,
5412			  struct perf_sample_data *data,
5413			  struct pt_regs *regs)
5414{
5415	return __perf_event_overflow(event, 1, data, regs);
5416}
5417
5418/*
5419 * Generic software event infrastructure
5420 */
5421
5422struct swevent_htable {
5423	struct swevent_hlist		*swevent_hlist;
5424	struct mutex			hlist_mutex;
5425	int				hlist_refcount;
5426
5427	/* Recursion avoidance in each contexts */
5428	int				recursion[PERF_NR_CONTEXTS];
5429
5430	/* Keeps track of cpu being initialized/exited */
5431	bool				online;
5432};
5433
5434static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5435
5436/*
5437 * We directly increment event->count and keep a second value in
5438 * event->hw.period_left to count intervals. This period event
5439 * is kept in the range [-sample_period, 0] so that we can use the
5440 * sign as trigger.
5441 */
5442
5443u64 perf_swevent_set_period(struct perf_event *event)
5444{
5445	struct hw_perf_event *hwc = &event->hw;
5446	u64 period = hwc->last_period;
5447	u64 nr, offset;
5448	s64 old, val;
5449
5450	hwc->last_period = hwc->sample_period;
5451
5452again:
5453	old = val = local64_read(&hwc->period_left);
5454	if (val < 0)
5455		return 0;
5456
5457	nr = div64_u64(period + val, period);
5458	offset = nr * period;
5459	val -= offset;
5460	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5461		goto again;
5462
5463	return nr;
5464}
5465
5466static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5467				    struct perf_sample_data *data,
5468				    struct pt_regs *regs)
5469{
5470	struct hw_perf_event *hwc = &event->hw;
5471	int throttle = 0;
5472
 
5473	if (!overflow)
5474		overflow = perf_swevent_set_period(event);
5475
5476	if (hwc->interrupts == MAX_INTERRUPTS)
5477		return;
5478
5479	for (; overflow; overflow--) {
5480		if (__perf_event_overflow(event, throttle,
5481					    data, regs)) {
5482			/*
5483			 * We inhibit the overflow from happening when
5484			 * hwc->interrupts == MAX_INTERRUPTS.
5485			 */
5486			break;
5487		}
5488		throttle = 1;
5489	}
5490}
5491
5492static void perf_swevent_event(struct perf_event *event, u64 nr,
5493			       struct perf_sample_data *data,
5494			       struct pt_regs *regs)
5495{
5496	struct hw_perf_event *hwc = &event->hw;
5497
5498	local64_add(nr, &event->count);
5499
5500	if (!regs)
5501		return;
5502
5503	if (!is_sampling_event(event))
5504		return;
5505
5506	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5507		data->period = nr;
5508		return perf_swevent_overflow(event, 1, data, regs);
5509	} else
5510		data->period = event->hw.last_period;
5511
5512	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5513		return perf_swevent_overflow(event, 1, data, regs);
5514
5515	if (local64_add_negative(nr, &hwc->period_left))
5516		return;
5517
5518	perf_swevent_overflow(event, 0, data, regs);
5519}
5520
5521static int perf_exclude_event(struct perf_event *event,
5522			      struct pt_regs *regs)
5523{
5524	if (event->hw.state & PERF_HES_STOPPED)
5525		return 1;
5526
5527	if (regs) {
5528		if (event->attr.exclude_user && user_mode(regs))
5529			return 1;
5530
5531		if (event->attr.exclude_kernel && !user_mode(regs))
5532			return 1;
5533	}
5534
5535	return 0;
5536}
5537
5538static int perf_swevent_match(struct perf_event *event,
5539				enum perf_type_id type,
5540				u32 event_id,
5541				struct perf_sample_data *data,
5542				struct pt_regs *regs)
5543{
5544	if (event->attr.type != type)
5545		return 0;
5546
5547	if (event->attr.config != event_id)
5548		return 0;
5549
5550	if (perf_exclude_event(event, regs))
5551		return 0;
5552
5553	return 1;
5554}
5555
5556static inline u64 swevent_hash(u64 type, u32 event_id)
5557{
5558	u64 val = event_id | (type << 32);
5559
5560	return hash_64(val, SWEVENT_HLIST_BITS);
5561}
5562
5563static inline struct hlist_head *
5564__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5565{
5566	u64 hash = swevent_hash(type, event_id);
5567
5568	return &hlist->heads[hash];
5569}
5570
5571/* For the read side: events when they trigger */
5572static inline struct hlist_head *
5573find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5574{
5575	struct swevent_hlist *hlist;
5576
5577	hlist = rcu_dereference(swhash->swevent_hlist);
5578	if (!hlist)
5579		return NULL;
5580
5581	return __find_swevent_head(hlist, type, event_id);
5582}
5583
5584/* For the event head insertion and removal in the hlist */
5585static inline struct hlist_head *
5586find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5587{
5588	struct swevent_hlist *hlist;
5589	u32 event_id = event->attr.config;
5590	u64 type = event->attr.type;
5591
5592	/*
5593	 * Event scheduling is always serialized against hlist allocation
5594	 * and release. Which makes the protected version suitable here.
5595	 * The context lock guarantees that.
5596	 */
5597	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5598					  lockdep_is_held(&event->ctx->lock));
5599	if (!hlist)
5600		return NULL;
5601
5602	return __find_swevent_head(hlist, type, event_id);
5603}
5604
5605static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5606				    u64 nr,
5607				    struct perf_sample_data *data,
5608				    struct pt_regs *regs)
5609{
5610	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5611	struct perf_event *event;
 
5612	struct hlist_head *head;
5613
5614	rcu_read_lock();
5615	head = find_swevent_head_rcu(swhash, type, event_id);
5616	if (!head)
5617		goto end;
5618
5619	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5620		if (perf_swevent_match(event, type, event_id, data, regs))
5621			perf_swevent_event(event, nr, data, regs);
5622	}
5623end:
5624	rcu_read_unlock();
5625}
5626
5627int perf_swevent_get_recursion_context(void)
5628{
5629	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5630
5631	return get_recursion_context(swhash->recursion);
5632}
5633EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5634
5635inline void perf_swevent_put_recursion_context(int rctx)
5636{
5637	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5638
5639	put_recursion_context(swhash->recursion, rctx);
5640}
5641
5642void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5643{
5644	struct perf_sample_data data;
5645	int rctx;
5646
5647	preempt_disable_notrace();
5648	rctx = perf_swevent_get_recursion_context();
5649	if (rctx < 0)
5650		return;
5651
5652	perf_sample_data_init(&data, addr, 0);
5653
5654	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5655
5656	perf_swevent_put_recursion_context(rctx);
5657	preempt_enable_notrace();
5658}
5659
5660static void perf_swevent_read(struct perf_event *event)
5661{
5662}
5663
5664static int perf_swevent_add(struct perf_event *event, int flags)
5665{
5666	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5667	struct hw_perf_event *hwc = &event->hw;
5668	struct hlist_head *head;
5669
5670	if (is_sampling_event(event)) {
5671		hwc->last_period = hwc->sample_period;
5672		perf_swevent_set_period(event);
5673	}
5674
5675	hwc->state = !(flags & PERF_EF_START);
5676
5677	head = find_swevent_head(swhash, event);
5678	if (!head) {
5679		/*
5680		 * We can race with cpu hotplug code. Do not
5681		 * WARN if the cpu just got unplugged.
5682		 */
5683		WARN_ON_ONCE(swhash->online);
5684		return -EINVAL;
5685	}
5686
5687	hlist_add_head_rcu(&event->hlist_entry, head);
5688
5689	return 0;
5690}
5691
5692static void perf_swevent_del(struct perf_event *event, int flags)
5693{
5694	hlist_del_rcu(&event->hlist_entry);
5695}
5696
5697static void perf_swevent_start(struct perf_event *event, int flags)
5698{
5699	event->hw.state = 0;
5700}
5701
5702static void perf_swevent_stop(struct perf_event *event, int flags)
5703{
5704	event->hw.state = PERF_HES_STOPPED;
5705}
5706
5707/* Deref the hlist from the update side */
5708static inline struct swevent_hlist *
5709swevent_hlist_deref(struct swevent_htable *swhash)
5710{
5711	return rcu_dereference_protected(swhash->swevent_hlist,
5712					 lockdep_is_held(&swhash->hlist_mutex));
5713}
5714
5715static void swevent_hlist_release(struct swevent_htable *swhash)
5716{
5717	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5718
5719	if (!hlist)
5720		return;
5721
5722	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5723	kfree_rcu(hlist, rcu_head);
5724}
5725
5726static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5727{
5728	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5729
5730	mutex_lock(&swhash->hlist_mutex);
5731
5732	if (!--swhash->hlist_refcount)
5733		swevent_hlist_release(swhash);
5734
5735	mutex_unlock(&swhash->hlist_mutex);
5736}
5737
5738static void swevent_hlist_put(struct perf_event *event)
5739{
5740	int cpu;
5741
 
 
 
 
 
5742	for_each_possible_cpu(cpu)
5743		swevent_hlist_put_cpu(event, cpu);
5744}
5745
5746static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5747{
5748	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5749	int err = 0;
5750
5751	mutex_lock(&swhash->hlist_mutex);
5752
5753	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5754		struct swevent_hlist *hlist;
5755
5756		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5757		if (!hlist) {
5758			err = -ENOMEM;
5759			goto exit;
5760		}
5761		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5762	}
5763	swhash->hlist_refcount++;
5764exit:
5765	mutex_unlock(&swhash->hlist_mutex);
5766
5767	return err;
5768}
5769
5770static int swevent_hlist_get(struct perf_event *event)
5771{
5772	int err;
5773	int cpu, failed_cpu;
5774
 
 
 
5775	get_online_cpus();
5776	for_each_possible_cpu(cpu) {
5777		err = swevent_hlist_get_cpu(event, cpu);
5778		if (err) {
5779			failed_cpu = cpu;
5780			goto fail;
5781		}
5782	}
5783	put_online_cpus();
5784
5785	return 0;
5786fail:
5787	for_each_possible_cpu(cpu) {
5788		if (cpu == failed_cpu)
5789			break;
5790		swevent_hlist_put_cpu(event, cpu);
5791	}
5792
5793	put_online_cpus();
5794	return err;
5795}
5796
5797struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5798
5799static void sw_perf_event_destroy(struct perf_event *event)
5800{
5801	u64 event_id = event->attr.config;
5802
5803	WARN_ON(event->parent);
5804
5805	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5806	swevent_hlist_put(event);
5807}
5808
5809static int perf_swevent_init(struct perf_event *event)
5810{
5811	u64 event_id = event->attr.config;
5812
5813	if (event->attr.type != PERF_TYPE_SOFTWARE)
5814		return -ENOENT;
5815
5816	/*
5817	 * no branch sampling for software events
5818	 */
5819	if (has_branch_stack(event))
5820		return -EOPNOTSUPP;
5821
5822	switch (event_id) {
5823	case PERF_COUNT_SW_CPU_CLOCK:
5824	case PERF_COUNT_SW_TASK_CLOCK:
5825		return -ENOENT;
5826
5827	default:
5828		break;
5829	}
5830
5831	if (event_id >= PERF_COUNT_SW_MAX)
5832		return -ENOENT;
5833
5834	if (!event->parent) {
5835		int err;
5836
5837		err = swevent_hlist_get(event);
5838		if (err)
5839			return err;
5840
5841		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5842		event->destroy = sw_perf_event_destroy;
5843	}
5844
5845	return 0;
5846}
5847
5848static int perf_swevent_event_idx(struct perf_event *event)
5849{
5850	return 0;
5851}
5852
5853static struct pmu perf_swevent = {
5854	.task_ctx_nr	= perf_sw_context,
5855
5856	.event_init	= perf_swevent_init,
5857	.add		= perf_swevent_add,
5858	.del		= perf_swevent_del,
5859	.start		= perf_swevent_start,
5860	.stop		= perf_swevent_stop,
5861	.read		= perf_swevent_read,
5862
5863	.event_idx	= perf_swevent_event_idx,
5864};
5865
5866#ifdef CONFIG_EVENT_TRACING
5867
5868static int perf_tp_filter_match(struct perf_event *event,
5869				struct perf_sample_data *data)
5870{
5871	void *record = data->raw->data;
5872
5873	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5874		return 1;
5875	return 0;
5876}
5877
5878static int perf_tp_event_match(struct perf_event *event,
5879				struct perf_sample_data *data,
5880				struct pt_regs *regs)
5881{
5882	if (event->hw.state & PERF_HES_STOPPED)
5883		return 0;
5884	/*
5885	 * All tracepoints are from kernel-space.
5886	 */
5887	if (event->attr.exclude_kernel)
5888		return 0;
5889
5890	if (!perf_tp_filter_match(event, data))
5891		return 0;
5892
5893	return 1;
5894}
5895
5896void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5897		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5898		   struct task_struct *task)
5899{
5900	struct perf_sample_data data;
5901	struct perf_event *event;
 
5902
5903	struct perf_raw_record raw = {
5904		.size = entry_size,
5905		.data = record,
5906	};
5907
5908	perf_sample_data_init(&data, addr, 0);
5909	data.raw = &raw;
5910
5911	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5912		if (perf_tp_event_match(event, &data, regs))
5913			perf_swevent_event(event, count, &data, regs);
5914	}
5915
5916	/*
5917	 * If we got specified a target task, also iterate its context and
5918	 * deliver this event there too.
5919	 */
5920	if (task && task != current) {
5921		struct perf_event_context *ctx;
5922		struct trace_entry *entry = record;
5923
5924		rcu_read_lock();
5925		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5926		if (!ctx)
5927			goto unlock;
5928
5929		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5930			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5931				continue;
5932			if (event->attr.config != entry->type)
5933				continue;
5934			if (perf_tp_event_match(event, &data, regs))
5935				perf_swevent_event(event, count, &data, regs);
5936		}
5937unlock:
5938		rcu_read_unlock();
5939	}
5940
5941	perf_swevent_put_recursion_context(rctx);
5942}
5943EXPORT_SYMBOL_GPL(perf_tp_event);
5944
5945static void tp_perf_event_destroy(struct perf_event *event)
5946{
5947	perf_trace_destroy(event);
5948}
5949
5950static int perf_tp_event_init(struct perf_event *event)
5951{
5952	int err;
5953
5954	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5955		return -ENOENT;
5956
5957	/*
5958	 * no branch sampling for tracepoint events
5959	 */
5960	if (has_branch_stack(event))
5961		return -EOPNOTSUPP;
5962
5963	err = perf_trace_init(event);
5964	if (err)
5965		return err;
5966
5967	event->destroy = tp_perf_event_destroy;
5968
5969	return 0;
5970}
5971
5972static struct pmu perf_tracepoint = {
5973	.task_ctx_nr	= perf_sw_context,
5974
5975	.event_init	= perf_tp_event_init,
5976	.add		= perf_trace_add,
5977	.del		= perf_trace_del,
5978	.start		= perf_swevent_start,
5979	.stop		= perf_swevent_stop,
5980	.read		= perf_swevent_read,
5981
5982	.event_idx	= perf_swevent_event_idx,
5983};
5984
5985static inline void perf_tp_register(void)
5986{
5987	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5988}
5989
5990static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5991{
5992	char *filter_str;
5993	int ret;
5994
5995	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5996		return -EINVAL;
5997
5998	filter_str = strndup_user(arg, PAGE_SIZE);
5999	if (IS_ERR(filter_str))
6000		return PTR_ERR(filter_str);
6001
6002	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6003
6004	kfree(filter_str);
6005	return ret;
6006}
6007
6008static void perf_event_free_filter(struct perf_event *event)
6009{
6010	ftrace_profile_free_filter(event);
6011}
6012
6013#else
6014
6015static inline void perf_tp_register(void)
6016{
6017}
6018
6019static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6020{
6021	return -ENOENT;
6022}
6023
6024static void perf_event_free_filter(struct perf_event *event)
6025{
6026}
6027
6028#endif /* CONFIG_EVENT_TRACING */
6029
6030#ifdef CONFIG_HAVE_HW_BREAKPOINT
6031void perf_bp_event(struct perf_event *bp, void *data)
6032{
6033	struct perf_sample_data sample;
6034	struct pt_regs *regs = data;
6035
6036	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6037
6038	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6039		perf_swevent_event(bp, 1, &sample, regs);
6040}
6041#endif
6042
6043/*
6044 * hrtimer based swevent callback
6045 */
6046
6047static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6048{
6049	enum hrtimer_restart ret = HRTIMER_RESTART;
6050	struct perf_sample_data data;
6051	struct pt_regs *regs;
6052	struct perf_event *event;
6053	u64 period;
6054
6055	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6056
6057	if (event->state != PERF_EVENT_STATE_ACTIVE)
6058		return HRTIMER_NORESTART;
6059
6060	event->pmu->read(event);
6061
6062	perf_sample_data_init(&data, 0, event->hw.last_period);
 
6063	regs = get_irq_regs();
6064
6065	if (regs && !perf_exclude_event(event, regs)) {
6066		if (!(event->attr.exclude_idle && is_idle_task(current)))
6067			if (__perf_event_overflow(event, 1, &data, regs))
6068				ret = HRTIMER_NORESTART;
6069	}
6070
6071	period = max_t(u64, 10000, event->hw.sample_period);
6072	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6073
6074	return ret;
6075}
6076
6077static void perf_swevent_start_hrtimer(struct perf_event *event)
6078{
6079	struct hw_perf_event *hwc = &event->hw;
6080	s64 period;
6081
6082	if (!is_sampling_event(event))
6083		return;
6084
6085	period = local64_read(&hwc->period_left);
6086	if (period) {
6087		if (period < 0)
6088			period = 10000;
6089
6090		local64_set(&hwc->period_left, 0);
6091	} else {
6092		period = max_t(u64, 10000, hwc->sample_period);
6093	}
6094	__hrtimer_start_range_ns(&hwc->hrtimer,
6095				ns_to_ktime(period), 0,
6096				HRTIMER_MODE_REL_PINNED, 0);
6097}
6098
6099static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6100{
6101	struct hw_perf_event *hwc = &event->hw;
6102
6103	if (is_sampling_event(event)) {
6104		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6105		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6106
6107		hrtimer_cancel(&hwc->hrtimer);
6108	}
6109}
6110
6111static void perf_swevent_init_hrtimer(struct perf_event *event)
6112{
6113	struct hw_perf_event *hwc = &event->hw;
6114
6115	if (!is_sampling_event(event))
6116		return;
6117
6118	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6119	hwc->hrtimer.function = perf_swevent_hrtimer;
6120
6121	/*
6122	 * Since hrtimers have a fixed rate, we can do a static freq->period
6123	 * mapping and avoid the whole period adjust feedback stuff.
6124	 */
6125	if (event->attr.freq) {
6126		long freq = event->attr.sample_freq;
6127
6128		event->attr.sample_period = NSEC_PER_SEC / freq;
6129		hwc->sample_period = event->attr.sample_period;
6130		local64_set(&hwc->period_left, hwc->sample_period);
6131		hwc->last_period = hwc->sample_period;
6132		event->attr.freq = 0;
6133	}
6134}
6135
6136/*
6137 * Software event: cpu wall time clock
6138 */
6139
6140static void cpu_clock_event_update(struct perf_event *event)
6141{
6142	s64 prev;
6143	u64 now;
6144
6145	now = local_clock();
6146	prev = local64_xchg(&event->hw.prev_count, now);
6147	local64_add(now - prev, &event->count);
6148}
6149
6150static void cpu_clock_event_start(struct perf_event *event, int flags)
6151{
6152	local64_set(&event->hw.prev_count, local_clock());
6153	perf_swevent_start_hrtimer(event);
6154}
6155
6156static void cpu_clock_event_stop(struct perf_event *event, int flags)
6157{
6158	perf_swevent_cancel_hrtimer(event);
6159	cpu_clock_event_update(event);
6160}
6161
6162static int cpu_clock_event_add(struct perf_event *event, int flags)
6163{
6164	if (flags & PERF_EF_START)
6165		cpu_clock_event_start(event, flags);
6166
6167	return 0;
6168}
6169
6170static void cpu_clock_event_del(struct perf_event *event, int flags)
6171{
6172	cpu_clock_event_stop(event, flags);
6173}
6174
6175static void cpu_clock_event_read(struct perf_event *event)
6176{
6177	cpu_clock_event_update(event);
6178}
6179
6180static int cpu_clock_event_init(struct perf_event *event)
6181{
6182	if (event->attr.type != PERF_TYPE_SOFTWARE)
6183		return -ENOENT;
6184
6185	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6186		return -ENOENT;
6187
6188	/*
6189	 * no branch sampling for software events
6190	 */
6191	if (has_branch_stack(event))
6192		return -EOPNOTSUPP;
6193
6194	perf_swevent_init_hrtimer(event);
6195
6196	return 0;
6197}
6198
6199static struct pmu perf_cpu_clock = {
6200	.task_ctx_nr	= perf_sw_context,
6201
6202	.event_init	= cpu_clock_event_init,
6203	.add		= cpu_clock_event_add,
6204	.del		= cpu_clock_event_del,
6205	.start		= cpu_clock_event_start,
6206	.stop		= cpu_clock_event_stop,
6207	.read		= cpu_clock_event_read,
6208
6209	.event_idx	= perf_swevent_event_idx,
6210};
6211
6212/*
6213 * Software event: task time clock
6214 */
6215
6216static void task_clock_event_update(struct perf_event *event, u64 now)
6217{
6218	u64 prev;
6219	s64 delta;
6220
6221	prev = local64_xchg(&event->hw.prev_count, now);
6222	delta = now - prev;
6223	local64_add(delta, &event->count);
6224}
6225
6226static void task_clock_event_start(struct perf_event *event, int flags)
6227{
6228	local64_set(&event->hw.prev_count, event->ctx->time);
6229	perf_swevent_start_hrtimer(event);
6230}
6231
6232static void task_clock_event_stop(struct perf_event *event, int flags)
6233{
6234	perf_swevent_cancel_hrtimer(event);
6235	task_clock_event_update(event, event->ctx->time);
6236}
6237
6238static int task_clock_event_add(struct perf_event *event, int flags)
6239{
6240	if (flags & PERF_EF_START)
6241		task_clock_event_start(event, flags);
6242
6243	return 0;
6244}
6245
6246static void task_clock_event_del(struct perf_event *event, int flags)
6247{
6248	task_clock_event_stop(event, PERF_EF_UPDATE);
6249}
6250
6251static void task_clock_event_read(struct perf_event *event)
6252{
6253	u64 now = perf_clock();
6254	u64 delta = now - event->ctx->timestamp;
6255	u64 time = event->ctx->time + delta;
6256
6257	task_clock_event_update(event, time);
6258}
6259
6260static int task_clock_event_init(struct perf_event *event)
6261{
6262	if (event->attr.type != PERF_TYPE_SOFTWARE)
6263		return -ENOENT;
6264
6265	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6266		return -ENOENT;
6267
6268	/*
6269	 * no branch sampling for software events
6270	 */
6271	if (has_branch_stack(event))
6272		return -EOPNOTSUPP;
6273
6274	perf_swevent_init_hrtimer(event);
6275
6276	return 0;
6277}
6278
6279static struct pmu perf_task_clock = {
6280	.task_ctx_nr	= perf_sw_context,
6281
6282	.event_init	= task_clock_event_init,
6283	.add		= task_clock_event_add,
6284	.del		= task_clock_event_del,
6285	.start		= task_clock_event_start,
6286	.stop		= task_clock_event_stop,
6287	.read		= task_clock_event_read,
6288
6289	.event_idx	= perf_swevent_event_idx,
6290};
6291
6292static void perf_pmu_nop_void(struct pmu *pmu)
6293{
6294}
6295
6296static int perf_pmu_nop_int(struct pmu *pmu)
6297{
6298	return 0;
6299}
6300
6301static void perf_pmu_start_txn(struct pmu *pmu)
6302{
6303	perf_pmu_disable(pmu);
6304}
6305
6306static int perf_pmu_commit_txn(struct pmu *pmu)
6307{
6308	perf_pmu_enable(pmu);
6309	return 0;
6310}
6311
6312static void perf_pmu_cancel_txn(struct pmu *pmu)
6313{
6314	perf_pmu_enable(pmu);
6315}
6316
6317static int perf_event_idx_default(struct perf_event *event)
6318{
6319	return event->hw.idx + 1;
6320}
6321
6322/*
6323 * Ensures all contexts with the same task_ctx_nr have the same
6324 * pmu_cpu_context too.
6325 */
6326static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6327{
6328	struct pmu *pmu;
6329
6330	if (ctxn < 0)
6331		return NULL;
6332
6333	list_for_each_entry(pmu, &pmus, entry) {
6334		if (pmu->task_ctx_nr == ctxn)
6335			return pmu->pmu_cpu_context;
6336	}
6337
6338	return NULL;
6339}
6340
6341static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6342{
6343	int cpu;
6344
6345	for_each_possible_cpu(cpu) {
6346		struct perf_cpu_context *cpuctx;
6347
6348		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6349
6350		if (cpuctx->unique_pmu == old_pmu)
6351			cpuctx->unique_pmu = pmu;
6352	}
6353}
6354
6355static void free_pmu_context(struct pmu *pmu)
6356{
6357	struct pmu *i;
6358
6359	mutex_lock(&pmus_lock);
6360	/*
6361	 * Like a real lame refcount.
6362	 */
6363	list_for_each_entry(i, &pmus, entry) {
6364		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6365			update_pmu_context(i, pmu);
6366			goto out;
6367		}
6368	}
6369
6370	free_percpu(pmu->pmu_cpu_context);
6371out:
6372	mutex_unlock(&pmus_lock);
6373}
6374static struct idr pmu_idr;
6375
6376static ssize_t
6377type_show(struct device *dev, struct device_attribute *attr, char *page)
6378{
6379	struct pmu *pmu = dev_get_drvdata(dev);
6380
6381	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6382}
6383static DEVICE_ATTR_RO(type);
6384
6385static ssize_t
6386perf_event_mux_interval_ms_show(struct device *dev,
6387				struct device_attribute *attr,
6388				char *page)
6389{
6390	struct pmu *pmu = dev_get_drvdata(dev);
6391
6392	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6393}
6394
6395static ssize_t
6396perf_event_mux_interval_ms_store(struct device *dev,
6397				 struct device_attribute *attr,
6398				 const char *buf, size_t count)
6399{
6400	struct pmu *pmu = dev_get_drvdata(dev);
6401	int timer, cpu, ret;
6402
6403	ret = kstrtoint(buf, 0, &timer);
6404	if (ret)
6405		return ret;
6406
6407	if (timer < 1)
6408		return -EINVAL;
6409
6410	/* same value, noting to do */
6411	if (timer == pmu->hrtimer_interval_ms)
6412		return count;
6413
6414	pmu->hrtimer_interval_ms = timer;
6415
6416	/* update all cpuctx for this PMU */
6417	for_each_possible_cpu(cpu) {
6418		struct perf_cpu_context *cpuctx;
6419		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6420		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6421
6422		if (hrtimer_active(&cpuctx->hrtimer))
6423			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6424	}
6425
6426	return count;
6427}
6428static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6429
6430static struct attribute *pmu_dev_attrs[] = {
6431	&dev_attr_type.attr,
6432	&dev_attr_perf_event_mux_interval_ms.attr,
6433	NULL,
6434};
6435ATTRIBUTE_GROUPS(pmu_dev);
6436
6437static int pmu_bus_running;
6438static struct bus_type pmu_bus = {
6439	.name		= "event_source",
6440	.dev_groups	= pmu_dev_groups,
6441};
6442
6443static void pmu_dev_release(struct device *dev)
6444{
6445	kfree(dev);
6446}
6447
6448static int pmu_dev_alloc(struct pmu *pmu)
6449{
6450	int ret = -ENOMEM;
6451
6452	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6453	if (!pmu->dev)
6454		goto out;
6455
6456	pmu->dev->groups = pmu->attr_groups;
6457	device_initialize(pmu->dev);
6458	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6459	if (ret)
6460		goto free_dev;
6461
6462	dev_set_drvdata(pmu->dev, pmu);
6463	pmu->dev->bus = &pmu_bus;
6464	pmu->dev->release = pmu_dev_release;
6465	ret = device_add(pmu->dev);
6466	if (ret)
6467		goto free_dev;
6468
6469out:
6470	return ret;
6471
6472free_dev:
6473	put_device(pmu->dev);
6474	goto out;
6475}
6476
6477static struct lock_class_key cpuctx_mutex;
6478static struct lock_class_key cpuctx_lock;
6479
6480int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6481{
6482	int cpu, ret;
6483
6484	mutex_lock(&pmus_lock);
6485	ret = -ENOMEM;
6486	pmu->pmu_disable_count = alloc_percpu(int);
6487	if (!pmu->pmu_disable_count)
6488		goto unlock;
6489
6490	pmu->type = -1;
6491	if (!name)
6492		goto skip_type;
6493	pmu->name = name;
6494
6495	if (type < 0) {
6496		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6497		if (type < 0) {
6498			ret = type;
 
 
 
 
6499			goto free_pdc;
6500		}
6501	}
6502	pmu->type = type;
6503
6504	if (pmu_bus_running) {
6505		ret = pmu_dev_alloc(pmu);
6506		if (ret)
6507			goto free_idr;
6508	}
6509
6510skip_type:
6511	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6512	if (pmu->pmu_cpu_context)
6513		goto got_cpu_context;
6514
6515	ret = -ENOMEM;
6516	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6517	if (!pmu->pmu_cpu_context)
6518		goto free_dev;
6519
6520	for_each_possible_cpu(cpu) {
6521		struct perf_cpu_context *cpuctx;
6522
6523		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6524		__perf_event_init_context(&cpuctx->ctx);
6525		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6526		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6527		cpuctx->ctx.type = cpu_context;
6528		cpuctx->ctx.pmu = pmu;
6529
6530		__perf_cpu_hrtimer_init(cpuctx, cpu);
6531
6532		INIT_LIST_HEAD(&cpuctx->rotation_list);
6533		cpuctx->unique_pmu = pmu;
6534	}
6535
6536got_cpu_context:
6537	if (!pmu->start_txn) {
6538		if (pmu->pmu_enable) {
6539			/*
6540			 * If we have pmu_enable/pmu_disable calls, install
6541			 * transaction stubs that use that to try and batch
6542			 * hardware accesses.
6543			 */
6544			pmu->start_txn  = perf_pmu_start_txn;
6545			pmu->commit_txn = perf_pmu_commit_txn;
6546			pmu->cancel_txn = perf_pmu_cancel_txn;
6547		} else {
6548			pmu->start_txn  = perf_pmu_nop_void;
6549			pmu->commit_txn = perf_pmu_nop_int;
6550			pmu->cancel_txn = perf_pmu_nop_void;
6551		}
6552	}
6553
6554	if (!pmu->pmu_enable) {
6555		pmu->pmu_enable  = perf_pmu_nop_void;
6556		pmu->pmu_disable = perf_pmu_nop_void;
6557	}
6558
6559	if (!pmu->event_idx)
6560		pmu->event_idx = perf_event_idx_default;
6561
6562	list_add_rcu(&pmu->entry, &pmus);
6563	ret = 0;
6564unlock:
6565	mutex_unlock(&pmus_lock);
6566
6567	return ret;
6568
6569free_dev:
6570	device_del(pmu->dev);
6571	put_device(pmu->dev);
6572
6573free_idr:
6574	if (pmu->type >= PERF_TYPE_MAX)
6575		idr_remove(&pmu_idr, pmu->type);
6576
6577free_pdc:
6578	free_percpu(pmu->pmu_disable_count);
6579	goto unlock;
6580}
6581
6582void perf_pmu_unregister(struct pmu *pmu)
6583{
6584	mutex_lock(&pmus_lock);
6585	list_del_rcu(&pmu->entry);
6586	mutex_unlock(&pmus_lock);
6587
6588	/*
6589	 * We dereference the pmu list under both SRCU and regular RCU, so
6590	 * synchronize against both of those.
6591	 */
6592	synchronize_srcu(&pmus_srcu);
6593	synchronize_rcu();
6594
6595	free_percpu(pmu->pmu_disable_count);
6596	if (pmu->type >= PERF_TYPE_MAX)
6597		idr_remove(&pmu_idr, pmu->type);
6598	device_del(pmu->dev);
6599	put_device(pmu->dev);
6600	free_pmu_context(pmu);
6601}
6602
6603struct pmu *perf_init_event(struct perf_event *event)
6604{
6605	struct pmu *pmu = NULL;
6606	int idx;
6607	int ret;
6608
6609	idx = srcu_read_lock(&pmus_srcu);
6610
6611	rcu_read_lock();
6612	pmu = idr_find(&pmu_idr, event->attr.type);
6613	rcu_read_unlock();
6614	if (pmu) {
6615		event->pmu = pmu;
6616		ret = pmu->event_init(event);
6617		if (ret)
6618			pmu = ERR_PTR(ret);
6619		goto unlock;
6620	}
6621
6622	list_for_each_entry_rcu(pmu, &pmus, entry) {
6623		event->pmu = pmu;
6624		ret = pmu->event_init(event);
6625		if (!ret)
6626			goto unlock;
6627
6628		if (ret != -ENOENT) {
6629			pmu = ERR_PTR(ret);
6630			goto unlock;
6631		}
6632	}
6633	pmu = ERR_PTR(-ENOENT);
6634unlock:
6635	srcu_read_unlock(&pmus_srcu, idx);
6636
6637	return pmu;
6638}
6639
6640static void account_event_cpu(struct perf_event *event, int cpu)
6641{
6642	if (event->parent)
6643		return;
6644
6645	if (has_branch_stack(event)) {
6646		if (!(event->attach_state & PERF_ATTACH_TASK))
6647			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6648	}
6649	if (is_cgroup_event(event))
6650		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6651}
6652
6653static void account_event(struct perf_event *event)
6654{
6655	if (event->parent)
6656		return;
6657
6658	if (event->attach_state & PERF_ATTACH_TASK)
6659		static_key_slow_inc(&perf_sched_events.key);
6660	if (event->attr.mmap || event->attr.mmap_data)
6661		atomic_inc(&nr_mmap_events);
6662	if (event->attr.comm)
6663		atomic_inc(&nr_comm_events);
6664	if (event->attr.task)
6665		atomic_inc(&nr_task_events);
6666	if (event->attr.freq) {
6667		if (atomic_inc_return(&nr_freq_events) == 1)
6668			tick_nohz_full_kick_all();
6669	}
6670	if (has_branch_stack(event))
6671		static_key_slow_inc(&perf_sched_events.key);
6672	if (is_cgroup_event(event))
6673		static_key_slow_inc(&perf_sched_events.key);
6674
6675	account_event_cpu(event, event->cpu);
6676}
6677
6678/*
6679 * Allocate and initialize a event structure
6680 */
6681static struct perf_event *
6682perf_event_alloc(struct perf_event_attr *attr, int cpu,
6683		 struct task_struct *task,
6684		 struct perf_event *group_leader,
6685		 struct perf_event *parent_event,
6686		 perf_overflow_handler_t overflow_handler,
6687		 void *context)
6688{
6689	struct pmu *pmu;
6690	struct perf_event *event;
6691	struct hw_perf_event *hwc;
6692	long err = -EINVAL;
6693
6694	if ((unsigned)cpu >= nr_cpu_ids) {
6695		if (!task || cpu != -1)
6696			return ERR_PTR(-EINVAL);
6697	}
6698
6699	event = kzalloc(sizeof(*event), GFP_KERNEL);
6700	if (!event)
6701		return ERR_PTR(-ENOMEM);
6702
6703	/*
6704	 * Single events are their own group leaders, with an
6705	 * empty sibling list:
6706	 */
6707	if (!group_leader)
6708		group_leader = event;
6709
6710	mutex_init(&event->child_mutex);
6711	INIT_LIST_HEAD(&event->child_list);
6712
6713	INIT_LIST_HEAD(&event->group_entry);
6714	INIT_LIST_HEAD(&event->event_entry);
6715	INIT_LIST_HEAD(&event->sibling_list);
6716	INIT_LIST_HEAD(&event->rb_entry);
6717	INIT_LIST_HEAD(&event->active_entry);
6718	INIT_HLIST_NODE(&event->hlist_entry);
6719
6720
6721	init_waitqueue_head(&event->waitq);
6722	init_irq_work(&event->pending, perf_pending_event);
6723
6724	mutex_init(&event->mmap_mutex);
6725
6726	atomic_long_set(&event->refcount, 1);
6727	event->cpu		= cpu;
6728	event->attr		= *attr;
6729	event->group_leader	= group_leader;
6730	event->pmu		= NULL;
6731	event->oncpu		= -1;
6732
6733	event->parent		= parent_event;
6734
6735	event->ns		= get_pid_ns(task_active_pid_ns(current));
6736	event->id		= atomic64_inc_return(&perf_event_id);
6737
6738	event->state		= PERF_EVENT_STATE_INACTIVE;
6739
6740	if (task) {
6741		event->attach_state = PERF_ATTACH_TASK;
6742
6743		if (attr->type == PERF_TYPE_TRACEPOINT)
6744			event->hw.tp_target = task;
6745#ifdef CONFIG_HAVE_HW_BREAKPOINT
6746		/*
6747		 * hw_breakpoint is a bit difficult here..
6748		 */
6749		else if (attr->type == PERF_TYPE_BREAKPOINT)
6750			event->hw.bp_target = task;
6751#endif
6752	}
6753
6754	if (!overflow_handler && parent_event) {
6755		overflow_handler = parent_event->overflow_handler;
6756		context = parent_event->overflow_handler_context;
6757	}
6758
6759	event->overflow_handler	= overflow_handler;
6760	event->overflow_handler_context = context;
6761
6762	perf_event__state_init(event);
 
6763
6764	pmu = NULL;
6765
6766	hwc = &event->hw;
6767	hwc->sample_period = attr->sample_period;
6768	if (attr->freq && attr->sample_freq)
6769		hwc->sample_period = 1;
6770	hwc->last_period = hwc->sample_period;
6771
6772	local64_set(&hwc->period_left, hwc->sample_period);
6773
6774	/*
6775	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6776	 */
6777	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6778		goto err_ns;
6779
6780	pmu = perf_init_event(event);
 
 
 
6781	if (!pmu)
6782		goto err_ns;
6783	else if (IS_ERR(pmu)) {
6784		err = PTR_ERR(pmu);
6785		goto err_ns;
 
 
 
 
 
6786	}
6787
 
 
6788	if (!event->parent) {
 
 
 
 
 
 
 
 
6789		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6790			err = get_callchain_buffers();
6791			if (err)
6792				goto err_pmu;
 
 
6793		}
6794	}
6795
6796	return event;
6797
6798err_pmu:
6799	if (event->destroy)
6800		event->destroy(event);
6801err_ns:
6802	if (event->ns)
6803		put_pid_ns(event->ns);
6804	kfree(event);
6805
6806	return ERR_PTR(err);
6807}
6808
6809static int perf_copy_attr(struct perf_event_attr __user *uattr,
6810			  struct perf_event_attr *attr)
6811{
6812	u32 size;
6813	int ret;
6814
6815	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6816		return -EFAULT;
6817
6818	/*
6819	 * zero the full structure, so that a short copy will be nice.
6820	 */
6821	memset(attr, 0, sizeof(*attr));
6822
6823	ret = get_user(size, &uattr->size);
6824	if (ret)
6825		return ret;
6826
6827	if (size > PAGE_SIZE)	/* silly large */
6828		goto err_size;
6829
6830	if (!size)		/* abi compat */
6831		size = PERF_ATTR_SIZE_VER0;
6832
6833	if (size < PERF_ATTR_SIZE_VER0)
6834		goto err_size;
6835
6836	/*
6837	 * If we're handed a bigger struct than we know of,
6838	 * ensure all the unknown bits are 0 - i.e. new
6839	 * user-space does not rely on any kernel feature
6840	 * extensions we dont know about yet.
6841	 */
6842	if (size > sizeof(*attr)) {
6843		unsigned char __user *addr;
6844		unsigned char __user *end;
6845		unsigned char val;
6846
6847		addr = (void __user *)uattr + sizeof(*attr);
6848		end  = (void __user *)uattr + size;
6849
6850		for (; addr < end; addr++) {
6851			ret = get_user(val, addr);
6852			if (ret)
6853				return ret;
6854			if (val)
6855				goto err_size;
6856		}
6857		size = sizeof(*attr);
6858	}
6859
6860	ret = copy_from_user(attr, uattr, size);
6861	if (ret)
6862		return -EFAULT;
6863
6864	/* disabled for now */
6865	if (attr->mmap2)
6866		return -EINVAL;
6867
6868	if (attr->__reserved_1)
6869		return -EINVAL;
6870
6871	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6872		return -EINVAL;
6873
6874	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6875		return -EINVAL;
6876
6877	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6878		u64 mask = attr->branch_sample_type;
6879
6880		/* only using defined bits */
6881		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6882			return -EINVAL;
6883
6884		/* at least one branch bit must be set */
6885		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6886			return -EINVAL;
6887
6888		/* propagate priv level, when not set for branch */
6889		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6890
6891			/* exclude_kernel checked on syscall entry */
6892			if (!attr->exclude_kernel)
6893				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6894
6895			if (!attr->exclude_user)
6896				mask |= PERF_SAMPLE_BRANCH_USER;
6897
6898			if (!attr->exclude_hv)
6899				mask |= PERF_SAMPLE_BRANCH_HV;
6900			/*
6901			 * adjust user setting (for HW filter setup)
6902			 */
6903			attr->branch_sample_type = mask;
6904		}
6905		/* privileged levels capture (kernel, hv): check permissions */
6906		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6907		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6908			return -EACCES;
6909	}
6910
6911	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6912		ret = perf_reg_validate(attr->sample_regs_user);
6913		if (ret)
6914			return ret;
6915	}
6916
6917	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6918		if (!arch_perf_have_user_stack_dump())
6919			return -ENOSYS;
6920
6921		/*
6922		 * We have __u32 type for the size, but so far
6923		 * we can only use __u16 as maximum due to the
6924		 * __u16 sample size limit.
6925		 */
6926		if (attr->sample_stack_user >= USHRT_MAX)
6927			ret = -EINVAL;
6928		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6929			ret = -EINVAL;
6930	}
6931
6932out:
6933	return ret;
6934
6935err_size:
6936	put_user(sizeof(*attr), &uattr->size);
6937	ret = -E2BIG;
6938	goto out;
6939}
6940
6941static int
6942perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6943{
6944	struct ring_buffer *rb = NULL;
6945	int ret = -EINVAL;
6946
6947	if (!output_event)
6948		goto set;
6949
6950	/* don't allow circular references */
6951	if (event == output_event)
6952		goto out;
6953
6954	/*
6955	 * Don't allow cross-cpu buffers
6956	 */
6957	if (output_event->cpu != event->cpu)
6958		goto out;
6959
6960	/*
6961	 * If its not a per-cpu rb, it must be the same task.
6962	 */
6963	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6964		goto out;
6965
6966set:
6967	mutex_lock(&event->mmap_mutex);
6968	/* Can't redirect output if we've got an active mmap() */
6969	if (atomic_read(&event->mmap_count))
6970		goto unlock;
6971
6972	if (output_event) {
6973		/* get the rb we want to redirect to */
6974		rb = ring_buffer_get(output_event);
6975		if (!rb)
6976			goto unlock;
6977	}
6978
6979	ring_buffer_attach(event, rb);
6980
6981	ret = 0;
6982unlock:
6983	mutex_unlock(&event->mmap_mutex);
6984
 
 
6985out:
6986	return ret;
6987}
6988
6989/**
6990 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6991 *
6992 * @attr_uptr:	event_id type attributes for monitoring/sampling
6993 * @pid:		target pid
6994 * @cpu:		target cpu
6995 * @group_fd:		group leader event fd
6996 */
6997SYSCALL_DEFINE5(perf_event_open,
6998		struct perf_event_attr __user *, attr_uptr,
6999		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7000{
7001	struct perf_event *group_leader = NULL, *output_event = NULL;
7002	struct perf_event *event, *sibling;
7003	struct perf_event_attr attr;
7004	struct perf_event_context *ctx;
7005	struct file *event_file = NULL;
7006	struct fd group = {NULL, 0};
7007	struct task_struct *task = NULL;
7008	struct pmu *pmu;
7009	int event_fd;
7010	int move_group = 0;
 
7011	int err;
7012	int f_flags = O_RDWR;
7013
7014	/* for future expandability... */
7015	if (flags & ~PERF_FLAG_ALL)
7016		return -EINVAL;
7017
7018	err = perf_copy_attr(attr_uptr, &attr);
7019	if (err)
7020		return err;
7021
7022	if (!attr.exclude_kernel) {
7023		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7024			return -EACCES;
7025	}
7026
7027	if (attr.freq) {
7028		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7029			return -EINVAL;
7030	} else {
7031		if (attr.sample_period & (1ULL << 63))
7032			return -EINVAL;
7033	}
7034
7035	/*
7036	 * In cgroup mode, the pid argument is used to pass the fd
7037	 * opened to the cgroup directory in cgroupfs. The cpu argument
7038	 * designates the cpu on which to monitor threads from that
7039	 * cgroup.
7040	 */
7041	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7042		return -EINVAL;
7043
7044	if (flags & PERF_FLAG_FD_CLOEXEC)
7045		f_flags |= O_CLOEXEC;
7046
7047	event_fd = get_unused_fd_flags(f_flags);
7048	if (event_fd < 0)
7049		return event_fd;
7050
7051	if (group_fd != -1) {
7052		err = perf_fget_light(group_fd, &group);
7053		if (err)
 
7054			goto err_fd;
7055		group_leader = group.file->private_data;
 
7056		if (flags & PERF_FLAG_FD_OUTPUT)
7057			output_event = group_leader;
7058		if (flags & PERF_FLAG_FD_NO_GROUP)
7059			group_leader = NULL;
7060	}
7061
7062	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7063		task = find_lively_task_by_vpid(pid);
7064		if (IS_ERR(task)) {
7065			err = PTR_ERR(task);
7066			goto err_group_fd;
7067		}
7068	}
7069
7070	get_online_cpus();
7071
7072	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7073				 NULL, NULL);
7074	if (IS_ERR(event)) {
7075		err = PTR_ERR(event);
7076		goto err_task;
7077	}
7078
7079	if (flags & PERF_FLAG_PID_CGROUP) {
7080		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7081		if (err) {
7082			__free_event(event);
7083			goto err_task;
7084		}
 
 
 
 
 
7085	}
7086
7087	account_event(event);
7088
7089	/*
7090	 * Special case software events and allow them to be part of
7091	 * any hardware group.
7092	 */
7093	pmu = event->pmu;
7094
7095	if (group_leader &&
7096	    (is_software_event(event) != is_software_event(group_leader))) {
7097		if (is_software_event(event)) {
7098			/*
7099			 * If event and group_leader are not both a software
7100			 * event, and event is, then group leader is not.
7101			 *
7102			 * Allow the addition of software events to !software
7103			 * groups, this is safe because software events never
7104			 * fail to schedule.
7105			 */
7106			pmu = group_leader->pmu;
7107		} else if (is_software_event(group_leader) &&
7108			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7109			/*
7110			 * In case the group is a pure software group, and we
7111			 * try to add a hardware event, move the whole group to
7112			 * the hardware context.
7113			 */
7114			move_group = 1;
7115		}
7116	}
7117
7118	/*
7119	 * Get the target context (task or percpu):
7120	 */
7121	ctx = find_get_context(pmu, task, event->cpu);
7122	if (IS_ERR(ctx)) {
7123		err = PTR_ERR(ctx);
7124		goto err_alloc;
7125	}
7126
7127	if (task) {
7128		put_task_struct(task);
7129		task = NULL;
7130	}
7131
7132	/*
7133	 * Look up the group leader (we will attach this event to it):
7134	 */
7135	if (group_leader) {
7136		err = -EINVAL;
7137
7138		/*
7139		 * Do not allow a recursive hierarchy (this new sibling
7140		 * becoming part of another group-sibling):
7141		 */
7142		if (group_leader->group_leader != group_leader)
7143			goto err_context;
7144		/*
7145		 * Do not allow to attach to a group in a different
7146		 * task or CPU context:
7147		 */
7148		if (move_group) {
7149			if (group_leader->ctx->type != ctx->type)
7150				goto err_context;
7151		} else {
7152			if (group_leader->ctx != ctx)
7153				goto err_context;
7154		}
7155
7156		/*
7157		 * Only a group leader can be exclusive or pinned
7158		 */
7159		if (attr.exclusive || attr.pinned)
7160			goto err_context;
7161	}
7162
7163	if (output_event) {
7164		err = perf_event_set_output(event, output_event);
7165		if (err)
7166			goto err_context;
7167	}
7168
7169	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7170					f_flags);
7171	if (IS_ERR(event_file)) {
7172		err = PTR_ERR(event_file);
7173		goto err_context;
7174	}
7175
7176	if (move_group) {
7177		struct perf_event_context *gctx = group_leader->ctx;
7178
7179		mutex_lock(&gctx->mutex);
7180		perf_remove_from_context(group_leader, false);
7181
7182		/*
7183		 * Removing from the context ends up with disabled
7184		 * event. What we want here is event in the initial
7185		 * startup state, ready to be add into new context.
7186		 */
7187		perf_event__state_init(group_leader);
7188		list_for_each_entry(sibling, &group_leader->sibling_list,
7189				    group_entry) {
7190			perf_remove_from_context(sibling, false);
7191			perf_event__state_init(sibling);
7192			put_ctx(gctx);
7193		}
7194		mutex_unlock(&gctx->mutex);
7195		put_ctx(gctx);
7196	}
7197
 
7198	WARN_ON_ONCE(ctx->parent_ctx);
7199	mutex_lock(&ctx->mutex);
7200
7201	if (move_group) {
7202		synchronize_rcu();
7203		perf_install_in_context(ctx, group_leader, event->cpu);
7204		get_ctx(ctx);
7205		list_for_each_entry(sibling, &group_leader->sibling_list,
7206				    group_entry) {
7207			perf_install_in_context(ctx, sibling, event->cpu);
7208			get_ctx(ctx);
7209		}
7210	}
7211
7212	perf_install_in_context(ctx, event, event->cpu);
 
7213	perf_unpin_context(ctx);
7214	mutex_unlock(&ctx->mutex);
7215
7216	put_online_cpus();
7217
7218	event->owner = current;
7219
7220	mutex_lock(&current->perf_event_mutex);
7221	list_add_tail(&event->owner_entry, &current->perf_event_list);
7222	mutex_unlock(&current->perf_event_mutex);
7223
7224	/*
7225	 * Precalculate sample_data sizes
7226	 */
7227	perf_event__header_size(event);
7228	perf_event__id_header_size(event);
7229
7230	/*
7231	 * Drop the reference on the group_event after placing the
7232	 * new event on the sibling_list. This ensures destruction
7233	 * of the group leader will find the pointer to itself in
7234	 * perf_group_detach().
7235	 */
7236	fdput(group);
7237	fd_install(event_fd, event_file);
7238	return event_fd;
7239
7240err_context:
7241	perf_unpin_context(ctx);
7242	put_ctx(ctx);
7243err_alloc:
7244	free_event(event);
7245err_task:
7246	put_online_cpus();
7247	if (task)
7248		put_task_struct(task);
7249err_group_fd:
7250	fdput(group);
7251err_fd:
7252	put_unused_fd(event_fd);
7253	return err;
7254}
7255
7256/**
7257 * perf_event_create_kernel_counter
7258 *
7259 * @attr: attributes of the counter to create
7260 * @cpu: cpu in which the counter is bound
7261 * @task: task to profile (NULL for percpu)
7262 */
7263struct perf_event *
7264perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7265				 struct task_struct *task,
7266				 perf_overflow_handler_t overflow_handler,
7267				 void *context)
7268{
7269	struct perf_event_context *ctx;
7270	struct perf_event *event;
7271	int err;
7272
7273	/*
7274	 * Get the target context (task or percpu):
7275	 */
7276
7277	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7278				 overflow_handler, context);
7279	if (IS_ERR(event)) {
7280		err = PTR_ERR(event);
7281		goto err;
7282	}
7283
7284	account_event(event);
7285
7286	ctx = find_get_context(event->pmu, task, cpu);
7287	if (IS_ERR(ctx)) {
7288		err = PTR_ERR(ctx);
7289		goto err_free;
7290	}
7291
 
7292	WARN_ON_ONCE(ctx->parent_ctx);
7293	mutex_lock(&ctx->mutex);
7294	perf_install_in_context(ctx, event, cpu);
 
7295	perf_unpin_context(ctx);
7296	mutex_unlock(&ctx->mutex);
7297
7298	return event;
7299
7300err_free:
7301	free_event(event);
7302err:
7303	return ERR_PTR(err);
7304}
7305EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7306
7307void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7308{
7309	struct perf_event_context *src_ctx;
7310	struct perf_event_context *dst_ctx;
7311	struct perf_event *event, *tmp;
7312	LIST_HEAD(events);
7313
7314	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7315	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7316
7317	mutex_lock(&src_ctx->mutex);
7318	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7319				 event_entry) {
7320		perf_remove_from_context(event, false);
7321		unaccount_event_cpu(event, src_cpu);
7322		put_ctx(src_ctx);
7323		list_add(&event->migrate_entry, &events);
7324	}
7325	mutex_unlock(&src_ctx->mutex);
7326
7327	synchronize_rcu();
7328
7329	mutex_lock(&dst_ctx->mutex);
7330	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7331		list_del(&event->migrate_entry);
7332		if (event->state >= PERF_EVENT_STATE_OFF)
7333			event->state = PERF_EVENT_STATE_INACTIVE;
7334		account_event_cpu(event, dst_cpu);
7335		perf_install_in_context(dst_ctx, event, dst_cpu);
7336		get_ctx(dst_ctx);
7337	}
7338	mutex_unlock(&dst_ctx->mutex);
7339}
7340EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7341
7342static void sync_child_event(struct perf_event *child_event,
7343			       struct task_struct *child)
7344{
7345	struct perf_event *parent_event = child_event->parent;
7346	u64 child_val;
7347
7348	if (child_event->attr.inherit_stat)
7349		perf_event_read_event(child_event, child);
7350
7351	child_val = perf_event_count(child_event);
7352
7353	/*
7354	 * Add back the child's count to the parent's count:
7355	 */
7356	atomic64_add(child_val, &parent_event->child_count);
7357	atomic64_add(child_event->total_time_enabled,
7358		     &parent_event->child_total_time_enabled);
7359	atomic64_add(child_event->total_time_running,
7360		     &parent_event->child_total_time_running);
7361
7362	/*
7363	 * Remove this event from the parent's list
7364	 */
7365	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7366	mutex_lock(&parent_event->child_mutex);
7367	list_del_init(&child_event->child_list);
7368	mutex_unlock(&parent_event->child_mutex);
7369
7370	/*
7371	 * Release the parent event, if this was the last
7372	 * reference to it.
7373	 */
7374	put_event(parent_event);
7375}
7376
7377static void
7378__perf_event_exit_task(struct perf_event *child_event,
7379			 struct perf_event_context *child_ctx,
7380			 struct task_struct *child)
7381{
7382	perf_remove_from_context(child_event, !!child_event->parent);
 
 
 
 
 
 
7383
7384	/*
7385	 * It can happen that the parent exits first, and has events
7386	 * that are still around due to the child reference. These
7387	 * events need to be zapped.
7388	 */
7389	if (child_event->parent) {
7390		sync_child_event(child_event, child);
7391		free_event(child_event);
7392	}
7393}
7394
7395static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7396{
7397	struct perf_event *child_event, *tmp;
7398	struct perf_event_context *child_ctx;
7399	unsigned long flags;
7400
7401	if (likely(!child->perf_event_ctxp[ctxn])) {
7402		perf_event_task(child, NULL, 0);
7403		return;
7404	}
7405
7406	local_irq_save(flags);
7407	/*
7408	 * We can't reschedule here because interrupts are disabled,
7409	 * and either child is current or it is a task that can't be
7410	 * scheduled, so we are now safe from rescheduling changing
7411	 * our context.
7412	 */
7413	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7414
7415	/*
7416	 * Take the context lock here so that if find_get_context is
7417	 * reading child->perf_event_ctxp, we wait until it has
7418	 * incremented the context's refcount before we do put_ctx below.
7419	 */
7420	raw_spin_lock(&child_ctx->lock);
7421	task_ctx_sched_out(child_ctx);
7422	child->perf_event_ctxp[ctxn] = NULL;
7423	/*
7424	 * If this context is a clone; unclone it so it can't get
7425	 * swapped to another process while we're removing all
7426	 * the events from it.
7427	 */
7428	unclone_ctx(child_ctx);
7429	update_context_time(child_ctx);
7430	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7431
7432	/*
7433	 * Report the task dead after unscheduling the events so that we
7434	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7435	 * get a few PERF_RECORD_READ events.
7436	 */
7437	perf_event_task(child, child_ctx, 0);
7438
7439	/*
7440	 * We can recurse on the same lock type through:
7441	 *
7442	 *   __perf_event_exit_task()
7443	 *     sync_child_event()
7444	 *       put_event()
7445	 *         mutex_lock(&ctx->mutex)
 
7446	 *
7447	 * But since its the parent context it won't be the same instance.
7448	 */
7449	mutex_lock(&child_ctx->mutex);
7450
7451again:
7452	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7453				 group_entry)
7454		__perf_event_exit_task(child_event, child_ctx, child);
7455
7456	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7457				 group_entry)
7458		__perf_event_exit_task(child_event, child_ctx, child);
7459
7460	/*
7461	 * If the last event was a group event, it will have appended all
7462	 * its siblings to the list, but we obtained 'tmp' before that which
7463	 * will still point to the list head terminating the iteration.
7464	 */
7465	if (!list_empty(&child_ctx->pinned_groups) ||
7466	    !list_empty(&child_ctx->flexible_groups))
7467		goto again;
7468
7469	mutex_unlock(&child_ctx->mutex);
7470
7471	put_ctx(child_ctx);
7472}
7473
7474/*
7475 * When a child task exits, feed back event values to parent events.
7476 */
7477void perf_event_exit_task(struct task_struct *child)
7478{
7479	struct perf_event *event, *tmp;
7480	int ctxn;
7481
7482	mutex_lock(&child->perf_event_mutex);
7483	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7484				 owner_entry) {
7485		list_del_init(&event->owner_entry);
7486
7487		/*
7488		 * Ensure the list deletion is visible before we clear
7489		 * the owner, closes a race against perf_release() where
7490		 * we need to serialize on the owner->perf_event_mutex.
7491		 */
7492		smp_wmb();
7493		event->owner = NULL;
7494	}
7495	mutex_unlock(&child->perf_event_mutex);
7496
7497	for_each_task_context_nr(ctxn)
7498		perf_event_exit_task_context(child, ctxn);
7499}
7500
7501static void perf_free_event(struct perf_event *event,
7502			    struct perf_event_context *ctx)
7503{
7504	struct perf_event *parent = event->parent;
7505
7506	if (WARN_ON_ONCE(!parent))
7507		return;
7508
7509	mutex_lock(&parent->child_mutex);
7510	list_del_init(&event->child_list);
7511	mutex_unlock(&parent->child_mutex);
7512
7513	put_event(parent);
7514
7515	perf_group_detach(event);
7516	list_del_event(event, ctx);
7517	free_event(event);
7518}
7519
7520/*
7521 * free an unexposed, unused context as created by inheritance by
7522 * perf_event_init_task below, used by fork() in case of fail.
7523 */
7524void perf_event_free_task(struct task_struct *task)
7525{
7526	struct perf_event_context *ctx;
7527	struct perf_event *event, *tmp;
7528	int ctxn;
7529
7530	for_each_task_context_nr(ctxn) {
7531		ctx = task->perf_event_ctxp[ctxn];
7532		if (!ctx)
7533			continue;
7534
7535		mutex_lock(&ctx->mutex);
7536again:
7537		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7538				group_entry)
7539			perf_free_event(event, ctx);
7540
7541		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7542				group_entry)
7543			perf_free_event(event, ctx);
7544
7545		if (!list_empty(&ctx->pinned_groups) ||
7546				!list_empty(&ctx->flexible_groups))
7547			goto again;
7548
7549		mutex_unlock(&ctx->mutex);
7550
7551		put_ctx(ctx);
7552	}
7553}
7554
7555void perf_event_delayed_put(struct task_struct *task)
7556{
7557	int ctxn;
7558
7559	for_each_task_context_nr(ctxn)
7560		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7561}
7562
7563/*
7564 * inherit a event from parent task to child task:
7565 */
7566static struct perf_event *
7567inherit_event(struct perf_event *parent_event,
7568	      struct task_struct *parent,
7569	      struct perf_event_context *parent_ctx,
7570	      struct task_struct *child,
7571	      struct perf_event *group_leader,
7572	      struct perf_event_context *child_ctx)
7573{
7574	struct perf_event *child_event;
7575	unsigned long flags;
7576
7577	/*
7578	 * Instead of creating recursive hierarchies of events,
7579	 * we link inherited events back to the original parent,
7580	 * which has a filp for sure, which we use as the reference
7581	 * count:
7582	 */
7583	if (parent_event->parent)
7584		parent_event = parent_event->parent;
7585
7586	child_event = perf_event_alloc(&parent_event->attr,
7587					   parent_event->cpu,
7588					   child,
7589					   group_leader, parent_event,
7590				           NULL, NULL);
7591	if (IS_ERR(child_event))
7592		return child_event;
7593
7594	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7595		free_event(child_event);
7596		return NULL;
7597	}
7598
7599	get_ctx(child_ctx);
7600
7601	/*
7602	 * Make the child state follow the state of the parent event,
7603	 * not its attr.disabled bit.  We hold the parent's mutex,
7604	 * so we won't race with perf_event_{en, dis}able_family.
7605	 */
7606	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7607		child_event->state = PERF_EVENT_STATE_INACTIVE;
7608	else
7609		child_event->state = PERF_EVENT_STATE_OFF;
7610
7611	if (parent_event->attr.freq) {
7612		u64 sample_period = parent_event->hw.sample_period;
7613		struct hw_perf_event *hwc = &child_event->hw;
7614
7615		hwc->sample_period = sample_period;
7616		hwc->last_period   = sample_period;
7617
7618		local64_set(&hwc->period_left, sample_period);
7619	}
7620
7621	child_event->ctx = child_ctx;
7622	child_event->overflow_handler = parent_event->overflow_handler;
7623	child_event->overflow_handler_context
7624		= parent_event->overflow_handler_context;
7625
7626	/*
7627	 * Precalculate sample_data sizes
7628	 */
7629	perf_event__header_size(child_event);
7630	perf_event__id_header_size(child_event);
7631
7632	/*
7633	 * Link it up in the child's context:
7634	 */
7635	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7636	add_event_to_ctx(child_event, child_ctx);
7637	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7638
7639	/*
 
 
 
 
 
 
 
 
7640	 * Link this into the parent event's child list
7641	 */
7642	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7643	mutex_lock(&parent_event->child_mutex);
7644	list_add_tail(&child_event->child_list, &parent_event->child_list);
7645	mutex_unlock(&parent_event->child_mutex);
7646
7647	return child_event;
7648}
7649
7650static int inherit_group(struct perf_event *parent_event,
7651	      struct task_struct *parent,
7652	      struct perf_event_context *parent_ctx,
7653	      struct task_struct *child,
7654	      struct perf_event_context *child_ctx)
7655{
7656	struct perf_event *leader;
7657	struct perf_event *sub;
7658	struct perf_event *child_ctr;
7659
7660	leader = inherit_event(parent_event, parent, parent_ctx,
7661				 child, NULL, child_ctx);
7662	if (IS_ERR(leader))
7663		return PTR_ERR(leader);
7664	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7665		child_ctr = inherit_event(sub, parent, parent_ctx,
7666					    child, leader, child_ctx);
7667		if (IS_ERR(child_ctr))
7668			return PTR_ERR(child_ctr);
7669	}
7670	return 0;
7671}
7672
7673static int
7674inherit_task_group(struct perf_event *event, struct task_struct *parent,
7675		   struct perf_event_context *parent_ctx,
7676		   struct task_struct *child, int ctxn,
7677		   int *inherited_all)
7678{
7679	int ret;
7680	struct perf_event_context *child_ctx;
7681
7682	if (!event->attr.inherit) {
7683		*inherited_all = 0;
7684		return 0;
7685	}
7686
7687	child_ctx = child->perf_event_ctxp[ctxn];
7688	if (!child_ctx) {
7689		/*
7690		 * This is executed from the parent task context, so
7691		 * inherit events that have been marked for cloning.
7692		 * First allocate and initialize a context for the
7693		 * child.
7694		 */
7695
7696		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7697		if (!child_ctx)
7698			return -ENOMEM;
7699
7700		child->perf_event_ctxp[ctxn] = child_ctx;
7701	}
7702
7703	ret = inherit_group(event, parent, parent_ctx,
7704			    child, child_ctx);
7705
7706	if (ret)
7707		*inherited_all = 0;
7708
7709	return ret;
7710}
7711
7712/*
7713 * Initialize the perf_event context in task_struct
7714 */
7715int perf_event_init_context(struct task_struct *child, int ctxn)
7716{
7717	struct perf_event_context *child_ctx, *parent_ctx;
7718	struct perf_event_context *cloned_ctx;
7719	struct perf_event *event;
7720	struct task_struct *parent = current;
7721	int inherited_all = 1;
7722	unsigned long flags;
7723	int ret = 0;
7724
7725	if (likely(!parent->perf_event_ctxp[ctxn]))
7726		return 0;
7727
7728	/*
7729	 * If the parent's context is a clone, pin it so it won't get
7730	 * swapped under us.
7731	 */
7732	parent_ctx = perf_pin_task_context(parent, ctxn);
7733	if (!parent_ctx)
7734		return 0;
7735
7736	/*
7737	 * No need to check if parent_ctx != NULL here; since we saw
7738	 * it non-NULL earlier, the only reason for it to become NULL
7739	 * is if we exit, and since we're currently in the middle of
7740	 * a fork we can't be exiting at the same time.
7741	 */
7742
7743	/*
7744	 * Lock the parent list. No need to lock the child - not PID
7745	 * hashed yet and not running, so nobody can access it.
7746	 */
7747	mutex_lock(&parent_ctx->mutex);
7748
7749	/*
7750	 * We dont have to disable NMIs - we are only looking at
7751	 * the list, not manipulating it:
7752	 */
7753	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7754		ret = inherit_task_group(event, parent, parent_ctx,
7755					 child, ctxn, &inherited_all);
7756		if (ret)
7757			break;
7758	}
7759
7760	/*
7761	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7762	 * to allocations, but we need to prevent rotation because
7763	 * rotate_ctx() will change the list from interrupt context.
7764	 */
7765	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7766	parent_ctx->rotate_disable = 1;
7767	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7768
7769	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7770		ret = inherit_task_group(event, parent, parent_ctx,
7771					 child, ctxn, &inherited_all);
7772		if (ret)
7773			break;
7774	}
7775
7776	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7777	parent_ctx->rotate_disable = 0;
7778
7779	child_ctx = child->perf_event_ctxp[ctxn];
7780
7781	if (child_ctx && inherited_all) {
7782		/*
7783		 * Mark the child context as a clone of the parent
7784		 * context, or of whatever the parent is a clone of.
7785		 *
7786		 * Note that if the parent is a clone, the holding of
7787		 * parent_ctx->lock avoids it from being uncloned.
7788		 */
7789		cloned_ctx = parent_ctx->parent_ctx;
7790		if (cloned_ctx) {
7791			child_ctx->parent_ctx = cloned_ctx;
7792			child_ctx->parent_gen = parent_ctx->parent_gen;
7793		} else {
7794			child_ctx->parent_ctx = parent_ctx;
7795			child_ctx->parent_gen = parent_ctx->generation;
7796		}
7797		get_ctx(child_ctx->parent_ctx);
7798	}
7799
7800	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7801	mutex_unlock(&parent_ctx->mutex);
7802
7803	perf_unpin_context(parent_ctx);
7804	put_ctx(parent_ctx);
7805
7806	return ret;
7807}
7808
7809/*
7810 * Initialize the perf_event context in task_struct
7811 */
7812int perf_event_init_task(struct task_struct *child)
7813{
7814	int ctxn, ret;
7815
7816	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7817	mutex_init(&child->perf_event_mutex);
7818	INIT_LIST_HEAD(&child->perf_event_list);
7819
7820	for_each_task_context_nr(ctxn) {
7821		ret = perf_event_init_context(child, ctxn);
7822		if (ret)
7823			return ret;
7824	}
7825
7826	return 0;
7827}
7828
7829static void __init perf_event_init_all_cpus(void)
7830{
7831	struct swevent_htable *swhash;
7832	int cpu;
7833
7834	for_each_possible_cpu(cpu) {
7835		swhash = &per_cpu(swevent_htable, cpu);
7836		mutex_init(&swhash->hlist_mutex);
7837		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7838	}
7839}
7840
7841static void perf_event_init_cpu(int cpu)
7842{
7843	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7844
7845	mutex_lock(&swhash->hlist_mutex);
7846	swhash->online = true;
7847	if (swhash->hlist_refcount > 0) {
7848		struct swevent_hlist *hlist;
7849
7850		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7851		WARN_ON(!hlist);
7852		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7853	}
7854	mutex_unlock(&swhash->hlist_mutex);
7855}
7856
7857#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7858static void perf_pmu_rotate_stop(struct pmu *pmu)
7859{
7860	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7861
7862	WARN_ON(!irqs_disabled());
7863
7864	list_del_init(&cpuctx->rotation_list);
7865}
7866
7867static void __perf_event_exit_context(void *__info)
7868{
7869	struct remove_event re = { .detach_group = false };
7870	struct perf_event_context *ctx = __info;
 
7871
7872	perf_pmu_rotate_stop(ctx->pmu);
7873
7874	rcu_read_lock();
7875	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7876		__perf_remove_from_context(&re);
7877	rcu_read_unlock();
7878}
7879
7880static void perf_event_exit_cpu_context(int cpu)
7881{
7882	struct perf_event_context *ctx;
7883	struct pmu *pmu;
7884	int idx;
7885
7886	idx = srcu_read_lock(&pmus_srcu);
7887	list_for_each_entry_rcu(pmu, &pmus, entry) {
7888		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7889
7890		mutex_lock(&ctx->mutex);
7891		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7892		mutex_unlock(&ctx->mutex);
7893	}
7894	srcu_read_unlock(&pmus_srcu, idx);
7895}
7896
7897static void perf_event_exit_cpu(int cpu)
7898{
7899	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7900
7901	perf_event_exit_cpu_context(cpu);
7902
7903	mutex_lock(&swhash->hlist_mutex);
7904	swhash->online = false;
7905	swevent_hlist_release(swhash);
7906	mutex_unlock(&swhash->hlist_mutex);
 
 
7907}
7908#else
7909static inline void perf_event_exit_cpu(int cpu) { }
7910#endif
7911
7912static int
7913perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7914{
7915	int cpu;
7916
7917	for_each_online_cpu(cpu)
7918		perf_event_exit_cpu(cpu);
7919
7920	return NOTIFY_OK;
7921}
7922
7923/*
7924 * Run the perf reboot notifier at the very last possible moment so that
7925 * the generic watchdog code runs as long as possible.
7926 */
7927static struct notifier_block perf_reboot_notifier = {
7928	.notifier_call = perf_reboot,
7929	.priority = INT_MIN,
7930};
7931
7932static int
7933perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7934{
7935	unsigned int cpu = (long)hcpu;
7936
7937	switch (action & ~CPU_TASKS_FROZEN) {
7938
7939	case CPU_UP_PREPARE:
7940	case CPU_DOWN_FAILED:
7941		perf_event_init_cpu(cpu);
7942		break;
7943
7944	case CPU_UP_CANCELED:
7945	case CPU_DOWN_PREPARE:
7946		perf_event_exit_cpu(cpu);
7947		break;
 
7948	default:
7949		break;
7950	}
7951
7952	return NOTIFY_OK;
7953}
7954
7955void __init perf_event_init(void)
7956{
7957	int ret;
7958
7959	idr_init(&pmu_idr);
7960
7961	perf_event_init_all_cpus();
7962	init_srcu_struct(&pmus_srcu);
7963	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7964	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7965	perf_pmu_register(&perf_task_clock, NULL, -1);
7966	perf_tp_register();
7967	perf_cpu_notifier(perf_cpu_notify);
7968	register_reboot_notifier(&perf_reboot_notifier);
7969
7970	ret = init_hw_breakpoint();
7971	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7972
7973	/* do not patch jump label more than once per second */
7974	jump_label_rate_limit(&perf_sched_events, HZ);
7975
7976	/*
7977	 * Build time assertion that we keep the data_head at the intended
7978	 * location.  IOW, validation we got the __reserved[] size right.
7979	 */
7980	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7981		     != 1024);
7982}
7983
7984static int __init perf_event_sysfs_init(void)
7985{
7986	struct pmu *pmu;
7987	int ret;
7988
7989	mutex_lock(&pmus_lock);
7990
7991	ret = bus_register(&pmu_bus);
7992	if (ret)
7993		goto unlock;
7994
7995	list_for_each_entry(pmu, &pmus, entry) {
7996		if (!pmu->name || pmu->type < 0)
7997			continue;
7998
7999		ret = pmu_dev_alloc(pmu);
8000		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8001	}
8002	pmu_bus_running = 1;
8003	ret = 0;
8004
8005unlock:
8006	mutex_unlock(&pmus_lock);
8007
8008	return ret;
8009}
8010device_initcall(perf_event_sysfs_init);
8011
8012#ifdef CONFIG_CGROUP_PERF
8013static struct cgroup_subsys_state *
8014perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8015{
8016	struct perf_cgroup *jc;
8017
8018	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8019	if (!jc)
8020		return ERR_PTR(-ENOMEM);
8021
8022	jc->info = alloc_percpu(struct perf_cgroup_info);
8023	if (!jc->info) {
8024		kfree(jc);
8025		return ERR_PTR(-ENOMEM);
8026	}
8027
8028	return &jc->css;
8029}
8030
8031static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
 
8032{
8033	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8034
 
8035	free_percpu(jc->info);
8036	kfree(jc);
8037}
8038
8039static int __perf_cgroup_move(void *info)
8040{
8041	struct task_struct *task = info;
8042	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8043	return 0;
8044}
8045
8046static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8047			       struct cgroup_taskset *tset)
8048{
8049	struct task_struct *task;
8050
8051	cgroup_taskset_for_each(task, tset)
8052		task_function_call(task, __perf_cgroup_move, task);
8053}
8054
8055static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8056			     struct cgroup_subsys_state *old_css,
8057			     struct task_struct *task)
8058{
8059	/*
8060	 * cgroup_exit() is called in the copy_process() failure path.
8061	 * Ignore this case since the task hasn't ran yet, this avoids
8062	 * trying to poke a half freed task state from generic code.
8063	 */
8064	if (!(task->flags & PF_EXITING))
8065		return;
8066
8067	task_function_call(task, __perf_cgroup_move, task);
8068}
8069
8070struct cgroup_subsys perf_event_cgrp_subsys = {
8071	.css_alloc	= perf_cgroup_css_alloc,
8072	.css_free	= perf_cgroup_css_free,
 
 
8073	.exit		= perf_cgroup_exit,
8074	.attach		= perf_cgroup_attach,
8075};
8076#endif /* CONFIG_CGROUP_PERF */
v3.1
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
 
  21#include <linux/sysfs.h>
  22#include <linux/dcache.h>
  23#include <linux/percpu.h>
  24#include <linux/ptrace.h>
  25#include <linux/reboot.h>
  26#include <linux/vmstat.h>
  27#include <linux/device.h>
 
  28#include <linux/vmalloc.h>
  29#include <linux/hardirq.h>
  30#include <linux/rculist.h>
  31#include <linux/uaccess.h>
  32#include <linux/syscalls.h>
  33#include <linux/anon_inodes.h>
  34#include <linux/kernel_stat.h>
  35#include <linux/perf_event.h>
  36#include <linux/ftrace_event.h>
  37#include <linux/hw_breakpoint.h>
 
 
  38
  39#include "internal.h"
  40
  41#include <asm/irq_regs.h>
  42
  43struct remote_function_call {
  44	struct task_struct	*p;
  45	int			(*func)(void *info);
  46	void			*info;
  47	int			ret;
  48};
  49
  50static void remote_function(void *data)
  51{
  52	struct remote_function_call *tfc = data;
  53	struct task_struct *p = tfc->p;
  54
  55	if (p) {
  56		tfc->ret = -EAGAIN;
  57		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  58			return;
  59	}
  60
  61	tfc->ret = tfc->func(tfc->info);
  62}
  63
  64/**
  65 * task_function_call - call a function on the cpu on which a task runs
  66 * @p:		the task to evaluate
  67 * @func:	the function to be called
  68 * @info:	the function call argument
  69 *
  70 * Calls the function @func when the task is currently running. This might
  71 * be on the current CPU, which just calls the function directly
  72 *
  73 * returns: @func return value, or
  74 *	    -ESRCH  - when the process isn't running
  75 *	    -EAGAIN - when the process moved away
  76 */
  77static int
  78task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  79{
  80	struct remote_function_call data = {
  81		.p	= p,
  82		.func	= func,
  83		.info	= info,
  84		.ret	= -ESRCH, /* No such (running) process */
  85	};
  86
  87	if (task_curr(p))
  88		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  89
  90	return data.ret;
  91}
  92
  93/**
  94 * cpu_function_call - call a function on the cpu
  95 * @func:	the function to be called
  96 * @info:	the function call argument
  97 *
  98 * Calls the function @func on the remote cpu.
  99 *
 100 * returns: @func return value or -ENXIO when the cpu is offline
 101 */
 102static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 103{
 104	struct remote_function_call data = {
 105		.p	= NULL,
 106		.func	= func,
 107		.info	= info,
 108		.ret	= -ENXIO, /* No such CPU */
 109	};
 110
 111	smp_call_function_single(cpu, remote_function, &data, 1);
 112
 113	return data.ret;
 114}
 115
 116#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 117		       PERF_FLAG_FD_OUTPUT  |\
 118		       PERF_FLAG_PID_CGROUP)
 
 
 
 
 
 
 
 
 119
 120enum event_type_t {
 121	EVENT_FLEXIBLE = 0x1,
 122	EVENT_PINNED = 0x2,
 123	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 124};
 125
 126/*
 127 * perf_sched_events : >0 events exist
 128 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 129 */
 130struct jump_label_key perf_sched_events __read_mostly;
 131static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 
 132
 133static atomic_t nr_mmap_events __read_mostly;
 134static atomic_t nr_comm_events __read_mostly;
 135static atomic_t nr_task_events __read_mostly;
 
 136
 137static LIST_HEAD(pmus);
 138static DEFINE_MUTEX(pmus_lock);
 139static struct srcu_struct pmus_srcu;
 140
 141/*
 142 * perf event paranoia level:
 143 *  -1 - not paranoid at all
 144 *   0 - disallow raw tracepoint access for unpriv
 145 *   1 - disallow cpu events for unpriv
 146 *   2 - disallow kernel profiling for unpriv
 147 */
 148int sysctl_perf_event_paranoid __read_mostly = 1;
 149
 150/* Minimum for 512 kiB + 1 user control page */
 151int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 152
 153/*
 154 * max perf event sample rate
 155 */
 156#define DEFAULT_MAX_SAMPLE_RATE 100000
 157int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 158static int max_samples_per_tick __read_mostly =
 159	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160
 161int perf_proc_update_handler(struct ctl_table *table, int write,
 162		void __user *buffer, size_t *lenp,
 163		loff_t *ppos)
 164{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 166
 167	if (ret || !write)
 168		return ret;
 169
 170	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 171
 172	return 0;
 173}
 174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175static atomic64_t perf_event_id;
 176
 177static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 178			      enum event_type_t event_type);
 179
 180static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 181			     enum event_type_t event_type,
 182			     struct task_struct *task);
 183
 184static void update_context_time(struct perf_event_context *ctx);
 185static u64 perf_event_time(struct perf_event *event);
 186
 187void __weak perf_event_print_debug(void)	{ }
 188
 189extern __weak const char *perf_pmu_name(void)
 190{
 191	return "pmu";
 192}
 193
 194static inline u64 perf_clock(void)
 195{
 196	return local_clock();
 197}
 198
 199static inline struct perf_cpu_context *
 200__get_cpu_context(struct perf_event_context *ctx)
 201{
 202	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 203}
 204
 205static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 206			  struct perf_event_context *ctx)
 207{
 208	raw_spin_lock(&cpuctx->ctx.lock);
 209	if (ctx)
 210		raw_spin_lock(&ctx->lock);
 211}
 212
 213static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 214			    struct perf_event_context *ctx)
 215{
 216	if (ctx)
 217		raw_spin_unlock(&ctx->lock);
 218	raw_spin_unlock(&cpuctx->ctx.lock);
 219}
 220
 221#ifdef CONFIG_CGROUP_PERF
 222
 223/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224 * Must ensure cgroup is pinned (css_get) before calling
 225 * this function. In other words, we cannot call this function
 226 * if there is no cgroup event for the current CPU context.
 227 */
 228static inline struct perf_cgroup *
 229perf_cgroup_from_task(struct task_struct *task)
 230{
 231	return container_of(task_subsys_state(task, perf_subsys_id),
 232			struct perf_cgroup, css);
 233}
 234
 235static inline bool
 236perf_cgroup_match(struct perf_event *event)
 237{
 238	struct perf_event_context *ctx = event->ctx;
 239	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 240
 241	return !event->cgrp || event->cgrp == cpuctx->cgrp;
 242}
 243
 244static inline void perf_get_cgroup(struct perf_event *event)
 245{
 246	css_get(&event->cgrp->css);
 
 
 
 
 
 
 
 
 
 
 247}
 248
 249static inline void perf_put_cgroup(struct perf_event *event)
 250{
 251	css_put(&event->cgrp->css);
 252}
 253
 254static inline void perf_detach_cgroup(struct perf_event *event)
 255{
 256	perf_put_cgroup(event);
 257	event->cgrp = NULL;
 258}
 259
 260static inline int is_cgroup_event(struct perf_event *event)
 261{
 262	return event->cgrp != NULL;
 263}
 264
 265static inline u64 perf_cgroup_event_time(struct perf_event *event)
 266{
 267	struct perf_cgroup_info *t;
 268
 269	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 270	return t->time;
 271}
 272
 273static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 274{
 275	struct perf_cgroup_info *info;
 276	u64 now;
 277
 278	now = perf_clock();
 279
 280	info = this_cpu_ptr(cgrp->info);
 281
 282	info->time += now - info->timestamp;
 283	info->timestamp = now;
 284}
 285
 286static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 287{
 288	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 289	if (cgrp_out)
 290		__update_cgrp_time(cgrp_out);
 291}
 292
 293static inline void update_cgrp_time_from_event(struct perf_event *event)
 294{
 295	struct perf_cgroup *cgrp;
 296
 297	/*
 298	 * ensure we access cgroup data only when needed and
 299	 * when we know the cgroup is pinned (css_get)
 300	 */
 301	if (!is_cgroup_event(event))
 302		return;
 303
 304	cgrp = perf_cgroup_from_task(current);
 305	/*
 306	 * Do not update time when cgroup is not active
 307	 */
 308	if (cgrp == event->cgrp)
 309		__update_cgrp_time(event->cgrp);
 310}
 311
 312static inline void
 313perf_cgroup_set_timestamp(struct task_struct *task,
 314			  struct perf_event_context *ctx)
 315{
 316	struct perf_cgroup *cgrp;
 317	struct perf_cgroup_info *info;
 318
 319	/*
 320	 * ctx->lock held by caller
 321	 * ensure we do not access cgroup data
 322	 * unless we have the cgroup pinned (css_get)
 323	 */
 324	if (!task || !ctx->nr_cgroups)
 325		return;
 326
 327	cgrp = perf_cgroup_from_task(task);
 328	info = this_cpu_ptr(cgrp->info);
 329	info->timestamp = ctx->timestamp;
 330}
 331
 332#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
 333#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
 334
 335/*
 336 * reschedule events based on the cgroup constraint of task.
 337 *
 338 * mode SWOUT : schedule out everything
 339 * mode SWIN : schedule in based on cgroup for next
 340 */
 341void perf_cgroup_switch(struct task_struct *task, int mode)
 342{
 343	struct perf_cpu_context *cpuctx;
 344	struct pmu *pmu;
 345	unsigned long flags;
 346
 347	/*
 348	 * disable interrupts to avoid geting nr_cgroup
 349	 * changes via __perf_event_disable(). Also
 350	 * avoids preemption.
 351	 */
 352	local_irq_save(flags);
 353
 354	/*
 355	 * we reschedule only in the presence of cgroup
 356	 * constrained events.
 357	 */
 358	rcu_read_lock();
 359
 360	list_for_each_entry_rcu(pmu, &pmus, entry) {
 361		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 
 
 362
 363		/*
 364		 * perf_cgroup_events says at least one
 365		 * context on this CPU has cgroup events.
 366		 *
 367		 * ctx->nr_cgroups reports the number of cgroup
 368		 * events for a context.
 369		 */
 370		if (cpuctx->ctx.nr_cgroups > 0) {
 371			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 372			perf_pmu_disable(cpuctx->ctx.pmu);
 373
 374			if (mode & PERF_CGROUP_SWOUT) {
 375				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 376				/*
 377				 * must not be done before ctxswout due
 378				 * to event_filter_match() in event_sched_out()
 379				 */
 380				cpuctx->cgrp = NULL;
 381			}
 382
 383			if (mode & PERF_CGROUP_SWIN) {
 384				WARN_ON_ONCE(cpuctx->cgrp);
 385				/* set cgrp before ctxsw in to
 386				 * allow event_filter_match() to not
 387				 * have to pass task around
 
 388				 */
 389				cpuctx->cgrp = perf_cgroup_from_task(task);
 390				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 391			}
 392			perf_pmu_enable(cpuctx->ctx.pmu);
 393			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 394		}
 395	}
 396
 397	rcu_read_unlock();
 398
 399	local_irq_restore(flags);
 400}
 401
 402static inline void perf_cgroup_sched_out(struct task_struct *task,
 403					 struct task_struct *next)
 404{
 405	struct perf_cgroup *cgrp1;
 406	struct perf_cgroup *cgrp2 = NULL;
 407
 408	/*
 409	 * we come here when we know perf_cgroup_events > 0
 410	 */
 411	cgrp1 = perf_cgroup_from_task(task);
 412
 413	/*
 414	 * next is NULL when called from perf_event_enable_on_exec()
 415	 * that will systematically cause a cgroup_switch()
 416	 */
 417	if (next)
 418		cgrp2 = perf_cgroup_from_task(next);
 419
 420	/*
 421	 * only schedule out current cgroup events if we know
 422	 * that we are switching to a different cgroup. Otherwise,
 423	 * do no touch the cgroup events.
 424	 */
 425	if (cgrp1 != cgrp2)
 426		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 427}
 428
 429static inline void perf_cgroup_sched_in(struct task_struct *prev,
 430					struct task_struct *task)
 431{
 432	struct perf_cgroup *cgrp1;
 433	struct perf_cgroup *cgrp2 = NULL;
 434
 435	/*
 436	 * we come here when we know perf_cgroup_events > 0
 437	 */
 438	cgrp1 = perf_cgroup_from_task(task);
 439
 440	/* prev can never be NULL */
 441	cgrp2 = perf_cgroup_from_task(prev);
 442
 443	/*
 444	 * only need to schedule in cgroup events if we are changing
 445	 * cgroup during ctxsw. Cgroup events were not scheduled
 446	 * out of ctxsw out if that was not the case.
 447	 */
 448	if (cgrp1 != cgrp2)
 449		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 450}
 451
 452static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 453				      struct perf_event_attr *attr,
 454				      struct perf_event *group_leader)
 455{
 456	struct perf_cgroup *cgrp;
 457	struct cgroup_subsys_state *css;
 458	struct file *file;
 459	int ret = 0, fput_needed;
 460
 461	file = fget_light(fd, &fput_needed);
 462	if (!file)
 463		return -EBADF;
 464
 465	css = cgroup_css_from_dir(file, perf_subsys_id);
 466	if (IS_ERR(css)) {
 467		ret = PTR_ERR(css);
 468		goto out;
 469	}
 470
 471	cgrp = container_of(css, struct perf_cgroup, css);
 472	event->cgrp = cgrp;
 473
 474	/* must be done before we fput() the file */
 475	perf_get_cgroup(event);
 476
 477	/*
 478	 * all events in a group must monitor
 479	 * the same cgroup because a task belongs
 480	 * to only one perf cgroup at a time
 481	 */
 482	if (group_leader && group_leader->cgrp != cgrp) {
 483		perf_detach_cgroup(event);
 484		ret = -EINVAL;
 485	}
 486out:
 487	fput_light(file, fput_needed);
 488	return ret;
 489}
 490
 491static inline void
 492perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 493{
 494	struct perf_cgroup_info *t;
 495	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 496	event->shadow_ctx_time = now - t->timestamp;
 497}
 498
 499static inline void
 500perf_cgroup_defer_enabled(struct perf_event *event)
 501{
 502	/*
 503	 * when the current task's perf cgroup does not match
 504	 * the event's, we need to remember to call the
 505	 * perf_mark_enable() function the first time a task with
 506	 * a matching perf cgroup is scheduled in.
 507	 */
 508	if (is_cgroup_event(event) && !perf_cgroup_match(event))
 509		event->cgrp_defer_enabled = 1;
 510}
 511
 512static inline void
 513perf_cgroup_mark_enabled(struct perf_event *event,
 514			 struct perf_event_context *ctx)
 515{
 516	struct perf_event *sub;
 517	u64 tstamp = perf_event_time(event);
 518
 519	if (!event->cgrp_defer_enabled)
 520		return;
 521
 522	event->cgrp_defer_enabled = 0;
 523
 524	event->tstamp_enabled = tstamp - event->total_time_enabled;
 525	list_for_each_entry(sub, &event->sibling_list, group_entry) {
 526		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 527			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 528			sub->cgrp_defer_enabled = 0;
 529		}
 530	}
 531}
 532#else /* !CONFIG_CGROUP_PERF */
 533
 534static inline bool
 535perf_cgroup_match(struct perf_event *event)
 536{
 537	return true;
 538}
 539
 540static inline void perf_detach_cgroup(struct perf_event *event)
 541{}
 542
 543static inline int is_cgroup_event(struct perf_event *event)
 544{
 545	return 0;
 546}
 547
 548static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 549{
 550	return 0;
 551}
 552
 553static inline void update_cgrp_time_from_event(struct perf_event *event)
 554{
 555}
 556
 557static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 558{
 559}
 560
 561static inline void perf_cgroup_sched_out(struct task_struct *task,
 562					 struct task_struct *next)
 563{
 564}
 565
 566static inline void perf_cgroup_sched_in(struct task_struct *prev,
 567					struct task_struct *task)
 568{
 569}
 570
 571static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 572				      struct perf_event_attr *attr,
 573				      struct perf_event *group_leader)
 574{
 575	return -EINVAL;
 576}
 577
 578static inline void
 579perf_cgroup_set_timestamp(struct task_struct *task,
 580			  struct perf_event_context *ctx)
 581{
 582}
 583
 584void
 585perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 586{
 587}
 588
 589static inline void
 590perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 591{
 592}
 593
 594static inline u64 perf_cgroup_event_time(struct perf_event *event)
 595{
 596	return 0;
 597}
 598
 599static inline void
 600perf_cgroup_defer_enabled(struct perf_event *event)
 601{
 602}
 603
 604static inline void
 605perf_cgroup_mark_enabled(struct perf_event *event,
 606			 struct perf_event_context *ctx)
 607{
 608}
 609#endif
 610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611void perf_pmu_disable(struct pmu *pmu)
 612{
 613	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 614	if (!(*count)++)
 615		pmu->pmu_disable(pmu);
 616}
 617
 618void perf_pmu_enable(struct pmu *pmu)
 619{
 620	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 621	if (!--(*count))
 622		pmu->pmu_enable(pmu);
 623}
 624
 625static DEFINE_PER_CPU(struct list_head, rotation_list);
 626
 627/*
 628 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 629 * because they're strictly cpu affine and rotate_start is called with IRQs
 630 * disabled, while rotate_context is called from IRQ context.
 631 */
 632static void perf_pmu_rotate_start(struct pmu *pmu)
 633{
 634	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 635	struct list_head *head = &__get_cpu_var(rotation_list);
 636
 637	WARN_ON(!irqs_disabled());
 638
 639	if (list_empty(&cpuctx->rotation_list))
 640		list_add(&cpuctx->rotation_list, head);
 641}
 642
 643static void get_ctx(struct perf_event_context *ctx)
 644{
 645	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 646}
 647
 648static void put_ctx(struct perf_event_context *ctx)
 649{
 650	if (atomic_dec_and_test(&ctx->refcount)) {
 651		if (ctx->parent_ctx)
 652			put_ctx(ctx->parent_ctx);
 653		if (ctx->task)
 654			put_task_struct(ctx->task);
 655		kfree_rcu(ctx, rcu_head);
 656	}
 657}
 658
 659static void unclone_ctx(struct perf_event_context *ctx)
 660{
 661	if (ctx->parent_ctx) {
 662		put_ctx(ctx->parent_ctx);
 663		ctx->parent_ctx = NULL;
 664	}
 
 665}
 666
 667static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 668{
 669	/*
 670	 * only top level events have the pid namespace they were created in
 671	 */
 672	if (event->parent)
 673		event = event->parent;
 674
 675	return task_tgid_nr_ns(p, event->ns);
 676}
 677
 678static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 679{
 680	/*
 681	 * only top level events have the pid namespace they were created in
 682	 */
 683	if (event->parent)
 684		event = event->parent;
 685
 686	return task_pid_nr_ns(p, event->ns);
 687}
 688
 689/*
 690 * If we inherit events we want to return the parent event id
 691 * to userspace.
 692 */
 693static u64 primary_event_id(struct perf_event *event)
 694{
 695	u64 id = event->id;
 696
 697	if (event->parent)
 698		id = event->parent->id;
 699
 700	return id;
 701}
 702
 703/*
 704 * Get the perf_event_context for a task and lock it.
 705 * This has to cope with with the fact that until it is locked,
 706 * the context could get moved to another task.
 707 */
 708static struct perf_event_context *
 709perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 710{
 711	struct perf_event_context *ctx;
 712
 
 
 
 
 
 
 
 
 
 
 
 713	rcu_read_lock();
 714retry:
 715	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 716	if (ctx) {
 717		/*
 718		 * If this context is a clone of another, it might
 719		 * get swapped for another underneath us by
 720		 * perf_event_task_sched_out, though the
 721		 * rcu_read_lock() protects us from any context
 722		 * getting freed.  Lock the context and check if it
 723		 * got swapped before we could get the lock, and retry
 724		 * if so.  If we locked the right context, then it
 725		 * can't get swapped on us any more.
 726		 */
 727		raw_spin_lock_irqsave(&ctx->lock, *flags);
 728		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 729			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 
 
 730			goto retry;
 731		}
 732
 733		if (!atomic_inc_not_zero(&ctx->refcount)) {
 734			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 735			ctx = NULL;
 736		}
 737	}
 738	rcu_read_unlock();
 
 739	return ctx;
 740}
 741
 742/*
 743 * Get the context for a task and increment its pin_count so it
 744 * can't get swapped to another task.  This also increments its
 745 * reference count so that the context can't get freed.
 746 */
 747static struct perf_event_context *
 748perf_pin_task_context(struct task_struct *task, int ctxn)
 749{
 750	struct perf_event_context *ctx;
 751	unsigned long flags;
 752
 753	ctx = perf_lock_task_context(task, ctxn, &flags);
 754	if (ctx) {
 755		++ctx->pin_count;
 756		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 757	}
 758	return ctx;
 759}
 760
 761static void perf_unpin_context(struct perf_event_context *ctx)
 762{
 763	unsigned long flags;
 764
 765	raw_spin_lock_irqsave(&ctx->lock, flags);
 766	--ctx->pin_count;
 767	raw_spin_unlock_irqrestore(&ctx->lock, flags);
 768}
 769
 770/*
 771 * Update the record of the current time in a context.
 772 */
 773static void update_context_time(struct perf_event_context *ctx)
 774{
 775	u64 now = perf_clock();
 776
 777	ctx->time += now - ctx->timestamp;
 778	ctx->timestamp = now;
 779}
 780
 781static u64 perf_event_time(struct perf_event *event)
 782{
 783	struct perf_event_context *ctx = event->ctx;
 784
 785	if (is_cgroup_event(event))
 786		return perf_cgroup_event_time(event);
 787
 788	return ctx ? ctx->time : 0;
 789}
 790
 791/*
 792 * Update the total_time_enabled and total_time_running fields for a event.
 793 * The caller of this function needs to hold the ctx->lock.
 794 */
 795static void update_event_times(struct perf_event *event)
 796{
 797	struct perf_event_context *ctx = event->ctx;
 798	u64 run_end;
 799
 800	if (event->state < PERF_EVENT_STATE_INACTIVE ||
 801	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
 802		return;
 803	/*
 804	 * in cgroup mode, time_enabled represents
 805	 * the time the event was enabled AND active
 806	 * tasks were in the monitored cgroup. This is
 807	 * independent of the activity of the context as
 808	 * there may be a mix of cgroup and non-cgroup events.
 809	 *
 810	 * That is why we treat cgroup events differently
 811	 * here.
 812	 */
 813	if (is_cgroup_event(event))
 814		run_end = perf_event_time(event);
 815	else if (ctx->is_active)
 816		run_end = ctx->time;
 817	else
 818		run_end = event->tstamp_stopped;
 819
 820	event->total_time_enabled = run_end - event->tstamp_enabled;
 821
 822	if (event->state == PERF_EVENT_STATE_INACTIVE)
 823		run_end = event->tstamp_stopped;
 824	else
 825		run_end = perf_event_time(event);
 826
 827	event->total_time_running = run_end - event->tstamp_running;
 828
 829}
 830
 831/*
 832 * Update total_time_enabled and total_time_running for all events in a group.
 833 */
 834static void update_group_times(struct perf_event *leader)
 835{
 836	struct perf_event *event;
 837
 838	update_event_times(leader);
 839	list_for_each_entry(event, &leader->sibling_list, group_entry)
 840		update_event_times(event);
 841}
 842
 843static struct list_head *
 844ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
 845{
 846	if (event->attr.pinned)
 847		return &ctx->pinned_groups;
 848	else
 849		return &ctx->flexible_groups;
 850}
 851
 852/*
 853 * Add a event from the lists for its context.
 854 * Must be called with ctx->mutex and ctx->lock held.
 855 */
 856static void
 857list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 858{
 859	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 860	event->attach_state |= PERF_ATTACH_CONTEXT;
 861
 862	/*
 863	 * If we're a stand alone event or group leader, we go to the context
 864	 * list, group events are kept attached to the group so that
 865	 * perf_group_detach can, at all times, locate all siblings.
 866	 */
 867	if (event->group_leader == event) {
 868		struct list_head *list;
 869
 870		if (is_software_event(event))
 871			event->group_flags |= PERF_GROUP_SOFTWARE;
 872
 873		list = ctx_group_list(event, ctx);
 874		list_add_tail(&event->group_entry, list);
 875	}
 876
 877	if (is_cgroup_event(event))
 878		ctx->nr_cgroups++;
 879
 
 
 
 880	list_add_rcu(&event->event_entry, &ctx->event_list);
 881	if (!ctx->nr_events)
 882		perf_pmu_rotate_start(ctx->pmu);
 883	ctx->nr_events++;
 884	if (event->attr.inherit_stat)
 885		ctx->nr_stat++;
 
 
 
 
 
 
 
 
 
 
 
 886}
 887
 888/*
 889 * Called at perf_event creation and when events are attached/detached from a
 890 * group.
 891 */
 892static void perf_event__read_size(struct perf_event *event)
 893{
 894	int entry = sizeof(u64); /* value */
 895	int size = 0;
 896	int nr = 1;
 897
 898	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 899		size += sizeof(u64);
 900
 901	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 902		size += sizeof(u64);
 903
 904	if (event->attr.read_format & PERF_FORMAT_ID)
 905		entry += sizeof(u64);
 906
 907	if (event->attr.read_format & PERF_FORMAT_GROUP) {
 908		nr += event->group_leader->nr_siblings;
 909		size += sizeof(u64);
 910	}
 911
 912	size += entry * nr;
 913	event->read_size = size;
 914}
 915
 916static void perf_event__header_size(struct perf_event *event)
 917{
 918	struct perf_sample_data *data;
 919	u64 sample_type = event->attr.sample_type;
 920	u16 size = 0;
 921
 922	perf_event__read_size(event);
 923
 924	if (sample_type & PERF_SAMPLE_IP)
 925		size += sizeof(data->ip);
 926
 927	if (sample_type & PERF_SAMPLE_ADDR)
 928		size += sizeof(data->addr);
 929
 930	if (sample_type & PERF_SAMPLE_PERIOD)
 931		size += sizeof(data->period);
 932
 
 
 
 933	if (sample_type & PERF_SAMPLE_READ)
 934		size += event->read_size;
 935
 
 
 
 
 
 
 936	event->header_size = size;
 937}
 938
 939static void perf_event__id_header_size(struct perf_event *event)
 940{
 941	struct perf_sample_data *data;
 942	u64 sample_type = event->attr.sample_type;
 943	u16 size = 0;
 944
 945	if (sample_type & PERF_SAMPLE_TID)
 946		size += sizeof(data->tid_entry);
 947
 948	if (sample_type & PERF_SAMPLE_TIME)
 949		size += sizeof(data->time);
 950
 
 
 
 951	if (sample_type & PERF_SAMPLE_ID)
 952		size += sizeof(data->id);
 953
 954	if (sample_type & PERF_SAMPLE_STREAM_ID)
 955		size += sizeof(data->stream_id);
 956
 957	if (sample_type & PERF_SAMPLE_CPU)
 958		size += sizeof(data->cpu_entry);
 959
 960	event->id_header_size = size;
 961}
 962
 963static void perf_group_attach(struct perf_event *event)
 964{
 965	struct perf_event *group_leader = event->group_leader, *pos;
 966
 967	/*
 968	 * We can have double attach due to group movement in perf_event_open.
 969	 */
 970	if (event->attach_state & PERF_ATTACH_GROUP)
 971		return;
 972
 973	event->attach_state |= PERF_ATTACH_GROUP;
 974
 975	if (group_leader == event)
 976		return;
 977
 978	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
 979			!is_software_event(event))
 980		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
 981
 982	list_add_tail(&event->group_entry, &group_leader->sibling_list);
 983	group_leader->nr_siblings++;
 984
 985	perf_event__header_size(group_leader);
 986
 987	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
 988		perf_event__header_size(pos);
 989}
 990
 991/*
 992 * Remove a event from the lists for its context.
 993 * Must be called with ctx->mutex and ctx->lock held.
 994 */
 995static void
 996list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 997{
 998	struct perf_cpu_context *cpuctx;
 999	/*
1000	 * We can have double detach due to exit/hot-unplug + close.
1001	 */
1002	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1003		return;
1004
1005	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1006
1007	if (is_cgroup_event(event)) {
1008		ctx->nr_cgroups--;
1009		cpuctx = __get_cpu_context(ctx);
1010		/*
1011		 * if there are no more cgroup events
1012		 * then cler cgrp to avoid stale pointer
1013		 * in update_cgrp_time_from_cpuctx()
1014		 */
1015		if (!ctx->nr_cgroups)
1016			cpuctx->cgrp = NULL;
1017	}
1018
 
 
 
1019	ctx->nr_events--;
1020	if (event->attr.inherit_stat)
1021		ctx->nr_stat--;
1022
1023	list_del_rcu(&event->event_entry);
1024
1025	if (event->group_leader == event)
1026		list_del_init(&event->group_entry);
1027
1028	update_group_times(event);
1029
1030	/*
1031	 * If event was in error state, then keep it
1032	 * that way, otherwise bogus counts will be
1033	 * returned on read(). The only way to get out
1034	 * of error state is by explicit re-enabling
1035	 * of the event
1036	 */
1037	if (event->state > PERF_EVENT_STATE_OFF)
1038		event->state = PERF_EVENT_STATE_OFF;
 
 
1039}
1040
1041static void perf_group_detach(struct perf_event *event)
1042{
1043	struct perf_event *sibling, *tmp;
1044	struct list_head *list = NULL;
1045
1046	/*
1047	 * We can have double detach due to exit/hot-unplug + close.
1048	 */
1049	if (!(event->attach_state & PERF_ATTACH_GROUP))
1050		return;
1051
1052	event->attach_state &= ~PERF_ATTACH_GROUP;
1053
1054	/*
1055	 * If this is a sibling, remove it from its group.
1056	 */
1057	if (event->group_leader != event) {
1058		list_del_init(&event->group_entry);
1059		event->group_leader->nr_siblings--;
1060		goto out;
1061	}
1062
1063	if (!list_empty(&event->group_entry))
1064		list = &event->group_entry;
1065
1066	/*
1067	 * If this was a group event with sibling events then
1068	 * upgrade the siblings to singleton events by adding them
1069	 * to whatever list we are on.
1070	 */
1071	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1072		if (list)
1073			list_move_tail(&sibling->group_entry, list);
1074		sibling->group_leader = sibling;
1075
1076		/* Inherit group flags from the previous leader */
1077		sibling->group_flags = event->group_flags;
1078	}
1079
1080out:
1081	perf_event__header_size(event->group_leader);
1082
1083	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1084		perf_event__header_size(tmp);
1085}
1086
1087static inline int
1088event_filter_match(struct perf_event *event)
1089{
1090	return (event->cpu == -1 || event->cpu == smp_processor_id())
1091	    && perf_cgroup_match(event);
1092}
1093
1094static void
1095event_sched_out(struct perf_event *event,
1096		  struct perf_cpu_context *cpuctx,
1097		  struct perf_event_context *ctx)
1098{
1099	u64 tstamp = perf_event_time(event);
1100	u64 delta;
1101	/*
1102	 * An event which could not be activated because of
1103	 * filter mismatch still needs to have its timings
1104	 * maintained, otherwise bogus information is return
1105	 * via read() for time_enabled, time_running:
1106	 */
1107	if (event->state == PERF_EVENT_STATE_INACTIVE
1108	    && !event_filter_match(event)) {
1109		delta = tstamp - event->tstamp_stopped;
1110		event->tstamp_running += delta;
1111		event->tstamp_stopped = tstamp;
1112	}
1113
1114	if (event->state != PERF_EVENT_STATE_ACTIVE)
1115		return;
1116
 
 
1117	event->state = PERF_EVENT_STATE_INACTIVE;
1118	if (event->pending_disable) {
1119		event->pending_disable = 0;
1120		event->state = PERF_EVENT_STATE_OFF;
1121	}
1122	event->tstamp_stopped = tstamp;
1123	event->pmu->del(event, 0);
1124	event->oncpu = -1;
1125
1126	if (!is_software_event(event))
1127		cpuctx->active_oncpu--;
1128	ctx->nr_active--;
 
 
1129	if (event->attr.exclusive || !cpuctx->active_oncpu)
1130		cpuctx->exclusive = 0;
 
 
1131}
1132
1133static void
1134group_sched_out(struct perf_event *group_event,
1135		struct perf_cpu_context *cpuctx,
1136		struct perf_event_context *ctx)
1137{
1138	struct perf_event *event;
1139	int state = group_event->state;
1140
1141	event_sched_out(group_event, cpuctx, ctx);
1142
1143	/*
1144	 * Schedule out siblings (if any):
1145	 */
1146	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1147		event_sched_out(event, cpuctx, ctx);
1148
1149	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1150		cpuctx->exclusive = 0;
1151}
1152
 
 
 
 
 
1153/*
1154 * Cross CPU call to remove a performance event
1155 *
1156 * We disable the event on the hardware level first. After that we
1157 * remove it from the context list.
1158 */
1159static int __perf_remove_from_context(void *info)
1160{
1161	struct perf_event *event = info;
 
1162	struct perf_event_context *ctx = event->ctx;
1163	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1164
1165	raw_spin_lock(&ctx->lock);
1166	event_sched_out(event, cpuctx, ctx);
 
 
1167	list_del_event(event, ctx);
1168	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1169		ctx->is_active = 0;
1170		cpuctx->task_ctx = NULL;
1171	}
1172	raw_spin_unlock(&ctx->lock);
1173
1174	return 0;
1175}
1176
1177
1178/*
1179 * Remove the event from a task's (or a CPU's) list of events.
1180 *
1181 * CPU events are removed with a smp call. For task events we only
1182 * call when the task is on a CPU.
1183 *
1184 * If event->ctx is a cloned context, callers must make sure that
1185 * every task struct that event->ctx->task could possibly point to
1186 * remains valid.  This is OK when called from perf_release since
1187 * that only calls us on the top-level context, which can't be a clone.
1188 * When called from perf_event_exit_task, it's OK because the
1189 * context has been detached from its task.
1190 */
1191static void perf_remove_from_context(struct perf_event *event)
1192{
1193	struct perf_event_context *ctx = event->ctx;
1194	struct task_struct *task = ctx->task;
 
 
 
 
1195
1196	lockdep_assert_held(&ctx->mutex);
1197
1198	if (!task) {
1199		/*
1200		 * Per cpu events are removed via an smp call and
1201		 * the removal is always successful.
1202		 */
1203		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1204		return;
1205	}
1206
1207retry:
1208	if (!task_function_call(task, __perf_remove_from_context, event))
1209		return;
1210
1211	raw_spin_lock_irq(&ctx->lock);
1212	/*
1213	 * If we failed to find a running task, but find the context active now
1214	 * that we've acquired the ctx->lock, retry.
1215	 */
1216	if (ctx->is_active) {
1217		raw_spin_unlock_irq(&ctx->lock);
1218		goto retry;
1219	}
1220
1221	/*
1222	 * Since the task isn't running, its safe to remove the event, us
1223	 * holding the ctx->lock ensures the task won't get scheduled in.
1224	 */
 
 
1225	list_del_event(event, ctx);
1226	raw_spin_unlock_irq(&ctx->lock);
1227}
1228
1229/*
1230 * Cross CPU call to disable a performance event
1231 */
1232static int __perf_event_disable(void *info)
1233{
1234	struct perf_event *event = info;
1235	struct perf_event_context *ctx = event->ctx;
1236	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1237
1238	/*
1239	 * If this is a per-task event, need to check whether this
1240	 * event's task is the current task on this cpu.
1241	 *
1242	 * Can trigger due to concurrent perf_event_context_sched_out()
1243	 * flipping contexts around.
1244	 */
1245	if (ctx->task && cpuctx->task_ctx != ctx)
1246		return -EINVAL;
1247
1248	raw_spin_lock(&ctx->lock);
1249
1250	/*
1251	 * If the event is on, turn it off.
1252	 * If it is in error state, leave it in error state.
1253	 */
1254	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1255		update_context_time(ctx);
1256		update_cgrp_time_from_event(event);
1257		update_group_times(event);
1258		if (event == event->group_leader)
1259			group_sched_out(event, cpuctx, ctx);
1260		else
1261			event_sched_out(event, cpuctx, ctx);
1262		event->state = PERF_EVENT_STATE_OFF;
1263	}
1264
1265	raw_spin_unlock(&ctx->lock);
1266
1267	return 0;
1268}
1269
1270/*
1271 * Disable a event.
1272 *
1273 * If event->ctx is a cloned context, callers must make sure that
1274 * every task struct that event->ctx->task could possibly point to
1275 * remains valid.  This condition is satisifed when called through
1276 * perf_event_for_each_child or perf_event_for_each because they
1277 * hold the top-level event's child_mutex, so any descendant that
1278 * goes to exit will block in sync_child_event.
1279 * When called from perf_pending_event it's OK because event->ctx
1280 * is the current context on this CPU and preemption is disabled,
1281 * hence we can't get into perf_event_task_sched_out for this context.
1282 */
1283void perf_event_disable(struct perf_event *event)
1284{
1285	struct perf_event_context *ctx = event->ctx;
1286	struct task_struct *task = ctx->task;
1287
1288	if (!task) {
1289		/*
1290		 * Disable the event on the cpu that it's on
1291		 */
1292		cpu_function_call(event->cpu, __perf_event_disable, event);
1293		return;
1294	}
1295
1296retry:
1297	if (!task_function_call(task, __perf_event_disable, event))
1298		return;
1299
1300	raw_spin_lock_irq(&ctx->lock);
1301	/*
1302	 * If the event is still active, we need to retry the cross-call.
1303	 */
1304	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1305		raw_spin_unlock_irq(&ctx->lock);
1306		/*
1307		 * Reload the task pointer, it might have been changed by
1308		 * a concurrent perf_event_context_sched_out().
1309		 */
1310		task = ctx->task;
1311		goto retry;
1312	}
1313
1314	/*
1315	 * Since we have the lock this context can't be scheduled
1316	 * in, so we can change the state safely.
1317	 */
1318	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1319		update_group_times(event);
1320		event->state = PERF_EVENT_STATE_OFF;
1321	}
1322	raw_spin_unlock_irq(&ctx->lock);
1323}
 
1324
1325static void perf_set_shadow_time(struct perf_event *event,
1326				 struct perf_event_context *ctx,
1327				 u64 tstamp)
1328{
1329	/*
1330	 * use the correct time source for the time snapshot
1331	 *
1332	 * We could get by without this by leveraging the
1333	 * fact that to get to this function, the caller
1334	 * has most likely already called update_context_time()
1335	 * and update_cgrp_time_xx() and thus both timestamp
1336	 * are identical (or very close). Given that tstamp is,
1337	 * already adjusted for cgroup, we could say that:
1338	 *    tstamp - ctx->timestamp
1339	 * is equivalent to
1340	 *    tstamp - cgrp->timestamp.
1341	 *
1342	 * Then, in perf_output_read(), the calculation would
1343	 * work with no changes because:
1344	 * - event is guaranteed scheduled in
1345	 * - no scheduled out in between
1346	 * - thus the timestamp would be the same
1347	 *
1348	 * But this is a bit hairy.
1349	 *
1350	 * So instead, we have an explicit cgroup call to remain
1351	 * within the time time source all along. We believe it
1352	 * is cleaner and simpler to understand.
1353	 */
1354	if (is_cgroup_event(event))
1355		perf_cgroup_set_shadow_time(event, tstamp);
1356	else
1357		event->shadow_ctx_time = tstamp - ctx->timestamp;
1358}
1359
1360#define MAX_INTERRUPTS (~0ULL)
1361
1362static void perf_log_throttle(struct perf_event *event, int enable);
1363
1364static int
1365event_sched_in(struct perf_event *event,
1366		 struct perf_cpu_context *cpuctx,
1367		 struct perf_event_context *ctx)
1368{
1369	u64 tstamp = perf_event_time(event);
 
1370
1371	if (event->state <= PERF_EVENT_STATE_OFF)
1372		return 0;
1373
1374	event->state = PERF_EVENT_STATE_ACTIVE;
1375	event->oncpu = smp_processor_id();
1376
1377	/*
1378	 * Unthrottle events, since we scheduled we might have missed several
1379	 * ticks already, also for a heavily scheduling task there is little
1380	 * guarantee it'll get a tick in a timely manner.
1381	 */
1382	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1383		perf_log_throttle(event, 1);
1384		event->hw.interrupts = 0;
1385	}
1386
1387	/*
1388	 * The new state must be visible before we turn it on in the hardware:
1389	 */
1390	smp_wmb();
1391
 
 
1392	if (event->pmu->add(event, PERF_EF_START)) {
1393		event->state = PERF_EVENT_STATE_INACTIVE;
1394		event->oncpu = -1;
1395		return -EAGAIN;
 
1396	}
1397
1398	event->tstamp_running += tstamp - event->tstamp_stopped;
1399
1400	perf_set_shadow_time(event, ctx, tstamp);
1401
1402	if (!is_software_event(event))
1403		cpuctx->active_oncpu++;
1404	ctx->nr_active++;
 
 
1405
1406	if (event->attr.exclusive)
1407		cpuctx->exclusive = 1;
1408
1409	return 0;
 
 
 
1410}
1411
1412static int
1413group_sched_in(struct perf_event *group_event,
1414	       struct perf_cpu_context *cpuctx,
1415	       struct perf_event_context *ctx)
1416{
1417	struct perf_event *event, *partial_group = NULL;
1418	struct pmu *pmu = group_event->pmu;
1419	u64 now = ctx->time;
1420	bool simulate = false;
1421
1422	if (group_event->state == PERF_EVENT_STATE_OFF)
1423		return 0;
1424
1425	pmu->start_txn(pmu);
1426
1427	if (event_sched_in(group_event, cpuctx, ctx)) {
1428		pmu->cancel_txn(pmu);
 
1429		return -EAGAIN;
1430	}
1431
1432	/*
1433	 * Schedule in siblings as one group (if any):
1434	 */
1435	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1436		if (event_sched_in(event, cpuctx, ctx)) {
1437			partial_group = event;
1438			goto group_error;
1439		}
1440	}
1441
1442	if (!pmu->commit_txn(pmu))
1443		return 0;
1444
1445group_error:
1446	/*
1447	 * Groups can be scheduled in as one unit only, so undo any
1448	 * partial group before returning:
1449	 * The events up to the failed event are scheduled out normally,
1450	 * tstamp_stopped will be updated.
1451	 *
1452	 * The failed events and the remaining siblings need to have
1453	 * their timings updated as if they had gone thru event_sched_in()
1454	 * and event_sched_out(). This is required to get consistent timings
1455	 * across the group. This also takes care of the case where the group
1456	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1457	 * the time the event was actually stopped, such that time delta
1458	 * calculation in update_event_times() is correct.
1459	 */
1460	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1461		if (event == partial_group)
1462			simulate = true;
1463
1464		if (simulate) {
1465			event->tstamp_running += now - event->tstamp_stopped;
1466			event->tstamp_stopped = now;
1467		} else {
1468			event_sched_out(event, cpuctx, ctx);
1469		}
1470	}
1471	event_sched_out(group_event, cpuctx, ctx);
1472
1473	pmu->cancel_txn(pmu);
1474
 
 
1475	return -EAGAIN;
1476}
1477
1478/*
1479 * Work out whether we can put this event group on the CPU now.
1480 */
1481static int group_can_go_on(struct perf_event *event,
1482			   struct perf_cpu_context *cpuctx,
1483			   int can_add_hw)
1484{
1485	/*
1486	 * Groups consisting entirely of software events can always go on.
1487	 */
1488	if (event->group_flags & PERF_GROUP_SOFTWARE)
1489		return 1;
1490	/*
1491	 * If an exclusive group is already on, no other hardware
1492	 * events can go on.
1493	 */
1494	if (cpuctx->exclusive)
1495		return 0;
1496	/*
1497	 * If this group is exclusive and there are already
1498	 * events on the CPU, it can't go on.
1499	 */
1500	if (event->attr.exclusive && cpuctx->active_oncpu)
1501		return 0;
1502	/*
1503	 * Otherwise, try to add it if all previous groups were able
1504	 * to go on.
1505	 */
1506	return can_add_hw;
1507}
1508
1509static void add_event_to_ctx(struct perf_event *event,
1510			       struct perf_event_context *ctx)
1511{
1512	u64 tstamp = perf_event_time(event);
1513
1514	list_add_event(event, ctx);
1515	perf_group_attach(event);
1516	event->tstamp_enabled = tstamp;
1517	event->tstamp_running = tstamp;
1518	event->tstamp_stopped = tstamp;
1519}
1520
1521static void task_ctx_sched_out(struct perf_event_context *ctx);
1522static void
1523ctx_sched_in(struct perf_event_context *ctx,
1524	     struct perf_cpu_context *cpuctx,
1525	     enum event_type_t event_type,
1526	     struct task_struct *task);
1527
1528static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1529				struct perf_event_context *ctx,
1530				struct task_struct *task)
1531{
1532	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1533	if (ctx)
1534		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1535	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1536	if (ctx)
1537		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1538}
1539
1540/*
1541 * Cross CPU call to install and enable a performance event
1542 *
1543 * Must be called with ctx->mutex held
1544 */
1545static int  __perf_install_in_context(void *info)
1546{
1547	struct perf_event *event = info;
1548	struct perf_event_context *ctx = event->ctx;
1549	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1550	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1551	struct task_struct *task = current;
1552
1553	perf_ctx_lock(cpuctx, task_ctx);
1554	perf_pmu_disable(cpuctx->ctx.pmu);
1555
1556	/*
1557	 * If there was an active task_ctx schedule it out.
1558	 */
1559	if (task_ctx)
1560		task_ctx_sched_out(task_ctx);
1561
1562	/*
1563	 * If the context we're installing events in is not the
1564	 * active task_ctx, flip them.
1565	 */
1566	if (ctx->task && task_ctx != ctx) {
1567		if (task_ctx)
1568			raw_spin_unlock(&task_ctx->lock);
1569		raw_spin_lock(&ctx->lock);
1570		task_ctx = ctx;
1571	}
1572
1573	if (task_ctx) {
1574		cpuctx->task_ctx = task_ctx;
1575		task = task_ctx->task;
1576	}
1577
1578	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1579
1580	update_context_time(ctx);
1581	/*
1582	 * update cgrp time only if current cgrp
1583	 * matches event->cgrp. Must be done before
1584	 * calling add_event_to_ctx()
1585	 */
1586	update_cgrp_time_from_event(event);
1587
1588	add_event_to_ctx(event, ctx);
1589
1590	/*
1591	 * Schedule everything back in
1592	 */
1593	perf_event_sched_in(cpuctx, task_ctx, task);
1594
1595	perf_pmu_enable(cpuctx->ctx.pmu);
1596	perf_ctx_unlock(cpuctx, task_ctx);
1597
1598	return 0;
1599}
1600
1601/*
1602 * Attach a performance event to a context
1603 *
1604 * First we add the event to the list with the hardware enable bit
1605 * in event->hw_config cleared.
1606 *
1607 * If the event is attached to a task which is on a CPU we use a smp
1608 * call to enable it in the task context. The task might have been
1609 * scheduled away, but we check this in the smp call again.
1610 */
1611static void
1612perf_install_in_context(struct perf_event_context *ctx,
1613			struct perf_event *event,
1614			int cpu)
1615{
1616	struct task_struct *task = ctx->task;
1617
1618	lockdep_assert_held(&ctx->mutex);
1619
1620	event->ctx = ctx;
 
 
1621
1622	if (!task) {
1623		/*
1624		 * Per cpu events are installed via an smp call and
1625		 * the install is always successful.
1626		 */
1627		cpu_function_call(cpu, __perf_install_in_context, event);
1628		return;
1629	}
1630
1631retry:
1632	if (!task_function_call(task, __perf_install_in_context, event))
1633		return;
1634
1635	raw_spin_lock_irq(&ctx->lock);
1636	/*
1637	 * If we failed to find a running task, but find the context active now
1638	 * that we've acquired the ctx->lock, retry.
1639	 */
1640	if (ctx->is_active) {
1641		raw_spin_unlock_irq(&ctx->lock);
1642		goto retry;
1643	}
1644
1645	/*
1646	 * Since the task isn't running, its safe to add the event, us holding
1647	 * the ctx->lock ensures the task won't get scheduled in.
1648	 */
1649	add_event_to_ctx(event, ctx);
1650	raw_spin_unlock_irq(&ctx->lock);
1651}
1652
1653/*
1654 * Put a event into inactive state and update time fields.
1655 * Enabling the leader of a group effectively enables all
1656 * the group members that aren't explicitly disabled, so we
1657 * have to update their ->tstamp_enabled also.
1658 * Note: this works for group members as well as group leaders
1659 * since the non-leader members' sibling_lists will be empty.
1660 */
1661static void __perf_event_mark_enabled(struct perf_event *event,
1662					struct perf_event_context *ctx)
1663{
1664	struct perf_event *sub;
1665	u64 tstamp = perf_event_time(event);
1666
1667	event->state = PERF_EVENT_STATE_INACTIVE;
1668	event->tstamp_enabled = tstamp - event->total_time_enabled;
1669	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1670		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1671			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1672	}
1673}
1674
1675/*
1676 * Cross CPU call to enable a performance event
1677 */
1678static int __perf_event_enable(void *info)
1679{
1680	struct perf_event *event = info;
1681	struct perf_event_context *ctx = event->ctx;
1682	struct perf_event *leader = event->group_leader;
1683	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1684	int err;
1685
1686	if (WARN_ON_ONCE(!ctx->is_active))
 
 
 
 
 
 
 
 
 
1687		return -EINVAL;
1688
1689	raw_spin_lock(&ctx->lock);
1690	update_context_time(ctx);
1691
1692	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1693		goto unlock;
1694
1695	/*
1696	 * set current task's cgroup time reference point
1697	 */
1698	perf_cgroup_set_timestamp(current, ctx);
1699
1700	__perf_event_mark_enabled(event, ctx);
1701
1702	if (!event_filter_match(event)) {
1703		if (is_cgroup_event(event))
1704			perf_cgroup_defer_enabled(event);
1705		goto unlock;
1706	}
1707
1708	/*
1709	 * If the event is in a group and isn't the group leader,
1710	 * then don't put it on unless the group is on.
1711	 */
1712	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1713		goto unlock;
1714
1715	if (!group_can_go_on(event, cpuctx, 1)) {
1716		err = -EEXIST;
1717	} else {
1718		if (event == leader)
1719			err = group_sched_in(event, cpuctx, ctx);
1720		else
1721			err = event_sched_in(event, cpuctx, ctx);
1722	}
1723
1724	if (err) {
1725		/*
1726		 * If this event can't go on and it's part of a
1727		 * group, then the whole group has to come off.
1728		 */
1729		if (leader != event)
1730			group_sched_out(leader, cpuctx, ctx);
 
 
1731		if (leader->attr.pinned) {
1732			update_group_times(leader);
1733			leader->state = PERF_EVENT_STATE_ERROR;
1734		}
1735	}
1736
1737unlock:
1738	raw_spin_unlock(&ctx->lock);
1739
1740	return 0;
1741}
1742
1743/*
1744 * Enable a event.
1745 *
1746 * If event->ctx is a cloned context, callers must make sure that
1747 * every task struct that event->ctx->task could possibly point to
1748 * remains valid.  This condition is satisfied when called through
1749 * perf_event_for_each_child or perf_event_for_each as described
1750 * for perf_event_disable.
1751 */
1752void perf_event_enable(struct perf_event *event)
1753{
1754	struct perf_event_context *ctx = event->ctx;
1755	struct task_struct *task = ctx->task;
1756
1757	if (!task) {
1758		/*
1759		 * Enable the event on the cpu that it's on
1760		 */
1761		cpu_function_call(event->cpu, __perf_event_enable, event);
1762		return;
1763	}
1764
1765	raw_spin_lock_irq(&ctx->lock);
1766	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1767		goto out;
1768
1769	/*
1770	 * If the event is in error state, clear that first.
1771	 * That way, if we see the event in error state below, we
1772	 * know that it has gone back into error state, as distinct
1773	 * from the task having been scheduled away before the
1774	 * cross-call arrived.
1775	 */
1776	if (event->state == PERF_EVENT_STATE_ERROR)
1777		event->state = PERF_EVENT_STATE_OFF;
1778
1779retry:
1780	if (!ctx->is_active) {
1781		__perf_event_mark_enabled(event, ctx);
1782		goto out;
1783	}
1784
1785	raw_spin_unlock_irq(&ctx->lock);
1786
1787	if (!task_function_call(task, __perf_event_enable, event))
1788		return;
1789
1790	raw_spin_lock_irq(&ctx->lock);
1791
1792	/*
1793	 * If the context is active and the event is still off,
1794	 * we need to retry the cross-call.
1795	 */
1796	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1797		/*
1798		 * task could have been flipped by a concurrent
1799		 * perf_event_context_sched_out()
1800		 */
1801		task = ctx->task;
1802		goto retry;
1803	}
1804
1805out:
1806	raw_spin_unlock_irq(&ctx->lock);
1807}
 
1808
1809int perf_event_refresh(struct perf_event *event, int refresh)
1810{
1811	/*
1812	 * not supported on inherited events
1813	 */
1814	if (event->attr.inherit || !is_sampling_event(event))
1815		return -EINVAL;
1816
1817	atomic_add(refresh, &event->event_limit);
1818	perf_event_enable(event);
1819
1820	return 0;
1821}
1822EXPORT_SYMBOL_GPL(perf_event_refresh);
1823
1824static void ctx_sched_out(struct perf_event_context *ctx,
1825			  struct perf_cpu_context *cpuctx,
1826			  enum event_type_t event_type)
1827{
1828	struct perf_event *event;
1829	int is_active = ctx->is_active;
1830
1831	ctx->is_active &= ~event_type;
1832	if (likely(!ctx->nr_events))
1833		return;
1834
1835	update_context_time(ctx);
1836	update_cgrp_time_from_cpuctx(cpuctx);
1837	if (!ctx->nr_active)
1838		return;
1839
1840	perf_pmu_disable(ctx->pmu);
1841	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1842		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1843			group_sched_out(event, cpuctx, ctx);
1844	}
1845
1846	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1847		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1848			group_sched_out(event, cpuctx, ctx);
1849	}
1850	perf_pmu_enable(ctx->pmu);
1851}
1852
1853/*
1854 * Test whether two contexts are equivalent, i.e. whether they
1855 * have both been cloned from the same version of the same context
1856 * and they both have the same number of enabled events.
1857 * If the number of enabled events is the same, then the set
1858 * of enabled events should be the same, because these are both
1859 * inherited contexts, therefore we can't access individual events
1860 * in them directly with an fd; we can only enable/disable all
1861 * events via prctl, or enable/disable all events in a family
1862 * via ioctl, which will have the same effect on both contexts.
1863 */
1864static int context_equiv(struct perf_event_context *ctx1,
1865			 struct perf_event_context *ctx2)
1866{
1867	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1868		&& ctx1->parent_gen == ctx2->parent_gen
1869		&& !ctx1->pin_count && !ctx2->pin_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870}
1871
1872static void __perf_event_sync_stat(struct perf_event *event,
1873				     struct perf_event *next_event)
1874{
1875	u64 value;
1876
1877	if (!event->attr.inherit_stat)
1878		return;
1879
1880	/*
1881	 * Update the event value, we cannot use perf_event_read()
1882	 * because we're in the middle of a context switch and have IRQs
1883	 * disabled, which upsets smp_call_function_single(), however
1884	 * we know the event must be on the current CPU, therefore we
1885	 * don't need to use it.
1886	 */
1887	switch (event->state) {
1888	case PERF_EVENT_STATE_ACTIVE:
1889		event->pmu->read(event);
1890		/* fall-through */
1891
1892	case PERF_EVENT_STATE_INACTIVE:
1893		update_event_times(event);
1894		break;
1895
1896	default:
1897		break;
1898	}
1899
1900	/*
1901	 * In order to keep per-task stats reliable we need to flip the event
1902	 * values when we flip the contexts.
1903	 */
1904	value = local64_read(&next_event->count);
1905	value = local64_xchg(&event->count, value);
1906	local64_set(&next_event->count, value);
1907
1908	swap(event->total_time_enabled, next_event->total_time_enabled);
1909	swap(event->total_time_running, next_event->total_time_running);
1910
1911	/*
1912	 * Since we swizzled the values, update the user visible data too.
1913	 */
1914	perf_event_update_userpage(event);
1915	perf_event_update_userpage(next_event);
1916}
1917
1918#define list_next_entry(pos, member) \
1919	list_entry(pos->member.next, typeof(*pos), member)
1920
1921static void perf_event_sync_stat(struct perf_event_context *ctx,
1922				   struct perf_event_context *next_ctx)
1923{
1924	struct perf_event *event, *next_event;
1925
1926	if (!ctx->nr_stat)
1927		return;
1928
1929	update_context_time(ctx);
1930
1931	event = list_first_entry(&ctx->event_list,
1932				   struct perf_event, event_entry);
1933
1934	next_event = list_first_entry(&next_ctx->event_list,
1935					struct perf_event, event_entry);
1936
1937	while (&event->event_entry != &ctx->event_list &&
1938	       &next_event->event_entry != &next_ctx->event_list) {
1939
1940		__perf_event_sync_stat(event, next_event);
1941
1942		event = list_next_entry(event, event_entry);
1943		next_event = list_next_entry(next_event, event_entry);
1944	}
1945}
1946
1947static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1948					 struct task_struct *next)
1949{
1950	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1951	struct perf_event_context *next_ctx;
1952	struct perf_event_context *parent;
1953	struct perf_cpu_context *cpuctx;
1954	int do_switch = 1;
1955
1956	if (likely(!ctx))
1957		return;
1958
1959	cpuctx = __get_cpu_context(ctx);
1960	if (!cpuctx->task_ctx)
1961		return;
1962
1963	rcu_read_lock();
 
 
 
 
1964	parent = rcu_dereference(ctx->parent_ctx);
1965	next_ctx = next->perf_event_ctxp[ctxn];
1966	if (parent && next_ctx &&
1967	    rcu_dereference(next_ctx->parent_ctx) == parent) {
 
 
 
 
1968		/*
1969		 * Looks like the two contexts are clones, so we might be
1970		 * able to optimize the context switch.  We lock both
1971		 * contexts and check that they are clones under the
1972		 * lock (including re-checking that neither has been
1973		 * uncloned in the meantime).  It doesn't matter which
1974		 * order we take the locks because no other cpu could
1975		 * be trying to lock both of these tasks.
1976		 */
1977		raw_spin_lock(&ctx->lock);
1978		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1979		if (context_equiv(ctx, next_ctx)) {
1980			/*
1981			 * XXX do we need a memory barrier of sorts
1982			 * wrt to rcu_dereference() of perf_event_ctxp
1983			 */
1984			task->perf_event_ctxp[ctxn] = next_ctx;
1985			next->perf_event_ctxp[ctxn] = ctx;
1986			ctx->task = next;
1987			next_ctx->task = task;
1988			do_switch = 0;
1989
1990			perf_event_sync_stat(ctx, next_ctx);
1991		}
1992		raw_spin_unlock(&next_ctx->lock);
1993		raw_spin_unlock(&ctx->lock);
1994	}
 
1995	rcu_read_unlock();
1996
1997	if (do_switch) {
1998		raw_spin_lock(&ctx->lock);
1999		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2000		cpuctx->task_ctx = NULL;
2001		raw_spin_unlock(&ctx->lock);
2002	}
2003}
2004
2005#define for_each_task_context_nr(ctxn)					\
2006	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2007
2008/*
2009 * Called from scheduler to remove the events of the current task,
2010 * with interrupts disabled.
2011 *
2012 * We stop each event and update the event value in event->count.
2013 *
2014 * This does not protect us against NMI, but disable()
2015 * sets the disabled bit in the control field of event _before_
2016 * accessing the event control register. If a NMI hits, then it will
2017 * not restart the event.
2018 */
2019void __perf_event_task_sched_out(struct task_struct *task,
2020				 struct task_struct *next)
2021{
2022	int ctxn;
2023
2024	for_each_task_context_nr(ctxn)
2025		perf_event_context_sched_out(task, ctxn, next);
2026
2027	/*
2028	 * if cgroup events exist on this CPU, then we need
2029	 * to check if we have to switch out PMU state.
2030	 * cgroup event are system-wide mode only
2031	 */
2032	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2033		perf_cgroup_sched_out(task, next);
2034}
2035
2036static void task_ctx_sched_out(struct perf_event_context *ctx)
2037{
2038	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2039
2040	if (!cpuctx->task_ctx)
2041		return;
2042
2043	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2044		return;
2045
2046	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2047	cpuctx->task_ctx = NULL;
2048}
2049
2050/*
2051 * Called with IRQs disabled
2052 */
2053static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2054			      enum event_type_t event_type)
2055{
2056	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2057}
2058
2059static void
2060ctx_pinned_sched_in(struct perf_event_context *ctx,
2061		    struct perf_cpu_context *cpuctx)
2062{
2063	struct perf_event *event;
2064
2065	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2066		if (event->state <= PERF_EVENT_STATE_OFF)
2067			continue;
2068		if (!event_filter_match(event))
2069			continue;
2070
2071		/* may need to reset tstamp_enabled */
2072		if (is_cgroup_event(event))
2073			perf_cgroup_mark_enabled(event, ctx);
2074
2075		if (group_can_go_on(event, cpuctx, 1))
2076			group_sched_in(event, cpuctx, ctx);
2077
2078		/*
2079		 * If this pinned group hasn't been scheduled,
2080		 * put it in error state.
2081		 */
2082		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2083			update_group_times(event);
2084			event->state = PERF_EVENT_STATE_ERROR;
2085		}
2086	}
2087}
2088
2089static void
2090ctx_flexible_sched_in(struct perf_event_context *ctx,
2091		      struct perf_cpu_context *cpuctx)
2092{
2093	struct perf_event *event;
2094	int can_add_hw = 1;
2095
2096	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2097		/* Ignore events in OFF or ERROR state */
2098		if (event->state <= PERF_EVENT_STATE_OFF)
2099			continue;
2100		/*
2101		 * Listen to the 'cpu' scheduling filter constraint
2102		 * of events:
2103		 */
2104		if (!event_filter_match(event))
2105			continue;
2106
2107		/* may need to reset tstamp_enabled */
2108		if (is_cgroup_event(event))
2109			perf_cgroup_mark_enabled(event, ctx);
2110
2111		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2112			if (group_sched_in(event, cpuctx, ctx))
2113				can_add_hw = 0;
2114		}
2115	}
2116}
2117
2118static void
2119ctx_sched_in(struct perf_event_context *ctx,
2120	     struct perf_cpu_context *cpuctx,
2121	     enum event_type_t event_type,
2122	     struct task_struct *task)
2123{
2124	u64 now;
2125	int is_active = ctx->is_active;
2126
2127	ctx->is_active |= event_type;
2128	if (likely(!ctx->nr_events))
2129		return;
2130
2131	now = perf_clock();
2132	ctx->timestamp = now;
2133	perf_cgroup_set_timestamp(task, ctx);
2134	/*
2135	 * First go through the list and put on any pinned groups
2136	 * in order to give them the best chance of going on.
2137	 */
2138	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2139		ctx_pinned_sched_in(ctx, cpuctx);
2140
2141	/* Then walk through the lower prio flexible groups */
2142	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2143		ctx_flexible_sched_in(ctx, cpuctx);
2144}
2145
2146static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2147			     enum event_type_t event_type,
2148			     struct task_struct *task)
2149{
2150	struct perf_event_context *ctx = &cpuctx->ctx;
2151
2152	ctx_sched_in(ctx, cpuctx, event_type, task);
2153}
2154
2155static void perf_event_context_sched_in(struct perf_event_context *ctx,
2156					struct task_struct *task)
2157{
2158	struct perf_cpu_context *cpuctx;
2159
2160	cpuctx = __get_cpu_context(ctx);
2161	if (cpuctx->task_ctx == ctx)
2162		return;
2163
2164	perf_ctx_lock(cpuctx, ctx);
2165	perf_pmu_disable(ctx->pmu);
2166	/*
2167	 * We want to keep the following priority order:
2168	 * cpu pinned (that don't need to move), task pinned,
2169	 * cpu flexible, task flexible.
2170	 */
2171	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2172
2173	perf_event_sched_in(cpuctx, ctx, task);
 
2174
2175	cpuctx->task_ctx = ctx;
2176
2177	perf_pmu_enable(ctx->pmu);
2178	perf_ctx_unlock(cpuctx, ctx);
2179
2180	/*
2181	 * Since these rotations are per-cpu, we need to ensure the
2182	 * cpu-context we got scheduled on is actually rotating.
2183	 */
2184	perf_pmu_rotate_start(ctx->pmu);
2185}
2186
2187/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2188 * Called from scheduler to add the events of the current task
2189 * with interrupts disabled.
2190 *
2191 * We restore the event value and then enable it.
2192 *
2193 * This does not protect us against NMI, but enable()
2194 * sets the enabled bit in the control field of event _before_
2195 * accessing the event control register. If a NMI hits, then it will
2196 * keep the event running.
2197 */
2198void __perf_event_task_sched_in(struct task_struct *prev,
2199				struct task_struct *task)
2200{
2201	struct perf_event_context *ctx;
2202	int ctxn;
2203
2204	for_each_task_context_nr(ctxn) {
2205		ctx = task->perf_event_ctxp[ctxn];
2206		if (likely(!ctx))
2207			continue;
2208
2209		perf_event_context_sched_in(ctx, task);
2210	}
2211	/*
2212	 * if cgroup events exist on this CPU, then we need
2213	 * to check if we have to switch in PMU state.
2214	 * cgroup event are system-wide mode only
2215	 */
2216	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2217		perf_cgroup_sched_in(prev, task);
 
 
 
 
2218}
2219
2220static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2221{
2222	u64 frequency = event->attr.sample_freq;
2223	u64 sec = NSEC_PER_SEC;
2224	u64 divisor, dividend;
2225
2226	int count_fls, nsec_fls, frequency_fls, sec_fls;
2227
2228	count_fls = fls64(count);
2229	nsec_fls = fls64(nsec);
2230	frequency_fls = fls64(frequency);
2231	sec_fls = 30;
2232
2233	/*
2234	 * We got @count in @nsec, with a target of sample_freq HZ
2235	 * the target period becomes:
2236	 *
2237	 *             @count * 10^9
2238	 * period = -------------------
2239	 *          @nsec * sample_freq
2240	 *
2241	 */
2242
2243	/*
2244	 * Reduce accuracy by one bit such that @a and @b converge
2245	 * to a similar magnitude.
2246	 */
2247#define REDUCE_FLS(a, b)		\
2248do {					\
2249	if (a##_fls > b##_fls) {	\
2250		a >>= 1;		\
2251		a##_fls--;		\
2252	} else {			\
2253		b >>= 1;		\
2254		b##_fls--;		\
2255	}				\
2256} while (0)
2257
2258	/*
2259	 * Reduce accuracy until either term fits in a u64, then proceed with
2260	 * the other, so that finally we can do a u64/u64 division.
2261	 */
2262	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2263		REDUCE_FLS(nsec, frequency);
2264		REDUCE_FLS(sec, count);
2265	}
2266
2267	if (count_fls + sec_fls > 64) {
2268		divisor = nsec * frequency;
2269
2270		while (count_fls + sec_fls > 64) {
2271			REDUCE_FLS(count, sec);
2272			divisor >>= 1;
2273		}
2274
2275		dividend = count * sec;
2276	} else {
2277		dividend = count * sec;
2278
2279		while (nsec_fls + frequency_fls > 64) {
2280			REDUCE_FLS(nsec, frequency);
2281			dividend >>= 1;
2282		}
2283
2284		divisor = nsec * frequency;
2285	}
2286
2287	if (!divisor)
2288		return dividend;
2289
2290	return div64_u64(dividend, divisor);
2291}
2292
2293static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
 
 
 
2294{
2295	struct hw_perf_event *hwc = &event->hw;
2296	s64 period, sample_period;
2297	s64 delta;
2298
2299	period = perf_calculate_period(event, nsec, count);
2300
2301	delta = (s64)(period - hwc->sample_period);
2302	delta = (delta + 7) / 8; /* low pass filter */
2303
2304	sample_period = hwc->sample_period + delta;
2305
2306	if (!sample_period)
2307		sample_period = 1;
2308
2309	hwc->sample_period = sample_period;
2310
2311	if (local64_read(&hwc->period_left) > 8*sample_period) {
2312		event->pmu->stop(event, PERF_EF_UPDATE);
 
 
2313		local64_set(&hwc->period_left, 0);
2314		event->pmu->start(event, PERF_EF_RELOAD);
 
 
2315	}
2316}
2317
2318static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
 
 
 
 
 
 
2319{
2320	struct perf_event *event;
2321	struct hw_perf_event *hwc;
2322	u64 interrupts, now;
2323	s64 delta;
2324
 
 
 
 
 
 
 
 
 
 
 
2325	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2326		if (event->state != PERF_EVENT_STATE_ACTIVE)
2327			continue;
2328
2329		if (!event_filter_match(event))
2330			continue;
2331
 
 
2332		hwc = &event->hw;
2333
2334		interrupts = hwc->interrupts;
2335		hwc->interrupts = 0;
2336
2337		/*
2338		 * unthrottle events on the tick
2339		 */
2340		if (interrupts == MAX_INTERRUPTS) {
2341			perf_log_throttle(event, 1);
2342			event->pmu->start(event, 0);
2343		}
2344
2345		if (!event->attr.freq || !event->attr.sample_freq)
2346			continue;
 
 
 
 
 
2347
2348		event->pmu->read(event);
2349		now = local64_read(&event->count);
2350		delta = now - hwc->freq_count_stamp;
2351		hwc->freq_count_stamp = now;
2352
 
 
 
 
 
 
 
2353		if (delta > 0)
2354			perf_adjust_period(event, period, delta);
 
 
 
 
2355	}
 
 
 
2356}
2357
2358/*
2359 * Round-robin a context's events:
2360 */
2361static void rotate_ctx(struct perf_event_context *ctx)
2362{
2363	/*
2364	 * Rotate the first entry last of non-pinned groups. Rotation might be
2365	 * disabled by the inheritance code.
2366	 */
2367	if (!ctx->rotate_disable)
2368		list_rotate_left(&ctx->flexible_groups);
2369}
2370
2371/*
2372 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2373 * because they're strictly cpu affine and rotate_start is called with IRQs
2374 * disabled, while rotate_context is called from IRQ context.
2375 */
2376static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2377{
2378	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2379	struct perf_event_context *ctx = NULL;
2380	int rotate = 0, remove = 1;
2381
2382	if (cpuctx->ctx.nr_events) {
2383		remove = 0;
2384		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2385			rotate = 1;
2386	}
2387
2388	ctx = cpuctx->task_ctx;
2389	if (ctx && ctx->nr_events) {
2390		remove = 0;
2391		if (ctx->nr_events != ctx->nr_active)
2392			rotate = 1;
2393	}
2394
 
 
 
2395	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2396	perf_pmu_disable(cpuctx->ctx.pmu);
2397	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2398	if (ctx)
2399		perf_ctx_adjust_freq(ctx, interval);
2400
2401	if (!rotate)
2402		goto done;
2403
2404	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2405	if (ctx)
2406		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2407
2408	rotate_ctx(&cpuctx->ctx);
2409	if (ctx)
2410		rotate_ctx(ctx);
2411
2412	perf_event_sched_in(cpuctx, ctx, current);
2413
 
 
2414done:
2415	if (remove)
2416		list_del_init(&cpuctx->rotation_list);
2417
2418	perf_pmu_enable(cpuctx->ctx.pmu);
2419	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 
 
 
 
 
 
 
 
 
2420}
 
2421
2422void perf_event_task_tick(void)
2423{
2424	struct list_head *head = &__get_cpu_var(rotation_list);
2425	struct perf_cpu_context *cpuctx, *tmp;
 
 
2426
2427	WARN_ON(!irqs_disabled());
2428
 
 
 
2429	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2430		if (cpuctx->jiffies_interval == 1 ||
2431				!(jiffies % cpuctx->jiffies_interval))
2432			perf_rotate_context(cpuctx);
 
 
 
2433	}
2434}
2435
2436static int event_enable_on_exec(struct perf_event *event,
2437				struct perf_event_context *ctx)
2438{
2439	if (!event->attr.enable_on_exec)
2440		return 0;
2441
2442	event->attr.enable_on_exec = 0;
2443	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2444		return 0;
2445
2446	__perf_event_mark_enabled(event, ctx);
2447
2448	return 1;
2449}
2450
2451/*
2452 * Enable all of a task's events that have been marked enable-on-exec.
2453 * This expects task == current.
2454 */
2455static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2456{
2457	struct perf_event *event;
2458	unsigned long flags;
2459	int enabled = 0;
2460	int ret;
2461
2462	local_irq_save(flags);
2463	if (!ctx || !ctx->nr_events)
2464		goto out;
2465
2466	/*
2467	 * We must ctxsw out cgroup events to avoid conflict
2468	 * when invoking perf_task_event_sched_in() later on
2469	 * in this function. Otherwise we end up trying to
2470	 * ctxswin cgroup events which are already scheduled
2471	 * in.
2472	 */
2473	perf_cgroup_sched_out(current, NULL);
2474
2475	raw_spin_lock(&ctx->lock);
2476	task_ctx_sched_out(ctx);
2477
2478	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2479		ret = event_enable_on_exec(event, ctx);
2480		if (ret)
2481			enabled = 1;
2482	}
2483
2484	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2485		ret = event_enable_on_exec(event, ctx);
2486		if (ret)
2487			enabled = 1;
2488	}
2489
2490	/*
2491	 * Unclone this context if we enabled any event.
2492	 */
2493	if (enabled)
2494		unclone_ctx(ctx);
2495
2496	raw_spin_unlock(&ctx->lock);
2497
2498	/*
2499	 * Also calls ctxswin for cgroup events, if any:
2500	 */
2501	perf_event_context_sched_in(ctx, ctx->task);
2502out:
2503	local_irq_restore(flags);
2504}
2505
2506/*
2507 * Cross CPU call to read the hardware event
2508 */
2509static void __perf_event_read(void *info)
2510{
2511	struct perf_event *event = info;
2512	struct perf_event_context *ctx = event->ctx;
2513	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2514
2515	/*
2516	 * If this is a task context, we need to check whether it is
2517	 * the current task context of this cpu.  If not it has been
2518	 * scheduled out before the smp call arrived.  In that case
2519	 * event->count would have been updated to a recent sample
2520	 * when the event was scheduled out.
2521	 */
2522	if (ctx->task && cpuctx->task_ctx != ctx)
2523		return;
2524
2525	raw_spin_lock(&ctx->lock);
2526	if (ctx->is_active) {
2527		update_context_time(ctx);
2528		update_cgrp_time_from_event(event);
2529	}
2530	update_event_times(event);
2531	if (event->state == PERF_EVENT_STATE_ACTIVE)
2532		event->pmu->read(event);
2533	raw_spin_unlock(&ctx->lock);
2534}
2535
2536static inline u64 perf_event_count(struct perf_event *event)
2537{
2538	return local64_read(&event->count) + atomic64_read(&event->child_count);
2539}
2540
2541static u64 perf_event_read(struct perf_event *event)
2542{
2543	/*
2544	 * If event is enabled and currently active on a CPU, update the
2545	 * value in the event structure:
2546	 */
2547	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2548		smp_call_function_single(event->oncpu,
2549					 __perf_event_read, event, 1);
2550	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2551		struct perf_event_context *ctx = event->ctx;
2552		unsigned long flags;
2553
2554		raw_spin_lock_irqsave(&ctx->lock, flags);
2555		/*
2556		 * may read while context is not active
2557		 * (e.g., thread is blocked), in that case
2558		 * we cannot update context time
2559		 */
2560		if (ctx->is_active) {
2561			update_context_time(ctx);
2562			update_cgrp_time_from_event(event);
2563		}
2564		update_event_times(event);
2565		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2566	}
2567
2568	return perf_event_count(event);
2569}
2570
2571/*
2572 * Callchain support
2573 */
2574
2575struct callchain_cpus_entries {
2576	struct rcu_head			rcu_head;
2577	struct perf_callchain_entry	*cpu_entries[0];
2578};
2579
2580static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2581static atomic_t nr_callchain_events;
2582static DEFINE_MUTEX(callchain_mutex);
2583struct callchain_cpus_entries *callchain_cpus_entries;
2584
2585
2586__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2587				  struct pt_regs *regs)
2588{
2589}
2590
2591__weak void perf_callchain_user(struct perf_callchain_entry *entry,
2592				struct pt_regs *regs)
2593{
2594}
2595
2596static void release_callchain_buffers_rcu(struct rcu_head *head)
2597{
2598	struct callchain_cpus_entries *entries;
2599	int cpu;
2600
2601	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2602
2603	for_each_possible_cpu(cpu)
2604		kfree(entries->cpu_entries[cpu]);
2605
2606	kfree(entries);
2607}
2608
2609static void release_callchain_buffers(void)
2610{
2611	struct callchain_cpus_entries *entries;
2612
2613	entries = callchain_cpus_entries;
2614	rcu_assign_pointer(callchain_cpus_entries, NULL);
2615	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2616}
2617
2618static int alloc_callchain_buffers(void)
2619{
2620	int cpu;
2621	int size;
2622	struct callchain_cpus_entries *entries;
2623
2624	/*
2625	 * We can't use the percpu allocation API for data that can be
2626	 * accessed from NMI. Use a temporary manual per cpu allocation
2627	 * until that gets sorted out.
2628	 */
2629	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2630
2631	entries = kzalloc(size, GFP_KERNEL);
2632	if (!entries)
2633		return -ENOMEM;
2634
2635	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2636
2637	for_each_possible_cpu(cpu) {
2638		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2639							 cpu_to_node(cpu));
2640		if (!entries->cpu_entries[cpu])
2641			goto fail;
2642	}
2643
2644	rcu_assign_pointer(callchain_cpus_entries, entries);
2645
2646	return 0;
2647
2648fail:
2649	for_each_possible_cpu(cpu)
2650		kfree(entries->cpu_entries[cpu]);
2651	kfree(entries);
2652
2653	return -ENOMEM;
2654}
2655
2656static int get_callchain_buffers(void)
2657{
2658	int err = 0;
2659	int count;
2660
2661	mutex_lock(&callchain_mutex);
2662
2663	count = atomic_inc_return(&nr_callchain_events);
2664	if (WARN_ON_ONCE(count < 1)) {
2665		err = -EINVAL;
2666		goto exit;
2667	}
2668
2669	if (count > 1) {
2670		/* If the allocation failed, give up */
2671		if (!callchain_cpus_entries)
2672			err = -ENOMEM;
2673		goto exit;
2674	}
2675
2676	err = alloc_callchain_buffers();
2677	if (err)
2678		release_callchain_buffers();
2679exit:
2680	mutex_unlock(&callchain_mutex);
2681
2682	return err;
2683}
2684
2685static void put_callchain_buffers(void)
2686{
2687	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2688		release_callchain_buffers();
2689		mutex_unlock(&callchain_mutex);
2690	}
2691}
2692
2693static int get_recursion_context(int *recursion)
2694{
2695	int rctx;
2696
2697	if (in_nmi())
2698		rctx = 3;
2699	else if (in_irq())
2700		rctx = 2;
2701	else if (in_softirq())
2702		rctx = 1;
2703	else
2704		rctx = 0;
2705
2706	if (recursion[rctx])
2707		return -1;
2708
2709	recursion[rctx]++;
2710	barrier();
2711
2712	return rctx;
2713}
2714
2715static inline void put_recursion_context(int *recursion, int rctx)
2716{
2717	barrier();
2718	recursion[rctx]--;
2719}
2720
2721static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2722{
2723	int cpu;
2724	struct callchain_cpus_entries *entries;
2725
2726	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2727	if (*rctx == -1)
2728		return NULL;
2729
2730	entries = rcu_dereference(callchain_cpus_entries);
2731	if (!entries)
2732		return NULL;
2733
2734	cpu = smp_processor_id();
2735
2736	return &entries->cpu_entries[cpu][*rctx];
2737}
2738
2739static void
2740put_callchain_entry(int rctx)
2741{
2742	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2743}
2744
2745static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2746{
2747	int rctx;
2748	struct perf_callchain_entry *entry;
2749
2750
2751	entry = get_callchain_entry(&rctx);
2752	if (rctx == -1)
2753		return NULL;
2754
2755	if (!entry)
2756		goto exit_put;
2757
2758	entry->nr = 0;
2759
2760	if (!user_mode(regs)) {
2761		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2762		perf_callchain_kernel(entry, regs);
2763		if (current->mm)
2764			regs = task_pt_regs(current);
2765		else
2766			regs = NULL;
2767	}
2768
2769	if (regs) {
2770		perf_callchain_store(entry, PERF_CONTEXT_USER);
2771		perf_callchain_user(entry, regs);
2772	}
2773
2774exit_put:
2775	put_callchain_entry(rctx);
2776
2777	return entry;
2778}
2779
2780/*
2781 * Initialize the perf_event context in a task_struct:
2782 */
2783static void __perf_event_init_context(struct perf_event_context *ctx)
2784{
2785	raw_spin_lock_init(&ctx->lock);
2786	mutex_init(&ctx->mutex);
2787	INIT_LIST_HEAD(&ctx->pinned_groups);
2788	INIT_LIST_HEAD(&ctx->flexible_groups);
2789	INIT_LIST_HEAD(&ctx->event_list);
2790	atomic_set(&ctx->refcount, 1);
2791}
2792
2793static struct perf_event_context *
2794alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2795{
2796	struct perf_event_context *ctx;
2797
2798	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2799	if (!ctx)
2800		return NULL;
2801
2802	__perf_event_init_context(ctx);
2803	if (task) {
2804		ctx->task = task;
2805		get_task_struct(task);
2806	}
2807	ctx->pmu = pmu;
2808
2809	return ctx;
2810}
2811
2812static struct task_struct *
2813find_lively_task_by_vpid(pid_t vpid)
2814{
2815	struct task_struct *task;
2816	int err;
2817
2818	rcu_read_lock();
2819	if (!vpid)
2820		task = current;
2821	else
2822		task = find_task_by_vpid(vpid);
2823	if (task)
2824		get_task_struct(task);
2825	rcu_read_unlock();
2826
2827	if (!task)
2828		return ERR_PTR(-ESRCH);
2829
2830	/* Reuse ptrace permission checks for now. */
2831	err = -EACCES;
2832	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2833		goto errout;
2834
2835	return task;
2836errout:
2837	put_task_struct(task);
2838	return ERR_PTR(err);
2839
2840}
2841
2842/*
2843 * Returns a matching context with refcount and pincount.
2844 */
2845static struct perf_event_context *
2846find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2847{
2848	struct perf_event_context *ctx;
2849	struct perf_cpu_context *cpuctx;
2850	unsigned long flags;
2851	int ctxn, err;
2852
2853	if (!task) {
2854		/* Must be root to operate on a CPU event: */
2855		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2856			return ERR_PTR(-EACCES);
2857
2858		/*
2859		 * We could be clever and allow to attach a event to an
2860		 * offline CPU and activate it when the CPU comes up, but
2861		 * that's for later.
2862		 */
2863		if (!cpu_online(cpu))
2864			return ERR_PTR(-ENODEV);
2865
2866		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2867		ctx = &cpuctx->ctx;
2868		get_ctx(ctx);
2869		++ctx->pin_count;
2870
2871		return ctx;
2872	}
2873
2874	err = -EINVAL;
2875	ctxn = pmu->task_ctx_nr;
2876	if (ctxn < 0)
2877		goto errout;
2878
2879retry:
2880	ctx = perf_lock_task_context(task, ctxn, &flags);
2881	if (ctx) {
2882		unclone_ctx(ctx);
2883		++ctx->pin_count;
2884		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2885	} else {
2886		ctx = alloc_perf_context(pmu, task);
2887		err = -ENOMEM;
2888		if (!ctx)
2889			goto errout;
2890
2891		err = 0;
2892		mutex_lock(&task->perf_event_mutex);
2893		/*
2894		 * If it has already passed perf_event_exit_task().
2895		 * we must see PF_EXITING, it takes this mutex too.
2896		 */
2897		if (task->flags & PF_EXITING)
2898			err = -ESRCH;
2899		else if (task->perf_event_ctxp[ctxn])
2900			err = -EAGAIN;
2901		else {
2902			get_ctx(ctx);
2903			++ctx->pin_count;
2904			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2905		}
2906		mutex_unlock(&task->perf_event_mutex);
2907
2908		if (unlikely(err)) {
2909			put_ctx(ctx);
2910
2911			if (err == -EAGAIN)
2912				goto retry;
2913			goto errout;
2914		}
2915	}
2916
2917	return ctx;
2918
2919errout:
2920	return ERR_PTR(err);
2921}
2922
2923static void perf_event_free_filter(struct perf_event *event);
2924
2925static void free_event_rcu(struct rcu_head *head)
2926{
2927	struct perf_event *event;
2928
2929	event = container_of(head, struct perf_event, rcu_head);
2930	if (event->ns)
2931		put_pid_ns(event->ns);
2932	perf_event_free_filter(event);
2933	kfree(event);
2934}
2935
2936static void ring_buffer_put(struct ring_buffer *rb);
 
 
 
 
 
 
 
2937
2938static void free_event(struct perf_event *event)
 
 
 
 
 
 
 
 
2939{
2940	irq_work_sync(&event->pending);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941
 
 
2942	if (!event->parent) {
2943		if (event->attach_state & PERF_ATTACH_TASK)
2944			jump_label_dec(&perf_sched_events);
2945		if (event->attr.mmap || event->attr.mmap_data)
2946			atomic_dec(&nr_mmap_events);
2947		if (event->attr.comm)
2948			atomic_dec(&nr_comm_events);
2949		if (event->attr.task)
2950			atomic_dec(&nr_task_events);
2951		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2952			put_callchain_buffers();
2953		if (is_cgroup_event(event)) {
2954			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2955			jump_label_dec(&perf_sched_events);
2956		}
2957	}
2958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2959	if (event->rb) {
2960		ring_buffer_put(event->rb);
2961		event->rb = NULL;
 
 
 
 
 
 
 
2962	}
2963
2964	if (is_cgroup_event(event))
2965		perf_detach_cgroup(event);
2966
2967	if (event->destroy)
2968		event->destroy(event);
2969
2970	if (event->ctx)
2971		put_ctx(event->ctx);
2972
2973	call_rcu(&event->rcu_head, free_event_rcu);
2974}
2975
2976int perf_event_release_kernel(struct perf_event *event)
2977{
2978	struct perf_event_context *ctx = event->ctx;
2979
2980	WARN_ON_ONCE(ctx->parent_ctx);
2981	/*
2982	 * There are two ways this annotation is useful:
2983	 *
2984	 *  1) there is a lock recursion from perf_event_exit_task
2985	 *     see the comment there.
2986	 *
2987	 *  2) there is a lock-inversion with mmap_sem through
2988	 *     perf_event_read_group(), which takes faults while
2989	 *     holding ctx->mutex, however this is called after
2990	 *     the last filedesc died, so there is no possibility
2991	 *     to trigger the AB-BA case.
2992	 */
2993	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2994	raw_spin_lock_irq(&ctx->lock);
2995	perf_group_detach(event);
2996	raw_spin_unlock_irq(&ctx->lock);
2997	perf_remove_from_context(event);
2998	mutex_unlock(&ctx->mutex);
2999
3000	free_event(event);
3001
3002	return 0;
3003}
3004EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3005
3006/*
3007 * Called when the last reference to the file is gone.
3008 */
3009static int perf_release(struct inode *inode, struct file *file)
3010{
3011	struct perf_event *event = file->private_data;
3012	struct task_struct *owner;
3013
3014	file->private_data = NULL;
 
3015
3016	rcu_read_lock();
3017	owner = ACCESS_ONCE(event->owner);
3018	/*
3019	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3020	 * !owner it means the list deletion is complete and we can indeed
3021	 * free this event, otherwise we need to serialize on
3022	 * owner->perf_event_mutex.
3023	 */
3024	smp_read_barrier_depends();
3025	if (owner) {
3026		/*
3027		 * Since delayed_put_task_struct() also drops the last
3028		 * task reference we can safely take a new reference
3029		 * while holding the rcu_read_lock().
3030		 */
3031		get_task_struct(owner);
3032	}
3033	rcu_read_unlock();
3034
3035	if (owner) {
3036		mutex_lock(&owner->perf_event_mutex);
3037		/*
3038		 * We have to re-check the event->owner field, if it is cleared
3039		 * we raced with perf_event_exit_task(), acquiring the mutex
3040		 * ensured they're done, and we can proceed with freeing the
3041		 * event.
3042		 */
3043		if (event->owner)
3044			list_del_init(&event->owner_entry);
3045		mutex_unlock(&owner->perf_event_mutex);
3046		put_task_struct(owner);
3047	}
3048
3049	return perf_event_release_kernel(event);
 
 
 
 
 
 
3050}
3051
3052u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3053{
3054	struct perf_event *child;
3055	u64 total = 0;
3056
3057	*enabled = 0;
3058	*running = 0;
3059
3060	mutex_lock(&event->child_mutex);
3061	total += perf_event_read(event);
3062	*enabled += event->total_time_enabled +
3063			atomic64_read(&event->child_total_time_enabled);
3064	*running += event->total_time_running +
3065			atomic64_read(&event->child_total_time_running);
3066
3067	list_for_each_entry(child, &event->child_list, child_list) {
3068		total += perf_event_read(child);
3069		*enabled += child->total_time_enabled;
3070		*running += child->total_time_running;
3071	}
3072	mutex_unlock(&event->child_mutex);
3073
3074	return total;
3075}
3076EXPORT_SYMBOL_GPL(perf_event_read_value);
3077
3078static int perf_event_read_group(struct perf_event *event,
3079				   u64 read_format, char __user *buf)
3080{
3081	struct perf_event *leader = event->group_leader, *sub;
3082	int n = 0, size = 0, ret = -EFAULT;
3083	struct perf_event_context *ctx = leader->ctx;
3084	u64 values[5];
3085	u64 count, enabled, running;
3086
3087	mutex_lock(&ctx->mutex);
3088	count = perf_event_read_value(leader, &enabled, &running);
3089
3090	values[n++] = 1 + leader->nr_siblings;
3091	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3092		values[n++] = enabled;
3093	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3094		values[n++] = running;
3095	values[n++] = count;
3096	if (read_format & PERF_FORMAT_ID)
3097		values[n++] = primary_event_id(leader);
3098
3099	size = n * sizeof(u64);
3100
3101	if (copy_to_user(buf, values, size))
3102		goto unlock;
3103
3104	ret = size;
3105
3106	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3107		n = 0;
3108
3109		values[n++] = perf_event_read_value(sub, &enabled, &running);
3110		if (read_format & PERF_FORMAT_ID)
3111			values[n++] = primary_event_id(sub);
3112
3113		size = n * sizeof(u64);
3114
3115		if (copy_to_user(buf + ret, values, size)) {
3116			ret = -EFAULT;
3117			goto unlock;
3118		}
3119
3120		ret += size;
3121	}
3122unlock:
3123	mutex_unlock(&ctx->mutex);
3124
3125	return ret;
3126}
3127
3128static int perf_event_read_one(struct perf_event *event,
3129				 u64 read_format, char __user *buf)
3130{
3131	u64 enabled, running;
3132	u64 values[4];
3133	int n = 0;
3134
3135	values[n++] = perf_event_read_value(event, &enabled, &running);
3136	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3137		values[n++] = enabled;
3138	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3139		values[n++] = running;
3140	if (read_format & PERF_FORMAT_ID)
3141		values[n++] = primary_event_id(event);
3142
3143	if (copy_to_user(buf, values, n * sizeof(u64)))
3144		return -EFAULT;
3145
3146	return n * sizeof(u64);
3147}
3148
3149/*
3150 * Read the performance event - simple non blocking version for now
3151 */
3152static ssize_t
3153perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3154{
3155	u64 read_format = event->attr.read_format;
3156	int ret;
3157
3158	/*
3159	 * Return end-of-file for a read on a event that is in
3160	 * error state (i.e. because it was pinned but it couldn't be
3161	 * scheduled on to the CPU at some point).
3162	 */
3163	if (event->state == PERF_EVENT_STATE_ERROR)
3164		return 0;
3165
3166	if (count < event->read_size)
3167		return -ENOSPC;
3168
3169	WARN_ON_ONCE(event->ctx->parent_ctx);
3170	if (read_format & PERF_FORMAT_GROUP)
3171		ret = perf_event_read_group(event, read_format, buf);
3172	else
3173		ret = perf_event_read_one(event, read_format, buf);
3174
3175	return ret;
3176}
3177
3178static ssize_t
3179perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3180{
3181	struct perf_event *event = file->private_data;
3182
3183	return perf_read_hw(event, buf, count);
3184}
3185
3186static unsigned int perf_poll(struct file *file, poll_table *wait)
3187{
3188	struct perf_event *event = file->private_data;
3189	struct ring_buffer *rb;
3190	unsigned int events = POLL_HUP;
3191
3192	rcu_read_lock();
3193	rb = rcu_dereference(event->rb);
 
 
 
 
3194	if (rb)
3195		events = atomic_xchg(&rb->poll, 0);
3196	rcu_read_unlock();
3197
3198	poll_wait(file, &event->waitq, wait);
3199
3200	return events;
3201}
3202
3203static void perf_event_reset(struct perf_event *event)
3204{
3205	(void)perf_event_read(event);
3206	local64_set(&event->count, 0);
3207	perf_event_update_userpage(event);
3208}
3209
3210/*
3211 * Holding the top-level event's child_mutex means that any
3212 * descendant process that has inherited this event will block
3213 * in sync_child_event if it goes to exit, thus satisfying the
3214 * task existence requirements of perf_event_enable/disable.
3215 */
3216static void perf_event_for_each_child(struct perf_event *event,
3217					void (*func)(struct perf_event *))
3218{
3219	struct perf_event *child;
3220
3221	WARN_ON_ONCE(event->ctx->parent_ctx);
3222	mutex_lock(&event->child_mutex);
3223	func(event);
3224	list_for_each_entry(child, &event->child_list, child_list)
3225		func(child);
3226	mutex_unlock(&event->child_mutex);
3227}
3228
3229static void perf_event_for_each(struct perf_event *event,
3230				  void (*func)(struct perf_event *))
3231{
3232	struct perf_event_context *ctx = event->ctx;
3233	struct perf_event *sibling;
3234
3235	WARN_ON_ONCE(ctx->parent_ctx);
3236	mutex_lock(&ctx->mutex);
3237	event = event->group_leader;
3238
3239	perf_event_for_each_child(event, func);
3240	func(event);
3241	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3242		perf_event_for_each_child(event, func);
3243	mutex_unlock(&ctx->mutex);
3244}
3245
3246static int perf_event_period(struct perf_event *event, u64 __user *arg)
3247{
3248	struct perf_event_context *ctx = event->ctx;
3249	int ret = 0;
3250	u64 value;
3251
3252	if (!is_sampling_event(event))
3253		return -EINVAL;
3254
3255	if (copy_from_user(&value, arg, sizeof(value)))
3256		return -EFAULT;
3257
3258	if (!value)
3259		return -EINVAL;
3260
3261	raw_spin_lock_irq(&ctx->lock);
3262	if (event->attr.freq) {
3263		if (value > sysctl_perf_event_sample_rate) {
3264			ret = -EINVAL;
3265			goto unlock;
3266		}
3267
3268		event->attr.sample_freq = value;
3269	} else {
3270		event->attr.sample_period = value;
3271		event->hw.sample_period = value;
3272	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3273unlock:
3274	raw_spin_unlock_irq(&ctx->lock);
3275
3276	return ret;
3277}
3278
3279static const struct file_operations perf_fops;
3280
3281static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3282{
3283	struct file *file;
 
 
3284
3285	file = fget_light(fd, fput_needed);
3286	if (!file)
3287		return ERR_PTR(-EBADF);
3288
3289	if (file->f_op != &perf_fops) {
3290		fput_light(file, *fput_needed);
3291		*fput_needed = 0;
3292		return ERR_PTR(-EBADF);
3293	}
3294
3295	return file->private_data;
3296}
3297
3298static int perf_event_set_output(struct perf_event *event,
3299				 struct perf_event *output_event);
3300static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3301
3302static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3303{
3304	struct perf_event *event = file->private_data;
3305	void (*func)(struct perf_event *);
3306	u32 flags = arg;
3307
3308	switch (cmd) {
3309	case PERF_EVENT_IOC_ENABLE:
3310		func = perf_event_enable;
3311		break;
3312	case PERF_EVENT_IOC_DISABLE:
3313		func = perf_event_disable;
3314		break;
3315	case PERF_EVENT_IOC_RESET:
3316		func = perf_event_reset;
3317		break;
3318
3319	case PERF_EVENT_IOC_REFRESH:
3320		return perf_event_refresh(event, arg);
3321
3322	case PERF_EVENT_IOC_PERIOD:
3323		return perf_event_period(event, (u64 __user *)arg);
3324
 
 
 
 
 
 
 
 
 
3325	case PERF_EVENT_IOC_SET_OUTPUT:
3326	{
3327		struct perf_event *output_event = NULL;
3328		int fput_needed = 0;
3329		int ret;
3330
3331		if (arg != -1) {
3332			output_event = perf_fget_light(arg, &fput_needed);
3333			if (IS_ERR(output_event))
3334				return PTR_ERR(output_event);
 
 
 
 
 
 
 
3335		}
3336
3337		ret = perf_event_set_output(event, output_event);
3338		if (output_event)
3339			fput_light(output_event->filp, fput_needed);
3340
3341		return ret;
3342	}
3343
3344	case PERF_EVENT_IOC_SET_FILTER:
3345		return perf_event_set_filter(event, (void __user *)arg);
3346
3347	default:
3348		return -ENOTTY;
3349	}
3350
3351	if (flags & PERF_IOC_FLAG_GROUP)
3352		perf_event_for_each(event, func);
3353	else
3354		perf_event_for_each_child(event, func);
3355
3356	return 0;
3357}
3358
3359int perf_event_task_enable(void)
3360{
3361	struct perf_event *event;
3362
3363	mutex_lock(&current->perf_event_mutex);
3364	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3365		perf_event_for_each_child(event, perf_event_enable);
3366	mutex_unlock(&current->perf_event_mutex);
3367
3368	return 0;
3369}
3370
3371int perf_event_task_disable(void)
3372{
3373	struct perf_event *event;
3374
3375	mutex_lock(&current->perf_event_mutex);
3376	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3377		perf_event_for_each_child(event, perf_event_disable);
3378	mutex_unlock(&current->perf_event_mutex);
3379
3380	return 0;
3381}
3382
3383#ifndef PERF_EVENT_INDEX_OFFSET
3384# define PERF_EVENT_INDEX_OFFSET 0
3385#endif
3386
3387static int perf_event_index(struct perf_event *event)
3388{
3389	if (event->hw.state & PERF_HES_STOPPED)
3390		return 0;
3391
3392	if (event->state != PERF_EVENT_STATE_ACTIVE)
3393		return 0;
3394
3395	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3396}
3397
3398static void calc_timer_values(struct perf_event *event,
 
3399				u64 *enabled,
3400				u64 *running)
3401{
3402	u64 now, ctx_time;
3403
3404	now = perf_clock();
3405	ctx_time = event->shadow_ctx_time + now;
3406	*enabled = ctx_time - event->tstamp_enabled;
3407	*running = ctx_time - event->tstamp_running;
3408}
3409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410/*
3411 * Callers need to ensure there can be no nesting of this function, otherwise
3412 * the seqlock logic goes bad. We can not serialize this because the arch
3413 * code calls this from NMI context.
3414 */
3415void perf_event_update_userpage(struct perf_event *event)
3416{
3417	struct perf_event_mmap_page *userpg;
3418	struct ring_buffer *rb;
3419	u64 enabled, running;
3420
3421	rcu_read_lock();
 
 
 
 
3422	/*
3423	 * compute total_time_enabled, total_time_running
3424	 * based on snapshot values taken when the event
3425	 * was last scheduled in.
3426	 *
3427	 * we cannot simply called update_context_time()
3428	 * because of locking issue as we can be called in
3429	 * NMI context
3430	 */
3431	calc_timer_values(event, &enabled, &running);
3432	rb = rcu_dereference(event->rb);
3433	if (!rb)
3434		goto unlock;
3435
3436	userpg = rb->user_page;
3437
3438	/*
3439	 * Disable preemption so as to not let the corresponding user-space
3440	 * spin too long if we get preempted.
3441	 */
3442	preempt_disable();
3443	++userpg->lock;
3444	barrier();
3445	userpg->index = perf_event_index(event);
3446	userpg->offset = perf_event_count(event);
3447	if (event->state == PERF_EVENT_STATE_ACTIVE)
3448		userpg->offset -= local64_read(&event->hw.prev_count);
3449
3450	userpg->time_enabled = enabled +
3451			atomic64_read(&event->child_total_time_enabled);
3452
3453	userpg->time_running = running +
3454			atomic64_read(&event->child_total_time_running);
3455
 
 
3456	barrier();
3457	++userpg->lock;
3458	preempt_enable();
3459unlock:
3460	rcu_read_unlock();
3461}
3462
3463static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3464{
3465	struct perf_event *event = vma->vm_file->private_data;
3466	struct ring_buffer *rb;
3467	int ret = VM_FAULT_SIGBUS;
3468
3469	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3470		if (vmf->pgoff == 0)
3471			ret = 0;
3472		return ret;
3473	}
3474
3475	rcu_read_lock();
3476	rb = rcu_dereference(event->rb);
3477	if (!rb)
3478		goto unlock;
3479
3480	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3481		goto unlock;
3482
3483	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3484	if (!vmf->page)
3485		goto unlock;
3486
3487	get_page(vmf->page);
3488	vmf->page->mapping = vma->vm_file->f_mapping;
3489	vmf->page->index   = vmf->pgoff;
3490
3491	ret = 0;
3492unlock:
3493	rcu_read_unlock();
3494
3495	return ret;
3496}
3497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498static void rb_free_rcu(struct rcu_head *rcu_head)
3499{
3500	struct ring_buffer *rb;
3501
3502	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3503	rb_free(rb);
3504}
3505
3506static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3507{
3508	struct ring_buffer *rb;
3509
3510	rcu_read_lock();
3511	rb = rcu_dereference(event->rb);
3512	if (rb) {
3513		if (!atomic_inc_not_zero(&rb->refcount))
3514			rb = NULL;
3515	}
3516	rcu_read_unlock();
3517
3518	return rb;
3519}
3520
3521static void ring_buffer_put(struct ring_buffer *rb)
3522{
3523	if (!atomic_dec_and_test(&rb->refcount))
3524		return;
3525
 
 
3526	call_rcu(&rb->rcu_head, rb_free_rcu);
3527}
3528
3529static void perf_mmap_open(struct vm_area_struct *vma)
3530{
3531	struct perf_event *event = vma->vm_file->private_data;
3532
3533	atomic_inc(&event->mmap_count);
 
3534}
3535
 
 
 
 
 
 
 
 
3536static void perf_mmap_close(struct vm_area_struct *vma)
3537{
3538	struct perf_event *event = vma->vm_file->private_data;
3539
3540	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3541		unsigned long size = perf_data_size(event->rb);
3542		struct user_struct *user = event->mmap_user;
3543		struct ring_buffer *rb = event->rb;
3544
3545		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3546		vma->vm_mm->locked_vm -= event->mmap_locked;
3547		rcu_assign_pointer(event->rb, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3548		mutex_unlock(&event->mmap_mutex);
 
3549
3550		ring_buffer_put(rb);
3551		free_uid(user);
 
 
 
3552	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553}
3554
3555static const struct vm_operations_struct perf_mmap_vmops = {
3556	.open		= perf_mmap_open,
3557	.close		= perf_mmap_close,
3558	.fault		= perf_mmap_fault,
3559	.page_mkwrite	= perf_mmap_fault,
3560};
3561
3562static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3563{
3564	struct perf_event *event = file->private_data;
3565	unsigned long user_locked, user_lock_limit;
3566	struct user_struct *user = current_user();
3567	unsigned long locked, lock_limit;
3568	struct ring_buffer *rb;
3569	unsigned long vma_size;
3570	unsigned long nr_pages;
3571	long user_extra, extra;
3572	int ret = 0, flags = 0;
3573
3574	/*
3575	 * Don't allow mmap() of inherited per-task counters. This would
3576	 * create a performance issue due to all children writing to the
3577	 * same rb.
3578	 */
3579	if (event->cpu == -1 && event->attr.inherit)
3580		return -EINVAL;
3581
3582	if (!(vma->vm_flags & VM_SHARED))
3583		return -EINVAL;
3584
3585	vma_size = vma->vm_end - vma->vm_start;
3586	nr_pages = (vma_size / PAGE_SIZE) - 1;
3587
3588	/*
3589	 * If we have rb pages ensure they're a power-of-two number, so we
3590	 * can do bitmasks instead of modulo.
3591	 */
3592	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3593		return -EINVAL;
3594
3595	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3596		return -EINVAL;
3597
3598	if (vma->vm_pgoff != 0)
3599		return -EINVAL;
3600
3601	WARN_ON_ONCE(event->ctx->parent_ctx);
 
3602	mutex_lock(&event->mmap_mutex);
3603	if (event->rb) {
3604		if (event->rb->nr_pages == nr_pages)
3605			atomic_inc(&event->rb->refcount);
3606		else
3607			ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
3608		goto unlock;
3609	}
3610
3611	user_extra = nr_pages + 1;
3612	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3613
3614	/*
3615	 * Increase the limit linearly with more CPUs:
3616	 */
3617	user_lock_limit *= num_online_cpus();
3618
3619	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3620
3621	extra = 0;
3622	if (user_locked > user_lock_limit)
3623		extra = user_locked - user_lock_limit;
3624
3625	lock_limit = rlimit(RLIMIT_MEMLOCK);
3626	lock_limit >>= PAGE_SHIFT;
3627	locked = vma->vm_mm->locked_vm + extra;
3628
3629	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3630		!capable(CAP_IPC_LOCK)) {
3631		ret = -EPERM;
3632		goto unlock;
3633	}
3634
3635	WARN_ON(event->rb);
3636
3637	if (vma->vm_flags & VM_WRITE)
3638		flags |= RING_BUFFER_WRITABLE;
3639
3640	rb = rb_alloc(nr_pages, 
3641		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3642		event->cpu, flags);
3643
3644	if (!rb) {
3645		ret = -ENOMEM;
3646		goto unlock;
3647	}
3648	rcu_assign_pointer(event->rb, rb);
 
 
 
3649
3650	atomic_long_add(user_extra, &user->locked_vm);
3651	event->mmap_locked = extra;
3652	event->mmap_user = get_current_user();
3653	vma->vm_mm->locked_vm += event->mmap_locked;
 
 
 
3654
3655unlock:
3656	if (!ret)
3657		atomic_inc(&event->mmap_count);
3658	mutex_unlock(&event->mmap_mutex);
3659
3660	vma->vm_flags |= VM_RESERVED;
 
 
 
 
3661	vma->vm_ops = &perf_mmap_vmops;
3662
3663	return ret;
3664}
3665
3666static int perf_fasync(int fd, struct file *filp, int on)
3667{
3668	struct inode *inode = filp->f_path.dentry->d_inode;
3669	struct perf_event *event = filp->private_data;
3670	int retval;
3671
3672	mutex_lock(&inode->i_mutex);
3673	retval = fasync_helper(fd, filp, on, &event->fasync);
3674	mutex_unlock(&inode->i_mutex);
3675
3676	if (retval < 0)
3677		return retval;
3678
3679	return 0;
3680}
3681
3682static const struct file_operations perf_fops = {
3683	.llseek			= no_llseek,
3684	.release		= perf_release,
3685	.read			= perf_read,
3686	.poll			= perf_poll,
3687	.unlocked_ioctl		= perf_ioctl,
3688	.compat_ioctl		= perf_ioctl,
3689	.mmap			= perf_mmap,
3690	.fasync			= perf_fasync,
3691};
3692
3693/*
3694 * Perf event wakeup
3695 *
3696 * If there's data, ensure we set the poll() state and publish everything
3697 * to user-space before waking everybody up.
3698 */
3699
3700void perf_event_wakeup(struct perf_event *event)
3701{
3702	wake_up_all(&event->waitq);
3703
3704	if (event->pending_kill) {
3705		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3706		event->pending_kill = 0;
3707	}
3708}
3709
3710static void perf_pending_event(struct irq_work *entry)
3711{
3712	struct perf_event *event = container_of(entry,
3713			struct perf_event, pending);
3714
3715	if (event->pending_disable) {
3716		event->pending_disable = 0;
3717		__perf_event_disable(event);
3718	}
3719
3720	if (event->pending_wakeup) {
3721		event->pending_wakeup = 0;
3722		perf_event_wakeup(event);
3723	}
3724}
3725
3726/*
3727 * We assume there is only KVM supporting the callbacks.
3728 * Later on, we might change it to a list if there is
3729 * another virtualization implementation supporting the callbacks.
3730 */
3731struct perf_guest_info_callbacks *perf_guest_cbs;
3732
3733int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3734{
3735	perf_guest_cbs = cbs;
3736	return 0;
3737}
3738EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3739
3740int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741{
3742	perf_guest_cbs = NULL;
3743	return 0;
3744}
3745EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3747static void __perf_event_header__init_id(struct perf_event_header *header,
3748					 struct perf_sample_data *data,
3749					 struct perf_event *event)
3750{
3751	u64 sample_type = event->attr.sample_type;
3752
3753	data->type = sample_type;
3754	header->size += event->id_header_size;
3755
3756	if (sample_type & PERF_SAMPLE_TID) {
3757		/* namespace issues */
3758		data->tid_entry.pid = perf_event_pid(event, current);
3759		data->tid_entry.tid = perf_event_tid(event, current);
3760	}
3761
3762	if (sample_type & PERF_SAMPLE_TIME)
3763		data->time = perf_clock();
3764
3765	if (sample_type & PERF_SAMPLE_ID)
3766		data->id = primary_event_id(event);
3767
3768	if (sample_type & PERF_SAMPLE_STREAM_ID)
3769		data->stream_id = event->id;
3770
3771	if (sample_type & PERF_SAMPLE_CPU) {
3772		data->cpu_entry.cpu	 = raw_smp_processor_id();
3773		data->cpu_entry.reserved = 0;
3774	}
3775}
3776
3777void perf_event_header__init_id(struct perf_event_header *header,
3778				struct perf_sample_data *data,
3779				struct perf_event *event)
3780{
3781	if (event->attr.sample_id_all)
3782		__perf_event_header__init_id(header, data, event);
3783}
3784
3785static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3786					   struct perf_sample_data *data)
3787{
3788	u64 sample_type = data->type;
3789
3790	if (sample_type & PERF_SAMPLE_TID)
3791		perf_output_put(handle, data->tid_entry);
3792
3793	if (sample_type & PERF_SAMPLE_TIME)
3794		perf_output_put(handle, data->time);
3795
3796	if (sample_type & PERF_SAMPLE_ID)
3797		perf_output_put(handle, data->id);
3798
3799	if (sample_type & PERF_SAMPLE_STREAM_ID)
3800		perf_output_put(handle, data->stream_id);
3801
3802	if (sample_type & PERF_SAMPLE_CPU)
3803		perf_output_put(handle, data->cpu_entry);
 
 
 
3804}
3805
3806void perf_event__output_id_sample(struct perf_event *event,
3807				  struct perf_output_handle *handle,
3808				  struct perf_sample_data *sample)
3809{
3810	if (event->attr.sample_id_all)
3811		__perf_event__output_id_sample(handle, sample);
3812}
3813
3814static void perf_output_read_one(struct perf_output_handle *handle,
3815				 struct perf_event *event,
3816				 u64 enabled, u64 running)
3817{
3818	u64 read_format = event->attr.read_format;
3819	u64 values[4];
3820	int n = 0;
3821
3822	values[n++] = perf_event_count(event);
3823	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3824		values[n++] = enabled +
3825			atomic64_read(&event->child_total_time_enabled);
3826	}
3827	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3828		values[n++] = running +
3829			atomic64_read(&event->child_total_time_running);
3830	}
3831	if (read_format & PERF_FORMAT_ID)
3832		values[n++] = primary_event_id(event);
3833
3834	__output_copy(handle, values, n * sizeof(u64));
3835}
3836
3837/*
3838 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3839 */
3840static void perf_output_read_group(struct perf_output_handle *handle,
3841			    struct perf_event *event,
3842			    u64 enabled, u64 running)
3843{
3844	struct perf_event *leader = event->group_leader, *sub;
3845	u64 read_format = event->attr.read_format;
3846	u64 values[5];
3847	int n = 0;
3848
3849	values[n++] = 1 + leader->nr_siblings;
3850
3851	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3852		values[n++] = enabled;
3853
3854	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3855		values[n++] = running;
3856
3857	if (leader != event)
3858		leader->pmu->read(leader);
3859
3860	values[n++] = perf_event_count(leader);
3861	if (read_format & PERF_FORMAT_ID)
3862		values[n++] = primary_event_id(leader);
3863
3864	__output_copy(handle, values, n * sizeof(u64));
3865
3866	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3867		n = 0;
3868
3869		if (sub != event)
 
3870			sub->pmu->read(sub);
3871
3872		values[n++] = perf_event_count(sub);
3873		if (read_format & PERF_FORMAT_ID)
3874			values[n++] = primary_event_id(sub);
3875
3876		__output_copy(handle, values, n * sizeof(u64));
3877	}
3878}
3879
3880#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3881				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3882
3883static void perf_output_read(struct perf_output_handle *handle,
3884			     struct perf_event *event)
3885{
3886	u64 enabled = 0, running = 0;
3887	u64 read_format = event->attr.read_format;
3888
3889	/*
3890	 * compute total_time_enabled, total_time_running
3891	 * based on snapshot values taken when the event
3892	 * was last scheduled in.
3893	 *
3894	 * we cannot simply called update_context_time()
3895	 * because of locking issue as we are called in
3896	 * NMI context
3897	 */
3898	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3899		calc_timer_values(event, &enabled, &running);
3900
3901	if (event->attr.read_format & PERF_FORMAT_GROUP)
3902		perf_output_read_group(handle, event, enabled, running);
3903	else
3904		perf_output_read_one(handle, event, enabled, running);
3905}
3906
3907void perf_output_sample(struct perf_output_handle *handle,
3908			struct perf_event_header *header,
3909			struct perf_sample_data *data,
3910			struct perf_event *event)
3911{
3912	u64 sample_type = data->type;
3913
3914	perf_output_put(handle, *header);
3915
 
 
 
3916	if (sample_type & PERF_SAMPLE_IP)
3917		perf_output_put(handle, data->ip);
3918
3919	if (sample_type & PERF_SAMPLE_TID)
3920		perf_output_put(handle, data->tid_entry);
3921
3922	if (sample_type & PERF_SAMPLE_TIME)
3923		perf_output_put(handle, data->time);
3924
3925	if (sample_type & PERF_SAMPLE_ADDR)
3926		perf_output_put(handle, data->addr);
3927
3928	if (sample_type & PERF_SAMPLE_ID)
3929		perf_output_put(handle, data->id);
3930
3931	if (sample_type & PERF_SAMPLE_STREAM_ID)
3932		perf_output_put(handle, data->stream_id);
3933
3934	if (sample_type & PERF_SAMPLE_CPU)
3935		perf_output_put(handle, data->cpu_entry);
3936
3937	if (sample_type & PERF_SAMPLE_PERIOD)
3938		perf_output_put(handle, data->period);
3939
3940	if (sample_type & PERF_SAMPLE_READ)
3941		perf_output_read(handle, event);
3942
3943	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3944		if (data->callchain) {
3945			int size = 1;
3946
3947			if (data->callchain)
3948				size += data->callchain->nr;
3949
3950			size *= sizeof(u64);
3951
3952			__output_copy(handle, data->callchain, size);
3953		} else {
3954			u64 nr = 0;
3955			perf_output_put(handle, nr);
3956		}
3957	}
3958
3959	if (sample_type & PERF_SAMPLE_RAW) {
3960		if (data->raw) {
3961			perf_output_put(handle, data->raw->size);
3962			__output_copy(handle, data->raw->data,
3963					   data->raw->size);
3964		} else {
3965			struct {
3966				u32	size;
3967				u32	data;
3968			} raw = {
3969				.size = sizeof(u32),
3970				.data = 0,
3971			};
3972			perf_output_put(handle, raw);
3973		}
3974	}
3975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3976	if (!event->attr.watermark) {
3977		int wakeup_events = event->attr.wakeup_events;
3978
3979		if (wakeup_events) {
3980			struct ring_buffer *rb = handle->rb;
3981			int events = local_inc_return(&rb->events);
3982
3983			if (events >= wakeup_events) {
3984				local_sub(wakeup_events, &rb->events);
3985				local_inc(&rb->wakeup);
3986			}
3987		}
3988	}
3989}
3990
3991void perf_prepare_sample(struct perf_event_header *header,
3992			 struct perf_sample_data *data,
3993			 struct perf_event *event,
3994			 struct pt_regs *regs)
3995{
3996	u64 sample_type = event->attr.sample_type;
3997
3998	header->type = PERF_RECORD_SAMPLE;
3999	header->size = sizeof(*header) + event->header_size;
4000
4001	header->misc = 0;
4002	header->misc |= perf_misc_flags(regs);
4003
4004	__perf_event_header__init_id(header, data, event);
4005
4006	if (sample_type & PERF_SAMPLE_IP)
4007		data->ip = perf_instruction_pointer(regs);
4008
4009	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4010		int size = 1;
4011
4012		data->callchain = perf_callchain(regs);
4013
4014		if (data->callchain)
4015			size += data->callchain->nr;
4016
4017		header->size += size * sizeof(u64);
4018	}
4019
4020	if (sample_type & PERF_SAMPLE_RAW) {
4021		int size = sizeof(u32);
4022
4023		if (data->raw)
4024			size += data->raw->size;
4025		else
4026			size += sizeof(u32);
4027
4028		WARN_ON_ONCE(size & (sizeof(u64)-1));
4029		header->size += size;
4030	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4031}
4032
4033static void perf_event_output(struct perf_event *event,
4034				struct perf_sample_data *data,
4035				struct pt_regs *regs)
4036{
4037	struct perf_output_handle handle;
4038	struct perf_event_header header;
4039
4040	/* protect the callchain buffers */
4041	rcu_read_lock();
4042
4043	perf_prepare_sample(&header, data, event, regs);
4044
4045	if (perf_output_begin(&handle, event, header.size))
4046		goto exit;
4047
4048	perf_output_sample(&handle, &header, data, event);
4049
4050	perf_output_end(&handle);
4051
4052exit:
4053	rcu_read_unlock();
4054}
4055
4056/*
4057 * read event_id
4058 */
4059
4060struct perf_read_event {
4061	struct perf_event_header	header;
4062
4063	u32				pid;
4064	u32				tid;
4065};
4066
4067static void
4068perf_event_read_event(struct perf_event *event,
4069			struct task_struct *task)
4070{
4071	struct perf_output_handle handle;
4072	struct perf_sample_data sample;
4073	struct perf_read_event read_event = {
4074		.header = {
4075			.type = PERF_RECORD_READ,
4076			.misc = 0,
4077			.size = sizeof(read_event) + event->read_size,
4078		},
4079		.pid = perf_event_pid(event, task),
4080		.tid = perf_event_tid(event, task),
4081	};
4082	int ret;
4083
4084	perf_event_header__init_id(&read_event.header, &sample, event);
4085	ret = perf_output_begin(&handle, event, read_event.header.size);
4086	if (ret)
4087		return;
4088
4089	perf_output_put(&handle, read_event);
4090	perf_output_read(&handle, event);
4091	perf_event__output_id_sample(event, &handle, &sample);
4092
4093	perf_output_end(&handle);
4094}
4095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4096/*
4097 * task tracking -- fork/exit
4098 *
4099 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4100 */
4101
4102struct perf_task_event {
4103	struct task_struct		*task;
4104	struct perf_event_context	*task_ctx;
4105
4106	struct {
4107		struct perf_event_header	header;
4108
4109		u32				pid;
4110		u32				ppid;
4111		u32				tid;
4112		u32				ptid;
4113		u64				time;
4114	} event_id;
4115};
4116
 
 
 
 
 
 
 
4117static void perf_event_task_output(struct perf_event *event,
4118				     struct perf_task_event *task_event)
4119{
 
4120	struct perf_output_handle handle;
4121	struct perf_sample_data	sample;
4122	struct task_struct *task = task_event->task;
4123	int ret, size = task_event->event_id.header.size;
4124
 
 
 
4125	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4126
4127	ret = perf_output_begin(&handle, event,
4128				task_event->event_id.header.size);
4129	if (ret)
4130		goto out;
4131
4132	task_event->event_id.pid = perf_event_pid(event, task);
4133	task_event->event_id.ppid = perf_event_pid(event, current);
4134
4135	task_event->event_id.tid = perf_event_tid(event, task);
4136	task_event->event_id.ptid = perf_event_tid(event, current);
4137
4138	perf_output_put(&handle, task_event->event_id);
4139
4140	perf_event__output_id_sample(event, &handle, &sample);
4141
4142	perf_output_end(&handle);
4143out:
4144	task_event->event_id.header.size = size;
4145}
4146
4147static int perf_event_task_match(struct perf_event *event)
4148{
4149	if (event->state < PERF_EVENT_STATE_INACTIVE)
4150		return 0;
4151
4152	if (!event_filter_match(event))
4153		return 0;
4154
4155	if (event->attr.comm || event->attr.mmap ||
4156	    event->attr.mmap_data || event->attr.task)
4157		return 1;
4158
4159	return 0;
4160}
4161
4162static void perf_event_task_ctx(struct perf_event_context *ctx,
4163				  struct perf_task_event *task_event)
4164{
4165	struct perf_event *event;
4166
4167	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4168		if (perf_event_task_match(event))
4169			perf_event_task_output(event, task_event);
4170	}
4171}
4172
4173static void perf_event_task_event(struct perf_task_event *task_event)
4174{
4175	struct perf_cpu_context *cpuctx;
4176	struct perf_event_context *ctx;
4177	struct pmu *pmu;
4178	int ctxn;
4179
4180	rcu_read_lock();
4181	list_for_each_entry_rcu(pmu, &pmus, entry) {
4182		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4183		if (cpuctx->active_pmu != pmu)
4184			goto next;
4185		perf_event_task_ctx(&cpuctx->ctx, task_event);
4186
4187		ctx = task_event->task_ctx;
4188		if (!ctx) {
4189			ctxn = pmu->task_ctx_nr;
4190			if (ctxn < 0)
4191				goto next;
4192			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4193		}
4194		if (ctx)
4195			perf_event_task_ctx(ctx, task_event);
4196next:
4197		put_cpu_ptr(pmu->pmu_cpu_context);
4198	}
4199	rcu_read_unlock();
4200}
4201
4202static void perf_event_task(struct task_struct *task,
4203			      struct perf_event_context *task_ctx,
4204			      int new)
4205{
4206	struct perf_task_event task_event;
4207
4208	if (!atomic_read(&nr_comm_events) &&
4209	    !atomic_read(&nr_mmap_events) &&
4210	    !atomic_read(&nr_task_events))
4211		return;
4212
4213	task_event = (struct perf_task_event){
4214		.task	  = task,
4215		.task_ctx = task_ctx,
4216		.event_id    = {
4217			.header = {
4218				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4219				.misc = 0,
4220				.size = sizeof(task_event.event_id),
4221			},
4222			/* .pid  */
4223			/* .ppid */
4224			/* .tid  */
4225			/* .ptid */
4226			.time = perf_clock(),
4227		},
4228	};
4229
4230	perf_event_task_event(&task_event);
 
 
4231}
4232
4233void perf_event_fork(struct task_struct *task)
4234{
4235	perf_event_task(task, NULL, 1);
4236}
4237
4238/*
4239 * comm tracking
4240 */
4241
4242struct perf_comm_event {
4243	struct task_struct	*task;
4244	char			*comm;
4245	int			comm_size;
4246
4247	struct {
4248		struct perf_event_header	header;
4249
4250		u32				pid;
4251		u32				tid;
4252	} event_id;
4253};
4254
 
 
 
 
 
4255static void perf_event_comm_output(struct perf_event *event,
4256				     struct perf_comm_event *comm_event)
4257{
 
4258	struct perf_output_handle handle;
4259	struct perf_sample_data sample;
4260	int size = comm_event->event_id.header.size;
4261	int ret;
4262
 
 
 
4263	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4264	ret = perf_output_begin(&handle, event,
4265				comm_event->event_id.header.size);
4266
4267	if (ret)
4268		goto out;
4269
4270	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4271	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4272
4273	perf_output_put(&handle, comm_event->event_id);
4274	__output_copy(&handle, comm_event->comm,
4275				   comm_event->comm_size);
4276
4277	perf_event__output_id_sample(event, &handle, &sample);
4278
4279	perf_output_end(&handle);
4280out:
4281	comm_event->event_id.header.size = size;
4282}
4283
4284static int perf_event_comm_match(struct perf_event *event)
4285{
4286	if (event->state < PERF_EVENT_STATE_INACTIVE)
4287		return 0;
4288
4289	if (!event_filter_match(event))
4290		return 0;
4291
4292	if (event->attr.comm)
4293		return 1;
4294
4295	return 0;
4296}
4297
4298static void perf_event_comm_ctx(struct perf_event_context *ctx,
4299				  struct perf_comm_event *comm_event)
4300{
4301	struct perf_event *event;
4302
4303	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4304		if (perf_event_comm_match(event))
4305			perf_event_comm_output(event, comm_event);
4306	}
4307}
4308
4309static void perf_event_comm_event(struct perf_comm_event *comm_event)
4310{
4311	struct perf_cpu_context *cpuctx;
4312	struct perf_event_context *ctx;
4313	char comm[TASK_COMM_LEN];
4314	unsigned int size;
4315	struct pmu *pmu;
4316	int ctxn;
4317
4318	memset(comm, 0, sizeof(comm));
4319	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4320	size = ALIGN(strlen(comm)+1, sizeof(u64));
4321
4322	comm_event->comm = comm;
4323	comm_event->comm_size = size;
4324
4325	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4326	rcu_read_lock();
4327	list_for_each_entry_rcu(pmu, &pmus, entry) {
4328		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4329		if (cpuctx->active_pmu != pmu)
4330			goto next;
4331		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4332
4333		ctxn = pmu->task_ctx_nr;
4334		if (ctxn < 0)
4335			goto next;
4336
4337		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4338		if (ctx)
4339			perf_event_comm_ctx(ctx, comm_event);
4340next:
4341		put_cpu_ptr(pmu->pmu_cpu_context);
4342	}
4343	rcu_read_unlock();
4344}
4345
4346void perf_event_comm(struct task_struct *task)
4347{
4348	struct perf_comm_event comm_event;
4349	struct perf_event_context *ctx;
4350	int ctxn;
4351
 
4352	for_each_task_context_nr(ctxn) {
4353		ctx = task->perf_event_ctxp[ctxn];
4354		if (!ctx)
4355			continue;
4356
4357		perf_event_enable_on_exec(ctx);
4358	}
 
4359
4360	if (!atomic_read(&nr_comm_events))
4361		return;
4362
4363	comm_event = (struct perf_comm_event){
4364		.task	= task,
4365		/* .comm      */
4366		/* .comm_size */
4367		.event_id  = {
4368			.header = {
4369				.type = PERF_RECORD_COMM,
4370				.misc = 0,
4371				/* .size */
4372			},
4373			/* .pid */
4374			/* .tid */
4375		},
4376	};
4377
4378	perf_event_comm_event(&comm_event);
4379}
4380
4381/*
4382 * mmap tracking
4383 */
4384
4385struct perf_mmap_event {
4386	struct vm_area_struct	*vma;
4387
4388	const char		*file_name;
4389	int			file_size;
 
 
 
4390
4391	struct {
4392		struct perf_event_header	header;
4393
4394		u32				pid;
4395		u32				tid;
4396		u64				start;
4397		u64				len;
4398		u64				pgoff;
4399	} event_id;
4400};
4401
 
 
 
 
 
 
 
 
 
 
 
4402static void perf_event_mmap_output(struct perf_event *event,
4403				     struct perf_mmap_event *mmap_event)
4404{
 
4405	struct perf_output_handle handle;
4406	struct perf_sample_data sample;
4407	int size = mmap_event->event_id.header.size;
4408	int ret;
4409
 
 
 
 
 
 
 
 
 
 
 
4410	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4411	ret = perf_output_begin(&handle, event,
4412				mmap_event->event_id.header.size);
4413	if (ret)
4414		goto out;
4415
4416	mmap_event->event_id.pid = perf_event_pid(event, current);
4417	mmap_event->event_id.tid = perf_event_tid(event, current);
4418
4419	perf_output_put(&handle, mmap_event->event_id);
 
 
 
 
 
 
 
 
4420	__output_copy(&handle, mmap_event->file_name,
4421				   mmap_event->file_size);
4422
4423	perf_event__output_id_sample(event, &handle, &sample);
4424
4425	perf_output_end(&handle);
4426out:
4427	mmap_event->event_id.header.size = size;
4428}
4429
4430static int perf_event_mmap_match(struct perf_event *event,
4431				   struct perf_mmap_event *mmap_event,
4432				   int executable)
4433{
4434	if (event->state < PERF_EVENT_STATE_INACTIVE)
4435		return 0;
4436
4437	if (!event_filter_match(event))
4438		return 0;
4439
4440	if ((!executable && event->attr.mmap_data) ||
4441	    (executable && event->attr.mmap))
4442		return 1;
4443
4444	return 0;
4445}
4446
4447static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4448				  struct perf_mmap_event *mmap_event,
4449				  int executable)
4450{
4451	struct perf_event *event;
4452
4453	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4454		if (perf_event_mmap_match(event, mmap_event, executable))
4455			perf_event_mmap_output(event, mmap_event);
4456	}
4457}
4458
4459static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4460{
4461	struct perf_cpu_context *cpuctx;
4462	struct perf_event_context *ctx;
4463	struct vm_area_struct *vma = mmap_event->vma;
4464	struct file *file = vma->vm_file;
 
 
4465	unsigned int size;
4466	char tmp[16];
4467	char *buf = NULL;
4468	const char *name;
4469	struct pmu *pmu;
4470	int ctxn;
4471
4472	memset(tmp, 0, sizeof(tmp));
 
 
4473
4474	if (file) {
 
 
 
 
4475		/*
4476		 * d_path works from the end of the rb backwards, so we
4477		 * need to add enough zero bytes after the string to handle
4478		 * the 64bit alignment we do later.
4479		 */
4480		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4481		if (!buf) {
4482			name = strncpy(tmp, "//enomem", sizeof(tmp));
4483			goto got_name;
4484		}
4485		name = d_path(&file->f_path, buf, PATH_MAX);
4486		if (IS_ERR(name)) {
4487			name = strncpy(tmp, "//toolong", sizeof(tmp));
4488			goto got_name;
4489		}
 
 
 
 
 
 
 
4490	} else {
4491		if (arch_vma_name(mmap_event->vma)) {
4492			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4493				       sizeof(tmp));
4494			goto got_name;
4495		}
4496
4497		if (!vma->vm_mm) {
4498			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4499			goto got_name;
4500		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4501				vma->vm_end >= vma->vm_mm->brk) {
4502			name = strncpy(tmp, "[heap]", sizeof(tmp));
4503			goto got_name;
4504		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
 
4505				vma->vm_end >= vma->vm_mm->start_stack) {
4506			name = strncpy(tmp, "[stack]", sizeof(tmp));
4507			goto got_name;
4508		}
4509
4510		name = strncpy(tmp, "//anon", sizeof(tmp));
4511		goto got_name;
4512	}
4513
 
 
 
4514got_name:
4515	size = ALIGN(strlen(name)+1, sizeof(u64));
 
 
 
 
 
 
 
4516
4517	mmap_event->file_name = name;
4518	mmap_event->file_size = size;
 
 
 
 
 
 
 
4519
4520	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4521
4522	rcu_read_lock();
4523	list_for_each_entry_rcu(pmu, &pmus, entry) {
4524		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4525		if (cpuctx->active_pmu != pmu)
4526			goto next;
4527		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4528					vma->vm_flags & VM_EXEC);
4529
4530		ctxn = pmu->task_ctx_nr;
4531		if (ctxn < 0)
4532			goto next;
4533
4534		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4535		if (ctx) {
4536			perf_event_mmap_ctx(ctx, mmap_event,
4537					vma->vm_flags & VM_EXEC);
4538		}
4539next:
4540		put_cpu_ptr(pmu->pmu_cpu_context);
4541	}
4542	rcu_read_unlock();
4543
4544	kfree(buf);
4545}
4546
4547void perf_event_mmap(struct vm_area_struct *vma)
4548{
4549	struct perf_mmap_event mmap_event;
4550
4551	if (!atomic_read(&nr_mmap_events))
4552		return;
4553
4554	mmap_event = (struct perf_mmap_event){
4555		.vma	= vma,
4556		/* .file_name */
4557		/* .file_size */
4558		.event_id  = {
4559			.header = {
4560				.type = PERF_RECORD_MMAP,
4561				.misc = PERF_RECORD_MISC_USER,
4562				/* .size */
4563			},
4564			/* .pid */
4565			/* .tid */
4566			.start  = vma->vm_start,
4567			.len    = vma->vm_end - vma->vm_start,
4568			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4569		},
 
 
 
 
4570	};
4571
4572	perf_event_mmap_event(&mmap_event);
4573}
4574
4575/*
4576 * IRQ throttle logging
4577 */
4578
4579static void perf_log_throttle(struct perf_event *event, int enable)
4580{
4581	struct perf_output_handle handle;
4582	struct perf_sample_data sample;
4583	int ret;
4584
4585	struct {
4586		struct perf_event_header	header;
4587		u64				time;
4588		u64				id;
4589		u64				stream_id;
4590	} throttle_event = {
4591		.header = {
4592			.type = PERF_RECORD_THROTTLE,
4593			.misc = 0,
4594			.size = sizeof(throttle_event),
4595		},
4596		.time		= perf_clock(),
4597		.id		= primary_event_id(event),
4598		.stream_id	= event->id,
4599	};
4600
4601	if (enable)
4602		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4603
4604	perf_event_header__init_id(&throttle_event.header, &sample, event);
4605
4606	ret = perf_output_begin(&handle, event,
4607				throttle_event.header.size);
4608	if (ret)
4609		return;
4610
4611	perf_output_put(&handle, throttle_event);
4612	perf_event__output_id_sample(event, &handle, &sample);
4613	perf_output_end(&handle);
4614}
4615
4616/*
4617 * Generic event overflow handling, sampling.
4618 */
4619
4620static int __perf_event_overflow(struct perf_event *event,
4621				   int throttle, struct perf_sample_data *data,
4622				   struct pt_regs *regs)
4623{
4624	int events = atomic_read(&event->event_limit);
4625	struct hw_perf_event *hwc = &event->hw;
 
4626	int ret = 0;
4627
4628	/*
4629	 * Non-sampling counters might still use the PMI to fold short
4630	 * hardware counters, ignore those.
4631	 */
4632	if (unlikely(!is_sampling_event(event)))
4633		return 0;
4634
4635	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4636		if (throttle) {
 
 
 
 
 
 
 
4637			hwc->interrupts = MAX_INTERRUPTS;
4638			perf_log_throttle(event, 0);
 
4639			ret = 1;
4640		}
4641	} else
4642		hwc->interrupts++;
4643
4644	if (event->attr.freq) {
4645		u64 now = perf_clock();
4646		s64 delta = now - hwc->freq_time_stamp;
4647
4648		hwc->freq_time_stamp = now;
4649
4650		if (delta > 0 && delta < 2*TICK_NSEC)
4651			perf_adjust_period(event, delta, hwc->last_period);
4652	}
4653
4654	/*
4655	 * XXX event_limit might not quite work as expected on inherited
4656	 * events
4657	 */
4658
4659	event->pending_kill = POLL_IN;
4660	if (events && atomic_dec_and_test(&event->event_limit)) {
4661		ret = 1;
4662		event->pending_kill = POLL_HUP;
4663		event->pending_disable = 1;
4664		irq_work_queue(&event->pending);
4665	}
4666
4667	if (event->overflow_handler)
4668		event->overflow_handler(event, data, regs);
4669	else
4670		perf_event_output(event, data, regs);
4671
4672	if (event->fasync && event->pending_kill) {
4673		event->pending_wakeup = 1;
4674		irq_work_queue(&event->pending);
4675	}
4676
4677	return ret;
4678}
4679
4680int perf_event_overflow(struct perf_event *event,
4681			  struct perf_sample_data *data,
4682			  struct pt_regs *regs)
4683{
4684	return __perf_event_overflow(event, 1, data, regs);
4685}
4686
4687/*
4688 * Generic software event infrastructure
4689 */
4690
4691struct swevent_htable {
4692	struct swevent_hlist		*swevent_hlist;
4693	struct mutex			hlist_mutex;
4694	int				hlist_refcount;
4695
4696	/* Recursion avoidance in each contexts */
4697	int				recursion[PERF_NR_CONTEXTS];
 
 
 
4698};
4699
4700static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4701
4702/*
4703 * We directly increment event->count and keep a second value in
4704 * event->hw.period_left to count intervals. This period event
4705 * is kept in the range [-sample_period, 0] so that we can use the
4706 * sign as trigger.
4707 */
4708
4709static u64 perf_swevent_set_period(struct perf_event *event)
4710{
4711	struct hw_perf_event *hwc = &event->hw;
4712	u64 period = hwc->last_period;
4713	u64 nr, offset;
4714	s64 old, val;
4715
4716	hwc->last_period = hwc->sample_period;
4717
4718again:
4719	old = val = local64_read(&hwc->period_left);
4720	if (val < 0)
4721		return 0;
4722
4723	nr = div64_u64(period + val, period);
4724	offset = nr * period;
4725	val -= offset;
4726	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4727		goto again;
4728
4729	return nr;
4730}
4731
4732static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4733				    struct perf_sample_data *data,
4734				    struct pt_regs *regs)
4735{
4736	struct hw_perf_event *hwc = &event->hw;
4737	int throttle = 0;
4738
4739	data->period = event->hw.last_period;
4740	if (!overflow)
4741		overflow = perf_swevent_set_period(event);
4742
4743	if (hwc->interrupts == MAX_INTERRUPTS)
4744		return;
4745
4746	for (; overflow; overflow--) {
4747		if (__perf_event_overflow(event, throttle,
4748					    data, regs)) {
4749			/*
4750			 * We inhibit the overflow from happening when
4751			 * hwc->interrupts == MAX_INTERRUPTS.
4752			 */
4753			break;
4754		}
4755		throttle = 1;
4756	}
4757}
4758
4759static void perf_swevent_event(struct perf_event *event, u64 nr,
4760			       struct perf_sample_data *data,
4761			       struct pt_regs *regs)
4762{
4763	struct hw_perf_event *hwc = &event->hw;
4764
4765	local64_add(nr, &event->count);
4766
4767	if (!regs)
4768		return;
4769
4770	if (!is_sampling_event(event))
4771		return;
4772
 
 
 
 
 
 
4773	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4774		return perf_swevent_overflow(event, 1, data, regs);
4775
4776	if (local64_add_negative(nr, &hwc->period_left))
4777		return;
4778
4779	perf_swevent_overflow(event, 0, data, regs);
4780}
4781
4782static int perf_exclude_event(struct perf_event *event,
4783			      struct pt_regs *regs)
4784{
4785	if (event->hw.state & PERF_HES_STOPPED)
4786		return 1;
4787
4788	if (regs) {
4789		if (event->attr.exclude_user && user_mode(regs))
4790			return 1;
4791
4792		if (event->attr.exclude_kernel && !user_mode(regs))
4793			return 1;
4794	}
4795
4796	return 0;
4797}
4798
4799static int perf_swevent_match(struct perf_event *event,
4800				enum perf_type_id type,
4801				u32 event_id,
4802				struct perf_sample_data *data,
4803				struct pt_regs *regs)
4804{
4805	if (event->attr.type != type)
4806		return 0;
4807
4808	if (event->attr.config != event_id)
4809		return 0;
4810
4811	if (perf_exclude_event(event, regs))
4812		return 0;
4813
4814	return 1;
4815}
4816
4817static inline u64 swevent_hash(u64 type, u32 event_id)
4818{
4819	u64 val = event_id | (type << 32);
4820
4821	return hash_64(val, SWEVENT_HLIST_BITS);
4822}
4823
4824static inline struct hlist_head *
4825__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4826{
4827	u64 hash = swevent_hash(type, event_id);
4828
4829	return &hlist->heads[hash];
4830}
4831
4832/* For the read side: events when they trigger */
4833static inline struct hlist_head *
4834find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4835{
4836	struct swevent_hlist *hlist;
4837
4838	hlist = rcu_dereference(swhash->swevent_hlist);
4839	if (!hlist)
4840		return NULL;
4841
4842	return __find_swevent_head(hlist, type, event_id);
4843}
4844
4845/* For the event head insertion and removal in the hlist */
4846static inline struct hlist_head *
4847find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4848{
4849	struct swevent_hlist *hlist;
4850	u32 event_id = event->attr.config;
4851	u64 type = event->attr.type;
4852
4853	/*
4854	 * Event scheduling is always serialized against hlist allocation
4855	 * and release. Which makes the protected version suitable here.
4856	 * The context lock guarantees that.
4857	 */
4858	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4859					  lockdep_is_held(&event->ctx->lock));
4860	if (!hlist)
4861		return NULL;
4862
4863	return __find_swevent_head(hlist, type, event_id);
4864}
4865
4866static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4867				    u64 nr,
4868				    struct perf_sample_data *data,
4869				    struct pt_regs *regs)
4870{
4871	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4872	struct perf_event *event;
4873	struct hlist_node *node;
4874	struct hlist_head *head;
4875
4876	rcu_read_lock();
4877	head = find_swevent_head_rcu(swhash, type, event_id);
4878	if (!head)
4879		goto end;
4880
4881	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4882		if (perf_swevent_match(event, type, event_id, data, regs))
4883			perf_swevent_event(event, nr, data, regs);
4884	}
4885end:
4886	rcu_read_unlock();
4887}
4888
4889int perf_swevent_get_recursion_context(void)
4890{
4891	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4892
4893	return get_recursion_context(swhash->recursion);
4894}
4895EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4896
4897inline void perf_swevent_put_recursion_context(int rctx)
4898{
4899	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4900
4901	put_recursion_context(swhash->recursion, rctx);
4902}
4903
4904void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4905{
4906	struct perf_sample_data data;
4907	int rctx;
4908
4909	preempt_disable_notrace();
4910	rctx = perf_swevent_get_recursion_context();
4911	if (rctx < 0)
4912		return;
4913
4914	perf_sample_data_init(&data, addr);
4915
4916	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4917
4918	perf_swevent_put_recursion_context(rctx);
4919	preempt_enable_notrace();
4920}
4921
4922static void perf_swevent_read(struct perf_event *event)
4923{
4924}
4925
4926static int perf_swevent_add(struct perf_event *event, int flags)
4927{
4928	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4929	struct hw_perf_event *hwc = &event->hw;
4930	struct hlist_head *head;
4931
4932	if (is_sampling_event(event)) {
4933		hwc->last_period = hwc->sample_period;
4934		perf_swevent_set_period(event);
4935	}
4936
4937	hwc->state = !(flags & PERF_EF_START);
4938
4939	head = find_swevent_head(swhash, event);
4940	if (WARN_ON_ONCE(!head))
 
 
 
 
 
4941		return -EINVAL;
 
4942
4943	hlist_add_head_rcu(&event->hlist_entry, head);
4944
4945	return 0;
4946}
4947
4948static void perf_swevent_del(struct perf_event *event, int flags)
4949{
4950	hlist_del_rcu(&event->hlist_entry);
4951}
4952
4953static void perf_swevent_start(struct perf_event *event, int flags)
4954{
4955	event->hw.state = 0;
4956}
4957
4958static void perf_swevent_stop(struct perf_event *event, int flags)
4959{
4960	event->hw.state = PERF_HES_STOPPED;
4961}
4962
4963/* Deref the hlist from the update side */
4964static inline struct swevent_hlist *
4965swevent_hlist_deref(struct swevent_htable *swhash)
4966{
4967	return rcu_dereference_protected(swhash->swevent_hlist,
4968					 lockdep_is_held(&swhash->hlist_mutex));
4969}
4970
4971static void swevent_hlist_release(struct swevent_htable *swhash)
4972{
4973	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4974
4975	if (!hlist)
4976		return;
4977
4978	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4979	kfree_rcu(hlist, rcu_head);
4980}
4981
4982static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4983{
4984	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4985
4986	mutex_lock(&swhash->hlist_mutex);
4987
4988	if (!--swhash->hlist_refcount)
4989		swevent_hlist_release(swhash);
4990
4991	mutex_unlock(&swhash->hlist_mutex);
4992}
4993
4994static void swevent_hlist_put(struct perf_event *event)
4995{
4996	int cpu;
4997
4998	if (event->cpu != -1) {
4999		swevent_hlist_put_cpu(event, event->cpu);
5000		return;
5001	}
5002
5003	for_each_possible_cpu(cpu)
5004		swevent_hlist_put_cpu(event, cpu);
5005}
5006
5007static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5008{
5009	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5010	int err = 0;
5011
5012	mutex_lock(&swhash->hlist_mutex);
5013
5014	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5015		struct swevent_hlist *hlist;
5016
5017		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5018		if (!hlist) {
5019			err = -ENOMEM;
5020			goto exit;
5021		}
5022		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5023	}
5024	swhash->hlist_refcount++;
5025exit:
5026	mutex_unlock(&swhash->hlist_mutex);
5027
5028	return err;
5029}
5030
5031static int swevent_hlist_get(struct perf_event *event)
5032{
5033	int err;
5034	int cpu, failed_cpu;
5035
5036	if (event->cpu != -1)
5037		return swevent_hlist_get_cpu(event, event->cpu);
5038
5039	get_online_cpus();
5040	for_each_possible_cpu(cpu) {
5041		err = swevent_hlist_get_cpu(event, cpu);
5042		if (err) {
5043			failed_cpu = cpu;
5044			goto fail;
5045		}
5046	}
5047	put_online_cpus();
5048
5049	return 0;
5050fail:
5051	for_each_possible_cpu(cpu) {
5052		if (cpu == failed_cpu)
5053			break;
5054		swevent_hlist_put_cpu(event, cpu);
5055	}
5056
5057	put_online_cpus();
5058	return err;
5059}
5060
5061struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5062
5063static void sw_perf_event_destroy(struct perf_event *event)
5064{
5065	u64 event_id = event->attr.config;
5066
5067	WARN_ON(event->parent);
5068
5069	jump_label_dec(&perf_swevent_enabled[event_id]);
5070	swevent_hlist_put(event);
5071}
5072
5073static int perf_swevent_init(struct perf_event *event)
5074{
5075	int event_id = event->attr.config;
5076
5077	if (event->attr.type != PERF_TYPE_SOFTWARE)
5078		return -ENOENT;
5079
 
 
 
 
 
 
5080	switch (event_id) {
5081	case PERF_COUNT_SW_CPU_CLOCK:
5082	case PERF_COUNT_SW_TASK_CLOCK:
5083		return -ENOENT;
5084
5085	default:
5086		break;
5087	}
5088
5089	if (event_id >= PERF_COUNT_SW_MAX)
5090		return -ENOENT;
5091
5092	if (!event->parent) {
5093		int err;
5094
5095		err = swevent_hlist_get(event);
5096		if (err)
5097			return err;
5098
5099		jump_label_inc(&perf_swevent_enabled[event_id]);
5100		event->destroy = sw_perf_event_destroy;
5101	}
5102
5103	return 0;
5104}
5105
 
 
 
 
 
5106static struct pmu perf_swevent = {
5107	.task_ctx_nr	= perf_sw_context,
5108
5109	.event_init	= perf_swevent_init,
5110	.add		= perf_swevent_add,
5111	.del		= perf_swevent_del,
5112	.start		= perf_swevent_start,
5113	.stop		= perf_swevent_stop,
5114	.read		= perf_swevent_read,
 
 
5115};
5116
5117#ifdef CONFIG_EVENT_TRACING
5118
5119static int perf_tp_filter_match(struct perf_event *event,
5120				struct perf_sample_data *data)
5121{
5122	void *record = data->raw->data;
5123
5124	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5125		return 1;
5126	return 0;
5127}
5128
5129static int perf_tp_event_match(struct perf_event *event,
5130				struct perf_sample_data *data,
5131				struct pt_regs *regs)
5132{
5133	if (event->hw.state & PERF_HES_STOPPED)
5134		return 0;
5135	/*
5136	 * All tracepoints are from kernel-space.
5137	 */
5138	if (event->attr.exclude_kernel)
5139		return 0;
5140
5141	if (!perf_tp_filter_match(event, data))
5142		return 0;
5143
5144	return 1;
5145}
5146
5147void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5148		   struct pt_regs *regs, struct hlist_head *head, int rctx)
 
5149{
5150	struct perf_sample_data data;
5151	struct perf_event *event;
5152	struct hlist_node *node;
5153
5154	struct perf_raw_record raw = {
5155		.size = entry_size,
5156		.data = record,
5157	};
5158
5159	perf_sample_data_init(&data, addr);
5160	data.raw = &raw;
5161
5162	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5163		if (perf_tp_event_match(event, &data, regs))
5164			perf_swevent_event(event, count, &data, regs);
5165	}
5166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5167	perf_swevent_put_recursion_context(rctx);
5168}
5169EXPORT_SYMBOL_GPL(perf_tp_event);
5170
5171static void tp_perf_event_destroy(struct perf_event *event)
5172{
5173	perf_trace_destroy(event);
5174}
5175
5176static int perf_tp_event_init(struct perf_event *event)
5177{
5178	int err;
5179
5180	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5181		return -ENOENT;
5182
 
 
 
 
 
 
5183	err = perf_trace_init(event);
5184	if (err)
5185		return err;
5186
5187	event->destroy = tp_perf_event_destroy;
5188
5189	return 0;
5190}
5191
5192static struct pmu perf_tracepoint = {
5193	.task_ctx_nr	= perf_sw_context,
5194
5195	.event_init	= perf_tp_event_init,
5196	.add		= perf_trace_add,
5197	.del		= perf_trace_del,
5198	.start		= perf_swevent_start,
5199	.stop		= perf_swevent_stop,
5200	.read		= perf_swevent_read,
 
 
5201};
5202
5203static inline void perf_tp_register(void)
5204{
5205	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5206}
5207
5208static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5209{
5210	char *filter_str;
5211	int ret;
5212
5213	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5214		return -EINVAL;
5215
5216	filter_str = strndup_user(arg, PAGE_SIZE);
5217	if (IS_ERR(filter_str))
5218		return PTR_ERR(filter_str);
5219
5220	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5221
5222	kfree(filter_str);
5223	return ret;
5224}
5225
5226static void perf_event_free_filter(struct perf_event *event)
5227{
5228	ftrace_profile_free_filter(event);
5229}
5230
5231#else
5232
5233static inline void perf_tp_register(void)
5234{
5235}
5236
5237static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5238{
5239	return -ENOENT;
5240}
5241
5242static void perf_event_free_filter(struct perf_event *event)
5243{
5244}
5245
5246#endif /* CONFIG_EVENT_TRACING */
5247
5248#ifdef CONFIG_HAVE_HW_BREAKPOINT
5249void perf_bp_event(struct perf_event *bp, void *data)
5250{
5251	struct perf_sample_data sample;
5252	struct pt_regs *regs = data;
5253
5254	perf_sample_data_init(&sample, bp->attr.bp_addr);
5255
5256	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5257		perf_swevent_event(bp, 1, &sample, regs);
5258}
5259#endif
5260
5261/*
5262 * hrtimer based swevent callback
5263 */
5264
5265static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5266{
5267	enum hrtimer_restart ret = HRTIMER_RESTART;
5268	struct perf_sample_data data;
5269	struct pt_regs *regs;
5270	struct perf_event *event;
5271	u64 period;
5272
5273	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5274
5275	if (event->state != PERF_EVENT_STATE_ACTIVE)
5276		return HRTIMER_NORESTART;
5277
5278	event->pmu->read(event);
5279
5280	perf_sample_data_init(&data, 0);
5281	data.period = event->hw.last_period;
5282	regs = get_irq_regs();
5283
5284	if (regs && !perf_exclude_event(event, regs)) {
5285		if (!(event->attr.exclude_idle && current->pid == 0))
5286			if (perf_event_overflow(event, &data, regs))
5287				ret = HRTIMER_NORESTART;
5288	}
5289
5290	period = max_t(u64, 10000, event->hw.sample_period);
5291	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5292
5293	return ret;
5294}
5295
5296static void perf_swevent_start_hrtimer(struct perf_event *event)
5297{
5298	struct hw_perf_event *hwc = &event->hw;
5299	s64 period;
5300
5301	if (!is_sampling_event(event))
5302		return;
5303
5304	period = local64_read(&hwc->period_left);
5305	if (period) {
5306		if (period < 0)
5307			period = 10000;
5308
5309		local64_set(&hwc->period_left, 0);
5310	} else {
5311		period = max_t(u64, 10000, hwc->sample_period);
5312	}
5313	__hrtimer_start_range_ns(&hwc->hrtimer,
5314				ns_to_ktime(period), 0,
5315				HRTIMER_MODE_REL_PINNED, 0);
5316}
5317
5318static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5319{
5320	struct hw_perf_event *hwc = &event->hw;
5321
5322	if (is_sampling_event(event)) {
5323		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5324		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5325
5326		hrtimer_cancel(&hwc->hrtimer);
5327	}
5328}
5329
5330static void perf_swevent_init_hrtimer(struct perf_event *event)
5331{
5332	struct hw_perf_event *hwc = &event->hw;
5333
5334	if (!is_sampling_event(event))
5335		return;
5336
5337	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5338	hwc->hrtimer.function = perf_swevent_hrtimer;
5339
5340	/*
5341	 * Since hrtimers have a fixed rate, we can do a static freq->period
5342	 * mapping and avoid the whole period adjust feedback stuff.
5343	 */
5344	if (event->attr.freq) {
5345		long freq = event->attr.sample_freq;
5346
5347		event->attr.sample_period = NSEC_PER_SEC / freq;
5348		hwc->sample_period = event->attr.sample_period;
5349		local64_set(&hwc->period_left, hwc->sample_period);
 
5350		event->attr.freq = 0;
5351	}
5352}
5353
5354/*
5355 * Software event: cpu wall time clock
5356 */
5357
5358static void cpu_clock_event_update(struct perf_event *event)
5359{
5360	s64 prev;
5361	u64 now;
5362
5363	now = local_clock();
5364	prev = local64_xchg(&event->hw.prev_count, now);
5365	local64_add(now - prev, &event->count);
5366}
5367
5368static void cpu_clock_event_start(struct perf_event *event, int flags)
5369{
5370	local64_set(&event->hw.prev_count, local_clock());
5371	perf_swevent_start_hrtimer(event);
5372}
5373
5374static void cpu_clock_event_stop(struct perf_event *event, int flags)
5375{
5376	perf_swevent_cancel_hrtimer(event);
5377	cpu_clock_event_update(event);
5378}
5379
5380static int cpu_clock_event_add(struct perf_event *event, int flags)
5381{
5382	if (flags & PERF_EF_START)
5383		cpu_clock_event_start(event, flags);
5384
5385	return 0;
5386}
5387
5388static void cpu_clock_event_del(struct perf_event *event, int flags)
5389{
5390	cpu_clock_event_stop(event, flags);
5391}
5392
5393static void cpu_clock_event_read(struct perf_event *event)
5394{
5395	cpu_clock_event_update(event);
5396}
5397
5398static int cpu_clock_event_init(struct perf_event *event)
5399{
5400	if (event->attr.type != PERF_TYPE_SOFTWARE)
5401		return -ENOENT;
5402
5403	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5404		return -ENOENT;
5405
 
 
 
 
 
 
5406	perf_swevent_init_hrtimer(event);
5407
5408	return 0;
5409}
5410
5411static struct pmu perf_cpu_clock = {
5412	.task_ctx_nr	= perf_sw_context,
5413
5414	.event_init	= cpu_clock_event_init,
5415	.add		= cpu_clock_event_add,
5416	.del		= cpu_clock_event_del,
5417	.start		= cpu_clock_event_start,
5418	.stop		= cpu_clock_event_stop,
5419	.read		= cpu_clock_event_read,
 
 
5420};
5421
5422/*
5423 * Software event: task time clock
5424 */
5425
5426static void task_clock_event_update(struct perf_event *event, u64 now)
5427{
5428	u64 prev;
5429	s64 delta;
5430
5431	prev = local64_xchg(&event->hw.prev_count, now);
5432	delta = now - prev;
5433	local64_add(delta, &event->count);
5434}
5435
5436static void task_clock_event_start(struct perf_event *event, int flags)
5437{
5438	local64_set(&event->hw.prev_count, event->ctx->time);
5439	perf_swevent_start_hrtimer(event);
5440}
5441
5442static void task_clock_event_stop(struct perf_event *event, int flags)
5443{
5444	perf_swevent_cancel_hrtimer(event);
5445	task_clock_event_update(event, event->ctx->time);
5446}
5447
5448static int task_clock_event_add(struct perf_event *event, int flags)
5449{
5450	if (flags & PERF_EF_START)
5451		task_clock_event_start(event, flags);
5452
5453	return 0;
5454}
5455
5456static void task_clock_event_del(struct perf_event *event, int flags)
5457{
5458	task_clock_event_stop(event, PERF_EF_UPDATE);
5459}
5460
5461static void task_clock_event_read(struct perf_event *event)
5462{
5463	u64 now = perf_clock();
5464	u64 delta = now - event->ctx->timestamp;
5465	u64 time = event->ctx->time + delta;
5466
5467	task_clock_event_update(event, time);
5468}
5469
5470static int task_clock_event_init(struct perf_event *event)
5471{
5472	if (event->attr.type != PERF_TYPE_SOFTWARE)
5473		return -ENOENT;
5474
5475	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5476		return -ENOENT;
5477
 
 
 
 
 
 
5478	perf_swevent_init_hrtimer(event);
5479
5480	return 0;
5481}
5482
5483static struct pmu perf_task_clock = {
5484	.task_ctx_nr	= perf_sw_context,
5485
5486	.event_init	= task_clock_event_init,
5487	.add		= task_clock_event_add,
5488	.del		= task_clock_event_del,
5489	.start		= task_clock_event_start,
5490	.stop		= task_clock_event_stop,
5491	.read		= task_clock_event_read,
 
 
5492};
5493
5494static void perf_pmu_nop_void(struct pmu *pmu)
5495{
5496}
5497
5498static int perf_pmu_nop_int(struct pmu *pmu)
5499{
5500	return 0;
5501}
5502
5503static void perf_pmu_start_txn(struct pmu *pmu)
5504{
5505	perf_pmu_disable(pmu);
5506}
5507
5508static int perf_pmu_commit_txn(struct pmu *pmu)
5509{
5510	perf_pmu_enable(pmu);
5511	return 0;
5512}
5513
5514static void perf_pmu_cancel_txn(struct pmu *pmu)
5515{
5516	perf_pmu_enable(pmu);
5517}
5518
 
 
 
 
 
5519/*
5520 * Ensures all contexts with the same task_ctx_nr have the same
5521 * pmu_cpu_context too.
5522 */
5523static void *find_pmu_context(int ctxn)
5524{
5525	struct pmu *pmu;
5526
5527	if (ctxn < 0)
5528		return NULL;
5529
5530	list_for_each_entry(pmu, &pmus, entry) {
5531		if (pmu->task_ctx_nr == ctxn)
5532			return pmu->pmu_cpu_context;
5533	}
5534
5535	return NULL;
5536}
5537
5538static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5539{
5540	int cpu;
5541
5542	for_each_possible_cpu(cpu) {
5543		struct perf_cpu_context *cpuctx;
5544
5545		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5546
5547		if (cpuctx->active_pmu == old_pmu)
5548			cpuctx->active_pmu = pmu;
5549	}
5550}
5551
5552static void free_pmu_context(struct pmu *pmu)
5553{
5554	struct pmu *i;
5555
5556	mutex_lock(&pmus_lock);
5557	/*
5558	 * Like a real lame refcount.
5559	 */
5560	list_for_each_entry(i, &pmus, entry) {
5561		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5562			update_pmu_context(i, pmu);
5563			goto out;
5564		}
5565	}
5566
5567	free_percpu(pmu->pmu_cpu_context);
5568out:
5569	mutex_unlock(&pmus_lock);
5570}
5571static struct idr pmu_idr;
5572
5573static ssize_t
5574type_show(struct device *dev, struct device_attribute *attr, char *page)
5575{
5576	struct pmu *pmu = dev_get_drvdata(dev);
5577
5578	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5579}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5580
5581static struct device_attribute pmu_dev_attrs[] = {
5582       __ATTR_RO(type),
5583       __ATTR_NULL,
 
5584};
 
5585
5586static int pmu_bus_running;
5587static struct bus_type pmu_bus = {
5588	.name		= "event_source",
5589	.dev_attrs	= pmu_dev_attrs,
5590};
5591
5592static void pmu_dev_release(struct device *dev)
5593{
5594	kfree(dev);
5595}
5596
5597static int pmu_dev_alloc(struct pmu *pmu)
5598{
5599	int ret = -ENOMEM;
5600
5601	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5602	if (!pmu->dev)
5603		goto out;
5604
 
5605	device_initialize(pmu->dev);
5606	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5607	if (ret)
5608		goto free_dev;
5609
5610	dev_set_drvdata(pmu->dev, pmu);
5611	pmu->dev->bus = &pmu_bus;
5612	pmu->dev->release = pmu_dev_release;
5613	ret = device_add(pmu->dev);
5614	if (ret)
5615		goto free_dev;
5616
5617out:
5618	return ret;
5619
5620free_dev:
5621	put_device(pmu->dev);
5622	goto out;
5623}
5624
5625static struct lock_class_key cpuctx_mutex;
5626static struct lock_class_key cpuctx_lock;
5627
5628int perf_pmu_register(struct pmu *pmu, char *name, int type)
5629{
5630	int cpu, ret;
5631
5632	mutex_lock(&pmus_lock);
5633	ret = -ENOMEM;
5634	pmu->pmu_disable_count = alloc_percpu(int);
5635	if (!pmu->pmu_disable_count)
5636		goto unlock;
5637
5638	pmu->type = -1;
5639	if (!name)
5640		goto skip_type;
5641	pmu->name = name;
5642
5643	if (type < 0) {
5644		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5645		if (!err)
5646			goto free_pdc;
5647
5648		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5649		if (err) {
5650			ret = err;
5651			goto free_pdc;
5652		}
5653	}
5654	pmu->type = type;
5655
5656	if (pmu_bus_running) {
5657		ret = pmu_dev_alloc(pmu);
5658		if (ret)
5659			goto free_idr;
5660	}
5661
5662skip_type:
5663	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5664	if (pmu->pmu_cpu_context)
5665		goto got_cpu_context;
5666
 
5667	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5668	if (!pmu->pmu_cpu_context)
5669		goto free_dev;
5670
5671	for_each_possible_cpu(cpu) {
5672		struct perf_cpu_context *cpuctx;
5673
5674		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5675		__perf_event_init_context(&cpuctx->ctx);
5676		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5677		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5678		cpuctx->ctx.type = cpu_context;
5679		cpuctx->ctx.pmu = pmu;
5680		cpuctx->jiffies_interval = 1;
 
 
5681		INIT_LIST_HEAD(&cpuctx->rotation_list);
5682		cpuctx->active_pmu = pmu;
5683	}
5684
5685got_cpu_context:
5686	if (!pmu->start_txn) {
5687		if (pmu->pmu_enable) {
5688			/*
5689			 * If we have pmu_enable/pmu_disable calls, install
5690			 * transaction stubs that use that to try and batch
5691			 * hardware accesses.
5692			 */
5693			pmu->start_txn  = perf_pmu_start_txn;
5694			pmu->commit_txn = perf_pmu_commit_txn;
5695			pmu->cancel_txn = perf_pmu_cancel_txn;
5696		} else {
5697			pmu->start_txn  = perf_pmu_nop_void;
5698			pmu->commit_txn = perf_pmu_nop_int;
5699			pmu->cancel_txn = perf_pmu_nop_void;
5700		}
5701	}
5702
5703	if (!pmu->pmu_enable) {
5704		pmu->pmu_enable  = perf_pmu_nop_void;
5705		pmu->pmu_disable = perf_pmu_nop_void;
5706	}
5707
 
 
 
5708	list_add_rcu(&pmu->entry, &pmus);
5709	ret = 0;
5710unlock:
5711	mutex_unlock(&pmus_lock);
5712
5713	return ret;
5714
5715free_dev:
5716	device_del(pmu->dev);
5717	put_device(pmu->dev);
5718
5719free_idr:
5720	if (pmu->type >= PERF_TYPE_MAX)
5721		idr_remove(&pmu_idr, pmu->type);
5722
5723free_pdc:
5724	free_percpu(pmu->pmu_disable_count);
5725	goto unlock;
5726}
5727
5728void perf_pmu_unregister(struct pmu *pmu)
5729{
5730	mutex_lock(&pmus_lock);
5731	list_del_rcu(&pmu->entry);
5732	mutex_unlock(&pmus_lock);
5733
5734	/*
5735	 * We dereference the pmu list under both SRCU and regular RCU, so
5736	 * synchronize against both of those.
5737	 */
5738	synchronize_srcu(&pmus_srcu);
5739	synchronize_rcu();
5740
5741	free_percpu(pmu->pmu_disable_count);
5742	if (pmu->type >= PERF_TYPE_MAX)
5743		idr_remove(&pmu_idr, pmu->type);
5744	device_del(pmu->dev);
5745	put_device(pmu->dev);
5746	free_pmu_context(pmu);
5747}
5748
5749struct pmu *perf_init_event(struct perf_event *event)
5750{
5751	struct pmu *pmu = NULL;
5752	int idx;
5753	int ret;
5754
5755	idx = srcu_read_lock(&pmus_srcu);
5756
5757	rcu_read_lock();
5758	pmu = idr_find(&pmu_idr, event->attr.type);
5759	rcu_read_unlock();
5760	if (pmu) {
 
5761		ret = pmu->event_init(event);
5762		if (ret)
5763			pmu = ERR_PTR(ret);
5764		goto unlock;
5765	}
5766
5767	list_for_each_entry_rcu(pmu, &pmus, entry) {
 
5768		ret = pmu->event_init(event);
5769		if (!ret)
5770			goto unlock;
5771
5772		if (ret != -ENOENT) {
5773			pmu = ERR_PTR(ret);
5774			goto unlock;
5775		}
5776	}
5777	pmu = ERR_PTR(-ENOENT);
5778unlock:
5779	srcu_read_unlock(&pmus_srcu, idx);
5780
5781	return pmu;
5782}
5783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5784/*
5785 * Allocate and initialize a event structure
5786 */
5787static struct perf_event *
5788perf_event_alloc(struct perf_event_attr *attr, int cpu,
5789		 struct task_struct *task,
5790		 struct perf_event *group_leader,
5791		 struct perf_event *parent_event,
5792		 perf_overflow_handler_t overflow_handler,
5793		 void *context)
5794{
5795	struct pmu *pmu;
5796	struct perf_event *event;
5797	struct hw_perf_event *hwc;
5798	long err;
5799
5800	if ((unsigned)cpu >= nr_cpu_ids) {
5801		if (!task || cpu != -1)
5802			return ERR_PTR(-EINVAL);
5803	}
5804
5805	event = kzalloc(sizeof(*event), GFP_KERNEL);
5806	if (!event)
5807		return ERR_PTR(-ENOMEM);
5808
5809	/*
5810	 * Single events are their own group leaders, with an
5811	 * empty sibling list:
5812	 */
5813	if (!group_leader)
5814		group_leader = event;
5815
5816	mutex_init(&event->child_mutex);
5817	INIT_LIST_HEAD(&event->child_list);
5818
5819	INIT_LIST_HEAD(&event->group_entry);
5820	INIT_LIST_HEAD(&event->event_entry);
5821	INIT_LIST_HEAD(&event->sibling_list);
 
 
 
 
 
5822	init_waitqueue_head(&event->waitq);
5823	init_irq_work(&event->pending, perf_pending_event);
5824
5825	mutex_init(&event->mmap_mutex);
5826
 
5827	event->cpu		= cpu;
5828	event->attr		= *attr;
5829	event->group_leader	= group_leader;
5830	event->pmu		= NULL;
5831	event->oncpu		= -1;
5832
5833	event->parent		= parent_event;
5834
5835	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5836	event->id		= atomic64_inc_return(&perf_event_id);
5837
5838	event->state		= PERF_EVENT_STATE_INACTIVE;
5839
5840	if (task) {
5841		event->attach_state = PERF_ATTACH_TASK;
 
 
 
5842#ifdef CONFIG_HAVE_HW_BREAKPOINT
5843		/*
5844		 * hw_breakpoint is a bit difficult here..
5845		 */
5846		if (attr->type == PERF_TYPE_BREAKPOINT)
5847			event->hw.bp_target = task;
5848#endif
5849	}
5850
5851	if (!overflow_handler && parent_event) {
5852		overflow_handler = parent_event->overflow_handler;
5853		context = parent_event->overflow_handler_context;
5854	}
5855
5856	event->overflow_handler	= overflow_handler;
5857	event->overflow_handler_context = context;
5858
5859	if (attr->disabled)
5860		event->state = PERF_EVENT_STATE_OFF;
5861
5862	pmu = NULL;
5863
5864	hwc = &event->hw;
5865	hwc->sample_period = attr->sample_period;
5866	if (attr->freq && attr->sample_freq)
5867		hwc->sample_period = 1;
5868	hwc->last_period = hwc->sample_period;
5869
5870	local64_set(&hwc->period_left, hwc->sample_period);
5871
5872	/*
5873	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5874	 */
5875	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5876		goto done;
5877
5878	pmu = perf_init_event(event);
5879
5880done:
5881	err = 0;
5882	if (!pmu)
5883		err = -EINVAL;
5884	else if (IS_ERR(pmu))
5885		err = PTR_ERR(pmu);
5886
5887	if (err) {
5888		if (event->ns)
5889			put_pid_ns(event->ns);
5890		kfree(event);
5891		return ERR_PTR(err);
5892	}
5893
5894	event->pmu = pmu;
5895
5896	if (!event->parent) {
5897		if (event->attach_state & PERF_ATTACH_TASK)
5898			jump_label_inc(&perf_sched_events);
5899		if (event->attr.mmap || event->attr.mmap_data)
5900			atomic_inc(&nr_mmap_events);
5901		if (event->attr.comm)
5902			atomic_inc(&nr_comm_events);
5903		if (event->attr.task)
5904			atomic_inc(&nr_task_events);
5905		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5906			err = get_callchain_buffers();
5907			if (err) {
5908				free_event(event);
5909				return ERR_PTR(err);
5910			}
5911		}
5912	}
5913
5914	return event;
 
 
 
 
 
 
 
 
 
 
5915}
5916
5917static int perf_copy_attr(struct perf_event_attr __user *uattr,
5918			  struct perf_event_attr *attr)
5919{
5920	u32 size;
5921	int ret;
5922
5923	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5924		return -EFAULT;
5925
5926	/*
5927	 * zero the full structure, so that a short copy will be nice.
5928	 */
5929	memset(attr, 0, sizeof(*attr));
5930
5931	ret = get_user(size, &uattr->size);
5932	if (ret)
5933		return ret;
5934
5935	if (size > PAGE_SIZE)	/* silly large */
5936		goto err_size;
5937
5938	if (!size)		/* abi compat */
5939		size = PERF_ATTR_SIZE_VER0;
5940
5941	if (size < PERF_ATTR_SIZE_VER0)
5942		goto err_size;
5943
5944	/*
5945	 * If we're handed a bigger struct than we know of,
5946	 * ensure all the unknown bits are 0 - i.e. new
5947	 * user-space does not rely on any kernel feature
5948	 * extensions we dont know about yet.
5949	 */
5950	if (size > sizeof(*attr)) {
5951		unsigned char __user *addr;
5952		unsigned char __user *end;
5953		unsigned char val;
5954
5955		addr = (void __user *)uattr + sizeof(*attr);
5956		end  = (void __user *)uattr + size;
5957
5958		for (; addr < end; addr++) {
5959			ret = get_user(val, addr);
5960			if (ret)
5961				return ret;
5962			if (val)
5963				goto err_size;
5964		}
5965		size = sizeof(*attr);
5966	}
5967
5968	ret = copy_from_user(attr, uattr, size);
5969	if (ret)
5970		return -EFAULT;
5971
 
 
 
 
5972	if (attr->__reserved_1)
5973		return -EINVAL;
5974
5975	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5976		return -EINVAL;
5977
5978	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5979		return -EINVAL;
5980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5981out:
5982	return ret;
5983
5984err_size:
5985	put_user(sizeof(*attr), &uattr->size);
5986	ret = -E2BIG;
5987	goto out;
5988}
5989
5990static int
5991perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5992{
5993	struct ring_buffer *rb = NULL, *old_rb = NULL;
5994	int ret = -EINVAL;
5995
5996	if (!output_event)
5997		goto set;
5998
5999	/* don't allow circular references */
6000	if (event == output_event)
6001		goto out;
6002
6003	/*
6004	 * Don't allow cross-cpu buffers
6005	 */
6006	if (output_event->cpu != event->cpu)
6007		goto out;
6008
6009	/*
6010	 * If its not a per-cpu rb, it must be the same task.
6011	 */
6012	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6013		goto out;
6014
6015set:
6016	mutex_lock(&event->mmap_mutex);
6017	/* Can't redirect output if we've got an active mmap() */
6018	if (atomic_read(&event->mmap_count))
6019		goto unlock;
6020
6021	if (output_event) {
6022		/* get the rb we want to redirect to */
6023		rb = ring_buffer_get(output_event);
6024		if (!rb)
6025			goto unlock;
6026	}
6027
6028	old_rb = event->rb;
6029	rcu_assign_pointer(event->rb, rb);
6030	ret = 0;
6031unlock:
6032	mutex_unlock(&event->mmap_mutex);
6033
6034	if (old_rb)
6035		ring_buffer_put(old_rb);
6036out:
6037	return ret;
6038}
6039
6040/**
6041 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6042 *
6043 * @attr_uptr:	event_id type attributes for monitoring/sampling
6044 * @pid:		target pid
6045 * @cpu:		target cpu
6046 * @group_fd:		group leader event fd
6047 */
6048SYSCALL_DEFINE5(perf_event_open,
6049		struct perf_event_attr __user *, attr_uptr,
6050		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6051{
6052	struct perf_event *group_leader = NULL, *output_event = NULL;
6053	struct perf_event *event, *sibling;
6054	struct perf_event_attr attr;
6055	struct perf_event_context *ctx;
6056	struct file *event_file = NULL;
6057	struct file *group_file = NULL;
6058	struct task_struct *task = NULL;
6059	struct pmu *pmu;
6060	int event_fd;
6061	int move_group = 0;
6062	int fput_needed = 0;
6063	int err;
 
6064
6065	/* for future expandability... */
6066	if (flags & ~PERF_FLAG_ALL)
6067		return -EINVAL;
6068
6069	err = perf_copy_attr(attr_uptr, &attr);
6070	if (err)
6071		return err;
6072
6073	if (!attr.exclude_kernel) {
6074		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6075			return -EACCES;
6076	}
6077
6078	if (attr.freq) {
6079		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6080			return -EINVAL;
 
 
 
6081	}
6082
6083	/*
6084	 * In cgroup mode, the pid argument is used to pass the fd
6085	 * opened to the cgroup directory in cgroupfs. The cpu argument
6086	 * designates the cpu on which to monitor threads from that
6087	 * cgroup.
6088	 */
6089	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6090		return -EINVAL;
6091
6092	event_fd = get_unused_fd_flags(O_RDWR);
 
 
 
6093	if (event_fd < 0)
6094		return event_fd;
6095
6096	if (group_fd != -1) {
6097		group_leader = perf_fget_light(group_fd, &fput_needed);
6098		if (IS_ERR(group_leader)) {
6099			err = PTR_ERR(group_leader);
6100			goto err_fd;
6101		}
6102		group_file = group_leader->filp;
6103		if (flags & PERF_FLAG_FD_OUTPUT)
6104			output_event = group_leader;
6105		if (flags & PERF_FLAG_FD_NO_GROUP)
6106			group_leader = NULL;
6107	}
6108
6109	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6110		task = find_lively_task_by_vpid(pid);
6111		if (IS_ERR(task)) {
6112			err = PTR_ERR(task);
6113			goto err_group_fd;
6114		}
6115	}
6116
 
 
6117	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6118				 NULL, NULL);
6119	if (IS_ERR(event)) {
6120		err = PTR_ERR(event);
6121		goto err_task;
6122	}
6123
6124	if (flags & PERF_FLAG_PID_CGROUP) {
6125		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6126		if (err)
6127			goto err_alloc;
6128		/*
6129		 * one more event:
6130		 * - that has cgroup constraint on event->cpu
6131		 * - that may need work on context switch
6132		 */
6133		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6134		jump_label_inc(&perf_sched_events);
6135	}
6136
 
 
6137	/*
6138	 * Special case software events and allow them to be part of
6139	 * any hardware group.
6140	 */
6141	pmu = event->pmu;
6142
6143	if (group_leader &&
6144	    (is_software_event(event) != is_software_event(group_leader))) {
6145		if (is_software_event(event)) {
6146			/*
6147			 * If event and group_leader are not both a software
6148			 * event, and event is, then group leader is not.
6149			 *
6150			 * Allow the addition of software events to !software
6151			 * groups, this is safe because software events never
6152			 * fail to schedule.
6153			 */
6154			pmu = group_leader->pmu;
6155		} else if (is_software_event(group_leader) &&
6156			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6157			/*
6158			 * In case the group is a pure software group, and we
6159			 * try to add a hardware event, move the whole group to
6160			 * the hardware context.
6161			 */
6162			move_group = 1;
6163		}
6164	}
6165
6166	/*
6167	 * Get the target context (task or percpu):
6168	 */
6169	ctx = find_get_context(pmu, task, cpu);
6170	if (IS_ERR(ctx)) {
6171		err = PTR_ERR(ctx);
6172		goto err_alloc;
6173	}
6174
6175	if (task) {
6176		put_task_struct(task);
6177		task = NULL;
6178	}
6179
6180	/*
6181	 * Look up the group leader (we will attach this event to it):
6182	 */
6183	if (group_leader) {
6184		err = -EINVAL;
6185
6186		/*
6187		 * Do not allow a recursive hierarchy (this new sibling
6188		 * becoming part of another group-sibling):
6189		 */
6190		if (group_leader->group_leader != group_leader)
6191			goto err_context;
6192		/*
6193		 * Do not allow to attach to a group in a different
6194		 * task or CPU context:
6195		 */
6196		if (move_group) {
6197			if (group_leader->ctx->type != ctx->type)
6198				goto err_context;
6199		} else {
6200			if (group_leader->ctx != ctx)
6201				goto err_context;
6202		}
6203
6204		/*
6205		 * Only a group leader can be exclusive or pinned
6206		 */
6207		if (attr.exclusive || attr.pinned)
6208			goto err_context;
6209	}
6210
6211	if (output_event) {
6212		err = perf_event_set_output(event, output_event);
6213		if (err)
6214			goto err_context;
6215	}
6216
6217	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
 
6218	if (IS_ERR(event_file)) {
6219		err = PTR_ERR(event_file);
6220		goto err_context;
6221	}
6222
6223	if (move_group) {
6224		struct perf_event_context *gctx = group_leader->ctx;
6225
6226		mutex_lock(&gctx->mutex);
6227		perf_remove_from_context(group_leader);
 
 
 
 
 
 
 
6228		list_for_each_entry(sibling, &group_leader->sibling_list,
6229				    group_entry) {
6230			perf_remove_from_context(sibling);
 
6231			put_ctx(gctx);
6232		}
6233		mutex_unlock(&gctx->mutex);
6234		put_ctx(gctx);
6235	}
6236
6237	event->filp = event_file;
6238	WARN_ON_ONCE(ctx->parent_ctx);
6239	mutex_lock(&ctx->mutex);
6240
6241	if (move_group) {
6242		perf_install_in_context(ctx, group_leader, cpu);
 
6243		get_ctx(ctx);
6244		list_for_each_entry(sibling, &group_leader->sibling_list,
6245				    group_entry) {
6246			perf_install_in_context(ctx, sibling, cpu);
6247			get_ctx(ctx);
6248		}
6249	}
6250
6251	perf_install_in_context(ctx, event, cpu);
6252	++ctx->generation;
6253	perf_unpin_context(ctx);
6254	mutex_unlock(&ctx->mutex);
6255
 
 
6256	event->owner = current;
6257
6258	mutex_lock(&current->perf_event_mutex);
6259	list_add_tail(&event->owner_entry, &current->perf_event_list);
6260	mutex_unlock(&current->perf_event_mutex);
6261
6262	/*
6263	 * Precalculate sample_data sizes
6264	 */
6265	perf_event__header_size(event);
6266	perf_event__id_header_size(event);
6267
6268	/*
6269	 * Drop the reference on the group_event after placing the
6270	 * new event on the sibling_list. This ensures destruction
6271	 * of the group leader will find the pointer to itself in
6272	 * perf_group_detach().
6273	 */
6274	fput_light(group_file, fput_needed);
6275	fd_install(event_fd, event_file);
6276	return event_fd;
6277
6278err_context:
6279	perf_unpin_context(ctx);
6280	put_ctx(ctx);
6281err_alloc:
6282	free_event(event);
6283err_task:
 
6284	if (task)
6285		put_task_struct(task);
6286err_group_fd:
6287	fput_light(group_file, fput_needed);
6288err_fd:
6289	put_unused_fd(event_fd);
6290	return err;
6291}
6292
6293/**
6294 * perf_event_create_kernel_counter
6295 *
6296 * @attr: attributes of the counter to create
6297 * @cpu: cpu in which the counter is bound
6298 * @task: task to profile (NULL for percpu)
6299 */
6300struct perf_event *
6301perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6302				 struct task_struct *task,
6303				 perf_overflow_handler_t overflow_handler,
6304				 void *context)
6305{
6306	struct perf_event_context *ctx;
6307	struct perf_event *event;
6308	int err;
6309
6310	/*
6311	 * Get the target context (task or percpu):
6312	 */
6313
6314	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6315				 overflow_handler, context);
6316	if (IS_ERR(event)) {
6317		err = PTR_ERR(event);
6318		goto err;
6319	}
6320
 
 
6321	ctx = find_get_context(event->pmu, task, cpu);
6322	if (IS_ERR(ctx)) {
6323		err = PTR_ERR(ctx);
6324		goto err_free;
6325	}
6326
6327	event->filp = NULL;
6328	WARN_ON_ONCE(ctx->parent_ctx);
6329	mutex_lock(&ctx->mutex);
6330	perf_install_in_context(ctx, event, cpu);
6331	++ctx->generation;
6332	perf_unpin_context(ctx);
6333	mutex_unlock(&ctx->mutex);
6334
6335	return event;
6336
6337err_free:
6338	free_event(event);
6339err:
6340	return ERR_PTR(err);
6341}
6342EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6344static void sync_child_event(struct perf_event *child_event,
6345			       struct task_struct *child)
6346{
6347	struct perf_event *parent_event = child_event->parent;
6348	u64 child_val;
6349
6350	if (child_event->attr.inherit_stat)
6351		perf_event_read_event(child_event, child);
6352
6353	child_val = perf_event_count(child_event);
6354
6355	/*
6356	 * Add back the child's count to the parent's count:
6357	 */
6358	atomic64_add(child_val, &parent_event->child_count);
6359	atomic64_add(child_event->total_time_enabled,
6360		     &parent_event->child_total_time_enabled);
6361	atomic64_add(child_event->total_time_running,
6362		     &parent_event->child_total_time_running);
6363
6364	/*
6365	 * Remove this event from the parent's list
6366	 */
6367	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6368	mutex_lock(&parent_event->child_mutex);
6369	list_del_init(&child_event->child_list);
6370	mutex_unlock(&parent_event->child_mutex);
6371
6372	/*
6373	 * Release the parent event, if this was the last
6374	 * reference to it.
6375	 */
6376	fput(parent_event->filp);
6377}
6378
6379static void
6380__perf_event_exit_task(struct perf_event *child_event,
6381			 struct perf_event_context *child_ctx,
6382			 struct task_struct *child)
6383{
6384	if (child_event->parent) {
6385		raw_spin_lock_irq(&child_ctx->lock);
6386		perf_group_detach(child_event);
6387		raw_spin_unlock_irq(&child_ctx->lock);
6388	}
6389
6390	perf_remove_from_context(child_event);
6391
6392	/*
6393	 * It can happen that the parent exits first, and has events
6394	 * that are still around due to the child reference. These
6395	 * events need to be zapped.
6396	 */
6397	if (child_event->parent) {
6398		sync_child_event(child_event, child);
6399		free_event(child_event);
6400	}
6401}
6402
6403static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6404{
6405	struct perf_event *child_event, *tmp;
6406	struct perf_event_context *child_ctx;
6407	unsigned long flags;
6408
6409	if (likely(!child->perf_event_ctxp[ctxn])) {
6410		perf_event_task(child, NULL, 0);
6411		return;
6412	}
6413
6414	local_irq_save(flags);
6415	/*
6416	 * We can't reschedule here because interrupts are disabled,
6417	 * and either child is current or it is a task that can't be
6418	 * scheduled, so we are now safe from rescheduling changing
6419	 * our context.
6420	 */
6421	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6422
6423	/*
6424	 * Take the context lock here so that if find_get_context is
6425	 * reading child->perf_event_ctxp, we wait until it has
6426	 * incremented the context's refcount before we do put_ctx below.
6427	 */
6428	raw_spin_lock(&child_ctx->lock);
6429	task_ctx_sched_out(child_ctx);
6430	child->perf_event_ctxp[ctxn] = NULL;
6431	/*
6432	 * If this context is a clone; unclone it so it can't get
6433	 * swapped to another process while we're removing all
6434	 * the events from it.
6435	 */
6436	unclone_ctx(child_ctx);
6437	update_context_time(child_ctx);
6438	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6439
6440	/*
6441	 * Report the task dead after unscheduling the events so that we
6442	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6443	 * get a few PERF_RECORD_READ events.
6444	 */
6445	perf_event_task(child, child_ctx, 0);
6446
6447	/*
6448	 * We can recurse on the same lock type through:
6449	 *
6450	 *   __perf_event_exit_task()
6451	 *     sync_child_event()
6452	 *       fput(parent_event->filp)
6453	 *         perf_release()
6454	 *           mutex_lock(&ctx->mutex)
6455	 *
6456	 * But since its the parent context it won't be the same instance.
6457	 */
6458	mutex_lock(&child_ctx->mutex);
6459
6460again:
6461	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6462				 group_entry)
6463		__perf_event_exit_task(child_event, child_ctx, child);
6464
6465	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6466				 group_entry)
6467		__perf_event_exit_task(child_event, child_ctx, child);
6468
6469	/*
6470	 * If the last event was a group event, it will have appended all
6471	 * its siblings to the list, but we obtained 'tmp' before that which
6472	 * will still point to the list head terminating the iteration.
6473	 */
6474	if (!list_empty(&child_ctx->pinned_groups) ||
6475	    !list_empty(&child_ctx->flexible_groups))
6476		goto again;
6477
6478	mutex_unlock(&child_ctx->mutex);
6479
6480	put_ctx(child_ctx);
6481}
6482
6483/*
6484 * When a child task exits, feed back event values to parent events.
6485 */
6486void perf_event_exit_task(struct task_struct *child)
6487{
6488	struct perf_event *event, *tmp;
6489	int ctxn;
6490
6491	mutex_lock(&child->perf_event_mutex);
6492	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6493				 owner_entry) {
6494		list_del_init(&event->owner_entry);
6495
6496		/*
6497		 * Ensure the list deletion is visible before we clear
6498		 * the owner, closes a race against perf_release() where
6499		 * we need to serialize on the owner->perf_event_mutex.
6500		 */
6501		smp_wmb();
6502		event->owner = NULL;
6503	}
6504	mutex_unlock(&child->perf_event_mutex);
6505
6506	for_each_task_context_nr(ctxn)
6507		perf_event_exit_task_context(child, ctxn);
6508}
6509
6510static void perf_free_event(struct perf_event *event,
6511			    struct perf_event_context *ctx)
6512{
6513	struct perf_event *parent = event->parent;
6514
6515	if (WARN_ON_ONCE(!parent))
6516		return;
6517
6518	mutex_lock(&parent->child_mutex);
6519	list_del_init(&event->child_list);
6520	mutex_unlock(&parent->child_mutex);
6521
6522	fput(parent->filp);
6523
6524	perf_group_detach(event);
6525	list_del_event(event, ctx);
6526	free_event(event);
6527}
6528
6529/*
6530 * free an unexposed, unused context as created by inheritance by
6531 * perf_event_init_task below, used by fork() in case of fail.
6532 */
6533void perf_event_free_task(struct task_struct *task)
6534{
6535	struct perf_event_context *ctx;
6536	struct perf_event *event, *tmp;
6537	int ctxn;
6538
6539	for_each_task_context_nr(ctxn) {
6540		ctx = task->perf_event_ctxp[ctxn];
6541		if (!ctx)
6542			continue;
6543
6544		mutex_lock(&ctx->mutex);
6545again:
6546		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6547				group_entry)
6548			perf_free_event(event, ctx);
6549
6550		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6551				group_entry)
6552			perf_free_event(event, ctx);
6553
6554		if (!list_empty(&ctx->pinned_groups) ||
6555				!list_empty(&ctx->flexible_groups))
6556			goto again;
6557
6558		mutex_unlock(&ctx->mutex);
6559
6560		put_ctx(ctx);
6561	}
6562}
6563
6564void perf_event_delayed_put(struct task_struct *task)
6565{
6566	int ctxn;
6567
6568	for_each_task_context_nr(ctxn)
6569		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6570}
6571
6572/*
6573 * inherit a event from parent task to child task:
6574 */
6575static struct perf_event *
6576inherit_event(struct perf_event *parent_event,
6577	      struct task_struct *parent,
6578	      struct perf_event_context *parent_ctx,
6579	      struct task_struct *child,
6580	      struct perf_event *group_leader,
6581	      struct perf_event_context *child_ctx)
6582{
6583	struct perf_event *child_event;
6584	unsigned long flags;
6585
6586	/*
6587	 * Instead of creating recursive hierarchies of events,
6588	 * we link inherited events back to the original parent,
6589	 * which has a filp for sure, which we use as the reference
6590	 * count:
6591	 */
6592	if (parent_event->parent)
6593		parent_event = parent_event->parent;
6594
6595	child_event = perf_event_alloc(&parent_event->attr,
6596					   parent_event->cpu,
6597					   child,
6598					   group_leader, parent_event,
6599				           NULL, NULL);
6600	if (IS_ERR(child_event))
6601		return child_event;
 
 
 
 
 
 
6602	get_ctx(child_ctx);
6603
6604	/*
6605	 * Make the child state follow the state of the parent event,
6606	 * not its attr.disabled bit.  We hold the parent's mutex,
6607	 * so we won't race with perf_event_{en, dis}able_family.
6608	 */
6609	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6610		child_event->state = PERF_EVENT_STATE_INACTIVE;
6611	else
6612		child_event->state = PERF_EVENT_STATE_OFF;
6613
6614	if (parent_event->attr.freq) {
6615		u64 sample_period = parent_event->hw.sample_period;
6616		struct hw_perf_event *hwc = &child_event->hw;
6617
6618		hwc->sample_period = sample_period;
6619		hwc->last_period   = sample_period;
6620
6621		local64_set(&hwc->period_left, sample_period);
6622	}
6623
6624	child_event->ctx = child_ctx;
6625	child_event->overflow_handler = parent_event->overflow_handler;
6626	child_event->overflow_handler_context
6627		= parent_event->overflow_handler_context;
6628
6629	/*
6630	 * Precalculate sample_data sizes
6631	 */
6632	perf_event__header_size(child_event);
6633	perf_event__id_header_size(child_event);
6634
6635	/*
6636	 * Link it up in the child's context:
6637	 */
6638	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6639	add_event_to_ctx(child_event, child_ctx);
6640	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6641
6642	/*
6643	 * Get a reference to the parent filp - we will fput it
6644	 * when the child event exits. This is safe to do because
6645	 * we are in the parent and we know that the filp still
6646	 * exists and has a nonzero count:
6647	 */
6648	atomic_long_inc(&parent_event->filp->f_count);
6649
6650	/*
6651	 * Link this into the parent event's child list
6652	 */
6653	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6654	mutex_lock(&parent_event->child_mutex);
6655	list_add_tail(&child_event->child_list, &parent_event->child_list);
6656	mutex_unlock(&parent_event->child_mutex);
6657
6658	return child_event;
6659}
6660
6661static int inherit_group(struct perf_event *parent_event,
6662	      struct task_struct *parent,
6663	      struct perf_event_context *parent_ctx,
6664	      struct task_struct *child,
6665	      struct perf_event_context *child_ctx)
6666{
6667	struct perf_event *leader;
6668	struct perf_event *sub;
6669	struct perf_event *child_ctr;
6670
6671	leader = inherit_event(parent_event, parent, parent_ctx,
6672				 child, NULL, child_ctx);
6673	if (IS_ERR(leader))
6674		return PTR_ERR(leader);
6675	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6676		child_ctr = inherit_event(sub, parent, parent_ctx,
6677					    child, leader, child_ctx);
6678		if (IS_ERR(child_ctr))
6679			return PTR_ERR(child_ctr);
6680	}
6681	return 0;
6682}
6683
6684static int
6685inherit_task_group(struct perf_event *event, struct task_struct *parent,
6686		   struct perf_event_context *parent_ctx,
6687		   struct task_struct *child, int ctxn,
6688		   int *inherited_all)
6689{
6690	int ret;
6691	struct perf_event_context *child_ctx;
6692
6693	if (!event->attr.inherit) {
6694		*inherited_all = 0;
6695		return 0;
6696	}
6697
6698	child_ctx = child->perf_event_ctxp[ctxn];
6699	if (!child_ctx) {
6700		/*
6701		 * This is executed from the parent task context, so
6702		 * inherit events that have been marked for cloning.
6703		 * First allocate and initialize a context for the
6704		 * child.
6705		 */
6706
6707		child_ctx = alloc_perf_context(event->pmu, child);
6708		if (!child_ctx)
6709			return -ENOMEM;
6710
6711		child->perf_event_ctxp[ctxn] = child_ctx;
6712	}
6713
6714	ret = inherit_group(event, parent, parent_ctx,
6715			    child, child_ctx);
6716
6717	if (ret)
6718		*inherited_all = 0;
6719
6720	return ret;
6721}
6722
6723/*
6724 * Initialize the perf_event context in task_struct
6725 */
6726int perf_event_init_context(struct task_struct *child, int ctxn)
6727{
6728	struct perf_event_context *child_ctx, *parent_ctx;
6729	struct perf_event_context *cloned_ctx;
6730	struct perf_event *event;
6731	struct task_struct *parent = current;
6732	int inherited_all = 1;
6733	unsigned long flags;
6734	int ret = 0;
6735
6736	if (likely(!parent->perf_event_ctxp[ctxn]))
6737		return 0;
6738
6739	/*
6740	 * If the parent's context is a clone, pin it so it won't get
6741	 * swapped under us.
6742	 */
6743	parent_ctx = perf_pin_task_context(parent, ctxn);
 
 
6744
6745	/*
6746	 * No need to check if parent_ctx != NULL here; since we saw
6747	 * it non-NULL earlier, the only reason for it to become NULL
6748	 * is if we exit, and since we're currently in the middle of
6749	 * a fork we can't be exiting at the same time.
6750	 */
6751
6752	/*
6753	 * Lock the parent list. No need to lock the child - not PID
6754	 * hashed yet and not running, so nobody can access it.
6755	 */
6756	mutex_lock(&parent_ctx->mutex);
6757
6758	/*
6759	 * We dont have to disable NMIs - we are only looking at
6760	 * the list, not manipulating it:
6761	 */
6762	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6763		ret = inherit_task_group(event, parent, parent_ctx,
6764					 child, ctxn, &inherited_all);
6765		if (ret)
6766			break;
6767	}
6768
6769	/*
6770	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6771	 * to allocations, but we need to prevent rotation because
6772	 * rotate_ctx() will change the list from interrupt context.
6773	 */
6774	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6775	parent_ctx->rotate_disable = 1;
6776	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6777
6778	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6779		ret = inherit_task_group(event, parent, parent_ctx,
6780					 child, ctxn, &inherited_all);
6781		if (ret)
6782			break;
6783	}
6784
6785	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6786	parent_ctx->rotate_disable = 0;
6787
6788	child_ctx = child->perf_event_ctxp[ctxn];
6789
6790	if (child_ctx && inherited_all) {
6791		/*
6792		 * Mark the child context as a clone of the parent
6793		 * context, or of whatever the parent is a clone of.
6794		 *
6795		 * Note that if the parent is a clone, the holding of
6796		 * parent_ctx->lock avoids it from being uncloned.
6797		 */
6798		cloned_ctx = parent_ctx->parent_ctx;
6799		if (cloned_ctx) {
6800			child_ctx->parent_ctx = cloned_ctx;
6801			child_ctx->parent_gen = parent_ctx->parent_gen;
6802		} else {
6803			child_ctx->parent_ctx = parent_ctx;
6804			child_ctx->parent_gen = parent_ctx->generation;
6805		}
6806		get_ctx(child_ctx->parent_ctx);
6807	}
6808
6809	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6810	mutex_unlock(&parent_ctx->mutex);
6811
6812	perf_unpin_context(parent_ctx);
6813	put_ctx(parent_ctx);
6814
6815	return ret;
6816}
6817
6818/*
6819 * Initialize the perf_event context in task_struct
6820 */
6821int perf_event_init_task(struct task_struct *child)
6822{
6823	int ctxn, ret;
6824
6825	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6826	mutex_init(&child->perf_event_mutex);
6827	INIT_LIST_HEAD(&child->perf_event_list);
6828
6829	for_each_task_context_nr(ctxn) {
6830		ret = perf_event_init_context(child, ctxn);
6831		if (ret)
6832			return ret;
6833	}
6834
6835	return 0;
6836}
6837
6838static void __init perf_event_init_all_cpus(void)
6839{
6840	struct swevent_htable *swhash;
6841	int cpu;
6842
6843	for_each_possible_cpu(cpu) {
6844		swhash = &per_cpu(swevent_htable, cpu);
6845		mutex_init(&swhash->hlist_mutex);
6846		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6847	}
6848}
6849
6850static void __cpuinit perf_event_init_cpu(int cpu)
6851{
6852	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6853
6854	mutex_lock(&swhash->hlist_mutex);
 
6855	if (swhash->hlist_refcount > 0) {
6856		struct swevent_hlist *hlist;
6857
6858		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6859		WARN_ON(!hlist);
6860		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6861	}
6862	mutex_unlock(&swhash->hlist_mutex);
6863}
6864
6865#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6866static void perf_pmu_rotate_stop(struct pmu *pmu)
6867{
6868	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6869
6870	WARN_ON(!irqs_disabled());
6871
6872	list_del_init(&cpuctx->rotation_list);
6873}
6874
6875static void __perf_event_exit_context(void *__info)
6876{
 
6877	struct perf_event_context *ctx = __info;
6878	struct perf_event *event, *tmp;
6879
6880	perf_pmu_rotate_stop(ctx->pmu);
6881
6882	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6883		__perf_remove_from_context(event);
6884	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6885		__perf_remove_from_context(event);
6886}
6887
6888static void perf_event_exit_cpu_context(int cpu)
6889{
6890	struct perf_event_context *ctx;
6891	struct pmu *pmu;
6892	int idx;
6893
6894	idx = srcu_read_lock(&pmus_srcu);
6895	list_for_each_entry_rcu(pmu, &pmus, entry) {
6896		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6897
6898		mutex_lock(&ctx->mutex);
6899		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6900		mutex_unlock(&ctx->mutex);
6901	}
6902	srcu_read_unlock(&pmus_srcu, idx);
6903}
6904
6905static void perf_event_exit_cpu(int cpu)
6906{
6907	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6908
 
 
6909	mutex_lock(&swhash->hlist_mutex);
 
6910	swevent_hlist_release(swhash);
6911	mutex_unlock(&swhash->hlist_mutex);
6912
6913	perf_event_exit_cpu_context(cpu);
6914}
6915#else
6916static inline void perf_event_exit_cpu(int cpu) { }
6917#endif
6918
6919static int
6920perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6921{
6922	int cpu;
6923
6924	for_each_online_cpu(cpu)
6925		perf_event_exit_cpu(cpu);
6926
6927	return NOTIFY_OK;
6928}
6929
6930/*
6931 * Run the perf reboot notifier at the very last possible moment so that
6932 * the generic watchdog code runs as long as possible.
6933 */
6934static struct notifier_block perf_reboot_notifier = {
6935	.notifier_call = perf_reboot,
6936	.priority = INT_MIN,
6937};
6938
6939static int __cpuinit
6940perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6941{
6942	unsigned int cpu = (long)hcpu;
6943
6944	switch (action & ~CPU_TASKS_FROZEN) {
6945
6946	case CPU_UP_PREPARE:
6947	case CPU_DOWN_FAILED:
6948		perf_event_init_cpu(cpu);
6949		break;
6950
6951	case CPU_UP_CANCELED:
6952	case CPU_DOWN_PREPARE:
6953		perf_event_exit_cpu(cpu);
6954		break;
6955
6956	default:
6957		break;
6958	}
6959
6960	return NOTIFY_OK;
6961}
6962
6963void __init perf_event_init(void)
6964{
6965	int ret;
6966
6967	idr_init(&pmu_idr);
6968
6969	perf_event_init_all_cpus();
6970	init_srcu_struct(&pmus_srcu);
6971	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6972	perf_pmu_register(&perf_cpu_clock, NULL, -1);
6973	perf_pmu_register(&perf_task_clock, NULL, -1);
6974	perf_tp_register();
6975	perf_cpu_notifier(perf_cpu_notify);
6976	register_reboot_notifier(&perf_reboot_notifier);
6977
6978	ret = init_hw_breakpoint();
6979	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
 
 
 
 
 
 
 
 
 
 
6980}
6981
6982static int __init perf_event_sysfs_init(void)
6983{
6984	struct pmu *pmu;
6985	int ret;
6986
6987	mutex_lock(&pmus_lock);
6988
6989	ret = bus_register(&pmu_bus);
6990	if (ret)
6991		goto unlock;
6992
6993	list_for_each_entry(pmu, &pmus, entry) {
6994		if (!pmu->name || pmu->type < 0)
6995			continue;
6996
6997		ret = pmu_dev_alloc(pmu);
6998		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6999	}
7000	pmu_bus_running = 1;
7001	ret = 0;
7002
7003unlock:
7004	mutex_unlock(&pmus_lock);
7005
7006	return ret;
7007}
7008device_initcall(perf_event_sysfs_init);
7009
7010#ifdef CONFIG_CGROUP_PERF
7011static struct cgroup_subsys_state *perf_cgroup_create(
7012	struct cgroup_subsys *ss, struct cgroup *cont)
7013{
7014	struct perf_cgroup *jc;
7015
7016	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7017	if (!jc)
7018		return ERR_PTR(-ENOMEM);
7019
7020	jc->info = alloc_percpu(struct perf_cgroup_info);
7021	if (!jc->info) {
7022		kfree(jc);
7023		return ERR_PTR(-ENOMEM);
7024	}
7025
7026	return &jc->css;
7027}
7028
7029static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7030				struct cgroup *cont)
7031{
7032	struct perf_cgroup *jc;
7033	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7034			  struct perf_cgroup, css);
7035	free_percpu(jc->info);
7036	kfree(jc);
7037}
7038
7039static int __perf_cgroup_move(void *info)
7040{
7041	struct task_struct *task = info;
7042	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7043	return 0;
7044}
7045
7046static void
7047perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7048{
7049	task_function_call(task, __perf_cgroup_move, task);
 
 
 
7050}
7051
7052static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7053		struct cgroup *old_cgrp, struct task_struct *task)
 
7054{
7055	/*
7056	 * cgroup_exit() is called in the copy_process() failure path.
7057	 * Ignore this case since the task hasn't ran yet, this avoids
7058	 * trying to poke a half freed task state from generic code.
7059	 */
7060	if (!(task->flags & PF_EXITING))
7061		return;
7062
7063	perf_cgroup_attach_task(cgrp, task);
7064}
7065
7066struct cgroup_subsys perf_subsys = {
7067	.name		= "perf_event",
7068	.subsys_id	= perf_subsys_id,
7069	.create		= perf_cgroup_create,
7070	.destroy	= perf_cgroup_destroy,
7071	.exit		= perf_cgroup_exit,
7072	.attach_task	= perf_cgroup_attach_task,
7073};
7074#endif /* CONFIG_CGROUP_PERF */