Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
  24#include <linux/atomic.h>
  25#include <linux/module.h>
  26#include <linux/mm.h>
  27#include <linux/init.h>
  28#include <linux/kallsyms.h>
  29#include <linux/kgdb.h>
  30#include <linux/kdb.h>
  31#include <linux/notifier.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/nmi.h>
  35#include <linux/time.h>
  36#include <linux/ptrace.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/kdebug.h>
  40#include <linux/proc_fs.h>
  41#include <linux/uaccess.h>
  42#include <linux/slab.h>
  43#include "kdb_private.h"
  44
  45#define GREP_LEN 256
  46char kdb_grep_string[GREP_LEN];
  47int kdb_grepping_flag;
  48EXPORT_SYMBOL(kdb_grepping_flag);
  49int kdb_grep_leading;
  50int kdb_grep_trailing;
  51
  52/*
  53 * Kernel debugger state flags
  54 */
  55int kdb_flags;
  56atomic_t kdb_event;
  57
  58/*
  59 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  60 * single thread processors through the kernel debugger.
  61 */
  62int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  63int kdb_nextline = 1;
  64int kdb_state;			/* General KDB state */
  65
  66struct task_struct *kdb_current_task;
  67EXPORT_SYMBOL(kdb_current_task);
  68struct pt_regs *kdb_current_regs;
  69
  70const char *kdb_diemsg;
  71static int kdb_go_count;
  72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  73static unsigned int kdb_continue_catastrophic =
  74	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  75#else
  76static unsigned int kdb_continue_catastrophic;
  77#endif
  78
  79/* kdb_commands describes the available commands. */
  80static kdbtab_t *kdb_commands;
  81#define KDB_BASE_CMD_MAX 50
  82static int kdb_max_commands = KDB_BASE_CMD_MAX;
  83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  84#define for_each_kdbcmd(cmd, num)					\
  85	for ((cmd) = kdb_base_commands, (num) = 0;			\
  86	     num < kdb_max_commands;					\
  87	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  88
  89typedef struct _kdbmsg {
  90	int	km_diag;	/* kdb diagnostic */
  91	char	*km_msg;	/* Corresponding message text */
  92} kdbmsg_t;
  93
  94#define KDBMSG(msgnum, text) \
  95	{ KDB_##msgnum, text }
  96
  97static kdbmsg_t kdbmsgs[] = {
  98	KDBMSG(NOTFOUND, "Command Not Found"),
  99	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 100	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 101	       "8 is only allowed on 64 bit systems"),
 102	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 103	KDBMSG(NOTENV, "Cannot find environment variable"),
 104	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 105	KDBMSG(NOTIMP, "Command not implemented"),
 106	KDBMSG(ENVFULL, "Environment full"),
 107	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 108	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 109#ifdef CONFIG_CPU_XSCALE
 110	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 111#else
 112	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 113#endif
 114	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 115	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 116	KDBMSG(BADMODE, "Invalid IDMODE"),
 117	KDBMSG(BADINT, "Illegal numeric value"),
 118	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 119	KDBMSG(BADREG, "Invalid register name"),
 120	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 121	KDBMSG(BADLENGTH, "Invalid length field"),
 122	KDBMSG(NOBP, "No Breakpoint exists"),
 123	KDBMSG(BADADDR, "Invalid address"),
 124};
 125#undef KDBMSG
 126
 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 128
 129
 130/*
 131 * Initial environment.   This is all kept static and local to
 132 * this file.   We don't want to rely on the memory allocation
 133 * mechanisms in the kernel, so we use a very limited allocate-only
 134 * heap for new and altered environment variables.  The entire
 135 * environment is limited to a fixed number of entries (add more
 136 * to __env[] if required) and a fixed amount of heap (add more to
 137 * KDB_ENVBUFSIZE if required).
 138 */
 139
 140static char *__env[] = {
 141#if defined(CONFIG_SMP)
 142 "PROMPT=[%d]kdb> ",
 
 143#else
 144 "PROMPT=kdb> ",
 145#endif
 146 "MOREPROMPT=more> ",
 
 147 "RADIX=16",
 148 "MDCOUNT=8",			/* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = ARRAY_SIZE(__env);
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182	struct task_struct *p = curr_task(cpu);
 183#ifdef	_TIF_MCA_INIT
 184	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185		p = krp->p;
 186#endif
 187	return p;
 188}
 189
 190/*
 191 * kdbgetenv - This function will return the character string value of
 192 *	an environment variable.
 193 * Parameters:
 194 *	match	A character string representing an environment variable.
 195 * Returns:
 196 *	NULL	No environment variable matches 'match'
 197 *	char*	Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201	char **ep = __env;
 202	int matchlen = strlen(match);
 203	int i;
 204
 205	for (i = 0; i < __nenv; i++) {
 206		char *e = *ep++;
 207
 208		if (!e)
 209			continue;
 210
 211		if ((strncmp(match, e, matchlen) == 0)
 212		 && ((e[matchlen] == '\0')
 213		   || (e[matchlen] == '='))) {
 214			char *cp = strchr(e, '=');
 215			return cp ? ++cp : "";
 216		}
 217	}
 218	return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *	environment entries.
 224 * Parameters:
 225 *	match	A character string representing a numeric value
 226 * Outputs:
 227 *	*value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *	Zero on success, a kdb diagnostic on failure.
 230 * Remarks:
 231 *	We use a static environment buffer (envbuffer) to hold the values
 232 *	of dynamically generated environment variables (see kdb_set).  Buffer
 233 *	space once allocated is never free'd, so over time, the amount of space
 234 *	(currently 512 bytes) will be exhausted if env variables are changed
 235 *	frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define	KDB_ENVBUFSIZE	512
 240	static char envbuffer[KDB_ENVBUFSIZE];
 241	static int envbufsize;
 242	char *ep = NULL;
 243
 244	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245		ep = &envbuffer[envbufsize];
 246		envbufsize += bytes;
 247	}
 248	return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *	long-valued environment variable.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263	char *ep;
 264
 265	ep = kdbgetenv(match);
 266	if (!ep)
 267		return KDB_NOTENV;
 268	if (strlen(ep) == 0)
 269		return KDB_NOENVVALUE;
 270
 271	*value = simple_strtoul(ep, NULL, 0);
 272
 273	return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *	integer-valued environment variable.
 279 * Parameters:
 280 *	match	A character string representing an integer-valued env variable
 281 * Outputs:
 282 *	*value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *	Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288	unsigned long val;
 289	int diag;
 290
 291	diag = kdbgetulenv(match, &val);
 292	if (!diag)
 293		*value = (int) val;
 294	return diag;
 295}
 296
 297/*
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *	unsigned long value.
 300 * Parameters:
 301 *	arg	A character string representing a numeric value
 302 * Outputs:
 303 *	*value  the unsigned long represntation of arg.
 304 * Returns:
 305 *	Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309	char *endp;
 310	unsigned long val;
 311
 312	val = simple_strtoul(arg, &endp, 0);
 313
 314	if (endp == arg) {
 315		/*
 316		 * Also try base 16, for us folks too lazy to type the
 317		 * leading 0x...
 318		 */
 319		val = simple_strtoul(arg, &endp, 16);
 320		if (endp == arg)
 321			return KDB_BADINT;
 322	}
 323
 324	*value = val;
 325
 326	return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331	char *endp;
 332	u64 val;
 333
 334	val = simple_strtoull(arg, &endp, 0);
 335
 336	if (endp == arg) {
 337
 338		val = simple_strtoull(arg, &endp, 16);
 339		if (endp == arg)
 340			return KDB_BADINT;
 341	}
 342
 343	*value = val;
 344
 345	return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *	existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354	int i;
 355	char *ep;
 356	size_t varlen, vallen;
 357
 358	/*
 359	 * we can be invoked two ways:
 360	 *   set var=value    argv[1]="var", argv[2]="value"
 361	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362	 * - if the latter, shift 'em down.
 363	 */
 364	if (argc == 3) {
 365		argv[2] = argv[3];
 366		argc--;
 367	}
 368
 369	if (argc != 2)
 370		return KDB_ARGCOUNT;
 371
 372	/*
 373	 * Check for internal variables
 374	 */
 375	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376		unsigned int debugflags;
 377		char *cp;
 378
 379		debugflags = simple_strtoul(argv[2], &cp, 0);
 380		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381			kdb_printf("kdb: illegal debug flags '%s'\n",
 382				    argv[2]);
 383			return 0;
 384		}
 385		kdb_flags = (kdb_flags &
 386			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389		return 0;
 390	}
 391
 392	/*
 393	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 394	 * name, argv[2] = value.
 395	 */
 396	varlen = strlen(argv[1]);
 397	vallen = strlen(argv[2]);
 398	ep = kdballocenv(varlen + vallen + 2);
 399	if (ep == (char *)0)
 400		return KDB_ENVBUFFULL;
 401
 402	sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404	ep[varlen+vallen+1] = '\0';
 405
 406	for (i = 0; i < __nenv; i++) {
 407		if (__env[i]
 408		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409		   && ((__env[i][varlen] == '\0')
 410		    || (__env[i][varlen] == '=')))) {
 411			__env[i] = ep;
 412			return 0;
 413		}
 414	}
 415
 416	/*
 417	 * Wasn't existing variable.  Fit into slot.
 418	 */
 419	for (i = 0; i < __nenv-1; i++) {
 420		if (__env[i] == (char *)0) {
 421			__env[i] = ep;
 422			return 0;
 423		}
 424	}
 425
 426	return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431	if (!kdb_current_regs) {
 432		kdb_printf("No current kdb registers."
 433			   "  You may need to select another task\n");
 434		return KDB_BADREG;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *	address-expression and returning the value of the expression,
 442 *	symbol name, and offset to the caller.
 443 *
 444 *	The argument may consist of a numeric value (decimal or
 445 *	hexidecimal), a symbol name, a register name (preceded by the
 446 *	percent sign), an environment variable with a numeric value
 447 *	(preceded by a dollar sign) or a simple arithmetic expression
 448 *	consisting of a symbol name, +/-, and a numeric constant value
 449 *	(offset).
 450 * Parameters:
 451 *	argc	- count of arguments in argv
 452 *	argv	- argument vector
 453 *	*nextarg - index to next unparsed argument in argv[]
 454 *	regs	- Register state at time of KDB entry
 455 * Outputs:
 456 *	*value	- receives the value of the address-expression
 457 *	*offset - receives the offset specified, if any
 458 *	*name   - receives the symbol name, if any
 459 *	*nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *	zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465		  unsigned long *value,  long *offset,
 466		  char **name)
 467{
 468	unsigned long addr;
 469	unsigned long off = 0;
 470	int positive;
 471	int diag;
 472	int found = 0;
 473	char *symname;
 474	char symbol = '\0';
 475	char *cp;
 476	kdb_symtab_t symtab;
 477
 478	/*
 479	 * Process arguments which follow the following syntax:
 480	 *
 481	 *  symbol | numeric-address [+/- numeric-offset]
 482	 *  %register
 483	 *  $environment-variable
 484	 */
 485
 486	if (*nextarg > argc)
 487		return KDB_ARGCOUNT;
 488
 489	symname = (char *)argv[*nextarg];
 490
 491	/*
 492	 * If there is no whitespace between the symbol
 493	 * or address and the '+' or '-' symbols, we
 494	 * remember the character and replace it with a
 495	 * null so the symbol/value can be properly parsed
 496	 */
 497	cp = strpbrk(symname, "+-");
 498	if (cp != NULL) {
 499		symbol = *cp;
 500		*cp++ = '\0';
 501	}
 502
 503	if (symname[0] == '$') {
 504		diag = kdbgetulenv(&symname[1], &addr);
 505		if (diag)
 506			return diag;
 507	} else if (symname[0] == '%') {
 508		diag = kdb_check_regs();
 509		if (diag)
 510			return diag;
 511		/* Implement register values with % at a later time as it is
 512		 * arch optional.
 513		 */
 514		return KDB_NOTIMP;
 515	} else {
 516		found = kdbgetsymval(symname, &symtab);
 517		if (found) {
 518			addr = symtab.sym_start;
 519		} else {
 520			diag = kdbgetularg(argv[*nextarg], &addr);
 521			if (diag)
 522				return diag;
 523		}
 524	}
 525
 526	if (!found)
 527		found = kdbnearsym(addr, &symtab);
 528
 529	(*nextarg)++;
 530
 531	if (name)
 532		*name = symname;
 533	if (value)
 534		*value = addr;
 535	if (offset && name && *name)
 536		*offset = addr - symtab.sym_start;
 537
 538	if ((*nextarg > argc)
 539	 && (symbol == '\0'))
 540		return 0;
 541
 542	/*
 543	 * check for +/- and offset
 544	 */
 545
 546	if (symbol == '\0') {
 547		if ((argv[*nextarg][0] != '+')
 548		 && (argv[*nextarg][0] != '-')) {
 549			/*
 550			 * Not our argument.  Return.
 551			 */
 552			return 0;
 553		} else {
 554			positive = (argv[*nextarg][0] == '+');
 555			(*nextarg)++;
 556		}
 557	} else
 558		positive = (symbol == '+');
 559
 560	/*
 561	 * Now there must be an offset!
 562	 */
 563	if ((*nextarg > argc)
 564	 && (symbol == '\0')) {
 565		return KDB_INVADDRFMT;
 566	}
 567
 568	if (!symbol) {
 569		cp = (char *)argv[*nextarg];
 570		(*nextarg)++;
 571	}
 572
 573	diag = kdbgetularg(cp, &off);
 574	if (diag)
 575		return diag;
 576
 577	if (!positive)
 578		off = -off;
 579
 580	if (offset)
 581		*offset += off;
 582
 583	if (value)
 584		*value += off;
 585
 586	return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591	int i;
 592
 593	if (diag >= 0) {
 594		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595		return;
 596	}
 597
 598	for (i = 0; i < __nkdb_err; i++) {
 599		if (kdbmsgs[i].km_diag == diag) {
 600			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601			return;
 602		}
 603	}
 604
 605	kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *	command which defines one command as a set of other commands,
 611 *	terminated by endefcmd.  kdb_defcmd processes the initial
 612 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *	the following commands until 'endefcmd'.
 614 * Inputs:
 615 *	argc	argument count
 616 *	argv	argument vector
 617 * Returns:
 618 *	zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621	int count;
 622	int usable;
 623	char *name;
 624	char *usage;
 625	char *help;
 626	char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638	char **save_command = s->command;
 639	if (strcmp(argv0, "endefcmd") == 0) {
 640		defcmd_in_progress = 0;
 641		if (!s->count)
 642			s->usable = 0;
 643		if (s->usable)
 644			kdb_register(s->name, kdb_exec_defcmd,
 645				     s->usage, s->help, 0);
 646		return 0;
 647	}
 648	if (!s->usable)
 649		return KDB_NOTIMP;
 650	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651	if (!s->command) {
 652		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653			   cmdstr);
 654		s->usable = 0;
 655		return KDB_NOTIMP;
 656	}
 657	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659	kfree(save_command);
 660	return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 666	if (defcmd_in_progress) {
 667		kdb_printf("kdb: nested defcmd detected, assuming missing "
 668			   "endefcmd\n");
 669		kdb_defcmd2("endefcmd", "endefcmd");
 670	}
 671	if (argc == 0) {
 672		int i;
 673		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675				   s->usage, s->help);
 676			for (i = 0; i < s->count; ++i)
 677				kdb_printf("%s", s->command[i]);
 678			kdb_printf("endefcmd\n");
 679		}
 680		return 0;
 681	}
 682	if (argc != 3)
 683		return KDB_ARGCOUNT;
 684	if (in_dbg_master()) {
 685		kdb_printf("Command only available during kdb_init()\n");
 686		return KDB_NOTIMP;
 687	}
 688	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 689			     GFP_KDB);
 690	if (!defcmd_set)
 691		goto fail_defcmd;
 
 
 
 
 692	memcpy(defcmd_set, save_defcmd_set,
 693	       defcmd_set_count * sizeof(*defcmd_set));
 
 694	s = defcmd_set + defcmd_set_count;
 695	memset(s, 0, sizeof(*s));
 696	s->usable = 1;
 697	s->name = kdb_strdup(argv[1], GFP_KDB);
 698	if (!s->name)
 699		goto fail_name;
 700	s->usage = kdb_strdup(argv[2], GFP_KDB);
 701	if (!s->usage)
 702		goto fail_usage;
 703	s->help = kdb_strdup(argv[3], GFP_KDB);
 704	if (!s->help)
 705		goto fail_help;
 706	if (s->usage[0] == '"') {
 707		strcpy(s->usage, argv[2]+1);
 708		s->usage[strlen(s->usage)-1] = '\0';
 709	}
 710	if (s->help[0] == '"') {
 711		strcpy(s->help, argv[3]+1);
 712		s->help[strlen(s->help)-1] = '\0';
 713	}
 714	++defcmd_set_count;
 715	defcmd_in_progress = 1;
 716	kfree(save_defcmd_set);
 717	return 0;
 718fail_help:
 719	kfree(s->usage);
 720fail_usage:
 721	kfree(s->name);
 722fail_name:
 723	kfree(defcmd_set);
 724fail_defcmd:
 725	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 726	defcmd_set = save_defcmd_set;
 727	return KDB_NOTIMP;
 728}
 729
 730/*
 731 * kdb_exec_defcmd - Execute the set of commands associated with this
 732 *	defcmd name.
 733 * Inputs:
 734 *	argc	argument count
 735 *	argv	argument vector
 736 * Returns:
 737 *	zero for success, a kdb diagnostic if error
 738 */
 739static int kdb_exec_defcmd(int argc, const char **argv)
 740{
 741	int i, ret;
 742	struct defcmd_set *s;
 743	if (argc != 0)
 744		return KDB_ARGCOUNT;
 745	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 746		if (strcmp(s->name, argv[0]) == 0)
 747			break;
 748	}
 749	if (i == defcmd_set_count) {
 750		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 751			   argv[0]);
 752		return KDB_NOTIMP;
 753	}
 754	for (i = 0; i < s->count; ++i) {
 755		/* Recursive use of kdb_parse, do not use argv after
 756		 * this point */
 757		argv = NULL;
 758		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 759		ret = kdb_parse(s->command[i]);
 760		if (ret)
 761			return ret;
 762	}
 763	return 0;
 764}
 765
 766/* Command history */
 767#define KDB_CMD_HISTORY_COUNT	32
 768#define CMD_BUFLEN		200	/* kdb_printf: max printline
 769					 * size == 256 */
 770static unsigned int cmd_head, cmd_tail;
 771static unsigned int cmdptr;
 772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 773static char cmd_cur[CMD_BUFLEN];
 774
 775/*
 776 * The "str" argument may point to something like  | grep xyz
 777 */
 778static void parse_grep(const char *str)
 779{
 780	int	len;
 781	char	*cp = (char *)str, *cp2;
 782
 783	/* sanity check: we should have been called with the \ first */
 784	if (*cp != '|')
 785		return;
 786	cp++;
 787	while (isspace(*cp))
 788		cp++;
 789	if (strncmp(cp, "grep ", 5)) {
 790		kdb_printf("invalid 'pipe', see grephelp\n");
 791		return;
 792	}
 793	cp += 5;
 794	while (isspace(*cp))
 795		cp++;
 796	cp2 = strchr(cp, '\n');
 797	if (cp2)
 798		*cp2 = '\0'; /* remove the trailing newline */
 799	len = strlen(cp);
 800	if (len == 0) {
 801		kdb_printf("invalid 'pipe', see grephelp\n");
 802		return;
 803	}
 804	/* now cp points to a nonzero length search string */
 805	if (*cp == '"') {
 806		/* allow it be "x y z" by removing the "'s - there must
 807		   be two of them */
 808		cp++;
 809		cp2 = strchr(cp, '"');
 810		if (!cp2) {
 811			kdb_printf("invalid quoted string, see grephelp\n");
 812			return;
 813		}
 814		*cp2 = '\0'; /* end the string where the 2nd " was */
 815	}
 816	kdb_grep_leading = 0;
 817	if (*cp == '^') {
 818		kdb_grep_leading = 1;
 819		cp++;
 820	}
 821	len = strlen(cp);
 822	kdb_grep_trailing = 0;
 823	if (*(cp+len-1) == '$') {
 824		kdb_grep_trailing = 1;
 825		*(cp+len-1) = '\0';
 826	}
 827	len = strlen(cp);
 828	if (!len)
 829		return;
 830	if (len >= GREP_LEN) {
 831		kdb_printf("search string too long\n");
 832		return;
 833	}
 834	strcpy(kdb_grep_string, cp);
 835	kdb_grepping_flag++;
 836	return;
 837}
 838
 839/*
 840 * kdb_parse - Parse the command line, search the command table for a
 841 *	matching command and invoke the command function.  This
 842 *	function may be called recursively, if it is, the second call
 843 *	will overwrite argv and cbuf.  It is the caller's
 844 *	responsibility to save their argv if they recursively call
 845 *	kdb_parse().
 846 * Parameters:
 847 *      cmdstr	The input command line to be parsed.
 848 *	regs	The registers at the time kdb was entered.
 849 * Returns:
 850 *	Zero for success, a kdb diagnostic if failure.
 851 * Remarks:
 852 *	Limited to 20 tokens.
 853 *
 854 *	Real rudimentary tokenization. Basically only whitespace
 855 *	is considered a token delimeter (but special consideration
 856 *	is taken of the '=' sign as used by the 'set' command).
 857 *
 858 *	The algorithm used to tokenize the input string relies on
 859 *	there being at least one whitespace (or otherwise useless)
 860 *	character between tokens as the character immediately following
 861 *	the token is altered in-place to a null-byte to terminate the
 862 *	token string.
 863 */
 864
 865#define MAXARGC	20
 866
 867int kdb_parse(const char *cmdstr)
 868{
 869	static char *argv[MAXARGC];
 870	static int argc;
 871	static char cbuf[CMD_BUFLEN+2];
 872	char *cp;
 873	char *cpp, quoted;
 874	kdbtab_t *tp;
 875	int i, escaped, ignore_errors = 0, check_grep;
 876
 877	/*
 878	 * First tokenize the command string.
 879	 */
 880	cp = (char *)cmdstr;
 881	kdb_grepping_flag = check_grep = 0;
 882
 883	if (KDB_FLAG(CMD_INTERRUPT)) {
 884		/* Previous command was interrupted, newline must not
 885		 * repeat the command */
 886		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 887		KDB_STATE_SET(PAGER);
 888		argc = 0;	/* no repeat */
 889	}
 890
 891	if (*cp != '\n' && *cp != '\0') {
 892		argc = 0;
 893		cpp = cbuf;
 894		while (*cp) {
 895			/* skip whitespace */
 896			while (isspace(*cp))
 897				cp++;
 898			if ((*cp == '\0') || (*cp == '\n') ||
 899			    (*cp == '#' && !defcmd_in_progress))
 900				break;
 901			/* special case: check for | grep pattern */
 902			if (*cp == '|') {
 903				check_grep++;
 904				break;
 905			}
 906			if (cpp >= cbuf + CMD_BUFLEN) {
 907				kdb_printf("kdb_parse: command buffer "
 908					   "overflow, command ignored\n%s\n",
 909					   cmdstr);
 910				return KDB_NOTFOUND;
 911			}
 912			if (argc >= MAXARGC - 1) {
 913				kdb_printf("kdb_parse: too many arguments, "
 914					   "command ignored\n%s\n", cmdstr);
 915				return KDB_NOTFOUND;
 916			}
 917			argv[argc++] = cpp;
 918			escaped = 0;
 919			quoted = '\0';
 920			/* Copy to next unquoted and unescaped
 921			 * whitespace or '=' */
 922			while (*cp && *cp != '\n' &&
 923			       (escaped || quoted || !isspace(*cp))) {
 924				if (cpp >= cbuf + CMD_BUFLEN)
 925					break;
 926				if (escaped) {
 927					escaped = 0;
 928					*cpp++ = *cp++;
 929					continue;
 930				}
 931				if (*cp == '\\') {
 932					escaped = 1;
 933					++cp;
 934					continue;
 935				}
 936				if (*cp == quoted)
 937					quoted = '\0';
 938				else if (*cp == '\'' || *cp == '"')
 939					quoted = *cp;
 940				*cpp = *cp++;
 941				if (*cpp == '=' && !quoted)
 942					break;
 943				++cpp;
 944			}
 945			*cpp++ = '\0';	/* Squash a ws or '=' character */
 946		}
 947	}
 948	if (!argc)
 949		return 0;
 950	if (check_grep)
 951		parse_grep(cp);
 952	if (defcmd_in_progress) {
 953		int result = kdb_defcmd2(cmdstr, argv[0]);
 954		if (!defcmd_in_progress) {
 955			argc = 0;	/* avoid repeat on endefcmd */
 956			*(argv[0]) = '\0';
 957		}
 958		return result;
 959	}
 960	if (argv[0][0] == '-' && argv[0][1] &&
 961	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 962		ignore_errors = 1;
 963		++argv[0];
 964	}
 965
 966	for_each_kdbcmd(tp, i) {
 967		if (tp->cmd_name) {
 968			/*
 969			 * If this command is allowed to be abbreviated,
 970			 * check to see if this is it.
 971			 */
 972
 973			if (tp->cmd_minlen
 974			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 975				if (strncmp(argv[0],
 976					    tp->cmd_name,
 977					    tp->cmd_minlen) == 0) {
 978					break;
 979				}
 980			}
 981
 982			if (strcmp(argv[0], tp->cmd_name) == 0)
 983				break;
 984		}
 985	}
 986
 987	/*
 988	 * If we don't find a command by this name, see if the first
 989	 * few characters of this match any of the known commands.
 990	 * e.g., md1c20 should match md.
 991	 */
 992	if (i == kdb_max_commands) {
 993		for_each_kdbcmd(tp, i) {
 994			if (tp->cmd_name) {
 995				if (strncmp(argv[0],
 996					    tp->cmd_name,
 997					    strlen(tp->cmd_name)) == 0) {
 998					break;
 999				}
1000			}
1001		}
1002	}
1003
1004	if (i < kdb_max_commands) {
1005		int result;
1006		KDB_STATE_SET(CMD);
1007		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008		if (result && ignore_errors && result > KDB_CMD_GO)
1009			result = 0;
1010		KDB_STATE_CLEAR(CMD);
1011		switch (tp->cmd_repeat) {
1012		case KDB_REPEAT_NONE:
1013			argc = 0;
1014			if (argv[0])
1015				*(argv[0]) = '\0';
1016			break;
1017		case KDB_REPEAT_NO_ARGS:
1018			argc = 1;
1019			if (argv[1])
1020				*(argv[1]) = '\0';
1021			break;
1022		case KDB_REPEAT_WITH_ARGS:
1023			break;
1024		}
1025		return result;
1026	}
1027
1028	/*
1029	 * If the input with which we were presented does not
1030	 * map to an existing command, attempt to parse it as an
1031	 * address argument and display the result.   Useful for
1032	 * obtaining the address of a variable, or the nearest symbol
1033	 * to an address contained in a register.
1034	 */
1035	{
1036		unsigned long value;
1037		char *name = NULL;
1038		long offset;
1039		int nextarg = 0;
1040
1041		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042				  &value, &offset, &name)) {
1043			return KDB_NOTFOUND;
1044		}
1045
1046		kdb_printf("%s = ", argv[0]);
1047		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048		kdb_printf("\n");
1049		return 0;
1050	}
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P	16
1057#define CTRL_N	14
1058
1059	/* initial situation */
1060	if (cmd_head == cmd_tail)
1061		return 0;
1062	switch (*cmd) {
1063	case CTRL_P:
1064		if (cmdptr != cmd_tail)
1065			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067		return 1;
1068	case CTRL_N:
1069		if (cmdptr != cmd_head)
1070			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072		return 1;
1073	}
1074	return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1079 *	the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083	emergency_restart();
1084	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085	while (1)
1086		cpu_relax();
1087	/* NOTREACHED */
1088	return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093	int old_lvl = console_loglevel;
1094	console_loglevel = 15;
1095	kdb_trap_printk++;
1096	show_regs(regs);
1097	kdb_trap_printk--;
1098	kdb_printf("\n");
1099	console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104	kdb_current_task = p;
1105
1106	if (kdb_task_has_cpu(p)) {
1107		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108		return;
1109	}
1110	kdb_current_regs = NULL;
1111}
1112
1113/*
1114 * kdb_local - The main code for kdb.  This routine is invoked on a
1115 *	specific processor, it is not global.  The main kdb() routine
1116 *	ensures that only one processor at a time is in this routine.
1117 *	This code is called with the real reason code on the first
1118 *	entry to a kdb session, thereafter it is called with reason
1119 *	SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 *	reason		The reason KDB was invoked
1122 *	error		The hardware-defined error code
1123 *	regs		The exception frame at time of fault/breakpoint.
1124 *	db_result	Result code from the break or debug point.
1125 * Returns:
1126 *	0	KDB was invoked for an event which it wasn't responsible
1127 *	1	KDB handled the event for which it was invoked.
1128 *	KDB_CMD_GO	User typed 'go'.
1129 *	KDB_CMD_CPU	User switched to another cpu.
1130 *	KDB_CMD_SS	Single step.
 
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133		     kdb_dbtrap_t db_result)
1134{
1135	char *cmdbuf;
1136	int diag;
1137	struct task_struct *kdb_current =
1138		kdb_curr_task(raw_smp_processor_id());
1139
1140	KDB_DEBUG_STATE("kdb_local 1", reason);
1141	kdb_go_count = 0;
1142	if (reason == KDB_REASON_DEBUG) {
1143		/* special case below */
1144	} else {
1145		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146			   kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148		kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150	}
1151
1152	switch (reason) {
1153	case KDB_REASON_DEBUG:
1154	{
1155		/*
1156		 * If re-entering kdb after a single step
1157		 * command, don't print the message.
1158		 */
1159		switch (db_result) {
1160		case KDB_DB_BPT:
1161			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162				   kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164			kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167				   instruction_pointer(regs));
1168			break;
 
 
 
 
 
 
 
 
1169		case KDB_DB_SS:
1170			break;
1171		case KDB_DB_SSBPT:
1172			KDB_DEBUG_STATE("kdb_local 4", reason);
1173			return 1;	/* kdba_db_trap did the work */
1174		default:
1175			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176				   db_result);
1177			break;
1178		}
1179
1180	}
1181		break;
1182	case KDB_REASON_ENTER:
1183		if (KDB_STATE(KEYBOARD))
1184			kdb_printf("due to Keyboard Entry\n");
1185		else
1186			kdb_printf("due to KDB_ENTER()\n");
1187		break;
1188	case KDB_REASON_KEYBOARD:
1189		KDB_STATE_SET(KEYBOARD);
1190		kdb_printf("due to Keyboard Entry\n");
1191		break;
1192	case KDB_REASON_ENTER_SLAVE:
1193		/* drop through, slaves only get released via cpu switch */
1194	case KDB_REASON_SWITCH:
1195		kdb_printf("due to cpu switch\n");
1196		break;
1197	case KDB_REASON_OOPS:
1198		kdb_printf("Oops: %s\n", kdb_diemsg);
1199		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200			   instruction_pointer(regs));
1201		kdb_dumpregs(regs);
1202		break;
1203	case KDB_REASON_SYSTEM_NMI:
1204		kdb_printf("due to System NonMaskable Interrupt\n");
1205		break;
1206	case KDB_REASON_NMI:
1207		kdb_printf("due to NonMaskable Interrupt @ "
1208			   kdb_machreg_fmt "\n",
1209			   instruction_pointer(regs));
1210		kdb_dumpregs(regs);
1211		break;
1212	case KDB_REASON_SSTEP:
1213	case KDB_REASON_BREAK:
1214		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215			   reason == KDB_REASON_BREAK ?
1216			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1217		/*
1218		 * Determine if this breakpoint is one that we
1219		 * are interested in.
1220		 */
1221		if (db_result != KDB_DB_BPT) {
1222			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223				   db_result);
1224			KDB_DEBUG_STATE("kdb_local 6", reason);
1225			return 0;	/* Not for us, dismiss it */
1226		}
1227		break;
1228	case KDB_REASON_RECURSE:
1229		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230			   instruction_pointer(regs));
1231		break;
1232	default:
1233		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234		KDB_DEBUG_STATE("kdb_local 8", reason);
1235		return 0;	/* Not for us, dismiss it */
1236	}
1237
1238	while (1) {
1239		/*
1240		 * Initialize pager context.
1241		 */
1242		kdb_nextline = 1;
1243		KDB_STATE_CLEAR(SUPPRESS);
1244
1245		cmdbuf = cmd_cur;
1246		*cmdbuf = '\0';
1247		*(cmd_hist[cmd_head]) = '\0';
1248
 
 
 
 
 
 
 
 
 
 
 
 
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252			 raw_smp_processor_id());
1253#else
1254		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256		if (defcmd_in_progress)
1257			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259		/*
1260		 * Fetch command from keyboard
1261		 */
1262		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263		if (*cmdbuf != '\n') {
1264			if (*cmdbuf < 32) {
1265				if (cmdptr == cmd_head) {
1266					strncpy(cmd_hist[cmd_head], cmd_cur,
1267						CMD_BUFLEN);
1268					*(cmd_hist[cmd_head] +
1269					  strlen(cmd_hist[cmd_head])-1) = '\0';
1270				}
1271				if (!handle_ctrl_cmd(cmdbuf))
1272					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273				cmdbuf = cmd_cur;
1274				goto do_full_getstr;
1275			} else {
1276				strncpy(cmd_hist[cmd_head], cmd_cur,
1277					CMD_BUFLEN);
1278			}
1279
1280			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281			if (cmd_head == cmd_tail)
1282				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283		}
1284
1285		cmdptr = cmd_head;
1286		diag = kdb_parse(cmdbuf);
1287		if (diag == KDB_NOTFOUND) {
1288			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289			diag = 0;
1290		}
1291		if (diag == KDB_CMD_GO
1292		 || diag == KDB_CMD_CPU
1293		 || diag == KDB_CMD_SS
 
1294		 || diag == KDB_CMD_KGDB)
1295			break;
1296
1297		if (diag)
1298			kdb_cmderror(diag);
1299	}
1300	KDB_DEBUG_STATE("kdb_local 9", diag);
1301	return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 *	for debugging.
1308 * Inputs:
1309 *	text		Identifies the debug point
1310 *	value		Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316		   kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 *	controlling cpu, all cpus are in this loop.  One cpu is in
1322 *	control and will issue the kdb prompt, the others will spin
1323 *	until 'go' or cpu switch.
1324 *
1325 *	To get a consistent view of the kernel stacks for all
1326 *	processes, this routine is invoked from the main kdb code via
1327 *	an architecture specific routine.  kdba_main_loop is
1328 *	responsible for making the kernel stacks consistent for all
1329 *	processes, there should be no difference between a blocked
1330 *	process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 *	reason		The reason KDB was invoked
1333 *	error		The hardware-defined error code
1334 *	reason2		kdb's current reason code.
1335 *			Initially error but can change
1336 *			according to kdb state.
1337 *	db_result	Result code from break or debug point.
1338 *	regs		The exception frame at time of fault/breakpoint.
1339 *			should always be valid.
1340 * Returns:
1341 *	0	KDB was invoked for an event which it wasn't responsible
1342 *	1	KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347	int result = 1;
1348	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1349	while (1) {
1350		/*
1351		 * All processors except the one that is in control
1352		 * will spin here.
1353		 */
1354		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355		while (KDB_STATE(HOLD_CPU)) {
1356			/* state KDB is turned off by kdb_cpu to see if the
1357			 * other cpus are still live, each cpu in this loop
1358			 * turns it back on.
1359			 */
1360			if (!KDB_STATE(KDB))
1361				KDB_STATE_SET(KDB);
1362		}
1363
1364		KDB_STATE_CLEAR(SUPPRESS);
1365		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366		if (KDB_STATE(LEAVING))
1367			break;	/* Another cpu said 'go' */
1368		/* Still using kdb, this processor is in control */
1369		result = kdb_local(reason2, error, regs, db_result);
1370		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372		if (result == KDB_CMD_CPU)
1373			break;
1374
1375		if (result == KDB_CMD_SS) {
1376			KDB_STATE_SET(DOING_SS);
1377			break;
1378		}
1379
 
 
 
 
 
 
1380		if (result == KDB_CMD_KGDB) {
1381			if (!KDB_STATE(DOING_KGDB))
1382				kdb_printf("Entering please attach debugger "
1383					   "or use $D#44+ or $3#33\n");
1384			break;
1385		}
1386		if (result && result != 1 && result != KDB_CMD_GO)
1387			kdb_printf("\nUnexpected kdb_local return code %d\n",
1388				   result);
1389		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390		break;
1391	}
1392	if (KDB_STATE(DOING_SS))
1393		KDB_STATE_CLEAR(SSBPT);
1394
1395	/* Clean up any keyboard devices before leaving */
1396	kdb_kbd_cleanup_state();
1397
1398	return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 *	mdr  <addr arg>,<byte count>
1405 * Inputs:
1406 *	addr	Start address
1407 *	count	Number of bytes
1408 * Returns:
1409 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413	unsigned char c;
1414	while (count--) {
1415		if (kdb_getarea(c, addr))
1416			return 0;
1417		kdb_printf("%02x", c);
1418		addr++;
1419	}
1420	kdb_printf("\n");
1421	return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 *	'md8' 'mdr' and 'mds' commands.
1427 *
1428 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1429 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1430 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1431 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1432 *	mdr  <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435			int symbolic, int nosect, int bytesperword,
1436			int num, int repeat, int phys)
1437{
1438	/* print just one line of data */
1439	kdb_symtab_t symtab;
1440	char cbuf[32];
1441	char *c = cbuf;
1442	int i;
1443	unsigned long word;
1444
1445	memset(cbuf, '\0', sizeof(cbuf));
1446	if (phys)
1447		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448	else
1449		kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451	for (i = 0; i < num && repeat--; i++) {
1452		if (phys) {
1453			if (kdb_getphysword(&word, addr, bytesperword))
1454				break;
1455		} else if (kdb_getword(&word, addr, bytesperword))
1456			break;
1457		kdb_printf(fmtstr, word);
1458		if (symbolic)
1459			kdbnearsym(word, &symtab);
1460		else
1461			memset(&symtab, 0, sizeof(symtab));
1462		if (symtab.sym_name) {
1463			kdb_symbol_print(word, &symtab, 0);
1464			if (!nosect) {
1465				kdb_printf("\n");
1466				kdb_printf("                       %s %s "
1467					   kdb_machreg_fmt " "
1468					   kdb_machreg_fmt " "
1469					   kdb_machreg_fmt, symtab.mod_name,
1470					   symtab.sec_name, symtab.sec_start,
1471					   symtab.sym_start, symtab.sym_end);
1472			}
1473			addr += bytesperword;
1474		} else {
1475			union {
1476				u64 word;
1477				unsigned char c[8];
1478			} wc;
1479			unsigned char *cp;
1480#ifdef	__BIG_ENDIAN
1481			cp = wc.c + 8 - bytesperword;
1482#else
1483			cp = wc.c;
1484#endif
1485			wc.word = word;
1486#define printable_char(c) \
1487	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488			switch (bytesperword) {
1489			case 8:
1490				*c++ = printable_char(*cp++);
1491				*c++ = printable_char(*cp++);
1492				*c++ = printable_char(*cp++);
1493				*c++ = printable_char(*cp++);
1494				addr += 4;
1495			case 4:
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				addr += 2;
1499			case 2:
1500				*c++ = printable_char(*cp++);
1501				addr++;
1502			case 1:
1503				*c++ = printable_char(*cp++);
1504				addr++;
1505				break;
1506			}
1507#undef printable_char
1508		}
1509	}
1510	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511		   " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516	static unsigned long last_addr;
1517	static int last_radix, last_bytesperword, last_repeat;
1518	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519	int nosect = 0;
1520	char fmtchar, fmtstr[64];
1521	unsigned long addr;
1522	unsigned long word;
1523	long offset = 0;
1524	int symbolic = 0;
1525	int valid = 0;
1526	int phys = 0;
1527
1528	kdbgetintenv("MDCOUNT", &mdcount);
1529	kdbgetintenv("RADIX", &radix);
1530	kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532	/* Assume 'md <addr>' and start with environment values */
1533	repeat = mdcount * 16 / bytesperword;
1534
1535	if (strcmp(argv[0], "mdr") == 0) {
1536		if (argc != 2)
1537			return KDB_ARGCOUNT;
1538		valid = 1;
1539	} else if (isdigit(argv[0][2])) {
1540		bytesperword = (int)(argv[0][2] - '0');
1541		if (bytesperword == 0) {
1542			bytesperword = last_bytesperword;
1543			if (bytesperword == 0)
1544				bytesperword = 4;
1545		}
1546		last_bytesperword = bytesperword;
1547		repeat = mdcount * 16 / bytesperword;
1548		if (!argv[0][3])
1549			valid = 1;
1550		else if (argv[0][3] == 'c' && argv[0][4]) {
1551			char *p;
1552			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553			mdcount = ((repeat * bytesperword) + 15) / 16;
1554			valid = !*p;
1555		}
1556		last_repeat = repeat;
1557	} else if (strcmp(argv[0], "md") == 0)
1558		valid = 1;
1559	else if (strcmp(argv[0], "mds") == 0)
1560		valid = 1;
1561	else if (strcmp(argv[0], "mdp") == 0) {
1562		phys = valid = 1;
1563	}
1564	if (!valid)
1565		return KDB_NOTFOUND;
1566
1567	if (argc == 0) {
1568		if (last_addr == 0)
1569			return KDB_ARGCOUNT;
1570		addr = last_addr;
1571		radix = last_radix;
1572		bytesperword = last_bytesperword;
1573		repeat = last_repeat;
1574		mdcount = ((repeat * bytesperword) + 15) / 16;
1575	}
1576
1577	if (argc) {
1578		unsigned long val;
1579		int diag, nextarg = 1;
1580		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581				     &offset, NULL);
1582		if (diag)
1583			return diag;
1584		if (argc > nextarg+2)
1585			return KDB_ARGCOUNT;
1586
1587		if (argc >= nextarg) {
1588			diag = kdbgetularg(argv[nextarg], &val);
1589			if (!diag) {
1590				mdcount = (int) val;
1591				repeat = mdcount * 16 / bytesperword;
1592			}
1593		}
1594		if (argc >= nextarg+1) {
1595			diag = kdbgetularg(argv[nextarg+1], &val);
1596			if (!diag)
1597				radix = (int) val;
1598		}
1599	}
1600
1601	if (strcmp(argv[0], "mdr") == 0)
1602		return kdb_mdr(addr, mdcount);
1603
1604	switch (radix) {
1605	case 10:
1606		fmtchar = 'd';
1607		break;
1608	case 16:
1609		fmtchar = 'x';
1610		break;
1611	case 8:
1612		fmtchar = 'o';
1613		break;
1614	default:
1615		return KDB_BADRADIX;
1616	}
1617
1618	last_radix = radix;
1619
1620	if (bytesperword > KDB_WORD_SIZE)
1621		return KDB_BADWIDTH;
1622
1623	switch (bytesperword) {
1624	case 8:
1625		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626		break;
1627	case 4:
1628		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629		break;
1630	case 2:
1631		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632		break;
1633	case 1:
1634		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635		break;
1636	default:
1637		return KDB_BADWIDTH;
1638	}
1639
1640	last_repeat = repeat;
1641	last_bytesperword = bytesperword;
1642
1643	if (strcmp(argv[0], "mds") == 0) {
1644		symbolic = 1;
1645		/* Do not save these changes as last_*, they are temporary mds
1646		 * overrides.
1647		 */
1648		bytesperword = KDB_WORD_SIZE;
1649		repeat = mdcount;
1650		kdbgetintenv("NOSECT", &nosect);
1651	}
1652
1653	/* Round address down modulo BYTESPERWORD */
1654
1655	addr &= ~(bytesperword-1);
1656
1657	while (repeat > 0) {
1658		unsigned long a;
1659		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661		if (KDB_FLAG(CMD_INTERRUPT))
1662			return 0;
1663		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664			if (phys) {
1665				if (kdb_getphysword(&word, a, bytesperword)
1666						|| word)
1667					break;
1668			} else if (kdb_getword(&word, a, bytesperword) || word)
1669				break;
1670		}
1671		n = min(num, repeat);
1672		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673			    num, repeat, phys);
1674		addr += bytesperword * n;
1675		repeat -= n;
1676		z = (z + num - 1) / num;
1677		if (z > 2) {
1678			int s = num * (z-2);
1679			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680				   " zero suppressed\n",
1681				addr, addr + bytesperword * s - 1);
1682			addr += bytesperword * s;
1683			repeat -= s;
1684		}
1685	}
1686	last_addr = addr;
1687
1688	return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 *	mm address-expression new-value
1694 * Remarks:
1695 *	mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699	int diag;
1700	unsigned long addr;
1701	long offset = 0;
1702	unsigned long contents;
1703	int nextarg;
1704	int width;
1705
1706	if (argv[0][2] && !isdigit(argv[0][2]))
1707		return KDB_NOTFOUND;
1708
1709	if (argc < 2)
1710		return KDB_ARGCOUNT;
1711
1712	nextarg = 1;
1713	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714	if (diag)
1715		return diag;
1716
1717	if (nextarg > argc)
1718		return KDB_ARGCOUNT;
1719	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720	if (diag)
1721		return diag;
1722
1723	if (nextarg != argc + 1)
1724		return KDB_ARGCOUNT;
1725
1726	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727	diag = kdb_putword(addr, contents, width);
1728	if (diag)
1729		return diag;
1730
1731	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733	return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 *	go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742	unsigned long addr;
1743	int diag;
1744	int nextarg;
1745	long offset;
1746
1747	if (raw_smp_processor_id() != kdb_initial_cpu) {
1748		kdb_printf("go must execute on the entry cpu, "
1749			   "please use \"cpu %d\" and then execute go\n",
1750			   kdb_initial_cpu);
1751		return KDB_BADCPUNUM;
1752	}
1753	if (argc == 1) {
1754		nextarg = 1;
1755		diag = kdbgetaddrarg(argc, argv, &nextarg,
1756				     &addr, &offset, NULL);
1757		if (diag)
1758			return diag;
1759	} else if (argc) {
1760		return KDB_ARGCOUNT;
1761	}
1762
1763	diag = KDB_CMD_GO;
1764	if (KDB_FLAG(CATASTROPHIC)) {
1765		kdb_printf("Catastrophic error detected\n");
1766		kdb_printf("kdb_continue_catastrophic=%d, ",
1767			kdb_continue_catastrophic);
1768		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769			kdb_printf("type go a second time if you really want "
1770				   "to continue\n");
1771			return 0;
1772		}
1773		if (kdb_continue_catastrophic == 2) {
1774			kdb_printf("forcing reboot\n");
1775			kdb_reboot(0, NULL);
1776		}
1777		kdb_printf("attempting to continue\n");
1778	}
1779	return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787	int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789	int i;
1790	char *rname;
1791	int rsize;
1792	u64 reg64;
1793	u32 reg32;
1794	u16 reg16;
1795	u8 reg8;
1796
1797	if (len)
1798		return len;
1799
1800	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801		rsize = dbg_reg_def[i].size * 2;
1802		if (rsize > 16)
1803			rsize = 2;
1804		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805			len = 0;
1806			kdb_printf("\n");
1807		}
1808		if (len)
1809			len += kdb_printf("  ");
1810		switch(dbg_reg_def[i].size * 8) {
1811		case 8:
1812			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1813			if (!rname)
1814				break;
1815			len += kdb_printf("%s: %02x", rname, reg8);
1816			break;
1817		case 16:
1818			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1819			if (!rname)
1820				break;
1821			len += kdb_printf("%s: %04x", rname, reg16);
1822			break;
1823		case 32:
1824			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1825			if (!rname)
1826				break;
1827			len += kdb_printf("%s: %08x", rname, reg32);
1828			break;
1829		case 64:
1830			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1831			if (!rname)
1832				break;
1833			len += kdb_printf("%s: %016llx", rname, reg64);
1834			break;
1835		default:
1836			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837		}
1838	}
1839	kdb_printf("\n");
1840#else
1841	if (len)
1842		return len;
1843
1844	kdb_dumpregs(kdb_current_regs);
1845#endif
1846	return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify)  command.
1851 *	rm register-name new-contents
1852 * Remarks:
1853 *	Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858	int diag;
1859	const char *rname;
1860	int i;
1861	u64 reg64;
1862	u32 reg32;
1863	u16 reg16;
1864	u8 reg8;
1865
1866	if (argc != 2)
1867		return KDB_ARGCOUNT;
1868	/*
1869	 * Allow presence or absence of leading '%' symbol.
1870	 */
1871	rname = argv[1];
1872	if (*rname == '%')
1873		rname++;
1874
1875	diag = kdbgetu64arg(argv[2], &reg64);
1876	if (diag)
1877		return diag;
1878
1879	diag = kdb_check_regs();
1880	if (diag)
1881		return diag;
1882
1883	diag = KDB_BADREG;
1884	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886			diag = 0;
1887			break;
1888		}
1889	}
1890	if (!diag) {
1891		switch(dbg_reg_def[i].size * 8) {
1892		case 8:
1893			reg8 = reg64;
1894			dbg_set_reg(i, &reg8, kdb_current_regs);
1895			break;
1896		case 16:
1897			reg16 = reg64;
1898			dbg_set_reg(i, &reg16, kdb_current_regs);
1899			break;
1900		case 32:
1901			reg32 = reg64;
1902			dbg_set_reg(i, &reg32, kdb_current_regs);
1903			break;
1904		case 64:
1905			dbg_set_reg(i, &reg64, kdb_current_regs);
1906			break;
1907		}
1908	}
1909	return diag;
1910#else
1911	kdb_printf("ERROR: Register set currently not implemented\n");
1912    return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 *		sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
1924	if (argc != 1)
1925		return KDB_ARGCOUNT;
1926	kdb_trap_printk++;
1927	__handle_sysrq(*argv[1], false);
1928	kdb_trap_printk--;
1929
1930	return 0;
1931}
1932#endif	/* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 *	frame) command.  This command takes an address and expects to
1937 *	find an exception frame at that address, formats and prints
1938 *	it.
1939 *		regs address-expression
1940 * Remarks:
1941 *	Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945	int diag;
1946	unsigned long addr;
1947	long offset;
1948	int nextarg;
1949
1950	if (argc != 1)
1951		return KDB_ARGCOUNT;
1952
1953	nextarg = 1;
1954	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955	if (diag)
1956		return diag;
1957	show_regs((struct pt_regs *)addr);
1958	return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1964 *	currently loaded kernel modules.
1965 *	Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969	struct module *mod;
1970
1971	if (argc != 0)
1972		return KDB_ARGCOUNT;
1973
1974	kdb_printf("Module                  Size  modstruct     Used by\n");
1975	list_for_each_entry(mod, kdb_modules, list) {
1976		if (mod->state == MODULE_STATE_UNFORMED)
1977			continue;
1978
1979		kdb_printf("%-20s%8u  0x%p ", mod->name,
1980			   mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982		kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984		if (mod->state == MODULE_STATE_GOING)
1985			kdb_printf(" (Unloading)");
1986		else if (mod->state == MODULE_STATE_COMING)
1987			kdb_printf(" (Loading)");
1988		else
1989			kdb_printf(" (Live)");
1990		kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993		{
1994			struct module_use *use;
1995			kdb_printf(" [ ");
1996			list_for_each_entry(use, &mod->source_list,
1997					    source_list)
1998				kdb_printf("%s ", use->target->name);
1999			kdb_printf("]\n");
2000		}
2001#endif
2002	}
2003
2004	return 0;
2005}
2006
2007#endif	/* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command.  Display the
2011 *	current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016	int i;
2017
2018	for (i = 0; i < __nenv; i++) {
2019		if (__env[i])
2020			kdb_printf("%s\n", __env[i]);
2021	}
2022
2023	if (KDB_DEBUG(MASK))
2024		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2025
2026	return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 *	the contents of the syslog buffer.
2033 *		dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037	int diag;
2038	int logging;
2039	int lines = 0;
2040	int adjust = 0;
2041	int n = 0;
2042	int skip = 0;
2043	struct kmsg_dumper dumper = { .active = 1 };
2044	size_t len;
2045	char buf[201];
2046
2047	if (argc > 2)
2048		return KDB_ARGCOUNT;
2049	if (argc) {
2050		char *cp;
2051		lines = simple_strtol(argv[1], &cp, 0);
2052		if (*cp)
2053			lines = 0;
2054		if (argc > 1) {
2055			adjust = simple_strtoul(argv[2], &cp, 0);
2056			if (*cp || adjust < 0)
2057				adjust = 0;
2058		}
2059	}
2060
2061	/* disable LOGGING if set */
2062	diag = kdbgetintenv("LOGGING", &logging);
2063	if (!diag && logging) {
2064		const char *setargs[] = { "set", "LOGGING", "0" };
2065		kdb_set(2, setargs);
2066	}
2067
2068	kmsg_dump_rewind_nolock(&dumper);
2069	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070		n++;
2071
 
 
 
 
 
 
 
 
 
 
 
 
2072	if (lines < 0) {
2073		if (adjust >= n)
2074			kdb_printf("buffer only contains %d lines, nothing "
2075				   "printed\n", n);
2076		else if (adjust - lines >= n)
2077			kdb_printf("buffer only contains %d lines, last %d "
2078				   "lines printed\n", n, n - adjust);
2079		skip = adjust;
2080		lines = abs(lines);
 
 
 
 
 
 
 
 
 
 
 
2081	} else if (lines > 0) {
2082		skip = n - lines - adjust;
2083		lines = abs(lines);
2084		if (adjust >= n) {
2085			kdb_printf("buffer only contains %d lines, "
2086				   "nothing printed\n", n);
2087			skip = n;
2088		} else if (skip < 0) {
2089			lines += skip;
2090			skip = 0;
2091			kdb_printf("buffer only contains %d lines, first "
2092				   "%d lines printed\n", n, lines);
2093		}
2094	} else {
2095		lines = n;
2096	}
2097
2098	if (skip >= n || skip < 0)
2099		return 0;
2100
2101	kmsg_dump_rewind_nolock(&dumper);
2102	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103		if (skip) {
2104			skip--;
2105			continue;
2106		}
2107		if (!lines--)
2108			break;
2109		if (KDB_FLAG(CMD_INTERRUPT))
2110			return 0;
2111
2112		kdb_printf("%.*s\n", (int)len - 1, buf);
 
 
 
 
 
 
 
2113	}
 
 
2114
2115	return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124	if (atomic_read(&kdb_nmi_disabled))
2125		return 0;
2126	atomic_set(&kdb_nmi_disabled, 1);
2127	arch_kgdb_ops.enable_nmi(0);
2128	return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134		return -EINVAL;
2135	arch_kgdb_ops.enable_nmi(1);
2136	return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140	.set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 *	cpu	[<cpunum>]
2147 * Returns:
2148 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152	int i, start_cpu, first_print = 1;
2153	char state, prev_state = '?';
2154
2155	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156	kdb_printf("Available cpus: ");
2157	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158		if (!cpu_online(i)) {
2159			state = 'F';	/* cpu is offline */
2160		} else {
2161			state = ' ';	/* cpu is responding to kdb */
2162			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163				state = 'I';	/* idle task */
2164		}
2165		if (state != prev_state) {
2166			if (prev_state != '?') {
2167				if (!first_print)
2168					kdb_printf(", ");
2169				first_print = 0;
2170				kdb_printf("%d", start_cpu);
2171				if (start_cpu < i-1)
2172					kdb_printf("-%d", i-1);
2173				if (prev_state != ' ')
2174					kdb_printf("(%c)", prev_state);
2175			}
2176			prev_state = state;
2177			start_cpu = i;
2178		}
2179	}
2180	/* print the trailing cpus, ignoring them if they are all offline */
2181	if (prev_state != 'F') {
2182		if (!first_print)
2183			kdb_printf(", ");
2184		kdb_printf("%d", start_cpu);
2185		if (start_cpu < i-1)
2186			kdb_printf("-%d", i-1);
2187		if (prev_state != ' ')
2188			kdb_printf("(%c)", prev_state);
2189	}
2190	kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195	unsigned long cpunum;
2196	int diag;
2197
2198	if (argc == 0) {
2199		kdb_cpu_status();
2200		return 0;
2201	}
2202
2203	if (argc != 1)
2204		return KDB_ARGCOUNT;
2205
2206	diag = kdbgetularg(argv[1], &cpunum);
2207	if (diag)
2208		return diag;
2209
2210	/*
2211	 * Validate cpunum
2212	 */
2213	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214		return KDB_BADCPUNUM;
2215
2216	dbg_switch_cpu = cpunum;
2217
2218	/*
2219	 * Switch to other cpu
2220	 */
2221	return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229	int idle = 0, daemon = 0;
2230	unsigned long mask_I = kdb_task_state_string("I"),
2231		      mask_M = kdb_task_state_string("M");
2232	unsigned long cpu;
2233	const struct task_struct *p, *g;
2234	for_each_online_cpu(cpu) {
2235		p = kdb_curr_task(cpu);
2236		if (kdb_task_state(p, mask_I))
2237			++idle;
2238	}
2239	kdb_do_each_thread(g, p) {
2240		if (kdb_task_state(p, mask_M))
2241			++daemon;
2242	} kdb_while_each_thread(g, p);
2243	if (idle || daemon) {
2244		if (idle)
2245			kdb_printf("%d idle process%s (state I)%s\n",
2246				   idle, idle == 1 ? "" : "es",
2247				   daemon ? " and " : "");
2248		if (daemon)
2249			kdb_printf("%d sleeping system daemon (state M) "
2250				   "process%s", daemon,
2251				   daemon == 1 ? "" : "es");
2252		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253	}
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 *	list of the active processes.
2259 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263	int cpu;
2264	unsigned long tmp;
2265
2266	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2267		return;
2268
2269	cpu = kdb_process_cpu(p);
2270	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2271		   (void *)p, p->pid, p->parent->pid,
2272		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2273		   kdb_task_state_char(p),
2274		   (void *)(&p->thread),
2275		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276		   p->comm);
2277	if (kdb_task_has_cpu(p)) {
2278		if (!KDB_TSK(cpu)) {
2279			kdb_printf("  Error: no saved data for this cpu\n");
2280		} else {
2281			if (KDB_TSK(cpu) != p)
2282				kdb_printf("  Error: does not match running "
2283				   "process table (0x%p)\n", KDB_TSK(cpu));
2284		}
2285	}
2286}
2287
2288static int kdb_ps(int argc, const char **argv)
2289{
2290	struct task_struct *g, *p;
2291	unsigned long mask, cpu;
2292
2293	if (argc == 0)
2294		kdb_ps_suppressed();
2295	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2296		(int)(2*sizeof(void *))+2, "Task Addr",
2297		(int)(2*sizeof(void *))+2, "Thread");
2298	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299	/* Run the active tasks first */
2300	for_each_online_cpu(cpu) {
2301		if (KDB_FLAG(CMD_INTERRUPT))
2302			return 0;
2303		p = kdb_curr_task(cpu);
2304		if (kdb_task_state(p, mask))
2305			kdb_ps1(p);
2306	}
2307	kdb_printf("\n");
2308	/* Now the real tasks */
2309	kdb_do_each_thread(g, p) {
2310		if (KDB_FLAG(CMD_INTERRUPT))
2311			return 0;
2312		if (kdb_task_state(p, mask))
2313			kdb_ps1(p);
2314	} kdb_while_each_thread(g, p);
2315
2316	return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 *	the currently active process.
2322 *		pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326	struct task_struct *p;
2327	unsigned long val;
2328	int diag;
2329
2330	if (argc > 1)
2331		return KDB_ARGCOUNT;
2332
2333	if (argc) {
2334		if (strcmp(argv[1], "R") == 0) {
2335			p = KDB_TSK(kdb_initial_cpu);
2336		} else {
2337			diag = kdbgetularg(argv[1], &val);
2338			if (diag)
2339				return KDB_BADINT;
2340
2341			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2342			if (!p) {
2343				kdb_printf("No task with pid=%d\n", (pid_t)val);
2344				return 0;
2345			}
2346		}
2347		kdb_set_current_task(p);
2348	}
2349	kdb_printf("KDB current process is %s(pid=%d)\n",
2350		   kdb_current_task->comm,
2351		   kdb_current_task->pid);
2352
2353	return 0;
2354}
2355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358	return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366	kdbtab_t *kt;
2367	int i;
2368
2369	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370	kdb_printf("-----------------------------"
2371		   "-----------------------------\n");
2372	for_each_kdbcmd(kt, i) {
2373		char *space = "";
 
 
2374		if (KDB_FLAG(CMD_INTERRUPT))
2375			return 0;
2376		if (!kt->cmd_name)
2377			continue;
2378		if (strlen(kt->cmd_usage) > 20)
2379			space = "\n                                    ";
2380		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381			   kt->cmd_usage, space, kt->cmd_help);
2382	}
2383	return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391	long sig, pid;
2392	char *endp;
2393	struct task_struct *p;
2394	struct siginfo info;
2395
2396	if (argc != 2)
2397		return KDB_ARGCOUNT;
2398
2399	sig = simple_strtol(argv[1], &endp, 0);
2400	if (*endp)
2401		return KDB_BADINT;
2402	if (sig >= 0) {
2403		kdb_printf("Invalid signal parameter.<-signal>\n");
2404		return 0;
2405	}
2406	sig = -sig;
2407
2408	pid = simple_strtol(argv[2], &endp, 0);
2409	if (*endp)
2410		return KDB_BADINT;
2411	if (pid <= 0) {
2412		kdb_printf("Process ID must be large than 0.\n");
2413		return 0;
2414	}
2415
2416	/* Find the process. */
2417	p = find_task_by_pid_ns(pid, &init_pid_ns);
2418	if (!p) {
2419		kdb_printf("The specified process isn't found.\n");
2420		return 0;
2421	}
2422	p = p->group_leader;
2423	info.si_signo = sig;
2424	info.si_errno = 0;
2425	info.si_code = SI_USER;
2426	info.si_pid = pid;  /* same capabilities as process being signalled */
2427	info.si_uid = 0;    /* kdb has root authority */
2428	kdb_send_sig_info(p, &info);
2429	return 0;
2430}
2431
2432struct kdb_tm {
2433	int tm_sec;	/* seconds */
2434	int tm_min;	/* minutes */
2435	int tm_hour;	/* hours */
2436	int tm_mday;	/* day of the month */
2437	int tm_mon;	/* month */
2438	int tm_year;	/* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443	/* This will work from 1970-2099, 2100 is not a leap year */
2444	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445				 31, 30, 31, 30, 31 };
2446	memset(tm, 0, sizeof(*tm));
2447	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2448	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2450	tm->tm_min =  tm->tm_sec / 60 % 60;
2451	tm->tm_hour = tm->tm_sec / 60 / 60;
2452	tm->tm_sec =  tm->tm_sec % 60;
2453	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454	tm->tm_mday %= (4*365+1);
2455	mon_day[1] = 29;
2456	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457		tm->tm_mday -= mon_day[tm->tm_mon];
2458		if (++tm->tm_mon == 12) {
2459			tm->tm_mon = 0;
2460			++tm->tm_year;
2461			mon_day[1] = 28;
2462		}
2463	}
2464	++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474	struct timespec uptime;
2475	do_posix_clock_monotonic_gettime(&uptime);
2476	memset(val, 0, sizeof(*val));
2477	val->uptime = uptime.tv_sec;
2478	val->loads[0] = avenrun[0];
2479	val->loads[1] = avenrun[1];
2480	val->loads[2] = avenrun[2];
2481	val->procs = nr_threads-1;
2482	si_meminfo(val);
2483
2484	return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492	struct timespec now;
2493	struct kdb_tm tm;
2494	struct sysinfo val;
2495
2496	if (argc)
2497		return KDB_ARGCOUNT;
2498
2499	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2500	kdb_printf("release    %s\n", init_uts_ns.name.release);
2501	kdb_printf("version    %s\n", init_uts_ns.name.version);
2502	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2503	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2504	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2506
2507	now = __current_kernel_time();
2508	kdb_gmtime(&now, &tm);
2509	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2510		   "tz_minuteswest %d\n",
2511		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512		tm.tm_hour, tm.tm_min, tm.tm_sec,
2513		sys_tz.tz_minuteswest);
2514
2515	kdb_sysinfo(&val);
2516	kdb_printf("uptime     ");
2517	if (val.uptime > (24*60*60)) {
2518		int days = val.uptime / (24*60*60);
2519		val.uptime %= (24*60*60);
2520		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521	}
2522	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534	/* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2537		   "Buffers:        %8lu kB\n",
2538		   val.totalram, val.freeram, val.bufferram);
2539	return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547	char fmtstr[64];
2548	int cpu, diag, nextarg = 1;
2549	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551	if (argc < 1 || argc > 3)
2552		return KDB_ARGCOUNT;
2553
2554	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555	if (diag)
2556		return diag;
2557
2558	if (argc >= 2) {
2559		diag = kdbgetularg(argv[2], &bytesperword);
2560		if (diag)
2561			return diag;
2562	}
2563	if (!bytesperword)
2564		bytesperword = KDB_WORD_SIZE;
2565	else if (bytesperword > KDB_WORD_SIZE)
2566		return KDB_BADWIDTH;
2567	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568	if (argc >= 3) {
2569		diag = kdbgetularg(argv[3], &whichcpu);
2570		if (diag)
2571			return diag;
2572		if (!cpu_online(whichcpu)) {
2573			kdb_printf("cpu %ld is not online\n", whichcpu);
2574			return KDB_BADCPUNUM;
2575		}
2576	}
2577
2578	/* Most architectures use __per_cpu_offset[cpu], some use
2579	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580	 */
2581#ifdef	__per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef	CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590	for_each_online_cpu(cpu) {
2591		if (KDB_FLAG(CMD_INTERRUPT))
2592			return 0;
2593
2594		if (whichcpu != ~0UL && whichcpu != cpu)
2595			continue;
2596		addr = symaddr + KDB_PCU(cpu);
2597		diag = kdb_getword(&val, addr, bytesperword);
2598		if (diag) {
2599			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600				   "read, diag=%d\n", cpu, addr, diag);
2601			continue;
2602		}
2603		kdb_printf("%5d ", cpu);
2604		kdb_md_line(fmtstr, addr,
2605			bytesperword == KDB_WORD_SIZE,
2606			1, bytesperword, 1, 1, 0);
2607	}
2608#undef KDB_PCU
2609	return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617	kdb_printf("Usage of  cmd args | grep pattern:\n");
2618	kdb_printf("  Any command's output may be filtered through an ");
2619	kdb_printf("emulated 'pipe'.\n");
2620	kdb_printf("  'grep' is just a key word.\n");
2621	kdb_printf("  The pattern may include a very limited set of "
2622		   "metacharacters:\n");
2623	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2624	kdb_printf("  And if there are spaces in the pattern, you may "
2625		   "quote it:\n");
2626	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627		   " or \"^pat tern$\"\n");
2628	return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * 	debugger command.
2634 * Inputs:
2635 *	cmd	Command name
2636 *	func	Function to execute the command
2637 *	usage	A simple usage string showing arguments
2638 *	help	A simple help string describing command
2639 *	repeat	Does the command auto repeat on enter?
2640 * Returns:
2641 *	zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50	/* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645			kdb_func_t func,
2646			char *usage,
2647			char *help,
2648			short minlen,
2649			kdb_repeat_t repeat)
2650{
2651	int i;
2652	kdbtab_t *kp;
2653
2654	/*
2655	 *  Brute force method to determine duplicates
2656	 */
2657	for_each_kdbcmd(kp, i) {
2658		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659			kdb_printf("Duplicate kdb command registered: "
2660				"%s, func %p help %s\n", cmd, func, help);
2661			return 1;
2662		}
2663	}
2664
2665	/*
2666	 * Insert command into first available location in table
2667	 */
2668	for_each_kdbcmd(kp, i) {
2669		if (kp->cmd_name == NULL)
2670			break;
2671	}
2672
2673	if (i >= kdb_max_commands) {
2674		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2676		if (!new) {
2677			kdb_printf("Could not allocate new kdb_command "
2678				   "table\n");
2679			return 1;
2680		}
2681		if (kdb_commands) {
2682			memcpy(new, kdb_commands,
2683			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684			kfree(kdb_commands);
2685		}
2686		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687		       kdb_command_extend * sizeof(*new));
2688		kdb_commands = new;
2689		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690		kdb_max_commands += kdb_command_extend;
2691	}
2692
2693	kp->cmd_name   = cmd;
2694	kp->cmd_func   = func;
2695	kp->cmd_usage  = usage;
2696	kp->cmd_help   = help;
2697	kp->cmd_flags  = 0;
2698	kp->cmd_minlen = minlen;
2699	kp->cmd_repeat = repeat;
2700
2701	return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 *	not need to specify a repeat state.  Equivalent to
2709 *	kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 *	cmd	Command name
2712 *	func	Function to execute the command
2713 *	usage	A simple usage string showing arguments
2714 *	help	A simple help string describing command
2715 * Returns:
2716 *	zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719	     kdb_func_t func,
2720	     char *usage,
2721	     char *help,
2722	     short minlen)
2723{
2724	return kdb_register_repeat(cmd, func, usage, help, minlen,
2725				   KDB_REPEAT_NONE);
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 *	debugger command.  It is generally called when a module which
2732 *	implements kdb commands is unloaded.
2733 * Inputs:
2734 *	cmd	Command name
2735 * Returns:
2736 *	zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740	int i;
2741	kdbtab_t *kp;
2742
2743	/*
2744	 *  find the command.
2745	 */
2746	for_each_kdbcmd(kp, i) {
2747		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748			kp->cmd_name = NULL;
2749			return 0;
2750		}
2751	}
2752
2753	/* Couldn't find it.  */
2754	return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761	int i;
2762	kdbtab_t *kp;
2763
2764	for_each_kdbcmd(kp, i)
2765		kp->cmd_name = NULL;
2766
2767	kdb_register_repeat("md", kdb_md, "<vaddr>",
2768	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769			    KDB_REPEAT_NO_ARGS);
2770	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779	  "Continue Execution", 1, KDB_REPEAT_NONE);
2780	kdb_register_repeat("rd", kdb_rd, "",
2781	  "Display Registers", 0, KDB_REPEAT_NONE);
2782	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783	  "Modify Registers", 0, KDB_REPEAT_NONE);
2784	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785	  "Display exception frame", 0, KDB_REPEAT_NONE);
2786	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787	  "Stack traceback", 1, KDB_REPEAT_NONE);
2788	kdb_register_repeat("btp", kdb_bt, "<pid>",
2789	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790	kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791	  "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792	kdb_register_repeat("btc", kdb_bt, "",
2793	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2795	  "Backtrace process given its struct task address", 0,
2796			    KDB_REPEAT_NONE);
 
 
2797	kdb_register_repeat("env", kdb_env, "",
2798	  "Show environment variables", 0, KDB_REPEAT_NONE);
2799	kdb_register_repeat("set", kdb_set, "",
2800	  "Set environment variables", 0, KDB_REPEAT_NONE);
2801	kdb_register_repeat("help", kdb_help, "",
2802	  "Display Help Message", 1, KDB_REPEAT_NONE);
2803	kdb_register_repeat("?", kdb_help, "",
2804	  "Display Help Message", 0, KDB_REPEAT_NONE);
2805	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807	kdb_register_repeat("kgdb", kdb_kgdb, "",
2808	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810	  "Display active task list", 0, KDB_REPEAT_NONE);
2811	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812	  "Switch to another task", 0, KDB_REPEAT_NONE);
2813	kdb_register_repeat("reboot", kdb_reboot, "",
2814	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2815#if defined(CONFIG_MODULES)
2816	kdb_register_repeat("lsmod", kdb_lsmod, "",
2817	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820	kdb_register_repeat("sr", kdb_sr, "<key>",
2821	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
2822#endif
2823#if defined(CONFIG_PRINTK)
2824	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
2826#endif
2827	if (arch_kgdb_ops.enable_nmi) {
2828		kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829		  "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830	}
2831	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835	kdb_register_repeat("summary", kdb_summary, "",
2836	  "Summarize the system", 4, KDB_REPEAT_NONE);
2837	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839	kdb_register_repeat("grephelp", kdb_grep_help, "",
2840	  "Display help on | grep", 0, KDB_REPEAT_NONE);
2841}
2842
2843/* Execute any commands defined in kdb_cmds.  */
2844static void __init kdb_cmd_init(void)
2845{
2846	int i, diag;
2847	for (i = 0; kdb_cmds[i]; ++i) {
2848		diag = kdb_parse(kdb_cmds[i]);
2849		if (diag)
2850			kdb_printf("kdb command %s failed, kdb diag %d\n",
2851				kdb_cmds[i], diag);
2852	}
2853	if (defcmd_in_progress) {
2854		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855		kdb_parse("endefcmd");
2856	}
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863	int i;
2864
2865	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866		return;
2867	for (i = kdb_init_lvl; i < lvl; i++) {
2868		switch (i) {
2869		case KDB_NOT_INITIALIZED:
2870			kdb_inittab();		/* Initialize Command Table */
2871			kdb_initbptab();	/* Initialize Breakpoints */
2872			break;
2873		case KDB_INIT_EARLY:
2874			kdb_cmd_init();		/* Build kdb_cmds tables */
2875			break;
2876		}
2877	}
2878	kdb_init_lvl = lvl;
2879}
v3.1
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/kernel.h>
 
  17#include <linux/reboot.h>
  18#include <linux/sched.h>
  19#include <linux/sysrq.h>
  20#include <linux/smp.h>
  21#include <linux/utsname.h>
  22#include <linux/vmalloc.h>
 
  23#include <linux/module.h>
  24#include <linux/mm.h>
  25#include <linux/init.h>
  26#include <linux/kallsyms.h>
  27#include <linux/kgdb.h>
  28#include <linux/kdb.h>
  29#include <linux/notifier.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/nmi.h>
  33#include <linux/time.h>
  34#include <linux/ptrace.h>
  35#include <linux/sysctl.h>
  36#include <linux/cpu.h>
  37#include <linux/kdebug.h>
  38#include <linux/proc_fs.h>
  39#include <linux/uaccess.h>
  40#include <linux/slab.h>
  41#include "kdb_private.h"
  42
  43#define GREP_LEN 256
  44char kdb_grep_string[GREP_LEN];
  45int kdb_grepping_flag;
  46EXPORT_SYMBOL(kdb_grepping_flag);
  47int kdb_grep_leading;
  48int kdb_grep_trailing;
  49
  50/*
  51 * Kernel debugger state flags
  52 */
  53int kdb_flags;
  54atomic_t kdb_event;
  55
  56/*
  57 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  58 * single thread processors through the kernel debugger.
  59 */
  60int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  61int kdb_nextline = 1;
  62int kdb_state;			/* General KDB state */
  63
  64struct task_struct *kdb_current_task;
  65EXPORT_SYMBOL(kdb_current_task);
  66struct pt_regs *kdb_current_regs;
  67
  68const char *kdb_diemsg;
  69static int kdb_go_count;
  70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  71static unsigned int kdb_continue_catastrophic =
  72	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  73#else
  74static unsigned int kdb_continue_catastrophic;
  75#endif
  76
  77/* kdb_commands describes the available commands. */
  78static kdbtab_t *kdb_commands;
  79#define KDB_BASE_CMD_MAX 50
  80static int kdb_max_commands = KDB_BASE_CMD_MAX;
  81static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  82#define for_each_kdbcmd(cmd, num)					\
  83	for ((cmd) = kdb_base_commands, (num) = 0;			\
  84	     num < kdb_max_commands;					\
  85	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  86
  87typedef struct _kdbmsg {
  88	int	km_diag;	/* kdb diagnostic */
  89	char	*km_msg;	/* Corresponding message text */
  90} kdbmsg_t;
  91
  92#define KDBMSG(msgnum, text) \
  93	{ KDB_##msgnum, text }
  94
  95static kdbmsg_t kdbmsgs[] = {
  96	KDBMSG(NOTFOUND, "Command Not Found"),
  97	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
  98	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
  99	       "8 is only allowed on 64 bit systems"),
 100	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 101	KDBMSG(NOTENV, "Cannot find environment variable"),
 102	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 103	KDBMSG(NOTIMP, "Command not implemented"),
 104	KDBMSG(ENVFULL, "Environment full"),
 105	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 106	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 107#ifdef CONFIG_CPU_XSCALE
 108	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 109#else
 110	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 111#endif
 112	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 113	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 114	KDBMSG(BADMODE, "Invalid IDMODE"),
 115	KDBMSG(BADINT, "Illegal numeric value"),
 116	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 117	KDBMSG(BADREG, "Invalid register name"),
 118	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 119	KDBMSG(BADLENGTH, "Invalid length field"),
 120	KDBMSG(NOBP, "No Breakpoint exists"),
 121	KDBMSG(BADADDR, "Invalid address"),
 122};
 123#undef KDBMSG
 124
 125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
 126
 127
 128/*
 129 * Initial environment.   This is all kept static and local to
 130 * this file.   We don't want to rely on the memory allocation
 131 * mechanisms in the kernel, so we use a very limited allocate-only
 132 * heap for new and altered environment variables.  The entire
 133 * environment is limited to a fixed number of entries (add more
 134 * to __env[] if required) and a fixed amount of heap (add more to
 135 * KDB_ENVBUFSIZE if required).
 136 */
 137
 138static char *__env[] = {
 139#if defined(CONFIG_SMP)
 140 "PROMPT=[%d]kdb> ",
 141 "MOREPROMPT=[%d]more> ",
 142#else
 143 "PROMPT=kdb> ",
 
 144 "MOREPROMPT=more> ",
 145#endif
 146 "RADIX=16",
 147 "MDCOUNT=8",			/* lines of md output */
 148 KDB_PLATFORM_ENV,
 149 "DTABCOUNT=30",
 150 "NOSECT=1",
 151 (char *)0,
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175};
 176
 177static const int __nenv = (sizeof(__env) / sizeof(char *));
 178
 179struct task_struct *kdb_curr_task(int cpu)
 180{
 181	struct task_struct *p = curr_task(cpu);
 182#ifdef	_TIF_MCA_INIT
 183	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 184		p = krp->p;
 185#endif
 186	return p;
 187}
 188
 189/*
 190 * kdbgetenv - This function will return the character string value of
 191 *	an environment variable.
 192 * Parameters:
 193 *	match	A character string representing an environment variable.
 194 * Returns:
 195 *	NULL	No environment variable matches 'match'
 196 *	char*	Pointer to string value of environment variable.
 197 */
 198char *kdbgetenv(const char *match)
 199{
 200	char **ep = __env;
 201	int matchlen = strlen(match);
 202	int i;
 203
 204	for (i = 0; i < __nenv; i++) {
 205		char *e = *ep++;
 206
 207		if (!e)
 208			continue;
 209
 210		if ((strncmp(match, e, matchlen) == 0)
 211		 && ((e[matchlen] == '\0')
 212		   || (e[matchlen] == '='))) {
 213			char *cp = strchr(e, '=');
 214			return cp ? ++cp : "";
 215		}
 216	}
 217	return NULL;
 218}
 219
 220/*
 221 * kdballocenv - This function is used to allocate bytes for
 222 *	environment entries.
 223 * Parameters:
 224 *	match	A character string representing a numeric value
 225 * Outputs:
 226 *	*value  the unsigned long representation of the env variable 'match'
 227 * Returns:
 228 *	Zero on success, a kdb diagnostic on failure.
 229 * Remarks:
 230 *	We use a static environment buffer (envbuffer) to hold the values
 231 *	of dynamically generated environment variables (see kdb_set).  Buffer
 232 *	space once allocated is never free'd, so over time, the amount of space
 233 *	(currently 512 bytes) will be exhausted if env variables are changed
 234 *	frequently.
 235 */
 236static char *kdballocenv(size_t bytes)
 237{
 238#define	KDB_ENVBUFSIZE	512
 239	static char envbuffer[KDB_ENVBUFSIZE];
 240	static int envbufsize;
 241	char *ep = NULL;
 242
 243	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 244		ep = &envbuffer[envbufsize];
 245		envbufsize += bytes;
 246	}
 247	return ep;
 248}
 249
 250/*
 251 * kdbgetulenv - This function will return the value of an unsigned
 252 *	long-valued environment variable.
 253 * Parameters:
 254 *	match	A character string representing a numeric value
 255 * Outputs:
 256 *	*value  the unsigned long represntation of the env variable 'match'
 257 * Returns:
 258 *	Zero on success, a kdb diagnostic on failure.
 259 */
 260static int kdbgetulenv(const char *match, unsigned long *value)
 261{
 262	char *ep;
 263
 264	ep = kdbgetenv(match);
 265	if (!ep)
 266		return KDB_NOTENV;
 267	if (strlen(ep) == 0)
 268		return KDB_NOENVVALUE;
 269
 270	*value = simple_strtoul(ep, NULL, 0);
 271
 272	return 0;
 273}
 274
 275/*
 276 * kdbgetintenv - This function will return the value of an
 277 *	integer-valued environment variable.
 278 * Parameters:
 279 *	match	A character string representing an integer-valued env variable
 280 * Outputs:
 281 *	*value  the integer representation of the environment variable 'match'
 282 * Returns:
 283 *	Zero on success, a kdb diagnostic on failure.
 284 */
 285int kdbgetintenv(const char *match, int *value)
 286{
 287	unsigned long val;
 288	int diag;
 289
 290	diag = kdbgetulenv(match, &val);
 291	if (!diag)
 292		*value = (int) val;
 293	return diag;
 294}
 295
 296/*
 297 * kdbgetularg - This function will convert a numeric string into an
 298 *	unsigned long value.
 299 * Parameters:
 300 *	arg	A character string representing a numeric value
 301 * Outputs:
 302 *	*value  the unsigned long represntation of arg.
 303 * Returns:
 304 *	Zero on success, a kdb diagnostic on failure.
 305 */
 306int kdbgetularg(const char *arg, unsigned long *value)
 307{
 308	char *endp;
 309	unsigned long val;
 310
 311	val = simple_strtoul(arg, &endp, 0);
 312
 313	if (endp == arg) {
 314		/*
 315		 * Also try base 16, for us folks too lazy to type the
 316		 * leading 0x...
 317		 */
 318		val = simple_strtoul(arg, &endp, 16);
 319		if (endp == arg)
 320			return KDB_BADINT;
 321	}
 322
 323	*value = val;
 324
 325	return 0;
 326}
 327
 328int kdbgetu64arg(const char *arg, u64 *value)
 329{
 330	char *endp;
 331	u64 val;
 332
 333	val = simple_strtoull(arg, &endp, 0);
 334
 335	if (endp == arg) {
 336
 337		val = simple_strtoull(arg, &endp, 16);
 338		if (endp == arg)
 339			return KDB_BADINT;
 340	}
 341
 342	*value = val;
 343
 344	return 0;
 345}
 346
 347/*
 348 * kdb_set - This function implements the 'set' command.  Alter an
 349 *	existing environment variable or create a new one.
 350 */
 351int kdb_set(int argc, const char **argv)
 352{
 353	int i;
 354	char *ep;
 355	size_t varlen, vallen;
 356
 357	/*
 358	 * we can be invoked two ways:
 359	 *   set var=value    argv[1]="var", argv[2]="value"
 360	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 361	 * - if the latter, shift 'em down.
 362	 */
 363	if (argc == 3) {
 364		argv[2] = argv[3];
 365		argc--;
 366	}
 367
 368	if (argc != 2)
 369		return KDB_ARGCOUNT;
 370
 371	/*
 372	 * Check for internal variables
 373	 */
 374	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 375		unsigned int debugflags;
 376		char *cp;
 377
 378		debugflags = simple_strtoul(argv[2], &cp, 0);
 379		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 380			kdb_printf("kdb: illegal debug flags '%s'\n",
 381				    argv[2]);
 382			return 0;
 383		}
 384		kdb_flags = (kdb_flags &
 385			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 386			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 387
 388		return 0;
 389	}
 390
 391	/*
 392	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 393	 * name, argv[2] = value.
 394	 */
 395	varlen = strlen(argv[1]);
 396	vallen = strlen(argv[2]);
 397	ep = kdballocenv(varlen + vallen + 2);
 398	if (ep == (char *)0)
 399		return KDB_ENVBUFFULL;
 400
 401	sprintf(ep, "%s=%s", argv[1], argv[2]);
 402
 403	ep[varlen+vallen+1] = '\0';
 404
 405	for (i = 0; i < __nenv; i++) {
 406		if (__env[i]
 407		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 408		   && ((__env[i][varlen] == '\0')
 409		    || (__env[i][varlen] == '=')))) {
 410			__env[i] = ep;
 411			return 0;
 412		}
 413	}
 414
 415	/*
 416	 * Wasn't existing variable.  Fit into slot.
 417	 */
 418	for (i = 0; i < __nenv-1; i++) {
 419		if (__env[i] == (char *)0) {
 420			__env[i] = ep;
 421			return 0;
 422		}
 423	}
 424
 425	return KDB_ENVFULL;
 426}
 427
 428static int kdb_check_regs(void)
 429{
 430	if (!kdb_current_regs) {
 431		kdb_printf("No current kdb registers."
 432			   "  You may need to select another task\n");
 433		return KDB_BADREG;
 434	}
 435	return 0;
 436}
 437
 438/*
 439 * kdbgetaddrarg - This function is responsible for parsing an
 440 *	address-expression and returning the value of the expression,
 441 *	symbol name, and offset to the caller.
 442 *
 443 *	The argument may consist of a numeric value (decimal or
 444 *	hexidecimal), a symbol name, a register name (preceded by the
 445 *	percent sign), an environment variable with a numeric value
 446 *	(preceded by a dollar sign) or a simple arithmetic expression
 447 *	consisting of a symbol name, +/-, and a numeric constant value
 448 *	(offset).
 449 * Parameters:
 450 *	argc	- count of arguments in argv
 451 *	argv	- argument vector
 452 *	*nextarg - index to next unparsed argument in argv[]
 453 *	regs	- Register state at time of KDB entry
 454 * Outputs:
 455 *	*value	- receives the value of the address-expression
 456 *	*offset - receives the offset specified, if any
 457 *	*name   - receives the symbol name, if any
 458 *	*nextarg - index to next unparsed argument in argv[]
 459 * Returns:
 460 *	zero is returned on success, a kdb diagnostic code is
 461 *      returned on error.
 462 */
 463int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 464		  unsigned long *value,  long *offset,
 465		  char **name)
 466{
 467	unsigned long addr;
 468	unsigned long off = 0;
 469	int positive;
 470	int diag;
 471	int found = 0;
 472	char *symname;
 473	char symbol = '\0';
 474	char *cp;
 475	kdb_symtab_t symtab;
 476
 477	/*
 478	 * Process arguments which follow the following syntax:
 479	 *
 480	 *  symbol | numeric-address [+/- numeric-offset]
 481	 *  %register
 482	 *  $environment-variable
 483	 */
 484
 485	if (*nextarg > argc)
 486		return KDB_ARGCOUNT;
 487
 488	symname = (char *)argv[*nextarg];
 489
 490	/*
 491	 * If there is no whitespace between the symbol
 492	 * or address and the '+' or '-' symbols, we
 493	 * remember the character and replace it with a
 494	 * null so the symbol/value can be properly parsed
 495	 */
 496	cp = strpbrk(symname, "+-");
 497	if (cp != NULL) {
 498		symbol = *cp;
 499		*cp++ = '\0';
 500	}
 501
 502	if (symname[0] == '$') {
 503		diag = kdbgetulenv(&symname[1], &addr);
 504		if (diag)
 505			return diag;
 506	} else if (symname[0] == '%') {
 507		diag = kdb_check_regs();
 508		if (diag)
 509			return diag;
 510		/* Implement register values with % at a later time as it is
 511		 * arch optional.
 512		 */
 513		return KDB_NOTIMP;
 514	} else {
 515		found = kdbgetsymval(symname, &symtab);
 516		if (found) {
 517			addr = symtab.sym_start;
 518		} else {
 519			diag = kdbgetularg(argv[*nextarg], &addr);
 520			if (diag)
 521				return diag;
 522		}
 523	}
 524
 525	if (!found)
 526		found = kdbnearsym(addr, &symtab);
 527
 528	(*nextarg)++;
 529
 530	if (name)
 531		*name = symname;
 532	if (value)
 533		*value = addr;
 534	if (offset && name && *name)
 535		*offset = addr - symtab.sym_start;
 536
 537	if ((*nextarg > argc)
 538	 && (symbol == '\0'))
 539		return 0;
 540
 541	/*
 542	 * check for +/- and offset
 543	 */
 544
 545	if (symbol == '\0') {
 546		if ((argv[*nextarg][0] != '+')
 547		 && (argv[*nextarg][0] != '-')) {
 548			/*
 549			 * Not our argument.  Return.
 550			 */
 551			return 0;
 552		} else {
 553			positive = (argv[*nextarg][0] == '+');
 554			(*nextarg)++;
 555		}
 556	} else
 557		positive = (symbol == '+');
 558
 559	/*
 560	 * Now there must be an offset!
 561	 */
 562	if ((*nextarg > argc)
 563	 && (symbol == '\0')) {
 564		return KDB_INVADDRFMT;
 565	}
 566
 567	if (!symbol) {
 568		cp = (char *)argv[*nextarg];
 569		(*nextarg)++;
 570	}
 571
 572	diag = kdbgetularg(cp, &off);
 573	if (diag)
 574		return diag;
 575
 576	if (!positive)
 577		off = -off;
 578
 579	if (offset)
 580		*offset += off;
 581
 582	if (value)
 583		*value += off;
 584
 585	return 0;
 586}
 587
 588static void kdb_cmderror(int diag)
 589{
 590	int i;
 591
 592	if (diag >= 0) {
 593		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 594		return;
 595	}
 596
 597	for (i = 0; i < __nkdb_err; i++) {
 598		if (kdbmsgs[i].km_diag == diag) {
 599			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 600			return;
 601		}
 602	}
 603
 604	kdb_printf("Unknown diag %d\n", -diag);
 605}
 606
 607/*
 608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 609 *	command which defines one command as a set of other commands,
 610 *	terminated by endefcmd.  kdb_defcmd processes the initial
 611 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 612 *	the following commands until 'endefcmd'.
 613 * Inputs:
 614 *	argc	argument count
 615 *	argv	argument vector
 616 * Returns:
 617 *	zero for success, a kdb diagnostic if error
 618 */
 619struct defcmd_set {
 620	int count;
 621	int usable;
 622	char *name;
 623	char *usage;
 624	char *help;
 625	char **command;
 626};
 627static struct defcmd_set *defcmd_set;
 628static int defcmd_set_count;
 629static int defcmd_in_progress;
 630
 631/* Forward references */
 632static int kdb_exec_defcmd(int argc, const char **argv);
 633
 634static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 635{
 636	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 637	char **save_command = s->command;
 638	if (strcmp(argv0, "endefcmd") == 0) {
 639		defcmd_in_progress = 0;
 640		if (!s->count)
 641			s->usable = 0;
 642		if (s->usable)
 643			kdb_register(s->name, kdb_exec_defcmd,
 644				     s->usage, s->help, 0);
 645		return 0;
 646	}
 647	if (!s->usable)
 648		return KDB_NOTIMP;
 649	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 650	if (!s->command) {
 651		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 652			   cmdstr);
 653		s->usable = 0;
 654		return KDB_NOTIMP;
 655	}
 656	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 657	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 658	kfree(save_command);
 659	return 0;
 660}
 661
 662static int kdb_defcmd(int argc, const char **argv)
 663{
 664	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 665	if (defcmd_in_progress) {
 666		kdb_printf("kdb: nested defcmd detected, assuming missing "
 667			   "endefcmd\n");
 668		kdb_defcmd2("endefcmd", "endefcmd");
 669	}
 670	if (argc == 0) {
 671		int i;
 672		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 673			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 674				   s->usage, s->help);
 675			for (i = 0; i < s->count; ++i)
 676				kdb_printf("%s", s->command[i]);
 677			kdb_printf("endefcmd\n");
 678		}
 679		return 0;
 680	}
 681	if (argc != 3)
 682		return KDB_ARGCOUNT;
 
 
 
 
 683	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 684			     GFP_KDB);
 685	if (!defcmd_set) {
 686		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
 687			   argv[1]);
 688		defcmd_set = save_defcmd_set;
 689		return KDB_NOTIMP;
 690	}
 691	memcpy(defcmd_set, save_defcmd_set,
 692	       defcmd_set_count * sizeof(*defcmd_set));
 693	kfree(save_defcmd_set);
 694	s = defcmd_set + defcmd_set_count;
 695	memset(s, 0, sizeof(*s));
 696	s->usable = 1;
 697	s->name = kdb_strdup(argv[1], GFP_KDB);
 
 
 698	s->usage = kdb_strdup(argv[2], GFP_KDB);
 
 
 699	s->help = kdb_strdup(argv[3], GFP_KDB);
 
 
 700	if (s->usage[0] == '"') {
 701		strcpy(s->usage, s->usage+1);
 702		s->usage[strlen(s->usage)-1] = '\0';
 703	}
 704	if (s->help[0] == '"') {
 705		strcpy(s->help, s->help+1);
 706		s->help[strlen(s->help)-1] = '\0';
 707	}
 708	++defcmd_set_count;
 709	defcmd_in_progress = 1;
 
 710	return 0;
 
 
 
 
 
 
 
 
 
 
 711}
 712
 713/*
 714 * kdb_exec_defcmd - Execute the set of commands associated with this
 715 *	defcmd name.
 716 * Inputs:
 717 *	argc	argument count
 718 *	argv	argument vector
 719 * Returns:
 720 *	zero for success, a kdb diagnostic if error
 721 */
 722static int kdb_exec_defcmd(int argc, const char **argv)
 723{
 724	int i, ret;
 725	struct defcmd_set *s;
 726	if (argc != 0)
 727		return KDB_ARGCOUNT;
 728	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 729		if (strcmp(s->name, argv[0]) == 0)
 730			break;
 731	}
 732	if (i == defcmd_set_count) {
 733		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 734			   argv[0]);
 735		return KDB_NOTIMP;
 736	}
 737	for (i = 0; i < s->count; ++i) {
 738		/* Recursive use of kdb_parse, do not use argv after
 739		 * this point */
 740		argv = NULL;
 741		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 742		ret = kdb_parse(s->command[i]);
 743		if (ret)
 744			return ret;
 745	}
 746	return 0;
 747}
 748
 749/* Command history */
 750#define KDB_CMD_HISTORY_COUNT	32
 751#define CMD_BUFLEN		200	/* kdb_printf: max printline
 752					 * size == 256 */
 753static unsigned int cmd_head, cmd_tail;
 754static unsigned int cmdptr;
 755static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 756static char cmd_cur[CMD_BUFLEN];
 757
 758/*
 759 * The "str" argument may point to something like  | grep xyz
 760 */
 761static void parse_grep(const char *str)
 762{
 763	int	len;
 764	char	*cp = (char *)str, *cp2;
 765
 766	/* sanity check: we should have been called with the \ first */
 767	if (*cp != '|')
 768		return;
 769	cp++;
 770	while (isspace(*cp))
 771		cp++;
 772	if (strncmp(cp, "grep ", 5)) {
 773		kdb_printf("invalid 'pipe', see grephelp\n");
 774		return;
 775	}
 776	cp += 5;
 777	while (isspace(*cp))
 778		cp++;
 779	cp2 = strchr(cp, '\n');
 780	if (cp2)
 781		*cp2 = '\0'; /* remove the trailing newline */
 782	len = strlen(cp);
 783	if (len == 0) {
 784		kdb_printf("invalid 'pipe', see grephelp\n");
 785		return;
 786	}
 787	/* now cp points to a nonzero length search string */
 788	if (*cp == '"') {
 789		/* allow it be "x y z" by removing the "'s - there must
 790		   be two of them */
 791		cp++;
 792		cp2 = strchr(cp, '"');
 793		if (!cp2) {
 794			kdb_printf("invalid quoted string, see grephelp\n");
 795			return;
 796		}
 797		*cp2 = '\0'; /* end the string where the 2nd " was */
 798	}
 799	kdb_grep_leading = 0;
 800	if (*cp == '^') {
 801		kdb_grep_leading = 1;
 802		cp++;
 803	}
 804	len = strlen(cp);
 805	kdb_grep_trailing = 0;
 806	if (*(cp+len-1) == '$') {
 807		kdb_grep_trailing = 1;
 808		*(cp+len-1) = '\0';
 809	}
 810	len = strlen(cp);
 811	if (!len)
 812		return;
 813	if (len >= GREP_LEN) {
 814		kdb_printf("search string too long\n");
 815		return;
 816	}
 817	strcpy(kdb_grep_string, cp);
 818	kdb_grepping_flag++;
 819	return;
 820}
 821
 822/*
 823 * kdb_parse - Parse the command line, search the command table for a
 824 *	matching command and invoke the command function.  This
 825 *	function may be called recursively, if it is, the second call
 826 *	will overwrite argv and cbuf.  It is the caller's
 827 *	responsibility to save their argv if they recursively call
 828 *	kdb_parse().
 829 * Parameters:
 830 *      cmdstr	The input command line to be parsed.
 831 *	regs	The registers at the time kdb was entered.
 832 * Returns:
 833 *	Zero for success, a kdb diagnostic if failure.
 834 * Remarks:
 835 *	Limited to 20 tokens.
 836 *
 837 *	Real rudimentary tokenization. Basically only whitespace
 838 *	is considered a token delimeter (but special consideration
 839 *	is taken of the '=' sign as used by the 'set' command).
 840 *
 841 *	The algorithm used to tokenize the input string relies on
 842 *	there being at least one whitespace (or otherwise useless)
 843 *	character between tokens as the character immediately following
 844 *	the token is altered in-place to a null-byte to terminate the
 845 *	token string.
 846 */
 847
 848#define MAXARGC	20
 849
 850int kdb_parse(const char *cmdstr)
 851{
 852	static char *argv[MAXARGC];
 853	static int argc;
 854	static char cbuf[CMD_BUFLEN+2];
 855	char *cp;
 856	char *cpp, quoted;
 857	kdbtab_t *tp;
 858	int i, escaped, ignore_errors = 0, check_grep;
 859
 860	/*
 861	 * First tokenize the command string.
 862	 */
 863	cp = (char *)cmdstr;
 864	kdb_grepping_flag = check_grep = 0;
 865
 866	if (KDB_FLAG(CMD_INTERRUPT)) {
 867		/* Previous command was interrupted, newline must not
 868		 * repeat the command */
 869		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 870		KDB_STATE_SET(PAGER);
 871		argc = 0;	/* no repeat */
 872	}
 873
 874	if (*cp != '\n' && *cp != '\0') {
 875		argc = 0;
 876		cpp = cbuf;
 877		while (*cp) {
 878			/* skip whitespace */
 879			while (isspace(*cp))
 880				cp++;
 881			if ((*cp == '\0') || (*cp == '\n') ||
 882			    (*cp == '#' && !defcmd_in_progress))
 883				break;
 884			/* special case: check for | grep pattern */
 885			if (*cp == '|') {
 886				check_grep++;
 887				break;
 888			}
 889			if (cpp >= cbuf + CMD_BUFLEN) {
 890				kdb_printf("kdb_parse: command buffer "
 891					   "overflow, command ignored\n%s\n",
 892					   cmdstr);
 893				return KDB_NOTFOUND;
 894			}
 895			if (argc >= MAXARGC - 1) {
 896				kdb_printf("kdb_parse: too many arguments, "
 897					   "command ignored\n%s\n", cmdstr);
 898				return KDB_NOTFOUND;
 899			}
 900			argv[argc++] = cpp;
 901			escaped = 0;
 902			quoted = '\0';
 903			/* Copy to next unquoted and unescaped
 904			 * whitespace or '=' */
 905			while (*cp && *cp != '\n' &&
 906			       (escaped || quoted || !isspace(*cp))) {
 907				if (cpp >= cbuf + CMD_BUFLEN)
 908					break;
 909				if (escaped) {
 910					escaped = 0;
 911					*cpp++ = *cp++;
 912					continue;
 913				}
 914				if (*cp == '\\') {
 915					escaped = 1;
 916					++cp;
 917					continue;
 918				}
 919				if (*cp == quoted)
 920					quoted = '\0';
 921				else if (*cp == '\'' || *cp == '"')
 922					quoted = *cp;
 923				*cpp = *cp++;
 924				if (*cpp == '=' && !quoted)
 925					break;
 926				++cpp;
 927			}
 928			*cpp++ = '\0';	/* Squash a ws or '=' character */
 929		}
 930	}
 931	if (!argc)
 932		return 0;
 933	if (check_grep)
 934		parse_grep(cp);
 935	if (defcmd_in_progress) {
 936		int result = kdb_defcmd2(cmdstr, argv[0]);
 937		if (!defcmd_in_progress) {
 938			argc = 0;	/* avoid repeat on endefcmd */
 939			*(argv[0]) = '\0';
 940		}
 941		return result;
 942	}
 943	if (argv[0][0] == '-' && argv[0][1] &&
 944	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 945		ignore_errors = 1;
 946		++argv[0];
 947	}
 948
 949	for_each_kdbcmd(tp, i) {
 950		if (tp->cmd_name) {
 951			/*
 952			 * If this command is allowed to be abbreviated,
 953			 * check to see if this is it.
 954			 */
 955
 956			if (tp->cmd_minlen
 957			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 958				if (strncmp(argv[0],
 959					    tp->cmd_name,
 960					    tp->cmd_minlen) == 0) {
 961					break;
 962				}
 963			}
 964
 965			if (strcmp(argv[0], tp->cmd_name) == 0)
 966				break;
 967		}
 968	}
 969
 970	/*
 971	 * If we don't find a command by this name, see if the first
 972	 * few characters of this match any of the known commands.
 973	 * e.g., md1c20 should match md.
 974	 */
 975	if (i == kdb_max_commands) {
 976		for_each_kdbcmd(tp, i) {
 977			if (tp->cmd_name) {
 978				if (strncmp(argv[0],
 979					    tp->cmd_name,
 980					    strlen(tp->cmd_name)) == 0) {
 981					break;
 982				}
 983			}
 984		}
 985	}
 986
 987	if (i < kdb_max_commands) {
 988		int result;
 989		KDB_STATE_SET(CMD);
 990		result = (*tp->cmd_func)(argc-1, (const char **)argv);
 991		if (result && ignore_errors && result > KDB_CMD_GO)
 992			result = 0;
 993		KDB_STATE_CLEAR(CMD);
 994		switch (tp->cmd_repeat) {
 995		case KDB_REPEAT_NONE:
 996			argc = 0;
 997			if (argv[0])
 998				*(argv[0]) = '\0';
 999			break;
1000		case KDB_REPEAT_NO_ARGS:
1001			argc = 1;
1002			if (argv[1])
1003				*(argv[1]) = '\0';
1004			break;
1005		case KDB_REPEAT_WITH_ARGS:
1006			break;
1007		}
1008		return result;
1009	}
1010
1011	/*
1012	 * If the input with which we were presented does not
1013	 * map to an existing command, attempt to parse it as an
1014	 * address argument and display the result.   Useful for
1015	 * obtaining the address of a variable, or the nearest symbol
1016	 * to an address contained in a register.
1017	 */
1018	{
1019		unsigned long value;
1020		char *name = NULL;
1021		long offset;
1022		int nextarg = 0;
1023
1024		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025				  &value, &offset, &name)) {
1026			return KDB_NOTFOUND;
1027		}
1028
1029		kdb_printf("%s = ", argv[0]);
1030		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031		kdb_printf("\n");
1032		return 0;
1033	}
1034}
1035
1036
1037static int handle_ctrl_cmd(char *cmd)
1038{
1039#define CTRL_P	16
1040#define CTRL_N	14
1041
1042	/* initial situation */
1043	if (cmd_head == cmd_tail)
1044		return 0;
1045	switch (*cmd) {
1046	case CTRL_P:
1047		if (cmdptr != cmd_tail)
1048			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050		return 1;
1051	case CTRL_N:
1052		if (cmdptr != cmd_head)
1053			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055		return 1;
1056	}
1057	return 0;
1058}
1059
1060/*
1061 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1062 *	the system immediately, or loop for ever on failure.
1063 */
1064static int kdb_reboot(int argc, const char **argv)
1065{
1066	emergency_restart();
1067	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068	while (1)
1069		cpu_relax();
1070	/* NOTREACHED */
1071	return 0;
1072}
1073
1074static void kdb_dumpregs(struct pt_regs *regs)
1075{
1076	int old_lvl = console_loglevel;
1077	console_loglevel = 15;
1078	kdb_trap_printk++;
1079	show_regs(regs);
1080	kdb_trap_printk--;
1081	kdb_printf("\n");
1082	console_loglevel = old_lvl;
1083}
1084
1085void kdb_set_current_task(struct task_struct *p)
1086{
1087	kdb_current_task = p;
1088
1089	if (kdb_task_has_cpu(p)) {
1090		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091		return;
1092	}
1093	kdb_current_regs = NULL;
1094}
1095
1096/*
1097 * kdb_local - The main code for kdb.  This routine is invoked on a
1098 *	specific processor, it is not global.  The main kdb() routine
1099 *	ensures that only one processor at a time is in this routine.
1100 *	This code is called with the real reason code on the first
1101 *	entry to a kdb session, thereafter it is called with reason
1102 *	SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 *	reason		The reason KDB was invoked
1105 *	error		The hardware-defined error code
1106 *	regs		The exception frame at time of fault/breakpoint.
1107 *	db_result	Result code from the break or debug point.
1108 * Returns:
1109 *	0	KDB was invoked for an event which it wasn't responsible
1110 *	1	KDB handled the event for which it was invoked.
1111 *	KDB_CMD_GO	User typed 'go'.
1112 *	KDB_CMD_CPU	User switched to another cpu.
1113 *	KDB_CMD_SS	Single step.
1114 *	KDB_CMD_SSB	Single step until branch.
1115 */
1116static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117		     kdb_dbtrap_t db_result)
1118{
1119	char *cmdbuf;
1120	int diag;
1121	struct task_struct *kdb_current =
1122		kdb_curr_task(raw_smp_processor_id());
1123
1124	KDB_DEBUG_STATE("kdb_local 1", reason);
1125	kdb_go_count = 0;
1126	if (reason == KDB_REASON_DEBUG) {
1127		/* special case below */
1128	} else {
1129		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130			   kdb_current, kdb_current ? kdb_current->pid : 0);
1131#if defined(CONFIG_SMP)
1132		kdb_printf("on processor %d ", raw_smp_processor_id());
1133#endif
1134	}
1135
1136	switch (reason) {
1137	case KDB_REASON_DEBUG:
1138	{
1139		/*
1140		 * If re-entering kdb after a single step
1141		 * command, don't print the message.
1142		 */
1143		switch (db_result) {
1144		case KDB_DB_BPT:
1145			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146				   kdb_current, kdb_current->pid);
1147#if defined(CONFIG_SMP)
1148			kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151				   instruction_pointer(regs));
1152			break;
1153		case KDB_DB_SSB:
1154			/*
1155			 * In the midst of ssb command. Just return.
1156			 */
1157			KDB_DEBUG_STATE("kdb_local 3", reason);
1158			return KDB_CMD_SSB;	/* Continue with SSB command */
1159
1160			break;
1161		case KDB_DB_SS:
1162			break;
1163		case KDB_DB_SSBPT:
1164			KDB_DEBUG_STATE("kdb_local 4", reason);
1165			return 1;	/* kdba_db_trap did the work */
1166		default:
1167			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168				   db_result);
1169			break;
1170		}
1171
1172	}
1173		break;
1174	case KDB_REASON_ENTER:
1175		if (KDB_STATE(KEYBOARD))
1176			kdb_printf("due to Keyboard Entry\n");
1177		else
1178			kdb_printf("due to KDB_ENTER()\n");
1179		break;
1180	case KDB_REASON_KEYBOARD:
1181		KDB_STATE_SET(KEYBOARD);
1182		kdb_printf("due to Keyboard Entry\n");
1183		break;
1184	case KDB_REASON_ENTER_SLAVE:
1185		/* drop through, slaves only get released via cpu switch */
1186	case KDB_REASON_SWITCH:
1187		kdb_printf("due to cpu switch\n");
1188		break;
1189	case KDB_REASON_OOPS:
1190		kdb_printf("Oops: %s\n", kdb_diemsg);
1191		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192			   instruction_pointer(regs));
1193		kdb_dumpregs(regs);
1194		break;
 
 
 
1195	case KDB_REASON_NMI:
1196		kdb_printf("due to NonMaskable Interrupt @ "
1197			   kdb_machreg_fmt "\n",
1198			   instruction_pointer(regs));
1199		kdb_dumpregs(regs);
1200		break;
1201	case KDB_REASON_SSTEP:
1202	case KDB_REASON_BREAK:
1203		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204			   reason == KDB_REASON_BREAK ?
1205			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1206		/*
1207		 * Determine if this breakpoint is one that we
1208		 * are interested in.
1209		 */
1210		if (db_result != KDB_DB_BPT) {
1211			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212				   db_result);
1213			KDB_DEBUG_STATE("kdb_local 6", reason);
1214			return 0;	/* Not for us, dismiss it */
1215		}
1216		break;
1217	case KDB_REASON_RECURSE:
1218		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219			   instruction_pointer(regs));
1220		break;
1221	default:
1222		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223		KDB_DEBUG_STATE("kdb_local 8", reason);
1224		return 0;	/* Not for us, dismiss it */
1225	}
1226
1227	while (1) {
1228		/*
1229		 * Initialize pager context.
1230		 */
1231		kdb_nextline = 1;
1232		KDB_STATE_CLEAR(SUPPRESS);
1233
1234		cmdbuf = cmd_cur;
1235		*cmdbuf = '\0';
1236		*(cmd_hist[cmd_head]) = '\0';
1237
1238		if (KDB_FLAG(ONLY_DO_DUMP)) {
1239			/* kdb is off but a catastrophic error requires a dump.
1240			 * Take the dump and reboot.
1241			 * Turn on logging so the kdb output appears in the log
1242			 * buffer in the dump.
1243			 */
1244			const char *setargs[] = { "set", "LOGGING", "1" };
1245			kdb_set(2, setargs);
1246			kdb_reboot(0, NULL);
1247			/*NOTREACHED*/
1248		}
1249
1250do_full_getstr:
1251#if defined(CONFIG_SMP)
1252		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253			 raw_smp_processor_id());
1254#else
1255		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256#endif
1257		if (defcmd_in_progress)
1258			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259
1260		/*
1261		 * Fetch command from keyboard
1262		 */
1263		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264		if (*cmdbuf != '\n') {
1265			if (*cmdbuf < 32) {
1266				if (cmdptr == cmd_head) {
1267					strncpy(cmd_hist[cmd_head], cmd_cur,
1268						CMD_BUFLEN);
1269					*(cmd_hist[cmd_head] +
1270					  strlen(cmd_hist[cmd_head])-1) = '\0';
1271				}
1272				if (!handle_ctrl_cmd(cmdbuf))
1273					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274				cmdbuf = cmd_cur;
1275				goto do_full_getstr;
1276			} else {
1277				strncpy(cmd_hist[cmd_head], cmd_cur,
1278					CMD_BUFLEN);
1279			}
1280
1281			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282			if (cmd_head == cmd_tail)
1283				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284		}
1285
1286		cmdptr = cmd_head;
1287		diag = kdb_parse(cmdbuf);
1288		if (diag == KDB_NOTFOUND) {
1289			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290			diag = 0;
1291		}
1292		if (diag == KDB_CMD_GO
1293		 || diag == KDB_CMD_CPU
1294		 || diag == KDB_CMD_SS
1295		 || diag == KDB_CMD_SSB
1296		 || diag == KDB_CMD_KGDB)
1297			break;
1298
1299		if (diag)
1300			kdb_cmderror(diag);
1301	}
1302	KDB_DEBUG_STATE("kdb_local 9", diag);
1303	return diag;
1304}
1305
1306
1307/*
1308 * kdb_print_state - Print the state data for the current processor
1309 *	for debugging.
1310 * Inputs:
1311 *	text		Identifies the debug point
1312 *	value		Any integer value to be printed, e.g. reason code.
1313 */
1314void kdb_print_state(const char *text, int value)
1315{
1316	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318		   kdb_state);
1319}
1320
1321/*
1322 * kdb_main_loop - After initial setup and assignment of the
1323 *	controlling cpu, all cpus are in this loop.  One cpu is in
1324 *	control and will issue the kdb prompt, the others will spin
1325 *	until 'go' or cpu switch.
1326 *
1327 *	To get a consistent view of the kernel stacks for all
1328 *	processes, this routine is invoked from the main kdb code via
1329 *	an architecture specific routine.  kdba_main_loop is
1330 *	responsible for making the kernel stacks consistent for all
1331 *	processes, there should be no difference between a blocked
1332 *	process and a running process as far as kdb is concerned.
1333 * Inputs:
1334 *	reason		The reason KDB was invoked
1335 *	error		The hardware-defined error code
1336 *	reason2		kdb's current reason code.
1337 *			Initially error but can change
1338 *			according to kdb state.
1339 *	db_result	Result code from break or debug point.
1340 *	regs		The exception frame at time of fault/breakpoint.
1341 *			should always be valid.
1342 * Returns:
1343 *	0	KDB was invoked for an event which it wasn't responsible
1344 *	1	KDB handled the event for which it was invoked.
1345 */
1346int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1348{
1349	int result = 1;
1350	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1351	while (1) {
1352		/*
1353		 * All processors except the one that is in control
1354		 * will spin here.
1355		 */
1356		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357		while (KDB_STATE(HOLD_CPU)) {
1358			/* state KDB is turned off by kdb_cpu to see if the
1359			 * other cpus are still live, each cpu in this loop
1360			 * turns it back on.
1361			 */
1362			if (!KDB_STATE(KDB))
1363				KDB_STATE_SET(KDB);
1364		}
1365
1366		KDB_STATE_CLEAR(SUPPRESS);
1367		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368		if (KDB_STATE(LEAVING))
1369			break;	/* Another cpu said 'go' */
1370		/* Still using kdb, this processor is in control */
1371		result = kdb_local(reason2, error, regs, db_result);
1372		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373
1374		if (result == KDB_CMD_CPU)
1375			break;
1376
1377		if (result == KDB_CMD_SS) {
1378			KDB_STATE_SET(DOING_SS);
1379			break;
1380		}
1381
1382		if (result == KDB_CMD_SSB) {
1383			KDB_STATE_SET(DOING_SS);
1384			KDB_STATE_SET(DOING_SSB);
1385			break;
1386		}
1387
1388		if (result == KDB_CMD_KGDB) {
1389			if (!KDB_STATE(DOING_KGDB))
1390				kdb_printf("Entering please attach debugger "
1391					   "or use $D#44+ or $3#33\n");
1392			break;
1393		}
1394		if (result && result != 1 && result != KDB_CMD_GO)
1395			kdb_printf("\nUnexpected kdb_local return code %d\n",
1396				   result);
1397		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398		break;
1399	}
1400	if (KDB_STATE(DOING_SS))
1401		KDB_STATE_CLEAR(SSBPT);
1402
 
 
 
1403	return result;
1404}
1405
1406/*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command.
1409 *	mdr  <addr arg>,<byte count>
1410 * Inputs:
1411 *	addr	Start address
1412 *	count	Number of bytes
1413 * Returns:
1414 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1415 */
1416static int kdb_mdr(unsigned long addr, unsigned int count)
1417{
1418	unsigned char c;
1419	while (count--) {
1420		if (kdb_getarea(c, addr))
1421			return 0;
1422		kdb_printf("%02x", c);
1423		addr++;
1424	}
1425	kdb_printf("\n");
1426	return 0;
1427}
1428
1429/*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 *	'md8' 'mdr' and 'mds' commands.
1432 *
1433 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1434 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1435 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1436 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1437 *	mdr  <addr arg>,<byte count>
1438 */
1439static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440			int symbolic, int nosect, int bytesperword,
1441			int num, int repeat, int phys)
1442{
1443	/* print just one line of data */
1444	kdb_symtab_t symtab;
1445	char cbuf[32];
1446	char *c = cbuf;
1447	int i;
1448	unsigned long word;
1449
1450	memset(cbuf, '\0', sizeof(cbuf));
1451	if (phys)
1452		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453	else
1454		kdb_printf(kdb_machreg_fmt0 " ", addr);
1455
1456	for (i = 0; i < num && repeat--; i++) {
1457		if (phys) {
1458			if (kdb_getphysword(&word, addr, bytesperword))
1459				break;
1460		} else if (kdb_getword(&word, addr, bytesperword))
1461			break;
1462		kdb_printf(fmtstr, word);
1463		if (symbolic)
1464			kdbnearsym(word, &symtab);
1465		else
1466			memset(&symtab, 0, sizeof(symtab));
1467		if (symtab.sym_name) {
1468			kdb_symbol_print(word, &symtab, 0);
1469			if (!nosect) {
1470				kdb_printf("\n");
1471				kdb_printf("                       %s %s "
1472					   kdb_machreg_fmt " "
1473					   kdb_machreg_fmt " "
1474					   kdb_machreg_fmt, symtab.mod_name,
1475					   symtab.sec_name, symtab.sec_start,
1476					   symtab.sym_start, symtab.sym_end);
1477			}
1478			addr += bytesperword;
1479		} else {
1480			union {
1481				u64 word;
1482				unsigned char c[8];
1483			} wc;
1484			unsigned char *cp;
1485#ifdef	__BIG_ENDIAN
1486			cp = wc.c + 8 - bytesperword;
1487#else
1488			cp = wc.c;
1489#endif
1490			wc.word = word;
1491#define printable_char(c) \
1492	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493			switch (bytesperword) {
1494			case 8:
1495				*c++ = printable_char(*cp++);
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				*c++ = printable_char(*cp++);
1499				addr += 4;
1500			case 4:
1501				*c++ = printable_char(*cp++);
1502				*c++ = printable_char(*cp++);
1503				addr += 2;
1504			case 2:
1505				*c++ = printable_char(*cp++);
1506				addr++;
1507			case 1:
1508				*c++ = printable_char(*cp++);
1509				addr++;
1510				break;
1511			}
1512#undef printable_char
1513		}
1514	}
1515	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516		   " ", cbuf);
1517}
1518
1519static int kdb_md(int argc, const char **argv)
1520{
1521	static unsigned long last_addr;
1522	static int last_radix, last_bytesperword, last_repeat;
1523	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524	int nosect = 0;
1525	char fmtchar, fmtstr[64];
1526	unsigned long addr;
1527	unsigned long word;
1528	long offset = 0;
1529	int symbolic = 0;
1530	int valid = 0;
1531	int phys = 0;
1532
1533	kdbgetintenv("MDCOUNT", &mdcount);
1534	kdbgetintenv("RADIX", &radix);
1535	kdbgetintenv("BYTESPERWORD", &bytesperword);
1536
1537	/* Assume 'md <addr>' and start with environment values */
1538	repeat = mdcount * 16 / bytesperword;
1539
1540	if (strcmp(argv[0], "mdr") == 0) {
1541		if (argc != 2)
1542			return KDB_ARGCOUNT;
1543		valid = 1;
1544	} else if (isdigit(argv[0][2])) {
1545		bytesperword = (int)(argv[0][2] - '0');
1546		if (bytesperword == 0) {
1547			bytesperword = last_bytesperword;
1548			if (bytesperword == 0)
1549				bytesperword = 4;
1550		}
1551		last_bytesperword = bytesperword;
1552		repeat = mdcount * 16 / bytesperword;
1553		if (!argv[0][3])
1554			valid = 1;
1555		else if (argv[0][3] == 'c' && argv[0][4]) {
1556			char *p;
1557			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558			mdcount = ((repeat * bytesperword) + 15) / 16;
1559			valid = !*p;
1560		}
1561		last_repeat = repeat;
1562	} else if (strcmp(argv[0], "md") == 0)
1563		valid = 1;
1564	else if (strcmp(argv[0], "mds") == 0)
1565		valid = 1;
1566	else if (strcmp(argv[0], "mdp") == 0) {
1567		phys = valid = 1;
1568	}
1569	if (!valid)
1570		return KDB_NOTFOUND;
1571
1572	if (argc == 0) {
1573		if (last_addr == 0)
1574			return KDB_ARGCOUNT;
1575		addr = last_addr;
1576		radix = last_radix;
1577		bytesperword = last_bytesperword;
1578		repeat = last_repeat;
1579		mdcount = ((repeat * bytesperword) + 15) / 16;
1580	}
1581
1582	if (argc) {
1583		unsigned long val;
1584		int diag, nextarg = 1;
1585		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586				     &offset, NULL);
1587		if (diag)
1588			return diag;
1589		if (argc > nextarg+2)
1590			return KDB_ARGCOUNT;
1591
1592		if (argc >= nextarg) {
1593			diag = kdbgetularg(argv[nextarg], &val);
1594			if (!diag) {
1595				mdcount = (int) val;
1596				repeat = mdcount * 16 / bytesperword;
1597			}
1598		}
1599		if (argc >= nextarg+1) {
1600			diag = kdbgetularg(argv[nextarg+1], &val);
1601			if (!diag)
1602				radix = (int) val;
1603		}
1604	}
1605
1606	if (strcmp(argv[0], "mdr") == 0)
1607		return kdb_mdr(addr, mdcount);
1608
1609	switch (radix) {
1610	case 10:
1611		fmtchar = 'd';
1612		break;
1613	case 16:
1614		fmtchar = 'x';
1615		break;
1616	case 8:
1617		fmtchar = 'o';
1618		break;
1619	default:
1620		return KDB_BADRADIX;
1621	}
1622
1623	last_radix = radix;
1624
1625	if (bytesperword > KDB_WORD_SIZE)
1626		return KDB_BADWIDTH;
1627
1628	switch (bytesperword) {
1629	case 8:
1630		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631		break;
1632	case 4:
1633		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634		break;
1635	case 2:
1636		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637		break;
1638	case 1:
1639		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640		break;
1641	default:
1642		return KDB_BADWIDTH;
1643	}
1644
1645	last_repeat = repeat;
1646	last_bytesperword = bytesperword;
1647
1648	if (strcmp(argv[0], "mds") == 0) {
1649		symbolic = 1;
1650		/* Do not save these changes as last_*, they are temporary mds
1651		 * overrides.
1652		 */
1653		bytesperword = KDB_WORD_SIZE;
1654		repeat = mdcount;
1655		kdbgetintenv("NOSECT", &nosect);
1656	}
1657
1658	/* Round address down modulo BYTESPERWORD */
1659
1660	addr &= ~(bytesperword-1);
1661
1662	while (repeat > 0) {
1663		unsigned long a;
1664		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665
1666		if (KDB_FLAG(CMD_INTERRUPT))
1667			return 0;
1668		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669			if (phys) {
1670				if (kdb_getphysword(&word, a, bytesperword)
1671						|| word)
1672					break;
1673			} else if (kdb_getword(&word, a, bytesperword) || word)
1674				break;
1675		}
1676		n = min(num, repeat);
1677		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678			    num, repeat, phys);
1679		addr += bytesperword * n;
1680		repeat -= n;
1681		z = (z + num - 1) / num;
1682		if (z > 2) {
1683			int s = num * (z-2);
1684			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685				   " zero suppressed\n",
1686				addr, addr + bytesperword * s - 1);
1687			addr += bytesperword * s;
1688			repeat -= s;
1689		}
1690	}
1691	last_addr = addr;
1692
1693	return 0;
1694}
1695
1696/*
1697 * kdb_mm - This function implements the 'mm' command.
1698 *	mm address-expression new-value
1699 * Remarks:
1700 *	mm works on machine words, mmW works on bytes.
1701 */
1702static int kdb_mm(int argc, const char **argv)
1703{
1704	int diag;
1705	unsigned long addr;
1706	long offset = 0;
1707	unsigned long contents;
1708	int nextarg;
1709	int width;
1710
1711	if (argv[0][2] && !isdigit(argv[0][2]))
1712		return KDB_NOTFOUND;
1713
1714	if (argc < 2)
1715		return KDB_ARGCOUNT;
1716
1717	nextarg = 1;
1718	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719	if (diag)
1720		return diag;
1721
1722	if (nextarg > argc)
1723		return KDB_ARGCOUNT;
1724	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725	if (diag)
1726		return diag;
1727
1728	if (nextarg != argc + 1)
1729		return KDB_ARGCOUNT;
1730
1731	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732	diag = kdb_putword(addr, contents, width);
1733	if (diag)
1734		return diag;
1735
1736	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737
1738	return 0;
1739}
1740
1741/*
1742 * kdb_go - This function implements the 'go' command.
1743 *	go [address-expression]
1744 */
1745static int kdb_go(int argc, const char **argv)
1746{
1747	unsigned long addr;
1748	int diag;
1749	int nextarg;
1750	long offset;
1751
1752	if (raw_smp_processor_id() != kdb_initial_cpu) {
1753		kdb_printf("go must execute on the entry cpu, "
1754			   "please use \"cpu %d\" and then execute go\n",
1755			   kdb_initial_cpu);
1756		return KDB_BADCPUNUM;
1757	}
1758	if (argc == 1) {
1759		nextarg = 1;
1760		diag = kdbgetaddrarg(argc, argv, &nextarg,
1761				     &addr, &offset, NULL);
1762		if (diag)
1763			return diag;
1764	} else if (argc) {
1765		return KDB_ARGCOUNT;
1766	}
1767
1768	diag = KDB_CMD_GO;
1769	if (KDB_FLAG(CATASTROPHIC)) {
1770		kdb_printf("Catastrophic error detected\n");
1771		kdb_printf("kdb_continue_catastrophic=%d, ",
1772			kdb_continue_catastrophic);
1773		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774			kdb_printf("type go a second time if you really want "
1775				   "to continue\n");
1776			return 0;
1777		}
1778		if (kdb_continue_catastrophic == 2) {
1779			kdb_printf("forcing reboot\n");
1780			kdb_reboot(0, NULL);
1781		}
1782		kdb_printf("attempting to continue\n");
1783	}
1784	return diag;
1785}
1786
1787/*
1788 * kdb_rd - This function implements the 'rd' command.
1789 */
1790static int kdb_rd(int argc, const char **argv)
1791{
1792	int len = kdb_check_regs();
1793#if DBG_MAX_REG_NUM > 0
1794	int i;
1795	char *rname;
1796	int rsize;
1797	u64 reg64;
1798	u32 reg32;
1799	u16 reg16;
1800	u8 reg8;
1801
1802	if (len)
1803		return len;
1804
1805	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806		rsize = dbg_reg_def[i].size * 2;
1807		if (rsize > 16)
1808			rsize = 2;
1809		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810			len = 0;
1811			kdb_printf("\n");
1812		}
1813		if (len)
1814			len += kdb_printf("  ");
1815		switch(dbg_reg_def[i].size * 8) {
1816		case 8:
1817			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1818			if (!rname)
1819				break;
1820			len += kdb_printf("%s: %02x", rname, reg8);
1821			break;
1822		case 16:
1823			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1824			if (!rname)
1825				break;
1826			len += kdb_printf("%s: %04x", rname, reg16);
1827			break;
1828		case 32:
1829			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1830			if (!rname)
1831				break;
1832			len += kdb_printf("%s: %08x", rname, reg32);
1833			break;
1834		case 64:
1835			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1836			if (!rname)
1837				break;
1838			len += kdb_printf("%s: %016llx", rname, reg64);
1839			break;
1840		default:
1841			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842		}
1843	}
1844	kdb_printf("\n");
1845#else
1846	if (len)
1847		return len;
1848
1849	kdb_dumpregs(kdb_current_regs);
1850#endif
1851	return 0;
1852}
1853
1854/*
1855 * kdb_rm - This function implements the 'rm' (register modify)  command.
1856 *	rm register-name new-contents
1857 * Remarks:
1858 *	Allows register modification with the same restrictions as gdb
1859 */
1860static int kdb_rm(int argc, const char **argv)
1861{
1862#if DBG_MAX_REG_NUM > 0
1863	int diag;
1864	const char *rname;
1865	int i;
1866	u64 reg64;
1867	u32 reg32;
1868	u16 reg16;
1869	u8 reg8;
1870
1871	if (argc != 2)
1872		return KDB_ARGCOUNT;
1873	/*
1874	 * Allow presence or absence of leading '%' symbol.
1875	 */
1876	rname = argv[1];
1877	if (*rname == '%')
1878		rname++;
1879
1880	diag = kdbgetu64arg(argv[2], &reg64);
1881	if (diag)
1882		return diag;
1883
1884	diag = kdb_check_regs();
1885	if (diag)
1886		return diag;
1887
1888	diag = KDB_BADREG;
1889	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891			diag = 0;
1892			break;
1893		}
1894	}
1895	if (!diag) {
1896		switch(dbg_reg_def[i].size * 8) {
1897		case 8:
1898			reg8 = reg64;
1899			dbg_set_reg(i, &reg8, kdb_current_regs);
1900			break;
1901		case 16:
1902			reg16 = reg64;
1903			dbg_set_reg(i, &reg16, kdb_current_regs);
1904			break;
1905		case 32:
1906			reg32 = reg64;
1907			dbg_set_reg(i, &reg32, kdb_current_regs);
1908			break;
1909		case 64:
1910			dbg_set_reg(i, &reg64, kdb_current_regs);
1911			break;
1912		}
1913	}
1914	return diag;
1915#else
1916	kdb_printf("ERROR: Register set currently not implemented\n");
1917    return 0;
1918#endif
1919}
1920
1921#if defined(CONFIG_MAGIC_SYSRQ)
1922/*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 *		sr <magic-sysrq-code>
1926 */
1927static int kdb_sr(int argc, const char **argv)
1928{
1929	if (argc != 1)
1930		return KDB_ARGCOUNT;
1931	kdb_trap_printk++;
1932	__handle_sysrq(*argv[1], false);
1933	kdb_trap_printk--;
1934
1935	return 0;
1936}
1937#endif	/* CONFIG_MAGIC_SYSRQ */
1938
1939/*
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 *	frame) command.  This command takes an address and expects to
1942 *	find an exception frame at that address, formats and prints
1943 *	it.
1944 *		regs address-expression
1945 * Remarks:
1946 *	Not done yet.
1947 */
1948static int kdb_ef(int argc, const char **argv)
1949{
1950	int diag;
1951	unsigned long addr;
1952	long offset;
1953	int nextarg;
1954
1955	if (argc != 1)
1956		return KDB_ARGCOUNT;
1957
1958	nextarg = 1;
1959	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960	if (diag)
1961		return diag;
1962	show_regs((struct pt_regs *)addr);
1963	return 0;
1964}
1965
1966#if defined(CONFIG_MODULES)
1967/*
1968 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1969 *	currently loaded kernel modules.
1970 *	Mostly taken from userland lsmod.
1971 */
1972static int kdb_lsmod(int argc, const char **argv)
1973{
1974	struct module *mod;
1975
1976	if (argc != 0)
1977		return KDB_ARGCOUNT;
1978
1979	kdb_printf("Module                  Size  modstruct     Used by\n");
1980	list_for_each_entry(mod, kdb_modules, list) {
 
 
1981
1982		kdb_printf("%-20s%8u  0x%p ", mod->name,
1983			   mod->core_size, (void *)mod);
1984#ifdef CONFIG_MODULE_UNLOAD
1985		kdb_printf("%4d ", module_refcount(mod));
1986#endif
1987		if (mod->state == MODULE_STATE_GOING)
1988			kdb_printf(" (Unloading)");
1989		else if (mod->state == MODULE_STATE_COMING)
1990			kdb_printf(" (Loading)");
1991		else
1992			kdb_printf(" (Live)");
1993		kdb_printf(" 0x%p", mod->module_core);
1994
1995#ifdef CONFIG_MODULE_UNLOAD
1996		{
1997			struct module_use *use;
1998			kdb_printf(" [ ");
1999			list_for_each_entry(use, &mod->source_list,
2000					    source_list)
2001				kdb_printf("%s ", use->target->name);
2002			kdb_printf("]\n");
2003		}
2004#endif
2005	}
2006
2007	return 0;
2008}
2009
2010#endif	/* CONFIG_MODULES */
2011
2012/*
2013 * kdb_env - This function implements the 'env' command.  Display the
2014 *	current environment variables.
2015 */
2016
2017static int kdb_env(int argc, const char **argv)
2018{
2019	int i;
2020
2021	for (i = 0; i < __nenv; i++) {
2022		if (__env[i])
2023			kdb_printf("%s\n", __env[i]);
2024	}
2025
2026	if (KDB_DEBUG(MASK))
2027		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028
2029	return 0;
2030}
2031
2032#ifdef CONFIG_PRINTK
2033/*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 *	the contents of the syslog buffer.
2036 *		dmesg [lines] [adjust]
2037 */
2038static int kdb_dmesg(int argc, const char **argv)
2039{
2040	char *syslog_data[4], *start, *end, c = '\0', *p;
2041	int diag, logging, logsize, lines = 0, adjust = 0, n;
 
 
 
 
 
 
 
2042
2043	if (argc > 2)
2044		return KDB_ARGCOUNT;
2045	if (argc) {
2046		char *cp;
2047		lines = simple_strtol(argv[1], &cp, 0);
2048		if (*cp)
2049			lines = 0;
2050		if (argc > 1) {
2051			adjust = simple_strtoul(argv[2], &cp, 0);
2052			if (*cp || adjust < 0)
2053				adjust = 0;
2054		}
2055	}
2056
2057	/* disable LOGGING if set */
2058	diag = kdbgetintenv("LOGGING", &logging);
2059	if (!diag && logging) {
2060		const char *setargs[] = { "set", "LOGGING", "0" };
2061		kdb_set(2, setargs);
2062	}
2063
2064	/* syslog_data[0,1] physical start, end+1.  syslog_data[2,3]
2065	 * logical start, end+1. */
2066	kdb_syslog_data(syslog_data);
2067	if (syslog_data[2] == syslog_data[3])
2068		return 0;
2069	logsize = syslog_data[1] - syslog_data[0];
2070	start = syslog_data[2];
2071	end = syslog_data[3];
2072#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073	for (n = 0, p = start; p < end; ++p) {
2074		c = *KDB_WRAP(p);
2075		if (c == '\n')
2076			++n;
2077	}
2078	if (c != '\n')
2079		++n;
2080	if (lines < 0) {
2081		if (adjust >= n)
2082			kdb_printf("buffer only contains %d lines, nothing "
2083				   "printed\n", n);
2084		else if (adjust - lines >= n)
2085			kdb_printf("buffer only contains %d lines, last %d "
2086				   "lines printed\n", n, n - adjust);
2087		if (adjust) {
2088			for (; start < end && adjust; ++start) {
2089				if (*KDB_WRAP(start) == '\n')
2090					--adjust;
2091			}
2092			if (start < end)
2093				++start;
2094		}
2095		for (p = start; p < end && lines; ++p) {
2096			if (*KDB_WRAP(p) == '\n')
2097				++lines;
2098		}
2099		end = p;
2100	} else if (lines > 0) {
2101		int skip = n - (adjust + lines);
 
2102		if (adjust >= n) {
2103			kdb_printf("buffer only contains %d lines, "
2104				   "nothing printed\n", n);
2105			skip = n;
2106		} else if (skip < 0) {
2107			lines += skip;
2108			skip = 0;
2109			kdb_printf("buffer only contains %d lines, first "
2110				   "%d lines printed\n", n, lines);
2111		}
2112		for (; start < end && skip; ++start) {
2113			if (*KDB_WRAP(start) == '\n')
2114				--skip;
2115		}
2116		for (p = start; p < end && lines; ++p) {
2117			if (*KDB_WRAP(p) == '\n')
2118				--lines;
2119		}
2120		end = p;
2121	}
2122	/* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123	c = '\n';
2124	while (start != end) {
2125		char buf[201];
2126		p = buf;
2127		if (KDB_FLAG(CMD_INTERRUPT))
2128			return 0;
2129		while (start < end && (c = *KDB_WRAP(start)) &&
2130		       (p - buf) < sizeof(buf)-1) {
2131			++start;
2132			*p++ = c;
2133			if (c == '\n')
2134				break;
2135		}
2136		*p = '\0';
2137		kdb_printf("%s", buf);
2138	}
2139	if (c != '\n')
2140		kdb_printf("\n");
2141
2142	return 0;
2143}
2144#endif /* CONFIG_PRINTK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145/*
2146 * kdb_cpu - This function implements the 'cpu' command.
2147 *	cpu	[<cpunum>]
2148 * Returns:
2149 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */
2151static void kdb_cpu_status(void)
2152{
2153	int i, start_cpu, first_print = 1;
2154	char state, prev_state = '?';
2155
2156	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157	kdb_printf("Available cpus: ");
2158	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159		if (!cpu_online(i)) {
2160			state = 'F';	/* cpu is offline */
2161		} else {
2162			state = ' ';	/* cpu is responding to kdb */
2163			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164				state = 'I';	/* idle task */
2165		}
2166		if (state != prev_state) {
2167			if (prev_state != '?') {
2168				if (!first_print)
2169					kdb_printf(", ");
2170				first_print = 0;
2171				kdb_printf("%d", start_cpu);
2172				if (start_cpu < i-1)
2173					kdb_printf("-%d", i-1);
2174				if (prev_state != ' ')
2175					kdb_printf("(%c)", prev_state);
2176			}
2177			prev_state = state;
2178			start_cpu = i;
2179		}
2180	}
2181	/* print the trailing cpus, ignoring them if they are all offline */
2182	if (prev_state != 'F') {
2183		if (!first_print)
2184			kdb_printf(", ");
2185		kdb_printf("%d", start_cpu);
2186		if (start_cpu < i-1)
2187			kdb_printf("-%d", i-1);
2188		if (prev_state != ' ')
2189			kdb_printf("(%c)", prev_state);
2190	}
2191	kdb_printf("\n");
2192}
2193
2194static int kdb_cpu(int argc, const char **argv)
2195{
2196	unsigned long cpunum;
2197	int diag;
2198
2199	if (argc == 0) {
2200		kdb_cpu_status();
2201		return 0;
2202	}
2203
2204	if (argc != 1)
2205		return KDB_ARGCOUNT;
2206
2207	diag = kdbgetularg(argv[1], &cpunum);
2208	if (diag)
2209		return diag;
2210
2211	/*
2212	 * Validate cpunum
2213	 */
2214	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215		return KDB_BADCPUNUM;
2216
2217	dbg_switch_cpu = cpunum;
2218
2219	/*
2220	 * Switch to other cpu
2221	 */
2222	return KDB_CMD_CPU;
2223}
2224
2225/* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */
2228void kdb_ps_suppressed(void)
2229{
2230	int idle = 0, daemon = 0;
2231	unsigned long mask_I = kdb_task_state_string("I"),
2232		      mask_M = kdb_task_state_string("M");
2233	unsigned long cpu;
2234	const struct task_struct *p, *g;
2235	for_each_online_cpu(cpu) {
2236		p = kdb_curr_task(cpu);
2237		if (kdb_task_state(p, mask_I))
2238			++idle;
2239	}
2240	kdb_do_each_thread(g, p) {
2241		if (kdb_task_state(p, mask_M))
2242			++daemon;
2243	} kdb_while_each_thread(g, p);
2244	if (idle || daemon) {
2245		if (idle)
2246			kdb_printf("%d idle process%s (state I)%s\n",
2247				   idle, idle == 1 ? "" : "es",
2248				   daemon ? " and " : "");
2249		if (daemon)
2250			kdb_printf("%d sleeping system daemon (state M) "
2251				   "process%s", daemon,
2252				   daemon == 1 ? "" : "es");
2253		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254	}
2255}
2256
2257/*
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 *	list of the active processes.
2260 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2261 */
2262void kdb_ps1(const struct task_struct *p)
2263{
2264	int cpu;
2265	unsigned long tmp;
2266
2267	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268		return;
2269
2270	cpu = kdb_process_cpu(p);
2271	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2272		   (void *)p, p->pid, p->parent->pid,
2273		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2274		   kdb_task_state_char(p),
2275		   (void *)(&p->thread),
2276		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277		   p->comm);
2278	if (kdb_task_has_cpu(p)) {
2279		if (!KDB_TSK(cpu)) {
2280			kdb_printf("  Error: no saved data for this cpu\n");
2281		} else {
2282			if (KDB_TSK(cpu) != p)
2283				kdb_printf("  Error: does not match running "
2284				   "process table (0x%p)\n", KDB_TSK(cpu));
2285		}
2286	}
2287}
2288
2289static int kdb_ps(int argc, const char **argv)
2290{
2291	struct task_struct *g, *p;
2292	unsigned long mask, cpu;
2293
2294	if (argc == 0)
2295		kdb_ps_suppressed();
2296	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2297		(int)(2*sizeof(void *))+2, "Task Addr",
2298		(int)(2*sizeof(void *))+2, "Thread");
2299	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300	/* Run the active tasks first */
2301	for_each_online_cpu(cpu) {
2302		if (KDB_FLAG(CMD_INTERRUPT))
2303			return 0;
2304		p = kdb_curr_task(cpu);
2305		if (kdb_task_state(p, mask))
2306			kdb_ps1(p);
2307	}
2308	kdb_printf("\n");
2309	/* Now the real tasks */
2310	kdb_do_each_thread(g, p) {
2311		if (KDB_FLAG(CMD_INTERRUPT))
2312			return 0;
2313		if (kdb_task_state(p, mask))
2314			kdb_ps1(p);
2315	} kdb_while_each_thread(g, p);
2316
2317	return 0;
2318}
2319
2320/*
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 *	the currently active process.
2323 *		pid [<pid> | R]
2324 */
2325static int kdb_pid(int argc, const char **argv)
2326{
2327	struct task_struct *p;
2328	unsigned long val;
2329	int diag;
2330
2331	if (argc > 1)
2332		return KDB_ARGCOUNT;
2333
2334	if (argc) {
2335		if (strcmp(argv[1], "R") == 0) {
2336			p = KDB_TSK(kdb_initial_cpu);
2337		} else {
2338			diag = kdbgetularg(argv[1], &val);
2339			if (diag)
2340				return KDB_BADINT;
2341
2342			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2343			if (!p) {
2344				kdb_printf("No task with pid=%d\n", (pid_t)val);
2345				return 0;
2346			}
2347		}
2348		kdb_set_current_task(p);
2349	}
2350	kdb_printf("KDB current process is %s(pid=%d)\n",
2351		   kdb_current_task->comm,
2352		   kdb_current_task->pid);
2353
2354	return 0;
2355}
2356
2357/*
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 *	linked list and executes an arbitrary command for each
2360 *	element.
2361 */
2362static int kdb_ll(int argc, const char **argv)
2363{
2364	int diag = 0;
2365	unsigned long addr;
2366	long offset = 0;
2367	unsigned long va;
2368	unsigned long linkoffset;
2369	int nextarg;
2370	const char *command;
2371
2372	if (argc != 3)
2373		return KDB_ARGCOUNT;
2374
2375	nextarg = 1;
2376	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377	if (diag)
2378		return diag;
2379
2380	diag = kdbgetularg(argv[2], &linkoffset);
2381	if (diag)
2382		return diag;
2383
2384	/*
2385	 * Using the starting address as
2386	 * the first element in the list, and assuming that
2387	 * the list ends with a null pointer.
2388	 */
2389
2390	va = addr;
2391	command = kdb_strdup(argv[3], GFP_KDB);
2392	if (!command) {
2393		kdb_printf("%s: cannot duplicate command\n", __func__);
2394		return 0;
2395	}
2396	/* Recursive use of kdb_parse, do not use argv after this point */
2397	argv = NULL;
2398
2399	while (va) {
2400		char buf[80];
2401
2402		if (KDB_FLAG(CMD_INTERRUPT))
2403			goto out;
2404
2405		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406		diag = kdb_parse(buf);
2407		if (diag)
2408			goto out;
2409
2410		addr = va + linkoffset;
2411		if (kdb_getword(&va, addr, sizeof(va)))
2412			goto out;
2413	}
2414
2415out:
2416	kfree(command);
2417	return diag;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422	return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430	kdbtab_t *kt;
2431	int i;
2432
2433	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434	kdb_printf("-----------------------------"
2435		   "-----------------------------\n");
2436	for_each_kdbcmd(kt, i) {
2437		if (kt->cmd_name)
2438			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2439				   kt->cmd_usage, kt->cmd_help);
2440		if (KDB_FLAG(CMD_INTERRUPT))
2441			return 0;
 
 
 
 
 
 
2442	}
2443	return 0;
2444}
2445
2446/*
2447 * kdb_kill - This function implements the 'kill' commands.
2448 */
2449static int kdb_kill(int argc, const char **argv)
2450{
2451	long sig, pid;
2452	char *endp;
2453	struct task_struct *p;
2454	struct siginfo info;
2455
2456	if (argc != 2)
2457		return KDB_ARGCOUNT;
2458
2459	sig = simple_strtol(argv[1], &endp, 0);
2460	if (*endp)
2461		return KDB_BADINT;
2462	if (sig >= 0) {
2463		kdb_printf("Invalid signal parameter.<-signal>\n");
2464		return 0;
2465	}
2466	sig = -sig;
2467
2468	pid = simple_strtol(argv[2], &endp, 0);
2469	if (*endp)
2470		return KDB_BADINT;
2471	if (pid <= 0) {
2472		kdb_printf("Process ID must be large than 0.\n");
2473		return 0;
2474	}
2475
2476	/* Find the process. */
2477	p = find_task_by_pid_ns(pid, &init_pid_ns);
2478	if (!p) {
2479		kdb_printf("The specified process isn't found.\n");
2480		return 0;
2481	}
2482	p = p->group_leader;
2483	info.si_signo = sig;
2484	info.si_errno = 0;
2485	info.si_code = SI_USER;
2486	info.si_pid = pid;  /* same capabilities as process being signalled */
2487	info.si_uid = 0;    /* kdb has root authority */
2488	kdb_send_sig_info(p, &info);
2489	return 0;
2490}
2491
2492struct kdb_tm {
2493	int tm_sec;	/* seconds */
2494	int tm_min;	/* minutes */
2495	int tm_hour;	/* hours */
2496	int tm_mday;	/* day of the month */
2497	int tm_mon;	/* month */
2498	int tm_year;	/* year */
2499};
2500
2501static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2502{
2503	/* This will work from 1970-2099, 2100 is not a leap year */
2504	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2505				 31, 30, 31, 30, 31 };
2506	memset(tm, 0, sizeof(*tm));
2507	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2508	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2509		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2510	tm->tm_min =  tm->tm_sec / 60 % 60;
2511	tm->tm_hour = tm->tm_sec / 60 / 60;
2512	tm->tm_sec =  tm->tm_sec % 60;
2513	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2514	tm->tm_mday %= (4*365+1);
2515	mon_day[1] = 29;
2516	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2517		tm->tm_mday -= mon_day[tm->tm_mon];
2518		if (++tm->tm_mon == 12) {
2519			tm->tm_mon = 0;
2520			++tm->tm_year;
2521			mon_day[1] = 28;
2522		}
2523	}
2524	++tm->tm_mday;
2525}
2526
2527/*
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2531 */
2532static void kdb_sysinfo(struct sysinfo *val)
2533{
2534	struct timespec uptime;
2535	do_posix_clock_monotonic_gettime(&uptime);
2536	memset(val, 0, sizeof(*val));
2537	val->uptime = uptime.tv_sec;
2538	val->loads[0] = avenrun[0];
2539	val->loads[1] = avenrun[1];
2540	val->loads[2] = avenrun[2];
2541	val->procs = nr_threads-1;
2542	si_meminfo(val);
2543
2544	return;
2545}
2546
2547/*
2548 * kdb_summary - This function implements the 'summary' command.
2549 */
2550static int kdb_summary(int argc, const char **argv)
2551{
2552	struct timespec now;
2553	struct kdb_tm tm;
2554	struct sysinfo val;
2555
2556	if (argc)
2557		return KDB_ARGCOUNT;
2558
2559	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2560	kdb_printf("release    %s\n", init_uts_ns.name.release);
2561	kdb_printf("version    %s\n", init_uts_ns.name.version);
2562	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2563	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2564	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2565	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2566
2567	now = __current_kernel_time();
2568	kdb_gmtime(&now, &tm);
2569	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2570		   "tz_minuteswest %d\n",
2571		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2572		tm.tm_hour, tm.tm_min, tm.tm_sec,
2573		sys_tz.tz_minuteswest);
2574
2575	kdb_sysinfo(&val);
2576	kdb_printf("uptime     ");
2577	if (val.uptime > (24*60*60)) {
2578		int days = val.uptime / (24*60*60);
2579		val.uptime %= (24*60*60);
2580		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2581	}
2582	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2583
2584	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2585
2586#define LOAD_INT(x) ((x) >> FSHIFT)
2587#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2590		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2591		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2592#undef LOAD_INT
2593#undef LOAD_FRAC
2594	/* Display in kilobytes */
2595#define K(x) ((x) << (PAGE_SHIFT - 10))
2596	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2597		   "Buffers:        %8lu kB\n",
2598		   val.totalram, val.freeram, val.bufferram);
2599	return 0;
2600}
2601
2602/*
2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2604 */
2605static int kdb_per_cpu(int argc, const char **argv)
2606{
2607	char fmtstr[64];
2608	int cpu, diag, nextarg = 1;
2609	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2610
2611	if (argc < 1 || argc > 3)
2612		return KDB_ARGCOUNT;
2613
2614	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2615	if (diag)
2616		return diag;
2617
2618	if (argc >= 2) {
2619		diag = kdbgetularg(argv[2], &bytesperword);
2620		if (diag)
2621			return diag;
2622	}
2623	if (!bytesperword)
2624		bytesperword = KDB_WORD_SIZE;
2625	else if (bytesperword > KDB_WORD_SIZE)
2626		return KDB_BADWIDTH;
2627	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2628	if (argc >= 3) {
2629		diag = kdbgetularg(argv[3], &whichcpu);
2630		if (diag)
2631			return diag;
2632		if (!cpu_online(whichcpu)) {
2633			kdb_printf("cpu %ld is not online\n", whichcpu);
2634			return KDB_BADCPUNUM;
2635		}
2636	}
2637
2638	/* Most architectures use __per_cpu_offset[cpu], some use
2639	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2640	 */
2641#ifdef	__per_cpu_offset
2642#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2643#else
2644#ifdef	CONFIG_SMP
2645#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2646#else
2647#define KDB_PCU(cpu) 0
2648#endif
2649#endif
2650	for_each_online_cpu(cpu) {
2651		if (KDB_FLAG(CMD_INTERRUPT))
2652			return 0;
2653
2654		if (whichcpu != ~0UL && whichcpu != cpu)
2655			continue;
2656		addr = symaddr + KDB_PCU(cpu);
2657		diag = kdb_getword(&val, addr, bytesperword);
2658		if (diag) {
2659			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660				   "read, diag=%d\n", cpu, addr, diag);
2661			continue;
2662		}
2663		kdb_printf("%5d ", cpu);
2664		kdb_md_line(fmtstr, addr,
2665			bytesperword == KDB_WORD_SIZE,
2666			1, bytesperword, 1, 1, 0);
2667	}
2668#undef KDB_PCU
2669	return 0;
2670}
2671
2672/*
2673 * display help for the use of cmd | grep pattern
2674 */
2675static int kdb_grep_help(int argc, const char **argv)
2676{
2677	kdb_printf("Usage of  cmd args | grep pattern:\n");
2678	kdb_printf("  Any command's output may be filtered through an ");
2679	kdb_printf("emulated 'pipe'.\n");
2680	kdb_printf("  'grep' is just a key word.\n");
2681	kdb_printf("  The pattern may include a very limited set of "
2682		   "metacharacters:\n");
2683	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2684	kdb_printf("  And if there are spaces in the pattern, you may "
2685		   "quote it:\n");
2686	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687		   " or \"^pat tern$\"\n");
2688	return 0;
2689}
2690
2691/*
2692 * kdb_register_repeat - This function is used to register a kernel
2693 * 	debugger command.
2694 * Inputs:
2695 *	cmd	Command name
2696 *	func	Function to execute the command
2697 *	usage	A simple usage string showing arguments
2698 *	help	A simple help string describing command
2699 *	repeat	Does the command auto repeat on enter?
2700 * Returns:
2701 *	zero for success, one if a duplicate command.
2702 */
2703#define kdb_command_extend 50	/* arbitrary */
2704int kdb_register_repeat(char *cmd,
2705			kdb_func_t func,
2706			char *usage,
2707			char *help,
2708			short minlen,
2709			kdb_repeat_t repeat)
2710{
2711	int i;
2712	kdbtab_t *kp;
2713
2714	/*
2715	 *  Brute force method to determine duplicates
2716	 */
2717	for_each_kdbcmd(kp, i) {
2718		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2719			kdb_printf("Duplicate kdb command registered: "
2720				"%s, func %p help %s\n", cmd, func, help);
2721			return 1;
2722		}
2723	}
2724
2725	/*
2726	 * Insert command into first available location in table
2727	 */
2728	for_each_kdbcmd(kp, i) {
2729		if (kp->cmd_name == NULL)
2730			break;
2731	}
2732
2733	if (i >= kdb_max_commands) {
2734		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2735			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2736		if (!new) {
2737			kdb_printf("Could not allocate new kdb_command "
2738				   "table\n");
2739			return 1;
2740		}
2741		if (kdb_commands) {
2742			memcpy(new, kdb_commands,
2743			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2744			kfree(kdb_commands);
2745		}
2746		memset(new + kdb_max_commands, 0,
2747		       kdb_command_extend * sizeof(*new));
2748		kdb_commands = new;
2749		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2750		kdb_max_commands += kdb_command_extend;
2751	}
2752
2753	kp->cmd_name   = cmd;
2754	kp->cmd_func   = func;
2755	kp->cmd_usage  = usage;
2756	kp->cmd_help   = help;
2757	kp->cmd_flags  = 0;
2758	kp->cmd_minlen = minlen;
2759	kp->cmd_repeat = repeat;
2760
2761	return 0;
2762}
2763EXPORT_SYMBOL_GPL(kdb_register_repeat);
2764
2765
2766/*
2767 * kdb_register - Compatibility register function for commands that do
2768 *	not need to specify a repeat state.  Equivalent to
2769 *	kdb_register_repeat with KDB_REPEAT_NONE.
2770 * Inputs:
2771 *	cmd	Command name
2772 *	func	Function to execute the command
2773 *	usage	A simple usage string showing arguments
2774 *	help	A simple help string describing command
2775 * Returns:
2776 *	zero for success, one if a duplicate command.
2777 */
2778int kdb_register(char *cmd,
2779	     kdb_func_t func,
2780	     char *usage,
2781	     char *help,
2782	     short minlen)
2783{
2784	return kdb_register_repeat(cmd, func, usage, help, minlen,
2785				   KDB_REPEAT_NONE);
2786}
2787EXPORT_SYMBOL_GPL(kdb_register);
2788
2789/*
2790 * kdb_unregister - This function is used to unregister a kernel
2791 *	debugger command.  It is generally called when a module which
2792 *	implements kdb commands is unloaded.
2793 * Inputs:
2794 *	cmd	Command name
2795 * Returns:
2796 *	zero for success, one command not registered.
2797 */
2798int kdb_unregister(char *cmd)
2799{
2800	int i;
2801	kdbtab_t *kp;
2802
2803	/*
2804	 *  find the command.
2805	 */
2806	for_each_kdbcmd(kp, i) {
2807		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2808			kp->cmd_name = NULL;
2809			return 0;
2810		}
2811	}
2812
2813	/* Couldn't find it.  */
2814	return 1;
2815}
2816EXPORT_SYMBOL_GPL(kdb_unregister);
2817
2818/* Initialize the kdb command table. */
2819static void __init kdb_inittab(void)
2820{
2821	int i;
2822	kdbtab_t *kp;
2823
2824	for_each_kdbcmd(kp, i)
2825		kp->cmd_name = NULL;
2826
2827	kdb_register_repeat("md", kdb_md, "<vaddr>",
2828	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829			    KDB_REPEAT_NO_ARGS);
2830	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2831	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2832	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2833	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2834	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2835	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2836	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2837	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2838	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2839	  "Continue Execution", 1, KDB_REPEAT_NONE);
2840	kdb_register_repeat("rd", kdb_rd, "",
2841	  "Display Registers", 0, KDB_REPEAT_NONE);
2842	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2843	  "Modify Registers", 0, KDB_REPEAT_NONE);
2844	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2845	  "Display exception frame", 0, KDB_REPEAT_NONE);
2846	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2847	  "Stack traceback", 1, KDB_REPEAT_NONE);
2848	kdb_register_repeat("btp", kdb_bt, "<pid>",
2849	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2850	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2851	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2852	kdb_register_repeat("btc", kdb_bt, "",
2853	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2854	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2855	  "Backtrace process given its struct task address", 0,
2856			    KDB_REPEAT_NONE);
2857	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2858	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2859	kdb_register_repeat("env", kdb_env, "",
2860	  "Show environment variables", 0, KDB_REPEAT_NONE);
2861	kdb_register_repeat("set", kdb_set, "",
2862	  "Set environment variables", 0, KDB_REPEAT_NONE);
2863	kdb_register_repeat("help", kdb_help, "",
2864	  "Display Help Message", 1, KDB_REPEAT_NONE);
2865	kdb_register_repeat("?", kdb_help, "",
2866	  "Display Help Message", 0, KDB_REPEAT_NONE);
2867	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2868	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2869	kdb_register_repeat("kgdb", kdb_kgdb, "",
2870	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2871	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2872	  "Display active task list", 0, KDB_REPEAT_NONE);
2873	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2874	  "Switch to another task", 0, KDB_REPEAT_NONE);
2875	kdb_register_repeat("reboot", kdb_reboot, "",
2876	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2877#if defined(CONFIG_MODULES)
2878	kdb_register_repeat("lsmod", kdb_lsmod, "",
2879	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2880#endif
2881#if defined(CONFIG_MAGIC_SYSRQ)
2882	kdb_register_repeat("sr", kdb_sr, "<key>",
2883	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
2884#endif
2885#if defined(CONFIG_PRINTK)
2886	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2887	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
2888#endif
 
 
 
 
2889	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2890	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2891	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2892	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2893	kdb_register_repeat("summary", kdb_summary, "",
2894	  "Summarize the system", 4, KDB_REPEAT_NONE);
2895	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2897	kdb_register_repeat("grephelp", kdb_grep_help, "",
2898	  "Display help on | grep", 0, KDB_REPEAT_NONE);
2899}
2900
2901/* Execute any commands defined in kdb_cmds.  */
2902static void __init kdb_cmd_init(void)
2903{
2904	int i, diag;
2905	for (i = 0; kdb_cmds[i]; ++i) {
2906		diag = kdb_parse(kdb_cmds[i]);
2907		if (diag)
2908			kdb_printf("kdb command %s failed, kdb diag %d\n",
2909				kdb_cmds[i], diag);
2910	}
2911	if (defcmd_in_progress) {
2912		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913		kdb_parse("endefcmd");
2914	}
2915}
2916
2917/* Initialize kdb_printf, breakpoint tables and kdb state */
2918void __init kdb_init(int lvl)
2919{
2920	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2921	int i;
2922
2923	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2924		return;
2925	for (i = kdb_init_lvl; i < lvl; i++) {
2926		switch (i) {
2927		case KDB_NOT_INITIALIZED:
2928			kdb_inittab();		/* Initialize Command Table */
2929			kdb_initbptab();	/* Initialize Breakpoints */
2930			break;
2931		case KDB_INIT_EARLY:
2932			kdb_cmd_init();		/* Build kdb_cmds tables */
2933			break;
2934		}
2935	}
2936	kdb_init_lvl = lvl;
2937}