Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/atomic.h>
25#include <linux/module.h>
26#include <linux/mm.h>
27#include <linux/init.h>
28#include <linux/kallsyms.h>
29#include <linux/kgdb.h>
30#include <linux/kdb.h>
31#include <linux/notifier.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/nmi.h>
35#include <linux/time.h>
36#include <linux/ptrace.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/kdebug.h>
40#include <linux/proc_fs.h>
41#include <linux/uaccess.h>
42#include <linux/slab.h>
43#include "kdb_private.h"
44
45#define GREP_LEN 256
46char kdb_grep_string[GREP_LEN];
47int kdb_grepping_flag;
48EXPORT_SYMBOL(kdb_grepping_flag);
49int kdb_grep_leading;
50int kdb_grep_trailing;
51
52/*
53 * Kernel debugger state flags
54 */
55int kdb_flags;
56atomic_t kdb_event;
57
58/*
59 * kdb_lock protects updates to kdb_initial_cpu. Used to
60 * single thread processors through the kernel debugger.
61 */
62int kdb_initial_cpu = -1; /* cpu number that owns kdb */
63int kdb_nextline = 1;
64int kdb_state; /* General KDB state */
65
66struct task_struct *kdb_current_task;
67EXPORT_SYMBOL(kdb_current_task);
68struct pt_regs *kdb_current_regs;
69
70const char *kdb_diemsg;
71static int kdb_go_count;
72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
73static unsigned int kdb_continue_catastrophic =
74 CONFIG_KDB_CONTINUE_CATASTROPHIC;
75#else
76static unsigned int kdb_continue_catastrophic;
77#endif
78
79/* kdb_commands describes the available commands. */
80static kdbtab_t *kdb_commands;
81#define KDB_BASE_CMD_MAX 50
82static int kdb_max_commands = KDB_BASE_CMD_MAX;
83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
84#define for_each_kdbcmd(cmd, num) \
85 for ((cmd) = kdb_base_commands, (num) = 0; \
86 num < kdb_max_commands; \
87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
88
89typedef struct _kdbmsg {
90 int km_diag; /* kdb diagnostic */
91 char *km_msg; /* Corresponding message text */
92} kdbmsg_t;
93
94#define KDBMSG(msgnum, text) \
95 { KDB_##msgnum, text }
96
97static kdbmsg_t kdbmsgs[] = {
98 KDBMSG(NOTFOUND, "Command Not Found"),
99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
101 "8 is only allowed on 64 bit systems"),
102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
103 KDBMSG(NOTENV, "Cannot find environment variable"),
104 KDBMSG(NOENVVALUE, "Environment variable should have value"),
105 KDBMSG(NOTIMP, "Command not implemented"),
106 KDBMSG(ENVFULL, "Environment full"),
107 KDBMSG(ENVBUFFULL, "Environment buffer full"),
108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
109#ifdef CONFIG_CPU_XSCALE
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
111#else
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
113#endif
114 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
116 KDBMSG(BADMODE, "Invalid IDMODE"),
117 KDBMSG(BADINT, "Illegal numeric value"),
118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
119 KDBMSG(BADREG, "Invalid register name"),
120 KDBMSG(BADCPUNUM, "Invalid cpu number"),
121 KDBMSG(BADLENGTH, "Invalid length field"),
122 KDBMSG(NOBP, "No Breakpoint exists"),
123 KDBMSG(BADADDR, "Invalid address"),
124};
125#undef KDBMSG
126
127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
128
129
130/*
131 * Initial environment. This is all kept static and local to
132 * this file. We don't want to rely on the memory allocation
133 * mechanisms in the kernel, so we use a very limited allocate-only
134 * heap for new and altered environment variables. The entire
135 * environment is limited to a fixed number of entries (add more
136 * to __env[] if required) and a fixed amount of heap (add more to
137 * KDB_ENVBUFSIZE if required).
138 */
139
140static char *__env[] = {
141#if defined(CONFIG_SMP)
142 "PROMPT=[%d]kdb> ",
143#else
144 "PROMPT=kdb> ",
145#endif
146 "MOREPROMPT=more> ",
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = ARRAY_SIZE(__env);
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 if (in_dbg_master()) {
685 kdb_printf("Command only available during kdb_init()\n");
686 return KDB_NOTIMP;
687 }
688 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
689 GFP_KDB);
690 if (!defcmd_set)
691 goto fail_defcmd;
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 if (!s->name)
699 goto fail_name;
700 s->usage = kdb_strdup(argv[2], GFP_KDB);
701 if (!s->usage)
702 goto fail_usage;
703 s->help = kdb_strdup(argv[3], GFP_KDB);
704 if (!s->help)
705 goto fail_help;
706 if (s->usage[0] == '"') {
707 strcpy(s->usage, argv[2]+1);
708 s->usage[strlen(s->usage)-1] = '\0';
709 }
710 if (s->help[0] == '"') {
711 strcpy(s->help, argv[3]+1);
712 s->help[strlen(s->help)-1] = '\0';
713 }
714 ++defcmd_set_count;
715 defcmd_in_progress = 1;
716 kfree(save_defcmd_set);
717 return 0;
718fail_help:
719 kfree(s->usage);
720fail_usage:
721 kfree(s->name);
722fail_name:
723 kfree(defcmd_set);
724fail_defcmd:
725 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
726 defcmd_set = save_defcmd_set;
727 return KDB_NOTIMP;
728}
729
730/*
731 * kdb_exec_defcmd - Execute the set of commands associated with this
732 * defcmd name.
733 * Inputs:
734 * argc argument count
735 * argv argument vector
736 * Returns:
737 * zero for success, a kdb diagnostic if error
738 */
739static int kdb_exec_defcmd(int argc, const char **argv)
740{
741 int i, ret;
742 struct defcmd_set *s;
743 if (argc != 0)
744 return KDB_ARGCOUNT;
745 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
746 if (strcmp(s->name, argv[0]) == 0)
747 break;
748 }
749 if (i == defcmd_set_count) {
750 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
751 argv[0]);
752 return KDB_NOTIMP;
753 }
754 for (i = 0; i < s->count; ++i) {
755 /* Recursive use of kdb_parse, do not use argv after
756 * this point */
757 argv = NULL;
758 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
759 ret = kdb_parse(s->command[i]);
760 if (ret)
761 return ret;
762 }
763 return 0;
764}
765
766/* Command history */
767#define KDB_CMD_HISTORY_COUNT 32
768#define CMD_BUFLEN 200 /* kdb_printf: max printline
769 * size == 256 */
770static unsigned int cmd_head, cmd_tail;
771static unsigned int cmdptr;
772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
773static char cmd_cur[CMD_BUFLEN];
774
775/*
776 * The "str" argument may point to something like | grep xyz
777 */
778static void parse_grep(const char *str)
779{
780 int len;
781 char *cp = (char *)str, *cp2;
782
783 /* sanity check: we should have been called with the \ first */
784 if (*cp != '|')
785 return;
786 cp++;
787 while (isspace(*cp))
788 cp++;
789 if (strncmp(cp, "grep ", 5)) {
790 kdb_printf("invalid 'pipe', see grephelp\n");
791 return;
792 }
793 cp += 5;
794 while (isspace(*cp))
795 cp++;
796 cp2 = strchr(cp, '\n');
797 if (cp2)
798 *cp2 = '\0'; /* remove the trailing newline */
799 len = strlen(cp);
800 if (len == 0) {
801 kdb_printf("invalid 'pipe', see grephelp\n");
802 return;
803 }
804 /* now cp points to a nonzero length search string */
805 if (*cp == '"') {
806 /* allow it be "x y z" by removing the "'s - there must
807 be two of them */
808 cp++;
809 cp2 = strchr(cp, '"');
810 if (!cp2) {
811 kdb_printf("invalid quoted string, see grephelp\n");
812 return;
813 }
814 *cp2 = '\0'; /* end the string where the 2nd " was */
815 }
816 kdb_grep_leading = 0;
817 if (*cp == '^') {
818 kdb_grep_leading = 1;
819 cp++;
820 }
821 len = strlen(cp);
822 kdb_grep_trailing = 0;
823 if (*(cp+len-1) == '$') {
824 kdb_grep_trailing = 1;
825 *(cp+len-1) = '\0';
826 }
827 len = strlen(cp);
828 if (!len)
829 return;
830 if (len >= GREP_LEN) {
831 kdb_printf("search string too long\n");
832 return;
833 }
834 strcpy(kdb_grep_string, cp);
835 kdb_grepping_flag++;
836 return;
837}
838
839/*
840 * kdb_parse - Parse the command line, search the command table for a
841 * matching command and invoke the command function. This
842 * function may be called recursively, if it is, the second call
843 * will overwrite argv and cbuf. It is the caller's
844 * responsibility to save their argv if they recursively call
845 * kdb_parse().
846 * Parameters:
847 * cmdstr The input command line to be parsed.
848 * regs The registers at the time kdb was entered.
849 * Returns:
850 * Zero for success, a kdb diagnostic if failure.
851 * Remarks:
852 * Limited to 20 tokens.
853 *
854 * Real rudimentary tokenization. Basically only whitespace
855 * is considered a token delimeter (but special consideration
856 * is taken of the '=' sign as used by the 'set' command).
857 *
858 * The algorithm used to tokenize the input string relies on
859 * there being at least one whitespace (or otherwise useless)
860 * character between tokens as the character immediately following
861 * the token is altered in-place to a null-byte to terminate the
862 * token string.
863 */
864
865#define MAXARGC 20
866
867int kdb_parse(const char *cmdstr)
868{
869 static char *argv[MAXARGC];
870 static int argc;
871 static char cbuf[CMD_BUFLEN+2];
872 char *cp;
873 char *cpp, quoted;
874 kdbtab_t *tp;
875 int i, escaped, ignore_errors = 0, check_grep;
876
877 /*
878 * First tokenize the command string.
879 */
880 cp = (char *)cmdstr;
881 kdb_grepping_flag = check_grep = 0;
882
883 if (KDB_FLAG(CMD_INTERRUPT)) {
884 /* Previous command was interrupted, newline must not
885 * repeat the command */
886 KDB_FLAG_CLEAR(CMD_INTERRUPT);
887 KDB_STATE_SET(PAGER);
888 argc = 0; /* no repeat */
889 }
890
891 if (*cp != '\n' && *cp != '\0') {
892 argc = 0;
893 cpp = cbuf;
894 while (*cp) {
895 /* skip whitespace */
896 while (isspace(*cp))
897 cp++;
898 if ((*cp == '\0') || (*cp == '\n') ||
899 (*cp == '#' && !defcmd_in_progress))
900 break;
901 /* special case: check for | grep pattern */
902 if (*cp == '|') {
903 check_grep++;
904 break;
905 }
906 if (cpp >= cbuf + CMD_BUFLEN) {
907 kdb_printf("kdb_parse: command buffer "
908 "overflow, command ignored\n%s\n",
909 cmdstr);
910 return KDB_NOTFOUND;
911 }
912 if (argc >= MAXARGC - 1) {
913 kdb_printf("kdb_parse: too many arguments, "
914 "command ignored\n%s\n", cmdstr);
915 return KDB_NOTFOUND;
916 }
917 argv[argc++] = cpp;
918 escaped = 0;
919 quoted = '\0';
920 /* Copy to next unquoted and unescaped
921 * whitespace or '=' */
922 while (*cp && *cp != '\n' &&
923 (escaped || quoted || !isspace(*cp))) {
924 if (cpp >= cbuf + CMD_BUFLEN)
925 break;
926 if (escaped) {
927 escaped = 0;
928 *cpp++ = *cp++;
929 continue;
930 }
931 if (*cp == '\\') {
932 escaped = 1;
933 ++cp;
934 continue;
935 }
936 if (*cp == quoted)
937 quoted = '\0';
938 else if (*cp == '\'' || *cp == '"')
939 quoted = *cp;
940 *cpp = *cp++;
941 if (*cpp == '=' && !quoted)
942 break;
943 ++cpp;
944 }
945 *cpp++ = '\0'; /* Squash a ws or '=' character */
946 }
947 }
948 if (!argc)
949 return 0;
950 if (check_grep)
951 parse_grep(cp);
952 if (defcmd_in_progress) {
953 int result = kdb_defcmd2(cmdstr, argv[0]);
954 if (!defcmd_in_progress) {
955 argc = 0; /* avoid repeat on endefcmd */
956 *(argv[0]) = '\0';
957 }
958 return result;
959 }
960 if (argv[0][0] == '-' && argv[0][1] &&
961 (argv[0][1] < '0' || argv[0][1] > '9')) {
962 ignore_errors = 1;
963 ++argv[0];
964 }
965
966 for_each_kdbcmd(tp, i) {
967 if (tp->cmd_name) {
968 /*
969 * If this command is allowed to be abbreviated,
970 * check to see if this is it.
971 */
972
973 if (tp->cmd_minlen
974 && (strlen(argv[0]) <= tp->cmd_minlen)) {
975 if (strncmp(argv[0],
976 tp->cmd_name,
977 tp->cmd_minlen) == 0) {
978 break;
979 }
980 }
981
982 if (strcmp(argv[0], tp->cmd_name) == 0)
983 break;
984 }
985 }
986
987 /*
988 * If we don't find a command by this name, see if the first
989 * few characters of this match any of the known commands.
990 * e.g., md1c20 should match md.
991 */
992 if (i == kdb_max_commands) {
993 for_each_kdbcmd(tp, i) {
994 if (tp->cmd_name) {
995 if (strncmp(argv[0],
996 tp->cmd_name,
997 strlen(tp->cmd_name)) == 0) {
998 break;
999 }
1000 }
1001 }
1002 }
1003
1004 if (i < kdb_max_commands) {
1005 int result;
1006 KDB_STATE_SET(CMD);
1007 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008 if (result && ignore_errors && result > KDB_CMD_GO)
1009 result = 0;
1010 KDB_STATE_CLEAR(CMD);
1011 switch (tp->cmd_repeat) {
1012 case KDB_REPEAT_NONE:
1013 argc = 0;
1014 if (argv[0])
1015 *(argv[0]) = '\0';
1016 break;
1017 case KDB_REPEAT_NO_ARGS:
1018 argc = 1;
1019 if (argv[1])
1020 *(argv[1]) = '\0';
1021 break;
1022 case KDB_REPEAT_WITH_ARGS:
1023 break;
1024 }
1025 return result;
1026 }
1027
1028 /*
1029 * If the input with which we were presented does not
1030 * map to an existing command, attempt to parse it as an
1031 * address argument and display the result. Useful for
1032 * obtaining the address of a variable, or the nearest symbol
1033 * to an address contained in a register.
1034 */
1035 {
1036 unsigned long value;
1037 char *name = NULL;
1038 long offset;
1039 int nextarg = 0;
1040
1041 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042 &value, &offset, &name)) {
1043 return KDB_NOTFOUND;
1044 }
1045
1046 kdb_printf("%s = ", argv[0]);
1047 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048 kdb_printf("\n");
1049 return 0;
1050 }
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P 16
1057#define CTRL_N 14
1058
1059 /* initial situation */
1060 if (cmd_head == cmd_tail)
1061 return 0;
1062 switch (*cmd) {
1063 case CTRL_P:
1064 if (cmdptr != cmd_tail)
1065 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067 return 1;
1068 case CTRL_N:
1069 if (cmdptr != cmd_head)
1070 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072 return 1;
1073 }
1074 return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command. Reboot
1079 * the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083 emergency_restart();
1084 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085 while (1)
1086 cpu_relax();
1087 /* NOTREACHED */
1088 return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093 int old_lvl = console_loglevel;
1094 console_loglevel = 15;
1095 kdb_trap_printk++;
1096 show_regs(regs);
1097 kdb_trap_printk--;
1098 kdb_printf("\n");
1099 console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104 kdb_current_task = p;
1105
1106 if (kdb_task_has_cpu(p)) {
1107 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108 return;
1109 }
1110 kdb_current_regs = NULL;
1111}
1112
1113/*
1114 * kdb_local - The main code for kdb. This routine is invoked on a
1115 * specific processor, it is not global. The main kdb() routine
1116 * ensures that only one processor at a time is in this routine.
1117 * This code is called with the real reason code on the first
1118 * entry to a kdb session, thereafter it is called with reason
1119 * SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 * reason The reason KDB was invoked
1122 * error The hardware-defined error code
1123 * regs The exception frame at time of fault/breakpoint.
1124 * db_result Result code from the break or debug point.
1125 * Returns:
1126 * 0 KDB was invoked for an event which it wasn't responsible
1127 * 1 KDB handled the event for which it was invoked.
1128 * KDB_CMD_GO User typed 'go'.
1129 * KDB_CMD_CPU User switched to another cpu.
1130 * KDB_CMD_SS Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133 kdb_dbtrap_t db_result)
1134{
1135 char *cmdbuf;
1136 int diag;
1137 struct task_struct *kdb_current =
1138 kdb_curr_task(raw_smp_processor_id());
1139
1140 KDB_DEBUG_STATE("kdb_local 1", reason);
1141 kdb_go_count = 0;
1142 if (reason == KDB_REASON_DEBUG) {
1143 /* special case below */
1144 } else {
1145 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146 kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150 }
1151
1152 switch (reason) {
1153 case KDB_REASON_DEBUG:
1154 {
1155 /*
1156 * If re-entering kdb after a single step
1157 * command, don't print the message.
1158 */
1159 switch (db_result) {
1160 case KDB_DB_BPT:
1161 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162 kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164 kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167 instruction_pointer(regs));
1168 break;
1169 case KDB_DB_SS:
1170 break;
1171 case KDB_DB_SSBPT:
1172 KDB_DEBUG_STATE("kdb_local 4", reason);
1173 return 1; /* kdba_db_trap did the work */
1174 default:
1175 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176 db_result);
1177 break;
1178 }
1179
1180 }
1181 break;
1182 case KDB_REASON_ENTER:
1183 if (KDB_STATE(KEYBOARD))
1184 kdb_printf("due to Keyboard Entry\n");
1185 else
1186 kdb_printf("due to KDB_ENTER()\n");
1187 break;
1188 case KDB_REASON_KEYBOARD:
1189 KDB_STATE_SET(KEYBOARD);
1190 kdb_printf("due to Keyboard Entry\n");
1191 break;
1192 case KDB_REASON_ENTER_SLAVE:
1193 /* drop through, slaves only get released via cpu switch */
1194 case KDB_REASON_SWITCH:
1195 kdb_printf("due to cpu switch\n");
1196 break;
1197 case KDB_REASON_OOPS:
1198 kdb_printf("Oops: %s\n", kdb_diemsg);
1199 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200 instruction_pointer(regs));
1201 kdb_dumpregs(regs);
1202 break;
1203 case KDB_REASON_SYSTEM_NMI:
1204 kdb_printf("due to System NonMaskable Interrupt\n");
1205 break;
1206 case KDB_REASON_NMI:
1207 kdb_printf("due to NonMaskable Interrupt @ "
1208 kdb_machreg_fmt "\n",
1209 instruction_pointer(regs));
1210 kdb_dumpregs(regs);
1211 break;
1212 case KDB_REASON_SSTEP:
1213 case KDB_REASON_BREAK:
1214 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215 reason == KDB_REASON_BREAK ?
1216 "Breakpoint" : "SS trap", instruction_pointer(regs));
1217 /*
1218 * Determine if this breakpoint is one that we
1219 * are interested in.
1220 */
1221 if (db_result != KDB_DB_BPT) {
1222 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223 db_result);
1224 KDB_DEBUG_STATE("kdb_local 6", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227 break;
1228 case KDB_REASON_RECURSE:
1229 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230 instruction_pointer(regs));
1231 break;
1232 default:
1233 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234 KDB_DEBUG_STATE("kdb_local 8", reason);
1235 return 0; /* Not for us, dismiss it */
1236 }
1237
1238 while (1) {
1239 /*
1240 * Initialize pager context.
1241 */
1242 kdb_nextline = 1;
1243 KDB_STATE_CLEAR(SUPPRESS);
1244
1245 cmdbuf = cmd_cur;
1246 *cmdbuf = '\0';
1247 *(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252 raw_smp_processor_id());
1253#else
1254 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256 if (defcmd_in_progress)
1257 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259 /*
1260 * Fetch command from keyboard
1261 */
1262 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263 if (*cmdbuf != '\n') {
1264 if (*cmdbuf < 32) {
1265 if (cmdptr == cmd_head) {
1266 strncpy(cmd_hist[cmd_head], cmd_cur,
1267 CMD_BUFLEN);
1268 *(cmd_hist[cmd_head] +
1269 strlen(cmd_hist[cmd_head])-1) = '\0';
1270 }
1271 if (!handle_ctrl_cmd(cmdbuf))
1272 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273 cmdbuf = cmd_cur;
1274 goto do_full_getstr;
1275 } else {
1276 strncpy(cmd_hist[cmd_head], cmd_cur,
1277 CMD_BUFLEN);
1278 }
1279
1280 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281 if (cmd_head == cmd_tail)
1282 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283 }
1284
1285 cmdptr = cmd_head;
1286 diag = kdb_parse(cmdbuf);
1287 if (diag == KDB_NOTFOUND) {
1288 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289 diag = 0;
1290 }
1291 if (diag == KDB_CMD_GO
1292 || diag == KDB_CMD_CPU
1293 || diag == KDB_CMD_SS
1294 || diag == KDB_CMD_KGDB)
1295 break;
1296
1297 if (diag)
1298 kdb_cmderror(diag);
1299 }
1300 KDB_DEBUG_STATE("kdb_local 9", diag);
1301 return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 * for debugging.
1308 * Inputs:
1309 * text Identifies the debug point
1310 * value Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316 kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 * controlling cpu, all cpus are in this loop. One cpu is in
1322 * control and will issue the kdb prompt, the others will spin
1323 * until 'go' or cpu switch.
1324 *
1325 * To get a consistent view of the kernel stacks for all
1326 * processes, this routine is invoked from the main kdb code via
1327 * an architecture specific routine. kdba_main_loop is
1328 * responsible for making the kernel stacks consistent for all
1329 * processes, there should be no difference between a blocked
1330 * process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 * reason The reason KDB was invoked
1333 * error The hardware-defined error code
1334 * reason2 kdb's current reason code.
1335 * Initially error but can change
1336 * according to kdb state.
1337 * db_result Result code from break or debug point.
1338 * regs The exception frame at time of fault/breakpoint.
1339 * should always be valid.
1340 * Returns:
1341 * 0 KDB was invoked for an event which it wasn't responsible
1342 * 1 KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345 kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347 int result = 1;
1348 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1349 while (1) {
1350 /*
1351 * All processors except the one that is in control
1352 * will spin here.
1353 */
1354 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355 while (KDB_STATE(HOLD_CPU)) {
1356 /* state KDB is turned off by kdb_cpu to see if the
1357 * other cpus are still live, each cpu in this loop
1358 * turns it back on.
1359 */
1360 if (!KDB_STATE(KDB))
1361 KDB_STATE_SET(KDB);
1362 }
1363
1364 KDB_STATE_CLEAR(SUPPRESS);
1365 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366 if (KDB_STATE(LEAVING))
1367 break; /* Another cpu said 'go' */
1368 /* Still using kdb, this processor is in control */
1369 result = kdb_local(reason2, error, regs, db_result);
1370 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372 if (result == KDB_CMD_CPU)
1373 break;
1374
1375 if (result == KDB_CMD_SS) {
1376 KDB_STATE_SET(DOING_SS);
1377 break;
1378 }
1379
1380 if (result == KDB_CMD_KGDB) {
1381 if (!KDB_STATE(DOING_KGDB))
1382 kdb_printf("Entering please attach debugger "
1383 "or use $D#44+ or $3#33\n");
1384 break;
1385 }
1386 if (result && result != 1 && result != KDB_CMD_GO)
1387 kdb_printf("\nUnexpected kdb_local return code %d\n",
1388 result);
1389 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390 break;
1391 }
1392 if (KDB_STATE(DOING_SS))
1393 KDB_STATE_CLEAR(SSBPT);
1394
1395 /* Clean up any keyboard devices before leaving */
1396 kdb_kbd_cleanup_state();
1397
1398 return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 * mdr <addr arg>,<byte count>
1405 * Inputs:
1406 * addr Start address
1407 * count Number of bytes
1408 * Returns:
1409 * Always 0. Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413 unsigned char c;
1414 while (count--) {
1415 if (kdb_getarea(c, addr))
1416 return 0;
1417 kdb_printf("%02x", c);
1418 addr++;
1419 }
1420 kdb_printf("\n");
1421 return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 * 'md8' 'mdr' and 'mds' commands.
1427 *
1428 * md|mds [<addr arg> [<line count> [<radix>]]]
1429 * mdWcN [<addr arg> [<line count> [<radix>]]]
1430 * where W = is the width (1, 2, 4 or 8) and N is the count.
1431 * for eg., md1c20 reads 20 bytes, 1 at a time.
1432 * mdr <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435 int symbolic, int nosect, int bytesperword,
1436 int num, int repeat, int phys)
1437{
1438 /* print just one line of data */
1439 kdb_symtab_t symtab;
1440 char cbuf[32];
1441 char *c = cbuf;
1442 int i;
1443 unsigned long word;
1444
1445 memset(cbuf, '\0', sizeof(cbuf));
1446 if (phys)
1447 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448 else
1449 kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451 for (i = 0; i < num && repeat--; i++) {
1452 if (phys) {
1453 if (kdb_getphysword(&word, addr, bytesperword))
1454 break;
1455 } else if (kdb_getword(&word, addr, bytesperword))
1456 break;
1457 kdb_printf(fmtstr, word);
1458 if (symbolic)
1459 kdbnearsym(word, &symtab);
1460 else
1461 memset(&symtab, 0, sizeof(symtab));
1462 if (symtab.sym_name) {
1463 kdb_symbol_print(word, &symtab, 0);
1464 if (!nosect) {
1465 kdb_printf("\n");
1466 kdb_printf(" %s %s "
1467 kdb_machreg_fmt " "
1468 kdb_machreg_fmt " "
1469 kdb_machreg_fmt, symtab.mod_name,
1470 symtab.sec_name, symtab.sec_start,
1471 symtab.sym_start, symtab.sym_end);
1472 }
1473 addr += bytesperword;
1474 } else {
1475 union {
1476 u64 word;
1477 unsigned char c[8];
1478 } wc;
1479 unsigned char *cp;
1480#ifdef __BIG_ENDIAN
1481 cp = wc.c + 8 - bytesperword;
1482#else
1483 cp = wc.c;
1484#endif
1485 wc.word = word;
1486#define printable_char(c) \
1487 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488 switch (bytesperword) {
1489 case 8:
1490 *c++ = printable_char(*cp++);
1491 *c++ = printable_char(*cp++);
1492 *c++ = printable_char(*cp++);
1493 *c++ = printable_char(*cp++);
1494 addr += 4;
1495 case 4:
1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++);
1498 addr += 2;
1499 case 2:
1500 *c++ = printable_char(*cp++);
1501 addr++;
1502 case 1:
1503 *c++ = printable_char(*cp++);
1504 addr++;
1505 break;
1506 }
1507#undef printable_char
1508 }
1509 }
1510 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511 " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516 static unsigned long last_addr;
1517 static int last_radix, last_bytesperword, last_repeat;
1518 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519 int nosect = 0;
1520 char fmtchar, fmtstr[64];
1521 unsigned long addr;
1522 unsigned long word;
1523 long offset = 0;
1524 int symbolic = 0;
1525 int valid = 0;
1526 int phys = 0;
1527
1528 kdbgetintenv("MDCOUNT", &mdcount);
1529 kdbgetintenv("RADIX", &radix);
1530 kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532 /* Assume 'md <addr>' and start with environment values */
1533 repeat = mdcount * 16 / bytesperword;
1534
1535 if (strcmp(argv[0], "mdr") == 0) {
1536 if (argc != 2)
1537 return KDB_ARGCOUNT;
1538 valid = 1;
1539 } else if (isdigit(argv[0][2])) {
1540 bytesperword = (int)(argv[0][2] - '0');
1541 if (bytesperword == 0) {
1542 bytesperword = last_bytesperword;
1543 if (bytesperword == 0)
1544 bytesperword = 4;
1545 }
1546 last_bytesperword = bytesperword;
1547 repeat = mdcount * 16 / bytesperword;
1548 if (!argv[0][3])
1549 valid = 1;
1550 else if (argv[0][3] == 'c' && argv[0][4]) {
1551 char *p;
1552 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553 mdcount = ((repeat * bytesperword) + 15) / 16;
1554 valid = !*p;
1555 }
1556 last_repeat = repeat;
1557 } else if (strcmp(argv[0], "md") == 0)
1558 valid = 1;
1559 else if (strcmp(argv[0], "mds") == 0)
1560 valid = 1;
1561 else if (strcmp(argv[0], "mdp") == 0) {
1562 phys = valid = 1;
1563 }
1564 if (!valid)
1565 return KDB_NOTFOUND;
1566
1567 if (argc == 0) {
1568 if (last_addr == 0)
1569 return KDB_ARGCOUNT;
1570 addr = last_addr;
1571 radix = last_radix;
1572 bytesperword = last_bytesperword;
1573 repeat = last_repeat;
1574 mdcount = ((repeat * bytesperword) + 15) / 16;
1575 }
1576
1577 if (argc) {
1578 unsigned long val;
1579 int diag, nextarg = 1;
1580 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581 &offset, NULL);
1582 if (diag)
1583 return diag;
1584 if (argc > nextarg+2)
1585 return KDB_ARGCOUNT;
1586
1587 if (argc >= nextarg) {
1588 diag = kdbgetularg(argv[nextarg], &val);
1589 if (!diag) {
1590 mdcount = (int) val;
1591 repeat = mdcount * 16 / bytesperword;
1592 }
1593 }
1594 if (argc >= nextarg+1) {
1595 diag = kdbgetularg(argv[nextarg+1], &val);
1596 if (!diag)
1597 radix = (int) val;
1598 }
1599 }
1600
1601 if (strcmp(argv[0], "mdr") == 0)
1602 return kdb_mdr(addr, mdcount);
1603
1604 switch (radix) {
1605 case 10:
1606 fmtchar = 'd';
1607 break;
1608 case 16:
1609 fmtchar = 'x';
1610 break;
1611 case 8:
1612 fmtchar = 'o';
1613 break;
1614 default:
1615 return KDB_BADRADIX;
1616 }
1617
1618 last_radix = radix;
1619
1620 if (bytesperword > KDB_WORD_SIZE)
1621 return KDB_BADWIDTH;
1622
1623 switch (bytesperword) {
1624 case 8:
1625 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626 break;
1627 case 4:
1628 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629 break;
1630 case 2:
1631 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632 break;
1633 case 1:
1634 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635 break;
1636 default:
1637 return KDB_BADWIDTH;
1638 }
1639
1640 last_repeat = repeat;
1641 last_bytesperword = bytesperword;
1642
1643 if (strcmp(argv[0], "mds") == 0) {
1644 symbolic = 1;
1645 /* Do not save these changes as last_*, they are temporary mds
1646 * overrides.
1647 */
1648 bytesperword = KDB_WORD_SIZE;
1649 repeat = mdcount;
1650 kdbgetintenv("NOSECT", &nosect);
1651 }
1652
1653 /* Round address down modulo BYTESPERWORD */
1654
1655 addr &= ~(bytesperword-1);
1656
1657 while (repeat > 0) {
1658 unsigned long a;
1659 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661 if (KDB_FLAG(CMD_INTERRUPT))
1662 return 0;
1663 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664 if (phys) {
1665 if (kdb_getphysword(&word, a, bytesperword)
1666 || word)
1667 break;
1668 } else if (kdb_getword(&word, a, bytesperword) || word)
1669 break;
1670 }
1671 n = min(num, repeat);
1672 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673 num, repeat, phys);
1674 addr += bytesperword * n;
1675 repeat -= n;
1676 z = (z + num - 1) / num;
1677 if (z > 2) {
1678 int s = num * (z-2);
1679 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680 " zero suppressed\n",
1681 addr, addr + bytesperword * s - 1);
1682 addr += bytesperword * s;
1683 repeat -= s;
1684 }
1685 }
1686 last_addr = addr;
1687
1688 return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 * mm address-expression new-value
1694 * Remarks:
1695 * mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699 int diag;
1700 unsigned long addr;
1701 long offset = 0;
1702 unsigned long contents;
1703 int nextarg;
1704 int width;
1705
1706 if (argv[0][2] && !isdigit(argv[0][2]))
1707 return KDB_NOTFOUND;
1708
1709 if (argc < 2)
1710 return KDB_ARGCOUNT;
1711
1712 nextarg = 1;
1713 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714 if (diag)
1715 return diag;
1716
1717 if (nextarg > argc)
1718 return KDB_ARGCOUNT;
1719 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720 if (diag)
1721 return diag;
1722
1723 if (nextarg != argc + 1)
1724 return KDB_ARGCOUNT;
1725
1726 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727 diag = kdb_putword(addr, contents, width);
1728 if (diag)
1729 return diag;
1730
1731 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733 return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 * go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742 unsigned long addr;
1743 int diag;
1744 int nextarg;
1745 long offset;
1746
1747 if (raw_smp_processor_id() != kdb_initial_cpu) {
1748 kdb_printf("go must execute on the entry cpu, "
1749 "please use \"cpu %d\" and then execute go\n",
1750 kdb_initial_cpu);
1751 return KDB_BADCPUNUM;
1752 }
1753 if (argc == 1) {
1754 nextarg = 1;
1755 diag = kdbgetaddrarg(argc, argv, &nextarg,
1756 &addr, &offset, NULL);
1757 if (diag)
1758 return diag;
1759 } else if (argc) {
1760 return KDB_ARGCOUNT;
1761 }
1762
1763 diag = KDB_CMD_GO;
1764 if (KDB_FLAG(CATASTROPHIC)) {
1765 kdb_printf("Catastrophic error detected\n");
1766 kdb_printf("kdb_continue_catastrophic=%d, ",
1767 kdb_continue_catastrophic);
1768 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769 kdb_printf("type go a second time if you really want "
1770 "to continue\n");
1771 return 0;
1772 }
1773 if (kdb_continue_catastrophic == 2) {
1774 kdb_printf("forcing reboot\n");
1775 kdb_reboot(0, NULL);
1776 }
1777 kdb_printf("attempting to continue\n");
1778 }
1779 return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787 int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789 int i;
1790 char *rname;
1791 int rsize;
1792 u64 reg64;
1793 u32 reg32;
1794 u16 reg16;
1795 u8 reg8;
1796
1797 if (len)
1798 return len;
1799
1800 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801 rsize = dbg_reg_def[i].size * 2;
1802 if (rsize > 16)
1803 rsize = 2;
1804 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805 len = 0;
1806 kdb_printf("\n");
1807 }
1808 if (len)
1809 len += kdb_printf(" ");
1810 switch(dbg_reg_def[i].size * 8) {
1811 case 8:
1812 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1813 if (!rname)
1814 break;
1815 len += kdb_printf("%s: %02x", rname, reg8);
1816 break;
1817 case 16:
1818 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1819 if (!rname)
1820 break;
1821 len += kdb_printf("%s: %04x", rname, reg16);
1822 break;
1823 case 32:
1824 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1825 if (!rname)
1826 break;
1827 len += kdb_printf("%s: %08x", rname, reg32);
1828 break;
1829 case 64:
1830 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1831 if (!rname)
1832 break;
1833 len += kdb_printf("%s: %016llx", rname, reg64);
1834 break;
1835 default:
1836 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837 }
1838 }
1839 kdb_printf("\n");
1840#else
1841 if (len)
1842 return len;
1843
1844 kdb_dumpregs(kdb_current_regs);
1845#endif
1846 return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify) command.
1851 * rm register-name new-contents
1852 * Remarks:
1853 * Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858 int diag;
1859 const char *rname;
1860 int i;
1861 u64 reg64;
1862 u32 reg32;
1863 u16 reg16;
1864 u8 reg8;
1865
1866 if (argc != 2)
1867 return KDB_ARGCOUNT;
1868 /*
1869 * Allow presence or absence of leading '%' symbol.
1870 */
1871 rname = argv[1];
1872 if (*rname == '%')
1873 rname++;
1874
1875 diag = kdbgetu64arg(argv[2], ®64);
1876 if (diag)
1877 return diag;
1878
1879 diag = kdb_check_regs();
1880 if (diag)
1881 return diag;
1882
1883 diag = KDB_BADREG;
1884 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886 diag = 0;
1887 break;
1888 }
1889 }
1890 if (!diag) {
1891 switch(dbg_reg_def[i].size * 8) {
1892 case 8:
1893 reg8 = reg64;
1894 dbg_set_reg(i, ®8, kdb_current_regs);
1895 break;
1896 case 16:
1897 reg16 = reg64;
1898 dbg_set_reg(i, ®16, kdb_current_regs);
1899 break;
1900 case 32:
1901 reg32 = reg64;
1902 dbg_set_reg(i, ®32, kdb_current_regs);
1903 break;
1904 case 64:
1905 dbg_set_reg(i, ®64, kdb_current_regs);
1906 break;
1907 }
1908 }
1909 return diag;
1910#else
1911 kdb_printf("ERROR: Register set currently not implemented\n");
1912 return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 * sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
1924 if (argc != 1)
1925 return KDB_ARGCOUNT;
1926 kdb_trap_printk++;
1927 __handle_sysrq(*argv[1], false);
1928 kdb_trap_printk--;
1929
1930 return 0;
1931}
1932#endif /* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 * frame) command. This command takes an address and expects to
1937 * find an exception frame at that address, formats and prints
1938 * it.
1939 * regs address-expression
1940 * Remarks:
1941 * Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945 int diag;
1946 unsigned long addr;
1947 long offset;
1948 int nextarg;
1949
1950 if (argc != 1)
1951 return KDB_ARGCOUNT;
1952
1953 nextarg = 1;
1954 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955 if (diag)
1956 return diag;
1957 show_regs((struct pt_regs *)addr);
1958 return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1964 * currently loaded kernel modules.
1965 * Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969 struct module *mod;
1970
1971 if (argc != 0)
1972 return KDB_ARGCOUNT;
1973
1974 kdb_printf("Module Size modstruct Used by\n");
1975 list_for_each_entry(mod, kdb_modules, list) {
1976 if (mod->state == MODULE_STATE_UNFORMED)
1977 continue;
1978
1979 kdb_printf("%-20s%8u 0x%p ", mod->name,
1980 mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982 kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984 if (mod->state == MODULE_STATE_GOING)
1985 kdb_printf(" (Unloading)");
1986 else if (mod->state == MODULE_STATE_COMING)
1987 kdb_printf(" (Loading)");
1988 else
1989 kdb_printf(" (Live)");
1990 kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993 {
1994 struct module_use *use;
1995 kdb_printf(" [ ");
1996 list_for_each_entry(use, &mod->source_list,
1997 source_list)
1998 kdb_printf("%s ", use->target->name);
1999 kdb_printf("]\n");
2000 }
2001#endif
2002 }
2003
2004 return 0;
2005}
2006
2007#endif /* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command. Display the
2011 * current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016 int i;
2017
2018 for (i = 0; i < __nenv; i++) {
2019 if (__env[i])
2020 kdb_printf("%s\n", __env[i]);
2021 }
2022
2023 if (KDB_DEBUG(MASK))
2024 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2025
2026 return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 * the contents of the syslog buffer.
2033 * dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037 int diag;
2038 int logging;
2039 int lines = 0;
2040 int adjust = 0;
2041 int n = 0;
2042 int skip = 0;
2043 struct kmsg_dumper dumper = { .active = 1 };
2044 size_t len;
2045 char buf[201];
2046
2047 if (argc > 2)
2048 return KDB_ARGCOUNT;
2049 if (argc) {
2050 char *cp;
2051 lines = simple_strtol(argv[1], &cp, 0);
2052 if (*cp)
2053 lines = 0;
2054 if (argc > 1) {
2055 adjust = simple_strtoul(argv[2], &cp, 0);
2056 if (*cp || adjust < 0)
2057 adjust = 0;
2058 }
2059 }
2060
2061 /* disable LOGGING if set */
2062 diag = kdbgetintenv("LOGGING", &logging);
2063 if (!diag && logging) {
2064 const char *setargs[] = { "set", "LOGGING", "0" };
2065 kdb_set(2, setargs);
2066 }
2067
2068 kmsg_dump_rewind_nolock(&dumper);
2069 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070 n++;
2071
2072 if (lines < 0) {
2073 if (adjust >= n)
2074 kdb_printf("buffer only contains %d lines, nothing "
2075 "printed\n", n);
2076 else if (adjust - lines >= n)
2077 kdb_printf("buffer only contains %d lines, last %d "
2078 "lines printed\n", n, n - adjust);
2079 skip = adjust;
2080 lines = abs(lines);
2081 } else if (lines > 0) {
2082 skip = n - lines - adjust;
2083 lines = abs(lines);
2084 if (adjust >= n) {
2085 kdb_printf("buffer only contains %d lines, "
2086 "nothing printed\n", n);
2087 skip = n;
2088 } else if (skip < 0) {
2089 lines += skip;
2090 skip = 0;
2091 kdb_printf("buffer only contains %d lines, first "
2092 "%d lines printed\n", n, lines);
2093 }
2094 } else {
2095 lines = n;
2096 }
2097
2098 if (skip >= n || skip < 0)
2099 return 0;
2100
2101 kmsg_dump_rewind_nolock(&dumper);
2102 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103 if (skip) {
2104 skip--;
2105 continue;
2106 }
2107 if (!lines--)
2108 break;
2109 if (KDB_FLAG(CMD_INTERRUPT))
2110 return 0;
2111
2112 kdb_printf("%.*s\n", (int)len - 1, buf);
2113 }
2114
2115 return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124 if (atomic_read(&kdb_nmi_disabled))
2125 return 0;
2126 atomic_set(&kdb_nmi_disabled, 1);
2127 arch_kgdb_ops.enable_nmi(0);
2128 return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134 return -EINVAL;
2135 arch_kgdb_ops.enable_nmi(1);
2136 return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140 .set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 * cpu [<cpunum>]
2147 * Returns:
2148 * KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152 int i, start_cpu, first_print = 1;
2153 char state, prev_state = '?';
2154
2155 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156 kdb_printf("Available cpus: ");
2157 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158 if (!cpu_online(i)) {
2159 state = 'F'; /* cpu is offline */
2160 } else {
2161 state = ' '; /* cpu is responding to kdb */
2162 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163 state = 'I'; /* idle task */
2164 }
2165 if (state != prev_state) {
2166 if (prev_state != '?') {
2167 if (!first_print)
2168 kdb_printf(", ");
2169 first_print = 0;
2170 kdb_printf("%d", start_cpu);
2171 if (start_cpu < i-1)
2172 kdb_printf("-%d", i-1);
2173 if (prev_state != ' ')
2174 kdb_printf("(%c)", prev_state);
2175 }
2176 prev_state = state;
2177 start_cpu = i;
2178 }
2179 }
2180 /* print the trailing cpus, ignoring them if they are all offline */
2181 if (prev_state != 'F') {
2182 if (!first_print)
2183 kdb_printf(", ");
2184 kdb_printf("%d", start_cpu);
2185 if (start_cpu < i-1)
2186 kdb_printf("-%d", i-1);
2187 if (prev_state != ' ')
2188 kdb_printf("(%c)", prev_state);
2189 }
2190 kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195 unsigned long cpunum;
2196 int diag;
2197
2198 if (argc == 0) {
2199 kdb_cpu_status();
2200 return 0;
2201 }
2202
2203 if (argc != 1)
2204 return KDB_ARGCOUNT;
2205
2206 diag = kdbgetularg(argv[1], &cpunum);
2207 if (diag)
2208 return diag;
2209
2210 /*
2211 * Validate cpunum
2212 */
2213 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214 return KDB_BADCPUNUM;
2215
2216 dbg_switch_cpu = cpunum;
2217
2218 /*
2219 * Switch to other cpu
2220 */
2221 return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229 int idle = 0, daemon = 0;
2230 unsigned long mask_I = kdb_task_state_string("I"),
2231 mask_M = kdb_task_state_string("M");
2232 unsigned long cpu;
2233 const struct task_struct *p, *g;
2234 for_each_online_cpu(cpu) {
2235 p = kdb_curr_task(cpu);
2236 if (kdb_task_state(p, mask_I))
2237 ++idle;
2238 }
2239 kdb_do_each_thread(g, p) {
2240 if (kdb_task_state(p, mask_M))
2241 ++daemon;
2242 } kdb_while_each_thread(g, p);
2243 if (idle || daemon) {
2244 if (idle)
2245 kdb_printf("%d idle process%s (state I)%s\n",
2246 idle, idle == 1 ? "" : "es",
2247 daemon ? " and " : "");
2248 if (daemon)
2249 kdb_printf("%d sleeping system daemon (state M) "
2250 "process%s", daemon,
2251 daemon == 1 ? "" : "es");
2252 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253 }
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 * list of the active processes.
2259 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263 int cpu;
2264 unsigned long tmp;
2265
2266 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2267 return;
2268
2269 cpu = kdb_process_cpu(p);
2270 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2271 (void *)p, p->pid, p->parent->pid,
2272 kdb_task_has_cpu(p), kdb_process_cpu(p),
2273 kdb_task_state_char(p),
2274 (void *)(&p->thread),
2275 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276 p->comm);
2277 if (kdb_task_has_cpu(p)) {
2278 if (!KDB_TSK(cpu)) {
2279 kdb_printf(" Error: no saved data for this cpu\n");
2280 } else {
2281 if (KDB_TSK(cpu) != p)
2282 kdb_printf(" Error: does not match running "
2283 "process table (0x%p)\n", KDB_TSK(cpu));
2284 }
2285 }
2286}
2287
2288static int kdb_ps(int argc, const char **argv)
2289{
2290 struct task_struct *g, *p;
2291 unsigned long mask, cpu;
2292
2293 if (argc == 0)
2294 kdb_ps_suppressed();
2295 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2296 (int)(2*sizeof(void *))+2, "Task Addr",
2297 (int)(2*sizeof(void *))+2, "Thread");
2298 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299 /* Run the active tasks first */
2300 for_each_online_cpu(cpu) {
2301 if (KDB_FLAG(CMD_INTERRUPT))
2302 return 0;
2303 p = kdb_curr_task(cpu);
2304 if (kdb_task_state(p, mask))
2305 kdb_ps1(p);
2306 }
2307 kdb_printf("\n");
2308 /* Now the real tasks */
2309 kdb_do_each_thread(g, p) {
2310 if (KDB_FLAG(CMD_INTERRUPT))
2311 return 0;
2312 if (kdb_task_state(p, mask))
2313 kdb_ps1(p);
2314 } kdb_while_each_thread(g, p);
2315
2316 return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 * the currently active process.
2322 * pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326 struct task_struct *p;
2327 unsigned long val;
2328 int diag;
2329
2330 if (argc > 1)
2331 return KDB_ARGCOUNT;
2332
2333 if (argc) {
2334 if (strcmp(argv[1], "R") == 0) {
2335 p = KDB_TSK(kdb_initial_cpu);
2336 } else {
2337 diag = kdbgetularg(argv[1], &val);
2338 if (diag)
2339 return KDB_BADINT;
2340
2341 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2342 if (!p) {
2343 kdb_printf("No task with pid=%d\n", (pid_t)val);
2344 return 0;
2345 }
2346 }
2347 kdb_set_current_task(p);
2348 }
2349 kdb_printf("KDB current process is %s(pid=%d)\n",
2350 kdb_current_task->comm,
2351 kdb_current_task->pid);
2352
2353 return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358 return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366 kdbtab_t *kt;
2367 int i;
2368
2369 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370 kdb_printf("-----------------------------"
2371 "-----------------------------\n");
2372 for_each_kdbcmd(kt, i) {
2373 char *space = "";
2374 if (KDB_FLAG(CMD_INTERRUPT))
2375 return 0;
2376 if (!kt->cmd_name)
2377 continue;
2378 if (strlen(kt->cmd_usage) > 20)
2379 space = "\n ";
2380 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381 kt->cmd_usage, space, kt->cmd_help);
2382 }
2383 return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391 long sig, pid;
2392 char *endp;
2393 struct task_struct *p;
2394 struct siginfo info;
2395
2396 if (argc != 2)
2397 return KDB_ARGCOUNT;
2398
2399 sig = simple_strtol(argv[1], &endp, 0);
2400 if (*endp)
2401 return KDB_BADINT;
2402 if (sig >= 0) {
2403 kdb_printf("Invalid signal parameter.<-signal>\n");
2404 return 0;
2405 }
2406 sig = -sig;
2407
2408 pid = simple_strtol(argv[2], &endp, 0);
2409 if (*endp)
2410 return KDB_BADINT;
2411 if (pid <= 0) {
2412 kdb_printf("Process ID must be large than 0.\n");
2413 return 0;
2414 }
2415
2416 /* Find the process. */
2417 p = find_task_by_pid_ns(pid, &init_pid_ns);
2418 if (!p) {
2419 kdb_printf("The specified process isn't found.\n");
2420 return 0;
2421 }
2422 p = p->group_leader;
2423 info.si_signo = sig;
2424 info.si_errno = 0;
2425 info.si_code = SI_USER;
2426 info.si_pid = pid; /* same capabilities as process being signalled */
2427 info.si_uid = 0; /* kdb has root authority */
2428 kdb_send_sig_info(p, &info);
2429 return 0;
2430}
2431
2432struct kdb_tm {
2433 int tm_sec; /* seconds */
2434 int tm_min; /* minutes */
2435 int tm_hour; /* hours */
2436 int tm_mday; /* day of the month */
2437 int tm_mon; /* month */
2438 int tm_year; /* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443 /* This will work from 1970-2099, 2100 is not a leap year */
2444 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445 31, 30, 31, 30, 31 };
2446 memset(tm, 0, sizeof(*tm));
2447 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2448 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2450 tm->tm_min = tm->tm_sec / 60 % 60;
2451 tm->tm_hour = tm->tm_sec / 60 / 60;
2452 tm->tm_sec = tm->tm_sec % 60;
2453 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454 tm->tm_mday %= (4*365+1);
2455 mon_day[1] = 29;
2456 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457 tm->tm_mday -= mon_day[tm->tm_mon];
2458 if (++tm->tm_mon == 12) {
2459 tm->tm_mon = 0;
2460 ++tm->tm_year;
2461 mon_day[1] = 28;
2462 }
2463 }
2464 ++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474 struct timespec uptime;
2475 do_posix_clock_monotonic_gettime(&uptime);
2476 memset(val, 0, sizeof(*val));
2477 val->uptime = uptime.tv_sec;
2478 val->loads[0] = avenrun[0];
2479 val->loads[1] = avenrun[1];
2480 val->loads[2] = avenrun[2];
2481 val->procs = nr_threads-1;
2482 si_meminfo(val);
2483
2484 return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492 struct timespec now;
2493 struct kdb_tm tm;
2494 struct sysinfo val;
2495
2496 if (argc)
2497 return KDB_ARGCOUNT;
2498
2499 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2500 kdb_printf("release %s\n", init_uts_ns.name.release);
2501 kdb_printf("version %s\n", init_uts_ns.name.version);
2502 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2503 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2504 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2506
2507 now = __current_kernel_time();
2508 kdb_gmtime(&now, &tm);
2509 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2510 "tz_minuteswest %d\n",
2511 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512 tm.tm_hour, tm.tm_min, tm.tm_sec,
2513 sys_tz.tz_minuteswest);
2514
2515 kdb_sysinfo(&val);
2516 kdb_printf("uptime ");
2517 if (val.uptime > (24*60*60)) {
2518 int days = val.uptime / (24*60*60);
2519 val.uptime %= (24*60*60);
2520 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521 }
2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534 /* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2537 "Buffers: %8lu kB\n",
2538 val.totalram, val.freeram, val.bufferram);
2539 return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547 char fmtstr[64];
2548 int cpu, diag, nextarg = 1;
2549 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551 if (argc < 1 || argc > 3)
2552 return KDB_ARGCOUNT;
2553
2554 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555 if (diag)
2556 return diag;
2557
2558 if (argc >= 2) {
2559 diag = kdbgetularg(argv[2], &bytesperword);
2560 if (diag)
2561 return diag;
2562 }
2563 if (!bytesperword)
2564 bytesperword = KDB_WORD_SIZE;
2565 else if (bytesperword > KDB_WORD_SIZE)
2566 return KDB_BADWIDTH;
2567 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568 if (argc >= 3) {
2569 diag = kdbgetularg(argv[3], &whichcpu);
2570 if (diag)
2571 return diag;
2572 if (!cpu_online(whichcpu)) {
2573 kdb_printf("cpu %ld is not online\n", whichcpu);
2574 return KDB_BADCPUNUM;
2575 }
2576 }
2577
2578 /* Most architectures use __per_cpu_offset[cpu], some use
2579 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580 */
2581#ifdef __per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590 for_each_online_cpu(cpu) {
2591 if (KDB_FLAG(CMD_INTERRUPT))
2592 return 0;
2593
2594 if (whichcpu != ~0UL && whichcpu != cpu)
2595 continue;
2596 addr = symaddr + KDB_PCU(cpu);
2597 diag = kdb_getword(&val, addr, bytesperword);
2598 if (diag) {
2599 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600 "read, diag=%d\n", cpu, addr, diag);
2601 continue;
2602 }
2603 kdb_printf("%5d ", cpu);
2604 kdb_md_line(fmtstr, addr,
2605 bytesperword == KDB_WORD_SIZE,
2606 1, bytesperword, 1, 1, 0);
2607 }
2608#undef KDB_PCU
2609 return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617 kdb_printf("Usage of cmd args | grep pattern:\n");
2618 kdb_printf(" Any command's output may be filtered through an ");
2619 kdb_printf("emulated 'pipe'.\n");
2620 kdb_printf(" 'grep' is just a key word.\n");
2621 kdb_printf(" The pattern may include a very limited set of "
2622 "metacharacters:\n");
2623 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2624 kdb_printf(" And if there are spaces in the pattern, you may "
2625 "quote it:\n");
2626 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627 " or \"^pat tern$\"\n");
2628 return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * debugger command.
2634 * Inputs:
2635 * cmd Command name
2636 * func Function to execute the command
2637 * usage A simple usage string showing arguments
2638 * help A simple help string describing command
2639 * repeat Does the command auto repeat on enter?
2640 * Returns:
2641 * zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50 /* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645 kdb_func_t func,
2646 char *usage,
2647 char *help,
2648 short minlen,
2649 kdb_repeat_t repeat)
2650{
2651 int i;
2652 kdbtab_t *kp;
2653
2654 /*
2655 * Brute force method to determine duplicates
2656 */
2657 for_each_kdbcmd(kp, i) {
2658 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659 kdb_printf("Duplicate kdb command registered: "
2660 "%s, func %p help %s\n", cmd, func, help);
2661 return 1;
2662 }
2663 }
2664
2665 /*
2666 * Insert command into first available location in table
2667 */
2668 for_each_kdbcmd(kp, i) {
2669 if (kp->cmd_name == NULL)
2670 break;
2671 }
2672
2673 if (i >= kdb_max_commands) {
2674 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675 kdb_command_extend) * sizeof(*new), GFP_KDB);
2676 if (!new) {
2677 kdb_printf("Could not allocate new kdb_command "
2678 "table\n");
2679 return 1;
2680 }
2681 if (kdb_commands) {
2682 memcpy(new, kdb_commands,
2683 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684 kfree(kdb_commands);
2685 }
2686 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687 kdb_command_extend * sizeof(*new));
2688 kdb_commands = new;
2689 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690 kdb_max_commands += kdb_command_extend;
2691 }
2692
2693 kp->cmd_name = cmd;
2694 kp->cmd_func = func;
2695 kp->cmd_usage = usage;
2696 kp->cmd_help = help;
2697 kp->cmd_flags = 0;
2698 kp->cmd_minlen = minlen;
2699 kp->cmd_repeat = repeat;
2700
2701 return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 * not need to specify a repeat state. Equivalent to
2709 * kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 * cmd Command name
2712 * func Function to execute the command
2713 * usage A simple usage string showing arguments
2714 * help A simple help string describing command
2715 * Returns:
2716 * zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719 kdb_func_t func,
2720 char *usage,
2721 char *help,
2722 short minlen)
2723{
2724 return kdb_register_repeat(cmd, func, usage, help, minlen,
2725 KDB_REPEAT_NONE);
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 * debugger command. It is generally called when a module which
2732 * implements kdb commands is unloaded.
2733 * Inputs:
2734 * cmd Command name
2735 * Returns:
2736 * zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740 int i;
2741 kdbtab_t *kp;
2742
2743 /*
2744 * find the command.
2745 */
2746 for_each_kdbcmd(kp, i) {
2747 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748 kp->cmd_name = NULL;
2749 return 0;
2750 }
2751 }
2752
2753 /* Couldn't find it. */
2754 return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761 int i;
2762 kdbtab_t *kp;
2763
2764 for_each_kdbcmd(kp, i)
2765 kp->cmd_name = NULL;
2766
2767 kdb_register_repeat("md", kdb_md, "<vaddr>",
2768 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769 KDB_REPEAT_NO_ARGS);
2770 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779 "Continue Execution", 1, KDB_REPEAT_NONE);
2780 kdb_register_repeat("rd", kdb_rd, "",
2781 "Display Registers", 0, KDB_REPEAT_NONE);
2782 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783 "Modify Registers", 0, KDB_REPEAT_NONE);
2784 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785 "Display exception frame", 0, KDB_REPEAT_NONE);
2786 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787 "Stack traceback", 1, KDB_REPEAT_NONE);
2788 kdb_register_repeat("btp", kdb_bt, "<pid>",
2789 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790 kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791 "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792 kdb_register_repeat("btc", kdb_bt, "",
2793 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2795 "Backtrace process given its struct task address", 0,
2796 KDB_REPEAT_NONE);
2797 kdb_register_repeat("env", kdb_env, "",
2798 "Show environment variables", 0, KDB_REPEAT_NONE);
2799 kdb_register_repeat("set", kdb_set, "",
2800 "Set environment variables", 0, KDB_REPEAT_NONE);
2801 kdb_register_repeat("help", kdb_help, "",
2802 "Display Help Message", 1, KDB_REPEAT_NONE);
2803 kdb_register_repeat("?", kdb_help, "",
2804 "Display Help Message", 0, KDB_REPEAT_NONE);
2805 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807 kdb_register_repeat("kgdb", kdb_kgdb, "",
2808 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810 "Display active task list", 0, KDB_REPEAT_NONE);
2811 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812 "Switch to another task", 0, KDB_REPEAT_NONE);
2813 kdb_register_repeat("reboot", kdb_reboot, "",
2814 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2815#if defined(CONFIG_MODULES)
2816 kdb_register_repeat("lsmod", kdb_lsmod, "",
2817 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820 kdb_register_repeat("sr", kdb_sr, "<key>",
2821 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2822#endif
2823#if defined(CONFIG_PRINTK)
2824 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2826#endif
2827 if (arch_kgdb_ops.enable_nmi) {
2828 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830 }
2831 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835 kdb_register_repeat("summary", kdb_summary, "",
2836 "Summarize the system", 4, KDB_REPEAT_NONE);
2837 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839 kdb_register_repeat("grephelp", kdb_grep_help, "",
2840 "Display help on | grep", 0, KDB_REPEAT_NONE);
2841}
2842
2843/* Execute any commands defined in kdb_cmds. */
2844static void __init kdb_cmd_init(void)
2845{
2846 int i, diag;
2847 for (i = 0; kdb_cmds[i]; ++i) {
2848 diag = kdb_parse(kdb_cmds[i]);
2849 if (diag)
2850 kdb_printf("kdb command %s failed, kdb diag %d\n",
2851 kdb_cmds[i], diag);
2852 }
2853 if (defcmd_in_progress) {
2854 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855 kdb_parse("endefcmd");
2856 }
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863 int i;
2864
2865 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866 return;
2867 for (i = kdb_init_lvl; i < lvl; i++) {
2868 switch (i) {
2869 case KDB_NOT_INITIALIZED:
2870 kdb_inittab(); /* Initialize Command Table */
2871 kdb_initbptab(); /* Initialize Breakpoints */
2872 break;
2873 case KDB_INIT_EARLY:
2874 kdb_cmd_init(); /* Build kdb_cmds tables */
2875 break;
2876 }
2877 }
2878 kdb_init_lvl = lvl;
2879}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/reboot.h>
18#include <linux/sched.h>
19#include <linux/sysrq.h>
20#include <linux/smp.h>
21#include <linux/utsname.h>
22#include <linux/vmalloc.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/init.h>
26#include <linux/kallsyms.h>
27#include <linux/kgdb.h>
28#include <linux/kdb.h>
29#include <linux/notifier.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/nmi.h>
33#include <linux/time.h>
34#include <linux/ptrace.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/kdebug.h>
38#include <linux/proc_fs.h>
39#include <linux/uaccess.h>
40#include <linux/slab.h>
41#include "kdb_private.h"
42
43#define GREP_LEN 256
44char kdb_grep_string[GREP_LEN];
45int kdb_grepping_flag;
46EXPORT_SYMBOL(kdb_grepping_flag);
47int kdb_grep_leading;
48int kdb_grep_trailing;
49
50/*
51 * Kernel debugger state flags
52 */
53int kdb_flags;
54atomic_t kdb_event;
55
56/*
57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger.
59 */
60int kdb_initial_cpu = -1; /* cpu number that owns kdb */
61int kdb_nextline = 1;
62int kdb_state; /* General KDB state */
63
64struct task_struct *kdb_current_task;
65EXPORT_SYMBOL(kdb_current_task);
66struct pt_regs *kdb_current_regs;
67
68const char *kdb_diemsg;
69static int kdb_go_count;
70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71static unsigned int kdb_continue_catastrophic =
72 CONFIG_KDB_CONTINUE_CATASTROPHIC;
73#else
74static unsigned int kdb_continue_catastrophic;
75#endif
76
77/* kdb_commands describes the available commands. */
78static kdbtab_t *kdb_commands;
79#define KDB_BASE_CMD_MAX 50
80static int kdb_max_commands = KDB_BASE_CMD_MAX;
81static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
82#define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \
85 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
86
87typedef struct _kdbmsg {
88 int km_diag; /* kdb diagnostic */
89 char *km_msg; /* Corresponding message text */
90} kdbmsg_t;
91
92#define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text }
94
95static kdbmsg_t kdbmsgs[] = {
96 KDBMSG(NOTFOUND, "Command Not Found"),
97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 KDBMSG(NOTIMP, "Command not implemented"),
104 KDBMSG(ENVFULL, "Environment full"),
105 KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107#ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109#else
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111#endif
112 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 KDBMSG(BADMODE, "Invalid IDMODE"),
115 KDBMSG(BADINT, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 KDBMSG(BADREG, "Invalid register name"),
118 KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 KDBMSG(BADLENGTH, "Invalid length field"),
120 KDBMSG(NOBP, "No Breakpoint exists"),
121 KDBMSG(BADADDR, "Invalid address"),
122};
123#undef KDBMSG
124
125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126
127
128/*
129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
136 */
137
138static char *__env[] = {
139#if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ",
142#else
143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ",
145#endif
146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */
148 KDB_PLATFORM_ENV,
149 "DTABCOUNT=30",
150 "NOSECT=1",
151 (char *)0,
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175};
176
177static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179struct task_struct *kdb_curr_task(int cpu)
180{
181 struct task_struct *p = curr_task(cpu);
182#ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p;
185#endif
186 return p;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
299 * Parameters:
300 * arg A character string representing a numeric value
301 * Outputs:
302 * *value the unsigned long represntation of arg.
303 * Returns:
304 * Zero on success, a kdb diagnostic on failure.
305 */
306int kdbgetularg(const char *arg, unsigned long *value)
307{
308 char *endp;
309 unsigned long val;
310
311 val = simple_strtoul(arg, &endp, 0);
312
313 if (endp == arg) {
314 /*
315 * Also try base 16, for us folks too lazy to type the
316 * leading 0x...
317 */
318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg)
320 return KDB_BADINT;
321 }
322
323 *value = val;
324
325 return 0;
326}
327
328int kdbgetu64arg(const char *arg, u64 *value)
329{
330 char *endp;
331 u64 val;
332
333 val = simple_strtoull(arg, &endp, 0);
334
335 if (endp == arg) {
336
337 val = simple_strtoull(arg, &endp, 16);
338 if (endp == arg)
339 return KDB_BADINT;
340 }
341
342 *value = val;
343
344 return 0;
345}
346
347/*
348 * kdb_set - This function implements the 'set' command. Alter an
349 * existing environment variable or create a new one.
350 */
351int kdb_set(int argc, const char **argv)
352{
353 int i;
354 char *ep;
355 size_t varlen, vallen;
356
357 /*
358 * we can be invoked two ways:
359 * set var=value argv[1]="var", argv[2]="value"
360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
361 * - if the latter, shift 'em down.
362 */
363 if (argc == 3) {
364 argv[2] = argv[3];
365 argc--;
366 }
367
368 if (argc != 2)
369 return KDB_ARGCOUNT;
370
371 /*
372 * Check for internal variables
373 */
374 if (strcmp(argv[1], "KDBDEBUG") == 0) {
375 unsigned int debugflags;
376 char *cp;
377
378 debugflags = simple_strtoul(argv[2], &cp, 0);
379 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380 kdb_printf("kdb: illegal debug flags '%s'\n",
381 argv[2]);
382 return 0;
383 }
384 kdb_flags = (kdb_flags &
385 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
387
388 return 0;
389 }
390
391 /*
392 * Tokenizer squashed the '=' sign. argv[1] is variable
393 * name, argv[2] = value.
394 */
395 varlen = strlen(argv[1]);
396 vallen = strlen(argv[2]);
397 ep = kdballocenv(varlen + vallen + 2);
398 if (ep == (char *)0)
399 return KDB_ENVBUFFULL;
400
401 sprintf(ep, "%s=%s", argv[1], argv[2]);
402
403 ep[varlen+vallen+1] = '\0';
404
405 for (i = 0; i < __nenv; i++) {
406 if (__env[i]
407 && ((strncmp(__env[i], argv[1], varlen) == 0)
408 && ((__env[i][varlen] == '\0')
409 || (__env[i][varlen] == '=')))) {
410 __env[i] = ep;
411 return 0;
412 }
413 }
414
415 /*
416 * Wasn't existing variable. Fit into slot.
417 */
418 for (i = 0; i < __nenv-1; i++) {
419 if (__env[i] == (char *)0) {
420 __env[i] = ep;
421 return 0;
422 }
423 }
424
425 return KDB_ENVFULL;
426}
427
428static int kdb_check_regs(void)
429{
430 if (!kdb_current_regs) {
431 kdb_printf("No current kdb registers."
432 " You may need to select another task\n");
433 return KDB_BADREG;
434 }
435 return 0;
436}
437
438/*
439 * kdbgetaddrarg - This function is responsible for parsing an
440 * address-expression and returning the value of the expression,
441 * symbol name, and offset to the caller.
442 *
443 * The argument may consist of a numeric value (decimal or
444 * hexidecimal), a symbol name, a register name (preceded by the
445 * percent sign), an environment variable with a numeric value
446 * (preceded by a dollar sign) or a simple arithmetic expression
447 * consisting of a symbol name, +/-, and a numeric constant value
448 * (offset).
449 * Parameters:
450 * argc - count of arguments in argv
451 * argv - argument vector
452 * *nextarg - index to next unparsed argument in argv[]
453 * regs - Register state at time of KDB entry
454 * Outputs:
455 * *value - receives the value of the address-expression
456 * *offset - receives the offset specified, if any
457 * *name - receives the symbol name, if any
458 * *nextarg - index to next unparsed argument in argv[]
459 * Returns:
460 * zero is returned on success, a kdb diagnostic code is
461 * returned on error.
462 */
463int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464 unsigned long *value, long *offset,
465 char **name)
466{
467 unsigned long addr;
468 unsigned long off = 0;
469 int positive;
470 int diag;
471 int found = 0;
472 char *symname;
473 char symbol = '\0';
474 char *cp;
475 kdb_symtab_t symtab;
476
477 /*
478 * Process arguments which follow the following syntax:
479 *
480 * symbol | numeric-address [+/- numeric-offset]
481 * %register
482 * $environment-variable
483 */
484
485 if (*nextarg > argc)
486 return KDB_ARGCOUNT;
487
488 symname = (char *)argv[*nextarg];
489
490 /*
491 * If there is no whitespace between the symbol
492 * or address and the '+' or '-' symbols, we
493 * remember the character and replace it with a
494 * null so the symbol/value can be properly parsed
495 */
496 cp = strpbrk(symname, "+-");
497 if (cp != NULL) {
498 symbol = *cp;
499 *cp++ = '\0';
500 }
501
502 if (symname[0] == '$') {
503 diag = kdbgetulenv(&symname[1], &addr);
504 if (diag)
505 return diag;
506 } else if (symname[0] == '%') {
507 diag = kdb_check_regs();
508 if (diag)
509 return diag;
510 /* Implement register values with % at a later time as it is
511 * arch optional.
512 */
513 return KDB_NOTIMP;
514 } else {
515 found = kdbgetsymval(symname, &symtab);
516 if (found) {
517 addr = symtab.sym_start;
518 } else {
519 diag = kdbgetularg(argv[*nextarg], &addr);
520 if (diag)
521 return diag;
522 }
523 }
524
525 if (!found)
526 found = kdbnearsym(addr, &symtab);
527
528 (*nextarg)++;
529
530 if (name)
531 *name = symname;
532 if (value)
533 *value = addr;
534 if (offset && name && *name)
535 *offset = addr - symtab.sym_start;
536
537 if ((*nextarg > argc)
538 && (symbol == '\0'))
539 return 0;
540
541 /*
542 * check for +/- and offset
543 */
544
545 if (symbol == '\0') {
546 if ((argv[*nextarg][0] != '+')
547 && (argv[*nextarg][0] != '-')) {
548 /*
549 * Not our argument. Return.
550 */
551 return 0;
552 } else {
553 positive = (argv[*nextarg][0] == '+');
554 (*nextarg)++;
555 }
556 } else
557 positive = (symbol == '+');
558
559 /*
560 * Now there must be an offset!
561 */
562 if ((*nextarg > argc)
563 && (symbol == '\0')) {
564 return KDB_INVADDRFMT;
565 }
566
567 if (!symbol) {
568 cp = (char *)argv[*nextarg];
569 (*nextarg)++;
570 }
571
572 diag = kdbgetularg(cp, &off);
573 if (diag)
574 return diag;
575
576 if (!positive)
577 off = -off;
578
579 if (offset)
580 *offset += off;
581
582 if (value)
583 *value += off;
584
585 return 0;
586}
587
588static void kdb_cmderror(int diag)
589{
590 int i;
591
592 if (diag >= 0) {
593 kdb_printf("no error detected (diagnostic is %d)\n", diag);
594 return;
595 }
596
597 for (i = 0; i < __nkdb_err; i++) {
598 if (kdbmsgs[i].km_diag == diag) {
599 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600 return;
601 }
602 }
603
604 kdb_printf("Unknown diag %d\n", -diag);
605}
606
607/*
608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609 * command which defines one command as a set of other commands,
610 * terminated by endefcmd. kdb_defcmd processes the initial
611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612 * the following commands until 'endefcmd'.
613 * Inputs:
614 * argc argument count
615 * argv argument vector
616 * Returns:
617 * zero for success, a kdb diagnostic if error
618 */
619struct defcmd_set {
620 int count;
621 int usable;
622 char *name;
623 char *usage;
624 char *help;
625 char **command;
626};
627static struct defcmd_set *defcmd_set;
628static int defcmd_set_count;
629static int defcmd_in_progress;
630
631/* Forward references */
632static int kdb_exec_defcmd(int argc, const char **argv);
633
634static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635{
636 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637 char **save_command = s->command;
638 if (strcmp(argv0, "endefcmd") == 0) {
639 defcmd_in_progress = 0;
640 if (!s->count)
641 s->usable = 0;
642 if (s->usable)
643 kdb_register(s->name, kdb_exec_defcmd,
644 s->usage, s->help, 0);
645 return 0;
646 }
647 if (!s->usable)
648 return KDB_NOTIMP;
649 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650 if (!s->command) {
651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652 cmdstr);
653 s->usable = 0;
654 return KDB_NOTIMP;
655 }
656 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658 kfree(save_command);
659 return 0;
660}
661
662static int kdb_defcmd(int argc, const char **argv)
663{
664 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665 if (defcmd_in_progress) {
666 kdb_printf("kdb: nested defcmd detected, assuming missing "
667 "endefcmd\n");
668 kdb_defcmd2("endefcmd", "endefcmd");
669 }
670 if (argc == 0) {
671 int i;
672 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674 s->usage, s->help);
675 for (i = 0; i < s->count; ++i)
676 kdb_printf("%s", s->command[i]);
677 kdb_printf("endefcmd\n");
678 }
679 return 0;
680 }
681 if (argc != 3)
682 return KDB_ARGCOUNT;
683 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684 GFP_KDB);
685 if (!defcmd_set) {
686 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687 argv[1]);
688 defcmd_set = save_defcmd_set;
689 return KDB_NOTIMP;
690 }
691 memcpy(defcmd_set, save_defcmd_set,
692 defcmd_set_count * sizeof(*defcmd_set));
693 kfree(save_defcmd_set);
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 s->usage = kdb_strdup(argv[2], GFP_KDB);
699 s->help = kdb_strdup(argv[3], GFP_KDB);
700 if (s->usage[0] == '"') {
701 strcpy(s->usage, s->usage+1);
702 s->usage[strlen(s->usage)-1] = '\0';
703 }
704 if (s->help[0] == '"') {
705 strcpy(s->help, s->help+1);
706 s->help[strlen(s->help)-1] = '\0';
707 }
708 ++defcmd_set_count;
709 defcmd_in_progress = 1;
710 return 0;
711}
712
713/*
714 * kdb_exec_defcmd - Execute the set of commands associated with this
715 * defcmd name.
716 * Inputs:
717 * argc argument count
718 * argv argument vector
719 * Returns:
720 * zero for success, a kdb diagnostic if error
721 */
722static int kdb_exec_defcmd(int argc, const char **argv)
723{
724 int i, ret;
725 struct defcmd_set *s;
726 if (argc != 0)
727 return KDB_ARGCOUNT;
728 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729 if (strcmp(s->name, argv[0]) == 0)
730 break;
731 }
732 if (i == defcmd_set_count) {
733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734 argv[0]);
735 return KDB_NOTIMP;
736 }
737 for (i = 0; i < s->count; ++i) {
738 /* Recursive use of kdb_parse, do not use argv after
739 * this point */
740 argv = NULL;
741 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742 ret = kdb_parse(s->command[i]);
743 if (ret)
744 return ret;
745 }
746 return 0;
747}
748
749/* Command history */
750#define KDB_CMD_HISTORY_COUNT 32
751#define CMD_BUFLEN 200 /* kdb_printf: max printline
752 * size == 256 */
753static unsigned int cmd_head, cmd_tail;
754static unsigned int cmdptr;
755static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756static char cmd_cur[CMD_BUFLEN];
757
758/*
759 * The "str" argument may point to something like | grep xyz
760 */
761static void parse_grep(const char *str)
762{
763 int len;
764 char *cp = (char *)str, *cp2;
765
766 /* sanity check: we should have been called with the \ first */
767 if (*cp != '|')
768 return;
769 cp++;
770 while (isspace(*cp))
771 cp++;
772 if (strncmp(cp, "grep ", 5)) {
773 kdb_printf("invalid 'pipe', see grephelp\n");
774 return;
775 }
776 cp += 5;
777 while (isspace(*cp))
778 cp++;
779 cp2 = strchr(cp, '\n');
780 if (cp2)
781 *cp2 = '\0'; /* remove the trailing newline */
782 len = strlen(cp);
783 if (len == 0) {
784 kdb_printf("invalid 'pipe', see grephelp\n");
785 return;
786 }
787 /* now cp points to a nonzero length search string */
788 if (*cp == '"') {
789 /* allow it be "x y z" by removing the "'s - there must
790 be two of them */
791 cp++;
792 cp2 = strchr(cp, '"');
793 if (!cp2) {
794 kdb_printf("invalid quoted string, see grephelp\n");
795 return;
796 }
797 *cp2 = '\0'; /* end the string where the 2nd " was */
798 }
799 kdb_grep_leading = 0;
800 if (*cp == '^') {
801 kdb_grep_leading = 1;
802 cp++;
803 }
804 len = strlen(cp);
805 kdb_grep_trailing = 0;
806 if (*(cp+len-1) == '$') {
807 kdb_grep_trailing = 1;
808 *(cp+len-1) = '\0';
809 }
810 len = strlen(cp);
811 if (!len)
812 return;
813 if (len >= GREP_LEN) {
814 kdb_printf("search string too long\n");
815 return;
816 }
817 strcpy(kdb_grep_string, cp);
818 kdb_grepping_flag++;
819 return;
820}
821
822/*
823 * kdb_parse - Parse the command line, search the command table for a
824 * matching command and invoke the command function. This
825 * function may be called recursively, if it is, the second call
826 * will overwrite argv and cbuf. It is the caller's
827 * responsibility to save their argv if they recursively call
828 * kdb_parse().
829 * Parameters:
830 * cmdstr The input command line to be parsed.
831 * regs The registers at the time kdb was entered.
832 * Returns:
833 * Zero for success, a kdb diagnostic if failure.
834 * Remarks:
835 * Limited to 20 tokens.
836 *
837 * Real rudimentary tokenization. Basically only whitespace
838 * is considered a token delimeter (but special consideration
839 * is taken of the '=' sign as used by the 'set' command).
840 *
841 * The algorithm used to tokenize the input string relies on
842 * there being at least one whitespace (or otherwise useless)
843 * character between tokens as the character immediately following
844 * the token is altered in-place to a null-byte to terminate the
845 * token string.
846 */
847
848#define MAXARGC 20
849
850int kdb_parse(const char *cmdstr)
851{
852 static char *argv[MAXARGC];
853 static int argc;
854 static char cbuf[CMD_BUFLEN+2];
855 char *cp;
856 char *cpp, quoted;
857 kdbtab_t *tp;
858 int i, escaped, ignore_errors = 0, check_grep;
859
860 /*
861 * First tokenize the command string.
862 */
863 cp = (char *)cmdstr;
864 kdb_grepping_flag = check_grep = 0;
865
866 if (KDB_FLAG(CMD_INTERRUPT)) {
867 /* Previous command was interrupted, newline must not
868 * repeat the command */
869 KDB_FLAG_CLEAR(CMD_INTERRUPT);
870 KDB_STATE_SET(PAGER);
871 argc = 0; /* no repeat */
872 }
873
874 if (*cp != '\n' && *cp != '\0') {
875 argc = 0;
876 cpp = cbuf;
877 while (*cp) {
878 /* skip whitespace */
879 while (isspace(*cp))
880 cp++;
881 if ((*cp == '\0') || (*cp == '\n') ||
882 (*cp == '#' && !defcmd_in_progress))
883 break;
884 /* special case: check for | grep pattern */
885 if (*cp == '|') {
886 check_grep++;
887 break;
888 }
889 if (cpp >= cbuf + CMD_BUFLEN) {
890 kdb_printf("kdb_parse: command buffer "
891 "overflow, command ignored\n%s\n",
892 cmdstr);
893 return KDB_NOTFOUND;
894 }
895 if (argc >= MAXARGC - 1) {
896 kdb_printf("kdb_parse: too many arguments, "
897 "command ignored\n%s\n", cmdstr);
898 return KDB_NOTFOUND;
899 }
900 argv[argc++] = cpp;
901 escaped = 0;
902 quoted = '\0';
903 /* Copy to next unquoted and unescaped
904 * whitespace or '=' */
905 while (*cp && *cp != '\n' &&
906 (escaped || quoted || !isspace(*cp))) {
907 if (cpp >= cbuf + CMD_BUFLEN)
908 break;
909 if (escaped) {
910 escaped = 0;
911 *cpp++ = *cp++;
912 continue;
913 }
914 if (*cp == '\\') {
915 escaped = 1;
916 ++cp;
917 continue;
918 }
919 if (*cp == quoted)
920 quoted = '\0';
921 else if (*cp == '\'' || *cp == '"')
922 quoted = *cp;
923 *cpp = *cp++;
924 if (*cpp == '=' && !quoted)
925 break;
926 ++cpp;
927 }
928 *cpp++ = '\0'; /* Squash a ws or '=' character */
929 }
930 }
931 if (!argc)
932 return 0;
933 if (check_grep)
934 parse_grep(cp);
935 if (defcmd_in_progress) {
936 int result = kdb_defcmd2(cmdstr, argv[0]);
937 if (!defcmd_in_progress) {
938 argc = 0; /* avoid repeat on endefcmd */
939 *(argv[0]) = '\0';
940 }
941 return result;
942 }
943 if (argv[0][0] == '-' && argv[0][1] &&
944 (argv[0][1] < '0' || argv[0][1] > '9')) {
945 ignore_errors = 1;
946 ++argv[0];
947 }
948
949 for_each_kdbcmd(tp, i) {
950 if (tp->cmd_name) {
951 /*
952 * If this command is allowed to be abbreviated,
953 * check to see if this is it.
954 */
955
956 if (tp->cmd_minlen
957 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958 if (strncmp(argv[0],
959 tp->cmd_name,
960 tp->cmd_minlen) == 0) {
961 break;
962 }
963 }
964
965 if (strcmp(argv[0], tp->cmd_name) == 0)
966 break;
967 }
968 }
969
970 /*
971 * If we don't find a command by this name, see if the first
972 * few characters of this match any of the known commands.
973 * e.g., md1c20 should match md.
974 */
975 if (i == kdb_max_commands) {
976 for_each_kdbcmd(tp, i) {
977 if (tp->cmd_name) {
978 if (strncmp(argv[0],
979 tp->cmd_name,
980 strlen(tp->cmd_name)) == 0) {
981 break;
982 }
983 }
984 }
985 }
986
987 if (i < kdb_max_commands) {
988 int result;
989 KDB_STATE_SET(CMD);
990 result = (*tp->cmd_func)(argc-1, (const char **)argv);
991 if (result && ignore_errors && result > KDB_CMD_GO)
992 result = 0;
993 KDB_STATE_CLEAR(CMD);
994 switch (tp->cmd_repeat) {
995 case KDB_REPEAT_NONE:
996 argc = 0;
997 if (argv[0])
998 *(argv[0]) = '\0';
999 break;
1000 case KDB_REPEAT_NO_ARGS:
1001 argc = 1;
1002 if (argv[1])
1003 *(argv[1]) = '\0';
1004 break;
1005 case KDB_REPEAT_WITH_ARGS:
1006 break;
1007 }
1008 return result;
1009 }
1010
1011 /*
1012 * If the input with which we were presented does not
1013 * map to an existing command, attempt to parse it as an
1014 * address argument and display the result. Useful for
1015 * obtaining the address of a variable, or the nearest symbol
1016 * to an address contained in a register.
1017 */
1018 {
1019 unsigned long value;
1020 char *name = NULL;
1021 long offset;
1022 int nextarg = 0;
1023
1024 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025 &value, &offset, &name)) {
1026 return KDB_NOTFOUND;
1027 }
1028
1029 kdb_printf("%s = ", argv[0]);
1030 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031 kdb_printf("\n");
1032 return 0;
1033 }
1034}
1035
1036
1037static int handle_ctrl_cmd(char *cmd)
1038{
1039#define CTRL_P 16
1040#define CTRL_N 14
1041
1042 /* initial situation */
1043 if (cmd_head == cmd_tail)
1044 return 0;
1045 switch (*cmd) {
1046 case CTRL_P:
1047 if (cmdptr != cmd_tail)
1048 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050 return 1;
1051 case CTRL_N:
1052 if (cmdptr != cmd_head)
1053 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055 return 1;
1056 }
1057 return 0;
1058}
1059
1060/*
1061 * kdb_reboot - This function implements the 'reboot' command. Reboot
1062 * the system immediately, or loop for ever on failure.
1063 */
1064static int kdb_reboot(int argc, const char **argv)
1065{
1066 emergency_restart();
1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068 while (1)
1069 cpu_relax();
1070 /* NOTREACHED */
1071 return 0;
1072}
1073
1074static void kdb_dumpregs(struct pt_regs *regs)
1075{
1076 int old_lvl = console_loglevel;
1077 console_loglevel = 15;
1078 kdb_trap_printk++;
1079 show_regs(regs);
1080 kdb_trap_printk--;
1081 kdb_printf("\n");
1082 console_loglevel = old_lvl;
1083}
1084
1085void kdb_set_current_task(struct task_struct *p)
1086{
1087 kdb_current_task = p;
1088
1089 if (kdb_task_has_cpu(p)) {
1090 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091 return;
1092 }
1093 kdb_current_regs = NULL;
1094}
1095
1096/*
1097 * kdb_local - The main code for kdb. This routine is invoked on a
1098 * specific processor, it is not global. The main kdb() routine
1099 * ensures that only one processor at a time is in this routine.
1100 * This code is called with the real reason code on the first
1101 * entry to a kdb session, thereafter it is called with reason
1102 * SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 * reason The reason KDB was invoked
1105 * error The hardware-defined error code
1106 * regs The exception frame at time of fault/breakpoint.
1107 * db_result Result code from the break or debug point.
1108 * Returns:
1109 * 0 KDB was invoked for an event which it wasn't responsible
1110 * 1 KDB handled the event for which it was invoked.
1111 * KDB_CMD_GO User typed 'go'.
1112 * KDB_CMD_CPU User switched to another cpu.
1113 * KDB_CMD_SS Single step.
1114 * KDB_CMD_SSB Single step until branch.
1115 */
1116static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117 kdb_dbtrap_t db_result)
1118{
1119 char *cmdbuf;
1120 int diag;
1121 struct task_struct *kdb_current =
1122 kdb_curr_task(raw_smp_processor_id());
1123
1124 KDB_DEBUG_STATE("kdb_local 1", reason);
1125 kdb_go_count = 0;
1126 if (reason == KDB_REASON_DEBUG) {
1127 /* special case below */
1128 } else {
1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 kdb_current, kdb_current ? kdb_current->pid : 0);
1131#if defined(CONFIG_SMP)
1132 kdb_printf("on processor %d ", raw_smp_processor_id());
1133#endif
1134 }
1135
1136 switch (reason) {
1137 case KDB_REASON_DEBUG:
1138 {
1139 /*
1140 * If re-entering kdb after a single step
1141 * command, don't print the message.
1142 */
1143 switch (db_result) {
1144 case KDB_DB_BPT:
1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 kdb_current, kdb_current->pid);
1147#if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151 instruction_pointer(regs));
1152 break;
1153 case KDB_DB_SSB:
1154 /*
1155 * In the midst of ssb command. Just return.
1156 */
1157 KDB_DEBUG_STATE("kdb_local 3", reason);
1158 return KDB_CMD_SSB; /* Continue with SSB command */
1159
1160 break;
1161 case KDB_DB_SS:
1162 break;
1163 case KDB_DB_SSBPT:
1164 KDB_DEBUG_STATE("kdb_local 4", reason);
1165 return 1; /* kdba_db_trap did the work */
1166 default:
1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168 db_result);
1169 break;
1170 }
1171
1172 }
1173 break;
1174 case KDB_REASON_ENTER:
1175 if (KDB_STATE(KEYBOARD))
1176 kdb_printf("due to Keyboard Entry\n");
1177 else
1178 kdb_printf("due to KDB_ENTER()\n");
1179 break;
1180 case KDB_REASON_KEYBOARD:
1181 KDB_STATE_SET(KEYBOARD);
1182 kdb_printf("due to Keyboard Entry\n");
1183 break;
1184 case KDB_REASON_ENTER_SLAVE:
1185 /* drop through, slaves only get released via cpu switch */
1186 case KDB_REASON_SWITCH:
1187 kdb_printf("due to cpu switch\n");
1188 break;
1189 case KDB_REASON_OOPS:
1190 kdb_printf("Oops: %s\n", kdb_diemsg);
1191 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192 instruction_pointer(regs));
1193 kdb_dumpregs(regs);
1194 break;
1195 case KDB_REASON_NMI:
1196 kdb_printf("due to NonMaskable Interrupt @ "
1197 kdb_machreg_fmt "\n",
1198 instruction_pointer(regs));
1199 kdb_dumpregs(regs);
1200 break;
1201 case KDB_REASON_SSTEP:
1202 case KDB_REASON_BREAK:
1203 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204 reason == KDB_REASON_BREAK ?
1205 "Breakpoint" : "SS trap", instruction_pointer(regs));
1206 /*
1207 * Determine if this breakpoint is one that we
1208 * are interested in.
1209 */
1210 if (db_result != KDB_DB_BPT) {
1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212 db_result);
1213 KDB_DEBUG_STATE("kdb_local 6", reason);
1214 return 0; /* Not for us, dismiss it */
1215 }
1216 break;
1217 case KDB_REASON_RECURSE:
1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219 instruction_pointer(regs));
1220 break;
1221 default:
1222 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223 KDB_DEBUG_STATE("kdb_local 8", reason);
1224 return 0; /* Not for us, dismiss it */
1225 }
1226
1227 while (1) {
1228 /*
1229 * Initialize pager context.
1230 */
1231 kdb_nextline = 1;
1232 KDB_STATE_CLEAR(SUPPRESS);
1233
1234 cmdbuf = cmd_cur;
1235 *cmdbuf = '\0';
1236 *(cmd_hist[cmd_head]) = '\0';
1237
1238 if (KDB_FLAG(ONLY_DO_DUMP)) {
1239 /* kdb is off but a catastrophic error requires a dump.
1240 * Take the dump and reboot.
1241 * Turn on logging so the kdb output appears in the log
1242 * buffer in the dump.
1243 */
1244 const char *setargs[] = { "set", "LOGGING", "1" };
1245 kdb_set(2, setargs);
1246 kdb_reboot(0, NULL);
1247 /*NOTREACHED*/
1248 }
1249
1250do_full_getstr:
1251#if defined(CONFIG_SMP)
1252 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253 raw_smp_processor_id());
1254#else
1255 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256#endif
1257 if (defcmd_in_progress)
1258 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259
1260 /*
1261 * Fetch command from keyboard
1262 */
1263 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264 if (*cmdbuf != '\n') {
1265 if (*cmdbuf < 32) {
1266 if (cmdptr == cmd_head) {
1267 strncpy(cmd_hist[cmd_head], cmd_cur,
1268 CMD_BUFLEN);
1269 *(cmd_hist[cmd_head] +
1270 strlen(cmd_hist[cmd_head])-1) = '\0';
1271 }
1272 if (!handle_ctrl_cmd(cmdbuf))
1273 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274 cmdbuf = cmd_cur;
1275 goto do_full_getstr;
1276 } else {
1277 strncpy(cmd_hist[cmd_head], cmd_cur,
1278 CMD_BUFLEN);
1279 }
1280
1281 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282 if (cmd_head == cmd_tail)
1283 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284 }
1285
1286 cmdptr = cmd_head;
1287 diag = kdb_parse(cmdbuf);
1288 if (diag == KDB_NOTFOUND) {
1289 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290 diag = 0;
1291 }
1292 if (diag == KDB_CMD_GO
1293 || diag == KDB_CMD_CPU
1294 || diag == KDB_CMD_SS
1295 || diag == KDB_CMD_SSB
1296 || diag == KDB_CMD_KGDB)
1297 break;
1298
1299 if (diag)
1300 kdb_cmderror(diag);
1301 }
1302 KDB_DEBUG_STATE("kdb_local 9", diag);
1303 return diag;
1304}
1305
1306
1307/*
1308 * kdb_print_state - Print the state data for the current processor
1309 * for debugging.
1310 * Inputs:
1311 * text Identifies the debug point
1312 * value Any integer value to be printed, e.g. reason code.
1313 */
1314void kdb_print_state(const char *text, int value)
1315{
1316 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318 kdb_state);
1319}
1320
1321/*
1322 * kdb_main_loop - After initial setup and assignment of the
1323 * controlling cpu, all cpus are in this loop. One cpu is in
1324 * control and will issue the kdb prompt, the others will spin
1325 * until 'go' or cpu switch.
1326 *
1327 * To get a consistent view of the kernel stacks for all
1328 * processes, this routine is invoked from the main kdb code via
1329 * an architecture specific routine. kdba_main_loop is
1330 * responsible for making the kernel stacks consistent for all
1331 * processes, there should be no difference between a blocked
1332 * process and a running process as far as kdb is concerned.
1333 * Inputs:
1334 * reason The reason KDB was invoked
1335 * error The hardware-defined error code
1336 * reason2 kdb's current reason code.
1337 * Initially error but can change
1338 * according to kdb state.
1339 * db_result Result code from break or debug point.
1340 * regs The exception frame at time of fault/breakpoint.
1341 * should always be valid.
1342 * Returns:
1343 * 0 KDB was invoked for an event which it wasn't responsible
1344 * 1 KDB handled the event for which it was invoked.
1345 */
1346int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347 kdb_dbtrap_t db_result, struct pt_regs *regs)
1348{
1349 int result = 1;
1350 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1351 while (1) {
1352 /*
1353 * All processors except the one that is in control
1354 * will spin here.
1355 */
1356 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357 while (KDB_STATE(HOLD_CPU)) {
1358 /* state KDB is turned off by kdb_cpu to see if the
1359 * other cpus are still live, each cpu in this loop
1360 * turns it back on.
1361 */
1362 if (!KDB_STATE(KDB))
1363 KDB_STATE_SET(KDB);
1364 }
1365
1366 KDB_STATE_CLEAR(SUPPRESS);
1367 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368 if (KDB_STATE(LEAVING))
1369 break; /* Another cpu said 'go' */
1370 /* Still using kdb, this processor is in control */
1371 result = kdb_local(reason2, error, regs, db_result);
1372 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373
1374 if (result == KDB_CMD_CPU)
1375 break;
1376
1377 if (result == KDB_CMD_SS) {
1378 KDB_STATE_SET(DOING_SS);
1379 break;
1380 }
1381
1382 if (result == KDB_CMD_SSB) {
1383 KDB_STATE_SET(DOING_SS);
1384 KDB_STATE_SET(DOING_SSB);
1385 break;
1386 }
1387
1388 if (result == KDB_CMD_KGDB) {
1389 if (!KDB_STATE(DOING_KGDB))
1390 kdb_printf("Entering please attach debugger "
1391 "or use $D#44+ or $3#33\n");
1392 break;
1393 }
1394 if (result && result != 1 && result != KDB_CMD_GO)
1395 kdb_printf("\nUnexpected kdb_local return code %d\n",
1396 result);
1397 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398 break;
1399 }
1400 if (KDB_STATE(DOING_SS))
1401 KDB_STATE_CLEAR(SSBPT);
1402
1403 return result;
1404}
1405
1406/*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command.
1409 * mdr <addr arg>,<byte count>
1410 * Inputs:
1411 * addr Start address
1412 * count Number of bytes
1413 * Returns:
1414 * Always 0. Any errors are detected and printed by kdb_getarea.
1415 */
1416static int kdb_mdr(unsigned long addr, unsigned int count)
1417{
1418 unsigned char c;
1419 while (count--) {
1420 if (kdb_getarea(c, addr))
1421 return 0;
1422 kdb_printf("%02x", c);
1423 addr++;
1424 }
1425 kdb_printf("\n");
1426 return 0;
1427}
1428
1429/*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 * 'md8' 'mdr' and 'mds' commands.
1432 *
1433 * md|mds [<addr arg> [<line count> [<radix>]]]
1434 * mdWcN [<addr arg> [<line count> [<radix>]]]
1435 * where W = is the width (1, 2, 4 or 8) and N is the count.
1436 * for eg., md1c20 reads 20 bytes, 1 at a time.
1437 * mdr <addr arg>,<byte count>
1438 */
1439static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440 int symbolic, int nosect, int bytesperword,
1441 int num, int repeat, int phys)
1442{
1443 /* print just one line of data */
1444 kdb_symtab_t symtab;
1445 char cbuf[32];
1446 char *c = cbuf;
1447 int i;
1448 unsigned long word;
1449
1450 memset(cbuf, '\0', sizeof(cbuf));
1451 if (phys)
1452 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453 else
1454 kdb_printf(kdb_machreg_fmt0 " ", addr);
1455
1456 for (i = 0; i < num && repeat--; i++) {
1457 if (phys) {
1458 if (kdb_getphysword(&word, addr, bytesperword))
1459 break;
1460 } else if (kdb_getword(&word, addr, bytesperword))
1461 break;
1462 kdb_printf(fmtstr, word);
1463 if (symbolic)
1464 kdbnearsym(word, &symtab);
1465 else
1466 memset(&symtab, 0, sizeof(symtab));
1467 if (symtab.sym_name) {
1468 kdb_symbol_print(word, &symtab, 0);
1469 if (!nosect) {
1470 kdb_printf("\n");
1471 kdb_printf(" %s %s "
1472 kdb_machreg_fmt " "
1473 kdb_machreg_fmt " "
1474 kdb_machreg_fmt, symtab.mod_name,
1475 symtab.sec_name, symtab.sec_start,
1476 symtab.sym_start, symtab.sym_end);
1477 }
1478 addr += bytesperword;
1479 } else {
1480 union {
1481 u64 word;
1482 unsigned char c[8];
1483 } wc;
1484 unsigned char *cp;
1485#ifdef __BIG_ENDIAN
1486 cp = wc.c + 8 - bytesperword;
1487#else
1488 cp = wc.c;
1489#endif
1490 wc.word = word;
1491#define printable_char(c) \
1492 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493 switch (bytesperword) {
1494 case 8:
1495 *c++ = printable_char(*cp++);
1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++);
1498 *c++ = printable_char(*cp++);
1499 addr += 4;
1500 case 4:
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 2;
1504 case 2:
1505 *c++ = printable_char(*cp++);
1506 addr++;
1507 case 1:
1508 *c++ = printable_char(*cp++);
1509 addr++;
1510 break;
1511 }
1512#undef printable_char
1513 }
1514 }
1515 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516 " ", cbuf);
1517}
1518
1519static int kdb_md(int argc, const char **argv)
1520{
1521 static unsigned long last_addr;
1522 static int last_radix, last_bytesperword, last_repeat;
1523 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524 int nosect = 0;
1525 char fmtchar, fmtstr[64];
1526 unsigned long addr;
1527 unsigned long word;
1528 long offset = 0;
1529 int symbolic = 0;
1530 int valid = 0;
1531 int phys = 0;
1532
1533 kdbgetintenv("MDCOUNT", &mdcount);
1534 kdbgetintenv("RADIX", &radix);
1535 kdbgetintenv("BYTESPERWORD", &bytesperword);
1536
1537 /* Assume 'md <addr>' and start with environment values */
1538 repeat = mdcount * 16 / bytesperword;
1539
1540 if (strcmp(argv[0], "mdr") == 0) {
1541 if (argc != 2)
1542 return KDB_ARGCOUNT;
1543 valid = 1;
1544 } else if (isdigit(argv[0][2])) {
1545 bytesperword = (int)(argv[0][2] - '0');
1546 if (bytesperword == 0) {
1547 bytesperword = last_bytesperword;
1548 if (bytesperword == 0)
1549 bytesperword = 4;
1550 }
1551 last_bytesperword = bytesperword;
1552 repeat = mdcount * 16 / bytesperword;
1553 if (!argv[0][3])
1554 valid = 1;
1555 else if (argv[0][3] == 'c' && argv[0][4]) {
1556 char *p;
1557 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558 mdcount = ((repeat * bytesperword) + 15) / 16;
1559 valid = !*p;
1560 }
1561 last_repeat = repeat;
1562 } else if (strcmp(argv[0], "md") == 0)
1563 valid = 1;
1564 else if (strcmp(argv[0], "mds") == 0)
1565 valid = 1;
1566 else if (strcmp(argv[0], "mdp") == 0) {
1567 phys = valid = 1;
1568 }
1569 if (!valid)
1570 return KDB_NOTFOUND;
1571
1572 if (argc == 0) {
1573 if (last_addr == 0)
1574 return KDB_ARGCOUNT;
1575 addr = last_addr;
1576 radix = last_radix;
1577 bytesperword = last_bytesperword;
1578 repeat = last_repeat;
1579 mdcount = ((repeat * bytesperword) + 15) / 16;
1580 }
1581
1582 if (argc) {
1583 unsigned long val;
1584 int diag, nextarg = 1;
1585 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586 &offset, NULL);
1587 if (diag)
1588 return diag;
1589 if (argc > nextarg+2)
1590 return KDB_ARGCOUNT;
1591
1592 if (argc >= nextarg) {
1593 diag = kdbgetularg(argv[nextarg], &val);
1594 if (!diag) {
1595 mdcount = (int) val;
1596 repeat = mdcount * 16 / bytesperword;
1597 }
1598 }
1599 if (argc >= nextarg+1) {
1600 diag = kdbgetularg(argv[nextarg+1], &val);
1601 if (!diag)
1602 radix = (int) val;
1603 }
1604 }
1605
1606 if (strcmp(argv[0], "mdr") == 0)
1607 return kdb_mdr(addr, mdcount);
1608
1609 switch (radix) {
1610 case 10:
1611 fmtchar = 'd';
1612 break;
1613 case 16:
1614 fmtchar = 'x';
1615 break;
1616 case 8:
1617 fmtchar = 'o';
1618 break;
1619 default:
1620 return KDB_BADRADIX;
1621 }
1622
1623 last_radix = radix;
1624
1625 if (bytesperword > KDB_WORD_SIZE)
1626 return KDB_BADWIDTH;
1627
1628 switch (bytesperword) {
1629 case 8:
1630 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631 break;
1632 case 4:
1633 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634 break;
1635 case 2:
1636 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637 break;
1638 case 1:
1639 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640 break;
1641 default:
1642 return KDB_BADWIDTH;
1643 }
1644
1645 last_repeat = repeat;
1646 last_bytesperword = bytesperword;
1647
1648 if (strcmp(argv[0], "mds") == 0) {
1649 symbolic = 1;
1650 /* Do not save these changes as last_*, they are temporary mds
1651 * overrides.
1652 */
1653 bytesperword = KDB_WORD_SIZE;
1654 repeat = mdcount;
1655 kdbgetintenv("NOSECT", &nosect);
1656 }
1657
1658 /* Round address down modulo BYTESPERWORD */
1659
1660 addr &= ~(bytesperword-1);
1661
1662 while (repeat > 0) {
1663 unsigned long a;
1664 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665
1666 if (KDB_FLAG(CMD_INTERRUPT))
1667 return 0;
1668 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669 if (phys) {
1670 if (kdb_getphysword(&word, a, bytesperword)
1671 || word)
1672 break;
1673 } else if (kdb_getword(&word, a, bytesperword) || word)
1674 break;
1675 }
1676 n = min(num, repeat);
1677 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678 num, repeat, phys);
1679 addr += bytesperword * n;
1680 repeat -= n;
1681 z = (z + num - 1) / num;
1682 if (z > 2) {
1683 int s = num * (z-2);
1684 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685 " zero suppressed\n",
1686 addr, addr + bytesperword * s - 1);
1687 addr += bytesperword * s;
1688 repeat -= s;
1689 }
1690 }
1691 last_addr = addr;
1692
1693 return 0;
1694}
1695
1696/*
1697 * kdb_mm - This function implements the 'mm' command.
1698 * mm address-expression new-value
1699 * Remarks:
1700 * mm works on machine words, mmW works on bytes.
1701 */
1702static int kdb_mm(int argc, const char **argv)
1703{
1704 int diag;
1705 unsigned long addr;
1706 long offset = 0;
1707 unsigned long contents;
1708 int nextarg;
1709 int width;
1710
1711 if (argv[0][2] && !isdigit(argv[0][2]))
1712 return KDB_NOTFOUND;
1713
1714 if (argc < 2)
1715 return KDB_ARGCOUNT;
1716
1717 nextarg = 1;
1718 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719 if (diag)
1720 return diag;
1721
1722 if (nextarg > argc)
1723 return KDB_ARGCOUNT;
1724 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725 if (diag)
1726 return diag;
1727
1728 if (nextarg != argc + 1)
1729 return KDB_ARGCOUNT;
1730
1731 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732 diag = kdb_putword(addr, contents, width);
1733 if (diag)
1734 return diag;
1735
1736 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737
1738 return 0;
1739}
1740
1741/*
1742 * kdb_go - This function implements the 'go' command.
1743 * go [address-expression]
1744 */
1745static int kdb_go(int argc, const char **argv)
1746{
1747 unsigned long addr;
1748 int diag;
1749 int nextarg;
1750 long offset;
1751
1752 if (raw_smp_processor_id() != kdb_initial_cpu) {
1753 kdb_printf("go must execute on the entry cpu, "
1754 "please use \"cpu %d\" and then execute go\n",
1755 kdb_initial_cpu);
1756 return KDB_BADCPUNUM;
1757 }
1758 if (argc == 1) {
1759 nextarg = 1;
1760 diag = kdbgetaddrarg(argc, argv, &nextarg,
1761 &addr, &offset, NULL);
1762 if (diag)
1763 return diag;
1764 } else if (argc) {
1765 return KDB_ARGCOUNT;
1766 }
1767
1768 diag = KDB_CMD_GO;
1769 if (KDB_FLAG(CATASTROPHIC)) {
1770 kdb_printf("Catastrophic error detected\n");
1771 kdb_printf("kdb_continue_catastrophic=%d, ",
1772 kdb_continue_catastrophic);
1773 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774 kdb_printf("type go a second time if you really want "
1775 "to continue\n");
1776 return 0;
1777 }
1778 if (kdb_continue_catastrophic == 2) {
1779 kdb_printf("forcing reboot\n");
1780 kdb_reboot(0, NULL);
1781 }
1782 kdb_printf("attempting to continue\n");
1783 }
1784 return diag;
1785}
1786
1787/*
1788 * kdb_rd - This function implements the 'rd' command.
1789 */
1790static int kdb_rd(int argc, const char **argv)
1791{
1792 int len = kdb_check_regs();
1793#if DBG_MAX_REG_NUM > 0
1794 int i;
1795 char *rname;
1796 int rsize;
1797 u64 reg64;
1798 u32 reg32;
1799 u16 reg16;
1800 u8 reg8;
1801
1802 if (len)
1803 return len;
1804
1805 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806 rsize = dbg_reg_def[i].size * 2;
1807 if (rsize > 16)
1808 rsize = 2;
1809 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810 len = 0;
1811 kdb_printf("\n");
1812 }
1813 if (len)
1814 len += kdb_printf(" ");
1815 switch(dbg_reg_def[i].size * 8) {
1816 case 8:
1817 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1818 if (!rname)
1819 break;
1820 len += kdb_printf("%s: %02x", rname, reg8);
1821 break;
1822 case 16:
1823 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1824 if (!rname)
1825 break;
1826 len += kdb_printf("%s: %04x", rname, reg16);
1827 break;
1828 case 32:
1829 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1830 if (!rname)
1831 break;
1832 len += kdb_printf("%s: %08x", rname, reg32);
1833 break;
1834 case 64:
1835 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1836 if (!rname)
1837 break;
1838 len += kdb_printf("%s: %016llx", rname, reg64);
1839 break;
1840 default:
1841 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842 }
1843 }
1844 kdb_printf("\n");
1845#else
1846 if (len)
1847 return len;
1848
1849 kdb_dumpregs(kdb_current_regs);
1850#endif
1851 return 0;
1852}
1853
1854/*
1855 * kdb_rm - This function implements the 'rm' (register modify) command.
1856 * rm register-name new-contents
1857 * Remarks:
1858 * Allows register modification with the same restrictions as gdb
1859 */
1860static int kdb_rm(int argc, const char **argv)
1861{
1862#if DBG_MAX_REG_NUM > 0
1863 int diag;
1864 const char *rname;
1865 int i;
1866 u64 reg64;
1867 u32 reg32;
1868 u16 reg16;
1869 u8 reg8;
1870
1871 if (argc != 2)
1872 return KDB_ARGCOUNT;
1873 /*
1874 * Allow presence or absence of leading '%' symbol.
1875 */
1876 rname = argv[1];
1877 if (*rname == '%')
1878 rname++;
1879
1880 diag = kdbgetu64arg(argv[2], ®64);
1881 if (diag)
1882 return diag;
1883
1884 diag = kdb_check_regs();
1885 if (diag)
1886 return diag;
1887
1888 diag = KDB_BADREG;
1889 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891 diag = 0;
1892 break;
1893 }
1894 }
1895 if (!diag) {
1896 switch(dbg_reg_def[i].size * 8) {
1897 case 8:
1898 reg8 = reg64;
1899 dbg_set_reg(i, ®8, kdb_current_regs);
1900 break;
1901 case 16:
1902 reg16 = reg64;
1903 dbg_set_reg(i, ®16, kdb_current_regs);
1904 break;
1905 case 32:
1906 reg32 = reg64;
1907 dbg_set_reg(i, ®32, kdb_current_regs);
1908 break;
1909 case 64:
1910 dbg_set_reg(i, ®64, kdb_current_regs);
1911 break;
1912 }
1913 }
1914 return diag;
1915#else
1916 kdb_printf("ERROR: Register set currently not implemented\n");
1917 return 0;
1918#endif
1919}
1920
1921#if defined(CONFIG_MAGIC_SYSRQ)
1922/*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 * sr <magic-sysrq-code>
1926 */
1927static int kdb_sr(int argc, const char **argv)
1928{
1929 if (argc != 1)
1930 return KDB_ARGCOUNT;
1931 kdb_trap_printk++;
1932 __handle_sysrq(*argv[1], false);
1933 kdb_trap_printk--;
1934
1935 return 0;
1936}
1937#endif /* CONFIG_MAGIC_SYSRQ */
1938
1939/*
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 * frame) command. This command takes an address and expects to
1942 * find an exception frame at that address, formats and prints
1943 * it.
1944 * regs address-expression
1945 * Remarks:
1946 * Not done yet.
1947 */
1948static int kdb_ef(int argc, const char **argv)
1949{
1950 int diag;
1951 unsigned long addr;
1952 long offset;
1953 int nextarg;
1954
1955 if (argc != 1)
1956 return KDB_ARGCOUNT;
1957
1958 nextarg = 1;
1959 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960 if (diag)
1961 return diag;
1962 show_regs((struct pt_regs *)addr);
1963 return 0;
1964}
1965
1966#if defined(CONFIG_MODULES)
1967/*
1968 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1969 * currently loaded kernel modules.
1970 * Mostly taken from userland lsmod.
1971 */
1972static int kdb_lsmod(int argc, const char **argv)
1973{
1974 struct module *mod;
1975
1976 if (argc != 0)
1977 return KDB_ARGCOUNT;
1978
1979 kdb_printf("Module Size modstruct Used by\n");
1980 list_for_each_entry(mod, kdb_modules, list) {
1981
1982 kdb_printf("%-20s%8u 0x%p ", mod->name,
1983 mod->core_size, (void *)mod);
1984#ifdef CONFIG_MODULE_UNLOAD
1985 kdb_printf("%4d ", module_refcount(mod));
1986#endif
1987 if (mod->state == MODULE_STATE_GOING)
1988 kdb_printf(" (Unloading)");
1989 else if (mod->state == MODULE_STATE_COMING)
1990 kdb_printf(" (Loading)");
1991 else
1992 kdb_printf(" (Live)");
1993 kdb_printf(" 0x%p", mod->module_core);
1994
1995#ifdef CONFIG_MODULE_UNLOAD
1996 {
1997 struct module_use *use;
1998 kdb_printf(" [ ");
1999 list_for_each_entry(use, &mod->source_list,
2000 source_list)
2001 kdb_printf("%s ", use->target->name);
2002 kdb_printf("]\n");
2003 }
2004#endif
2005 }
2006
2007 return 0;
2008}
2009
2010#endif /* CONFIG_MODULES */
2011
2012/*
2013 * kdb_env - This function implements the 'env' command. Display the
2014 * current environment variables.
2015 */
2016
2017static int kdb_env(int argc, const char **argv)
2018{
2019 int i;
2020
2021 for (i = 0; i < __nenv; i++) {
2022 if (__env[i])
2023 kdb_printf("%s\n", __env[i]);
2024 }
2025
2026 if (KDB_DEBUG(MASK))
2027 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028
2029 return 0;
2030}
2031
2032#ifdef CONFIG_PRINTK
2033/*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 * the contents of the syslog buffer.
2036 * dmesg [lines] [adjust]
2037 */
2038static int kdb_dmesg(int argc, const char **argv)
2039{
2040 char *syslog_data[4], *start, *end, c = '\0', *p;
2041 int diag, logging, logsize, lines = 0, adjust = 0, n;
2042
2043 if (argc > 2)
2044 return KDB_ARGCOUNT;
2045 if (argc) {
2046 char *cp;
2047 lines = simple_strtol(argv[1], &cp, 0);
2048 if (*cp)
2049 lines = 0;
2050 if (argc > 1) {
2051 adjust = simple_strtoul(argv[2], &cp, 0);
2052 if (*cp || adjust < 0)
2053 adjust = 0;
2054 }
2055 }
2056
2057 /* disable LOGGING if set */
2058 diag = kdbgetintenv("LOGGING", &logging);
2059 if (!diag && logging) {
2060 const char *setargs[] = { "set", "LOGGING", "0" };
2061 kdb_set(2, setargs);
2062 }
2063
2064 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
2065 * logical start, end+1. */
2066 kdb_syslog_data(syslog_data);
2067 if (syslog_data[2] == syslog_data[3])
2068 return 0;
2069 logsize = syslog_data[1] - syslog_data[0];
2070 start = syslog_data[2];
2071 end = syslog_data[3];
2072#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073 for (n = 0, p = start; p < end; ++p) {
2074 c = *KDB_WRAP(p);
2075 if (c == '\n')
2076 ++n;
2077 }
2078 if (c != '\n')
2079 ++n;
2080 if (lines < 0) {
2081 if (adjust >= n)
2082 kdb_printf("buffer only contains %d lines, nothing "
2083 "printed\n", n);
2084 else if (adjust - lines >= n)
2085 kdb_printf("buffer only contains %d lines, last %d "
2086 "lines printed\n", n, n - adjust);
2087 if (adjust) {
2088 for (; start < end && adjust; ++start) {
2089 if (*KDB_WRAP(start) == '\n')
2090 --adjust;
2091 }
2092 if (start < end)
2093 ++start;
2094 }
2095 for (p = start; p < end && lines; ++p) {
2096 if (*KDB_WRAP(p) == '\n')
2097 ++lines;
2098 }
2099 end = p;
2100 } else if (lines > 0) {
2101 int skip = n - (adjust + lines);
2102 if (adjust >= n) {
2103 kdb_printf("buffer only contains %d lines, "
2104 "nothing printed\n", n);
2105 skip = n;
2106 } else if (skip < 0) {
2107 lines += skip;
2108 skip = 0;
2109 kdb_printf("buffer only contains %d lines, first "
2110 "%d lines printed\n", n, lines);
2111 }
2112 for (; start < end && skip; ++start) {
2113 if (*KDB_WRAP(start) == '\n')
2114 --skip;
2115 }
2116 for (p = start; p < end && lines; ++p) {
2117 if (*KDB_WRAP(p) == '\n')
2118 --lines;
2119 }
2120 end = p;
2121 }
2122 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123 c = '\n';
2124 while (start != end) {
2125 char buf[201];
2126 p = buf;
2127 if (KDB_FLAG(CMD_INTERRUPT))
2128 return 0;
2129 while (start < end && (c = *KDB_WRAP(start)) &&
2130 (p - buf) < sizeof(buf)-1) {
2131 ++start;
2132 *p++ = c;
2133 if (c == '\n')
2134 break;
2135 }
2136 *p = '\0';
2137 kdb_printf("%s", buf);
2138 }
2139 if (c != '\n')
2140 kdb_printf("\n");
2141
2142 return 0;
2143}
2144#endif /* CONFIG_PRINTK */
2145/*
2146 * kdb_cpu - This function implements the 'cpu' command.
2147 * cpu [<cpunum>]
2148 * Returns:
2149 * KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */
2151static void kdb_cpu_status(void)
2152{
2153 int i, start_cpu, first_print = 1;
2154 char state, prev_state = '?';
2155
2156 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157 kdb_printf("Available cpus: ");
2158 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159 if (!cpu_online(i)) {
2160 state = 'F'; /* cpu is offline */
2161 } else {
2162 state = ' '; /* cpu is responding to kdb */
2163 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164 state = 'I'; /* idle task */
2165 }
2166 if (state != prev_state) {
2167 if (prev_state != '?') {
2168 if (!first_print)
2169 kdb_printf(", ");
2170 first_print = 0;
2171 kdb_printf("%d", start_cpu);
2172 if (start_cpu < i-1)
2173 kdb_printf("-%d", i-1);
2174 if (prev_state != ' ')
2175 kdb_printf("(%c)", prev_state);
2176 }
2177 prev_state = state;
2178 start_cpu = i;
2179 }
2180 }
2181 /* print the trailing cpus, ignoring them if they are all offline */
2182 if (prev_state != 'F') {
2183 if (!first_print)
2184 kdb_printf(", ");
2185 kdb_printf("%d", start_cpu);
2186 if (start_cpu < i-1)
2187 kdb_printf("-%d", i-1);
2188 if (prev_state != ' ')
2189 kdb_printf("(%c)", prev_state);
2190 }
2191 kdb_printf("\n");
2192}
2193
2194static int kdb_cpu(int argc, const char **argv)
2195{
2196 unsigned long cpunum;
2197 int diag;
2198
2199 if (argc == 0) {
2200 kdb_cpu_status();
2201 return 0;
2202 }
2203
2204 if (argc != 1)
2205 return KDB_ARGCOUNT;
2206
2207 diag = kdbgetularg(argv[1], &cpunum);
2208 if (diag)
2209 return diag;
2210
2211 /*
2212 * Validate cpunum
2213 */
2214 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215 return KDB_BADCPUNUM;
2216
2217 dbg_switch_cpu = cpunum;
2218
2219 /*
2220 * Switch to other cpu
2221 */
2222 return KDB_CMD_CPU;
2223}
2224
2225/* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */
2228void kdb_ps_suppressed(void)
2229{
2230 int idle = 0, daemon = 0;
2231 unsigned long mask_I = kdb_task_state_string("I"),
2232 mask_M = kdb_task_state_string("M");
2233 unsigned long cpu;
2234 const struct task_struct *p, *g;
2235 for_each_online_cpu(cpu) {
2236 p = kdb_curr_task(cpu);
2237 if (kdb_task_state(p, mask_I))
2238 ++idle;
2239 }
2240 kdb_do_each_thread(g, p) {
2241 if (kdb_task_state(p, mask_M))
2242 ++daemon;
2243 } kdb_while_each_thread(g, p);
2244 if (idle || daemon) {
2245 if (idle)
2246 kdb_printf("%d idle process%s (state I)%s\n",
2247 idle, idle == 1 ? "" : "es",
2248 daemon ? " and " : "");
2249 if (daemon)
2250 kdb_printf("%d sleeping system daemon (state M) "
2251 "process%s", daemon,
2252 daemon == 1 ? "" : "es");
2253 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254 }
2255}
2256
2257/*
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 * list of the active processes.
2260 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2261 */
2262void kdb_ps1(const struct task_struct *p)
2263{
2264 int cpu;
2265 unsigned long tmp;
2266
2267 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268 return;
2269
2270 cpu = kdb_process_cpu(p);
2271 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2272 (void *)p, p->pid, p->parent->pid,
2273 kdb_task_has_cpu(p), kdb_process_cpu(p),
2274 kdb_task_state_char(p),
2275 (void *)(&p->thread),
2276 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277 p->comm);
2278 if (kdb_task_has_cpu(p)) {
2279 if (!KDB_TSK(cpu)) {
2280 kdb_printf(" Error: no saved data for this cpu\n");
2281 } else {
2282 if (KDB_TSK(cpu) != p)
2283 kdb_printf(" Error: does not match running "
2284 "process table (0x%p)\n", KDB_TSK(cpu));
2285 }
2286 }
2287}
2288
2289static int kdb_ps(int argc, const char **argv)
2290{
2291 struct task_struct *g, *p;
2292 unsigned long mask, cpu;
2293
2294 if (argc == 0)
2295 kdb_ps_suppressed();
2296 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2297 (int)(2*sizeof(void *))+2, "Task Addr",
2298 (int)(2*sizeof(void *))+2, "Thread");
2299 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300 /* Run the active tasks first */
2301 for_each_online_cpu(cpu) {
2302 if (KDB_FLAG(CMD_INTERRUPT))
2303 return 0;
2304 p = kdb_curr_task(cpu);
2305 if (kdb_task_state(p, mask))
2306 kdb_ps1(p);
2307 }
2308 kdb_printf("\n");
2309 /* Now the real tasks */
2310 kdb_do_each_thread(g, p) {
2311 if (KDB_FLAG(CMD_INTERRUPT))
2312 return 0;
2313 if (kdb_task_state(p, mask))
2314 kdb_ps1(p);
2315 } kdb_while_each_thread(g, p);
2316
2317 return 0;
2318}
2319
2320/*
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 * the currently active process.
2323 * pid [<pid> | R]
2324 */
2325static int kdb_pid(int argc, const char **argv)
2326{
2327 struct task_struct *p;
2328 unsigned long val;
2329 int diag;
2330
2331 if (argc > 1)
2332 return KDB_ARGCOUNT;
2333
2334 if (argc) {
2335 if (strcmp(argv[1], "R") == 0) {
2336 p = KDB_TSK(kdb_initial_cpu);
2337 } else {
2338 diag = kdbgetularg(argv[1], &val);
2339 if (diag)
2340 return KDB_BADINT;
2341
2342 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2343 if (!p) {
2344 kdb_printf("No task with pid=%d\n", (pid_t)val);
2345 return 0;
2346 }
2347 }
2348 kdb_set_current_task(p);
2349 }
2350 kdb_printf("KDB current process is %s(pid=%d)\n",
2351 kdb_current_task->comm,
2352 kdb_current_task->pid);
2353
2354 return 0;
2355}
2356
2357/*
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 * linked list and executes an arbitrary command for each
2360 * element.
2361 */
2362static int kdb_ll(int argc, const char **argv)
2363{
2364 int diag = 0;
2365 unsigned long addr;
2366 long offset = 0;
2367 unsigned long va;
2368 unsigned long linkoffset;
2369 int nextarg;
2370 const char *command;
2371
2372 if (argc != 3)
2373 return KDB_ARGCOUNT;
2374
2375 nextarg = 1;
2376 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377 if (diag)
2378 return diag;
2379
2380 diag = kdbgetularg(argv[2], &linkoffset);
2381 if (diag)
2382 return diag;
2383
2384 /*
2385 * Using the starting address as
2386 * the first element in the list, and assuming that
2387 * the list ends with a null pointer.
2388 */
2389
2390 va = addr;
2391 command = kdb_strdup(argv[3], GFP_KDB);
2392 if (!command) {
2393 kdb_printf("%s: cannot duplicate command\n", __func__);
2394 return 0;
2395 }
2396 /* Recursive use of kdb_parse, do not use argv after this point */
2397 argv = NULL;
2398
2399 while (va) {
2400 char buf[80];
2401
2402 if (KDB_FLAG(CMD_INTERRUPT))
2403 goto out;
2404
2405 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406 diag = kdb_parse(buf);
2407 if (diag)
2408 goto out;
2409
2410 addr = va + linkoffset;
2411 if (kdb_getword(&va, addr, sizeof(va)))
2412 goto out;
2413 }
2414
2415out:
2416 kfree(command);
2417 return diag;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422 return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430 kdbtab_t *kt;
2431 int i;
2432
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt, i) {
2437 if (kt->cmd_name)
2438 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2439 kt->cmd_usage, kt->cmd_help);
2440 if (KDB_FLAG(CMD_INTERRUPT))
2441 return 0;
2442 }
2443 return 0;
2444}
2445
2446/*
2447 * kdb_kill - This function implements the 'kill' commands.
2448 */
2449static int kdb_kill(int argc, const char **argv)
2450{
2451 long sig, pid;
2452 char *endp;
2453 struct task_struct *p;
2454 struct siginfo info;
2455
2456 if (argc != 2)
2457 return KDB_ARGCOUNT;
2458
2459 sig = simple_strtol(argv[1], &endp, 0);
2460 if (*endp)
2461 return KDB_BADINT;
2462 if (sig >= 0) {
2463 kdb_printf("Invalid signal parameter.<-signal>\n");
2464 return 0;
2465 }
2466 sig = -sig;
2467
2468 pid = simple_strtol(argv[2], &endp, 0);
2469 if (*endp)
2470 return KDB_BADINT;
2471 if (pid <= 0) {
2472 kdb_printf("Process ID must be large than 0.\n");
2473 return 0;
2474 }
2475
2476 /* Find the process. */
2477 p = find_task_by_pid_ns(pid, &init_pid_ns);
2478 if (!p) {
2479 kdb_printf("The specified process isn't found.\n");
2480 return 0;
2481 }
2482 p = p->group_leader;
2483 info.si_signo = sig;
2484 info.si_errno = 0;
2485 info.si_code = SI_USER;
2486 info.si_pid = pid; /* same capabilities as process being signalled */
2487 info.si_uid = 0; /* kdb has root authority */
2488 kdb_send_sig_info(p, &info);
2489 return 0;
2490}
2491
2492struct kdb_tm {
2493 int tm_sec; /* seconds */
2494 int tm_min; /* minutes */
2495 int tm_hour; /* hours */
2496 int tm_mday; /* day of the month */
2497 int tm_mon; /* month */
2498 int tm_year; /* year */
2499};
2500
2501static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2502{
2503 /* This will work from 1970-2099, 2100 is not a leap year */
2504 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2505 31, 30, 31, 30, 31 };
2506 memset(tm, 0, sizeof(*tm));
2507 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2508 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2509 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2510 tm->tm_min = tm->tm_sec / 60 % 60;
2511 tm->tm_hour = tm->tm_sec / 60 / 60;
2512 tm->tm_sec = tm->tm_sec % 60;
2513 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2514 tm->tm_mday %= (4*365+1);
2515 mon_day[1] = 29;
2516 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2517 tm->tm_mday -= mon_day[tm->tm_mon];
2518 if (++tm->tm_mon == 12) {
2519 tm->tm_mon = 0;
2520 ++tm->tm_year;
2521 mon_day[1] = 28;
2522 }
2523 }
2524 ++tm->tm_mday;
2525}
2526
2527/*
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2531 */
2532static void kdb_sysinfo(struct sysinfo *val)
2533{
2534 struct timespec uptime;
2535 do_posix_clock_monotonic_gettime(&uptime);
2536 memset(val, 0, sizeof(*val));
2537 val->uptime = uptime.tv_sec;
2538 val->loads[0] = avenrun[0];
2539 val->loads[1] = avenrun[1];
2540 val->loads[2] = avenrun[2];
2541 val->procs = nr_threads-1;
2542 si_meminfo(val);
2543
2544 return;
2545}
2546
2547/*
2548 * kdb_summary - This function implements the 'summary' command.
2549 */
2550static int kdb_summary(int argc, const char **argv)
2551{
2552 struct timespec now;
2553 struct kdb_tm tm;
2554 struct sysinfo val;
2555
2556 if (argc)
2557 return KDB_ARGCOUNT;
2558
2559 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2560 kdb_printf("release %s\n", init_uts_ns.name.release);
2561 kdb_printf("version %s\n", init_uts_ns.name.version);
2562 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2563 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2564 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2565 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2566
2567 now = __current_kernel_time();
2568 kdb_gmtime(&now, &tm);
2569 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2570 "tz_minuteswest %d\n",
2571 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2572 tm.tm_hour, tm.tm_min, tm.tm_sec,
2573 sys_tz.tz_minuteswest);
2574
2575 kdb_sysinfo(&val);
2576 kdb_printf("uptime ");
2577 if (val.uptime > (24*60*60)) {
2578 int days = val.uptime / (24*60*60);
2579 val.uptime %= (24*60*60);
2580 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2581 }
2582 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2583
2584 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2585
2586#define LOAD_INT(x) ((x) >> FSHIFT)
2587#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2590 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2591 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2592#undef LOAD_INT
2593#undef LOAD_FRAC
2594 /* Display in kilobytes */
2595#define K(x) ((x) << (PAGE_SHIFT - 10))
2596 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2597 "Buffers: %8lu kB\n",
2598 val.totalram, val.freeram, val.bufferram);
2599 return 0;
2600}
2601
2602/*
2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2604 */
2605static int kdb_per_cpu(int argc, const char **argv)
2606{
2607 char fmtstr[64];
2608 int cpu, diag, nextarg = 1;
2609 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2610
2611 if (argc < 1 || argc > 3)
2612 return KDB_ARGCOUNT;
2613
2614 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2615 if (diag)
2616 return diag;
2617
2618 if (argc >= 2) {
2619 diag = kdbgetularg(argv[2], &bytesperword);
2620 if (diag)
2621 return diag;
2622 }
2623 if (!bytesperword)
2624 bytesperword = KDB_WORD_SIZE;
2625 else if (bytesperword > KDB_WORD_SIZE)
2626 return KDB_BADWIDTH;
2627 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2628 if (argc >= 3) {
2629 diag = kdbgetularg(argv[3], &whichcpu);
2630 if (diag)
2631 return diag;
2632 if (!cpu_online(whichcpu)) {
2633 kdb_printf("cpu %ld is not online\n", whichcpu);
2634 return KDB_BADCPUNUM;
2635 }
2636 }
2637
2638 /* Most architectures use __per_cpu_offset[cpu], some use
2639 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2640 */
2641#ifdef __per_cpu_offset
2642#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2643#else
2644#ifdef CONFIG_SMP
2645#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2646#else
2647#define KDB_PCU(cpu) 0
2648#endif
2649#endif
2650 for_each_online_cpu(cpu) {
2651 if (KDB_FLAG(CMD_INTERRUPT))
2652 return 0;
2653
2654 if (whichcpu != ~0UL && whichcpu != cpu)
2655 continue;
2656 addr = symaddr + KDB_PCU(cpu);
2657 diag = kdb_getword(&val, addr, bytesperword);
2658 if (diag) {
2659 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660 "read, diag=%d\n", cpu, addr, diag);
2661 continue;
2662 }
2663 kdb_printf("%5d ", cpu);
2664 kdb_md_line(fmtstr, addr,
2665 bytesperword == KDB_WORD_SIZE,
2666 1, bytesperword, 1, 1, 0);
2667 }
2668#undef KDB_PCU
2669 return 0;
2670}
2671
2672/*
2673 * display help for the use of cmd | grep pattern
2674 */
2675static int kdb_grep_help(int argc, const char **argv)
2676{
2677 kdb_printf("Usage of cmd args | grep pattern:\n");
2678 kdb_printf(" Any command's output may be filtered through an ");
2679 kdb_printf("emulated 'pipe'.\n");
2680 kdb_printf(" 'grep' is just a key word.\n");
2681 kdb_printf(" The pattern may include a very limited set of "
2682 "metacharacters:\n");
2683 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2684 kdb_printf(" And if there are spaces in the pattern, you may "
2685 "quote it:\n");
2686 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687 " or \"^pat tern$\"\n");
2688 return 0;
2689}
2690
2691/*
2692 * kdb_register_repeat - This function is used to register a kernel
2693 * debugger command.
2694 * Inputs:
2695 * cmd Command name
2696 * func Function to execute the command
2697 * usage A simple usage string showing arguments
2698 * help A simple help string describing command
2699 * repeat Does the command auto repeat on enter?
2700 * Returns:
2701 * zero for success, one if a duplicate command.
2702 */
2703#define kdb_command_extend 50 /* arbitrary */
2704int kdb_register_repeat(char *cmd,
2705 kdb_func_t func,
2706 char *usage,
2707 char *help,
2708 short minlen,
2709 kdb_repeat_t repeat)
2710{
2711 int i;
2712 kdbtab_t *kp;
2713
2714 /*
2715 * Brute force method to determine duplicates
2716 */
2717 for_each_kdbcmd(kp, i) {
2718 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2719 kdb_printf("Duplicate kdb command registered: "
2720 "%s, func %p help %s\n", cmd, func, help);
2721 return 1;
2722 }
2723 }
2724
2725 /*
2726 * Insert command into first available location in table
2727 */
2728 for_each_kdbcmd(kp, i) {
2729 if (kp->cmd_name == NULL)
2730 break;
2731 }
2732
2733 if (i >= kdb_max_commands) {
2734 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2735 kdb_command_extend) * sizeof(*new), GFP_KDB);
2736 if (!new) {
2737 kdb_printf("Could not allocate new kdb_command "
2738 "table\n");
2739 return 1;
2740 }
2741 if (kdb_commands) {
2742 memcpy(new, kdb_commands,
2743 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2744 kfree(kdb_commands);
2745 }
2746 memset(new + kdb_max_commands, 0,
2747 kdb_command_extend * sizeof(*new));
2748 kdb_commands = new;
2749 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2750 kdb_max_commands += kdb_command_extend;
2751 }
2752
2753 kp->cmd_name = cmd;
2754 kp->cmd_func = func;
2755 kp->cmd_usage = usage;
2756 kp->cmd_help = help;
2757 kp->cmd_flags = 0;
2758 kp->cmd_minlen = minlen;
2759 kp->cmd_repeat = repeat;
2760
2761 return 0;
2762}
2763EXPORT_SYMBOL_GPL(kdb_register_repeat);
2764
2765
2766/*
2767 * kdb_register - Compatibility register function for commands that do
2768 * not need to specify a repeat state. Equivalent to
2769 * kdb_register_repeat with KDB_REPEAT_NONE.
2770 * Inputs:
2771 * cmd Command name
2772 * func Function to execute the command
2773 * usage A simple usage string showing arguments
2774 * help A simple help string describing command
2775 * Returns:
2776 * zero for success, one if a duplicate command.
2777 */
2778int kdb_register(char *cmd,
2779 kdb_func_t func,
2780 char *usage,
2781 char *help,
2782 short minlen)
2783{
2784 return kdb_register_repeat(cmd, func, usage, help, minlen,
2785 KDB_REPEAT_NONE);
2786}
2787EXPORT_SYMBOL_GPL(kdb_register);
2788
2789/*
2790 * kdb_unregister - This function is used to unregister a kernel
2791 * debugger command. It is generally called when a module which
2792 * implements kdb commands is unloaded.
2793 * Inputs:
2794 * cmd Command name
2795 * Returns:
2796 * zero for success, one command not registered.
2797 */
2798int kdb_unregister(char *cmd)
2799{
2800 int i;
2801 kdbtab_t *kp;
2802
2803 /*
2804 * find the command.
2805 */
2806 for_each_kdbcmd(kp, i) {
2807 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2808 kp->cmd_name = NULL;
2809 return 0;
2810 }
2811 }
2812
2813 /* Couldn't find it. */
2814 return 1;
2815}
2816EXPORT_SYMBOL_GPL(kdb_unregister);
2817
2818/* Initialize the kdb command table. */
2819static void __init kdb_inittab(void)
2820{
2821 int i;
2822 kdbtab_t *kp;
2823
2824 for_each_kdbcmd(kp, i)
2825 kp->cmd_name = NULL;
2826
2827 kdb_register_repeat("md", kdb_md, "<vaddr>",
2828 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829 KDB_REPEAT_NO_ARGS);
2830 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2831 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2832 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2833 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2834 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2835 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2836 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2837 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2838 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2839 "Continue Execution", 1, KDB_REPEAT_NONE);
2840 kdb_register_repeat("rd", kdb_rd, "",
2841 "Display Registers", 0, KDB_REPEAT_NONE);
2842 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2843 "Modify Registers", 0, KDB_REPEAT_NONE);
2844 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2845 "Display exception frame", 0, KDB_REPEAT_NONE);
2846 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2847 "Stack traceback", 1, KDB_REPEAT_NONE);
2848 kdb_register_repeat("btp", kdb_bt, "<pid>",
2849 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2850 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2851 "Display stack all processes", 0, KDB_REPEAT_NONE);
2852 kdb_register_repeat("btc", kdb_bt, "",
2853 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2854 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2855 "Backtrace process given its struct task address", 0,
2856 KDB_REPEAT_NONE);
2857 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2858 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2859 kdb_register_repeat("env", kdb_env, "",
2860 "Show environment variables", 0, KDB_REPEAT_NONE);
2861 kdb_register_repeat("set", kdb_set, "",
2862 "Set environment variables", 0, KDB_REPEAT_NONE);
2863 kdb_register_repeat("help", kdb_help, "",
2864 "Display Help Message", 1, KDB_REPEAT_NONE);
2865 kdb_register_repeat("?", kdb_help, "",
2866 "Display Help Message", 0, KDB_REPEAT_NONE);
2867 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2868 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kgdb", kdb_kgdb, "",
2870 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2872 "Display active task list", 0, KDB_REPEAT_NONE);
2873 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2874 "Switch to another task", 0, KDB_REPEAT_NONE);
2875 kdb_register_repeat("reboot", kdb_reboot, "",
2876 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2877#if defined(CONFIG_MODULES)
2878 kdb_register_repeat("lsmod", kdb_lsmod, "",
2879 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2880#endif
2881#if defined(CONFIG_MAGIC_SYSRQ)
2882 kdb_register_repeat("sr", kdb_sr, "<key>",
2883 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2884#endif
2885#if defined(CONFIG_PRINTK)
2886 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2887 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2888#endif
2889 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2890 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2891 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2892 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2893 kdb_register_repeat("summary", kdb_summary, "",
2894 "Summarize the system", 4, KDB_REPEAT_NONE);
2895 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2897 kdb_register_repeat("grephelp", kdb_grep_help, "",
2898 "Display help on | grep", 0, KDB_REPEAT_NONE);
2899}
2900
2901/* Execute any commands defined in kdb_cmds. */
2902static void __init kdb_cmd_init(void)
2903{
2904 int i, diag;
2905 for (i = 0; kdb_cmds[i]; ++i) {
2906 diag = kdb_parse(kdb_cmds[i]);
2907 if (diag)
2908 kdb_printf("kdb command %s failed, kdb diag %d\n",
2909 kdb_cmds[i], diag);
2910 }
2911 if (defcmd_in_progress) {
2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913 kdb_parse("endefcmd");
2914 }
2915}
2916
2917/* Initialize kdb_printf, breakpoint tables and kdb state */
2918void __init kdb_init(int lvl)
2919{
2920 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2921 int i;
2922
2923 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2924 return;
2925 for (i = kdb_init_lvl; i < lvl; i++) {
2926 switch (i) {
2927 case KDB_NOT_INITIALIZED:
2928 kdb_inittab(); /* Initialize Command Table */
2929 kdb_initbptab(); /* Initialize Breakpoints */
2930 break;
2931 case KDB_INIT_EARLY:
2932 kdb_cmd_init(); /* Build kdb_cmds tables */
2933 break;
2934 }
2935 }
2936 kdb_init_lvl = lvl;
2937}