Loading...
1/*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
5 *
6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
8 *
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10 *
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13 */
14
15#include <linux/module.h>
16#include <asm/uaccess.h>
17#include <linux/bitops.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/in.h>
22#include <linux/tty.h>
23#include <linux/errno.h>
24#include <linux/netdevice.h>
25#include <linux/timer.h>
26#include <linux/slab.h>
27#include <net/ax25.h>
28#include <linux/etherdevice.h>
29#include <linux/skbuff.h>
30#include <linux/rtnetlink.h>
31#include <linux/spinlock.h>
32#include <linux/if_arp.h>
33#include <linux/init.h>
34#include <linux/ip.h>
35#include <linux/tcp.h>
36#include <linux/semaphore.h>
37#include <linux/compat.h>
38#include <linux/atomic.h>
39
40#define SIXPACK_VERSION "Revision: 0.3.0"
41
42/* sixpack priority commands */
43#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
44#define SIXP_TX_URUN 0x48 /* transmit overrun */
45#define SIXP_RX_ORUN 0x50 /* receive overrun */
46#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
47
48#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
49
50/* masks to get certain bits out of the status bytes sent by the TNC */
51
52#define SIXP_CMD_MASK 0xC0
53#define SIXP_CHN_MASK 0x07
54#define SIXP_PRIO_CMD_MASK 0x80
55#define SIXP_STD_CMD_MASK 0x40
56#define SIXP_PRIO_DATA_MASK 0x38
57#define SIXP_TX_MASK 0x20
58#define SIXP_RX_MASK 0x10
59#define SIXP_RX_DCD_MASK 0x18
60#define SIXP_LEDS_ON 0x78
61#define SIXP_LEDS_OFF 0x60
62#define SIXP_CON 0x08
63#define SIXP_STA 0x10
64
65#define SIXP_FOUND_TNC 0xe9
66#define SIXP_CON_ON 0x68
67#define SIXP_DCD_MASK 0x08
68#define SIXP_DAMA_OFF 0
69
70/* default level 2 parameters */
71#define SIXP_TXDELAY (HZ/4) /* in 1 s */
72#define SIXP_PERSIST 50 /* in 256ths */
73#define SIXP_SLOTTIME (HZ/10) /* in 1 s */
74#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
75#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
76
77/* 6pack configuration. */
78#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
79#define SIXP_MTU 256 /* Default MTU */
80
81enum sixpack_flags {
82 SIXPF_ERROR, /* Parity, etc. error */
83};
84
85struct sixpack {
86 /* Various fields. */
87 struct tty_struct *tty; /* ptr to TTY structure */
88 struct net_device *dev; /* easy for intr handling */
89
90 /* These are pointers to the malloc()ed frame buffers. */
91 unsigned char *rbuff; /* receiver buffer */
92 int rcount; /* received chars counter */
93 unsigned char *xbuff; /* transmitter buffer */
94 unsigned char *xhead; /* next byte to XMIT */
95 int xleft; /* bytes left in XMIT queue */
96
97 unsigned char raw_buf[4];
98 unsigned char cooked_buf[400];
99
100 unsigned int rx_count;
101 unsigned int rx_count_cooked;
102
103 int mtu; /* Our mtu (to spot changes!) */
104 int buffsize; /* Max buffers sizes */
105
106 unsigned long flags; /* Flag values/ mode etc */
107 unsigned char mode; /* 6pack mode */
108
109 /* 6pack stuff */
110 unsigned char tx_delay;
111 unsigned char persistence;
112 unsigned char slottime;
113 unsigned char duplex;
114 unsigned char led_state;
115 unsigned char status;
116 unsigned char status1;
117 unsigned char status2;
118 unsigned char tx_enable;
119 unsigned char tnc_state;
120
121 struct timer_list tx_t;
122 struct timer_list resync_t;
123 atomic_t refcnt;
124 struct semaphore dead_sem;
125 spinlock_t lock;
126};
127
128#define AX25_6PACK_HEADER_LEN 0
129
130static void sixpack_decode(struct sixpack *, unsigned char[], int);
131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132
133/*
134 * Perform the persistence/slottime algorithm for CSMA access. If the
135 * persistence check was successful, write the data to the serial driver.
136 * Note that in case of DAMA operation, the data is not sent here.
137 */
138
139static void sp_xmit_on_air(unsigned long channel)
140{
141 struct sixpack *sp = (struct sixpack *) channel;
142 int actual, when = sp->slottime;
143 static unsigned char random;
144
145 random = random * 17 + 41;
146
147 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 sp->led_state = 0x70;
149 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 sp->tx_enable = 1;
151 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 sp->xleft -= actual;
153 sp->xhead += actual;
154 sp->led_state = 0x60;
155 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 sp->status2 = 0;
157 } else
158 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159}
160
161/* ----> 6pack timer interrupt handler and friends. <---- */
162
163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165{
166 unsigned char *msg, *p = icp;
167 int actual, count;
168
169 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 msg = "oversized transmit packet!";
171 goto out_drop;
172 }
173
174 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175 msg = "oversized transmit packet!";
176 goto out_drop;
177 }
178
179 if (p[0] > 5) {
180 msg = "invalid KISS command";
181 goto out_drop;
182 }
183
184 if ((p[0] != 0) && (len > 2)) {
185 msg = "KISS control packet too long";
186 goto out_drop;
187 }
188
189 if ((p[0] == 0) && (len < 15)) {
190 msg = "bad AX.25 packet to transmit";
191 goto out_drop;
192 }
193
194 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196
197 switch (p[0]) {
198 case 1: sp->tx_delay = p[1];
199 return;
200 case 2: sp->persistence = p[1];
201 return;
202 case 3: sp->slottime = p[1];
203 return;
204 case 4: /* ignored */
205 return;
206 case 5: sp->duplex = p[1];
207 return;
208 }
209
210 if (p[0] != 0)
211 return;
212
213 /*
214 * In case of fullduplex or DAMA operation, we don't take care about the
215 * state of the DCD or of any timers, as the determination of the
216 * correct time to send is the job of the AX.25 layer. We send
217 * immediately after data has arrived.
218 */
219 if (sp->duplex == 1) {
220 sp->led_state = 0x70;
221 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 sp->tx_enable = 1;
223 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224 sp->xleft = count - actual;
225 sp->xhead = sp->xbuff + actual;
226 sp->led_state = 0x60;
227 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228 } else {
229 sp->xleft = count;
230 sp->xhead = sp->xbuff;
231 sp->status2 = count;
232 sp_xmit_on_air((unsigned long)sp);
233 }
234
235 return;
236
237out_drop:
238 sp->dev->stats.tx_dropped++;
239 netif_start_queue(sp->dev);
240 if (net_ratelimit())
241 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242}
243
244/* Encapsulate an IP datagram and kick it into a TTY queue. */
245
246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247{
248 struct sixpack *sp = netdev_priv(dev);
249
250 spin_lock_bh(&sp->lock);
251 /* We were not busy, so we are now... :-) */
252 netif_stop_queue(dev);
253 dev->stats.tx_bytes += skb->len;
254 sp_encaps(sp, skb->data, skb->len);
255 spin_unlock_bh(&sp->lock);
256
257 dev_kfree_skb(skb);
258
259 return NETDEV_TX_OK;
260}
261
262static int sp_open_dev(struct net_device *dev)
263{
264 struct sixpack *sp = netdev_priv(dev);
265
266 if (sp->tty == NULL)
267 return -ENODEV;
268 return 0;
269}
270
271/* Close the low-level part of the 6pack channel. */
272static int sp_close(struct net_device *dev)
273{
274 struct sixpack *sp = netdev_priv(dev);
275
276 spin_lock_bh(&sp->lock);
277 if (sp->tty) {
278 /* TTY discipline is running. */
279 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
280 }
281 netif_stop_queue(dev);
282 spin_unlock_bh(&sp->lock);
283
284 return 0;
285}
286
287/* Return the frame type ID */
288static int sp_header(struct sk_buff *skb, struct net_device *dev,
289 unsigned short type, const void *daddr,
290 const void *saddr, unsigned len)
291{
292#ifdef CONFIG_INET
293 if (type != ETH_P_AX25)
294 return ax25_hard_header(skb, dev, type, daddr, saddr, len);
295#endif
296 return 0;
297}
298
299static int sp_set_mac_address(struct net_device *dev, void *addr)
300{
301 struct sockaddr_ax25 *sa = addr;
302
303 netif_tx_lock_bh(dev);
304 netif_addr_lock(dev);
305 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
306 netif_addr_unlock(dev);
307 netif_tx_unlock_bh(dev);
308
309 return 0;
310}
311
312static int sp_rebuild_header(struct sk_buff *skb)
313{
314#ifdef CONFIG_INET
315 return ax25_rebuild_header(skb);
316#else
317 return 0;
318#endif
319}
320
321static const struct header_ops sp_header_ops = {
322 .create = sp_header,
323 .rebuild = sp_rebuild_header,
324};
325
326static const struct net_device_ops sp_netdev_ops = {
327 .ndo_open = sp_open_dev,
328 .ndo_stop = sp_close,
329 .ndo_start_xmit = sp_xmit,
330 .ndo_set_mac_address = sp_set_mac_address,
331};
332
333static void sp_setup(struct net_device *dev)
334{
335 /* Finish setting up the DEVICE info. */
336 dev->netdev_ops = &sp_netdev_ops;
337 dev->destructor = free_netdev;
338 dev->mtu = SIXP_MTU;
339 dev->hard_header_len = AX25_MAX_HEADER_LEN;
340 dev->header_ops = &sp_header_ops;
341
342 dev->addr_len = AX25_ADDR_LEN;
343 dev->type = ARPHRD_AX25;
344 dev->tx_queue_len = 10;
345
346 /* Only activated in AX.25 mode */
347 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
348 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
349
350 dev->flags = 0;
351}
352
353/* Send one completely decapsulated IP datagram to the IP layer. */
354
355/*
356 * This is the routine that sends the received data to the kernel AX.25.
357 * 'cmd' is the KISS command. For AX.25 data, it is zero.
358 */
359
360static void sp_bump(struct sixpack *sp, char cmd)
361{
362 struct sk_buff *skb;
363 int count;
364 unsigned char *ptr;
365
366 count = sp->rcount + 1;
367
368 sp->dev->stats.rx_bytes += count;
369
370 if ((skb = dev_alloc_skb(count)) == NULL)
371 goto out_mem;
372
373 ptr = skb_put(skb, count);
374 *ptr++ = cmd; /* KISS command */
375
376 memcpy(ptr, sp->cooked_buf + 1, count);
377 skb->protocol = ax25_type_trans(skb, sp->dev);
378 netif_rx(skb);
379 sp->dev->stats.rx_packets++;
380
381 return;
382
383out_mem:
384 sp->dev->stats.rx_dropped++;
385}
386
387
388/* ----------------------------------------------------------------------- */
389
390/*
391 * We have a potential race on dereferencing tty->disc_data, because the tty
392 * layer provides no locking at all - thus one cpu could be running
393 * sixpack_receive_buf while another calls sixpack_close, which zeroes
394 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
395 * best way to fix this is to use a rwlock in the tty struct, but for now we
396 * use a single global rwlock for all ttys in ppp line discipline.
397 */
398static DEFINE_RWLOCK(disc_data_lock);
399
400static struct sixpack *sp_get(struct tty_struct *tty)
401{
402 struct sixpack *sp;
403
404 read_lock(&disc_data_lock);
405 sp = tty->disc_data;
406 if (sp)
407 atomic_inc(&sp->refcnt);
408 read_unlock(&disc_data_lock);
409
410 return sp;
411}
412
413static void sp_put(struct sixpack *sp)
414{
415 if (atomic_dec_and_test(&sp->refcnt))
416 up(&sp->dead_sem);
417}
418
419/*
420 * Called by the TTY driver when there's room for more data. If we have
421 * more packets to send, we send them here.
422 */
423static void sixpack_write_wakeup(struct tty_struct *tty)
424{
425 struct sixpack *sp = sp_get(tty);
426 int actual;
427
428 if (!sp)
429 return;
430 if (sp->xleft <= 0) {
431 /* Now serial buffer is almost free & we can start
432 * transmission of another packet */
433 sp->dev->stats.tx_packets++;
434 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
435 sp->tx_enable = 0;
436 netif_wake_queue(sp->dev);
437 goto out;
438 }
439
440 if (sp->tx_enable) {
441 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
442 sp->xleft -= actual;
443 sp->xhead += actual;
444 }
445
446out:
447 sp_put(sp);
448}
449
450/* ----------------------------------------------------------------------- */
451
452/*
453 * Handle the 'receiver data ready' interrupt.
454 * This function is called by the 'tty_io' module in the kernel when
455 * a block of 6pack data has been received, which can now be decapsulated
456 * and sent on to some IP layer for further processing.
457 */
458static void sixpack_receive_buf(struct tty_struct *tty,
459 const unsigned char *cp, char *fp, int count)
460{
461 struct sixpack *sp;
462 unsigned char buf[512];
463 int count1;
464
465 if (!count)
466 return;
467
468 sp = sp_get(tty);
469 if (!sp)
470 return;
471
472 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
473
474 /* Read the characters out of the buffer */
475
476 count1 = count;
477 while (count) {
478 count--;
479 if (fp && *fp++) {
480 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
481 sp->dev->stats.rx_errors++;
482 continue;
483 }
484 }
485 sixpack_decode(sp, buf, count1);
486
487 sp_put(sp);
488 tty_unthrottle(tty);
489}
490
491/*
492 * Try to resync the TNC. Called by the resync timer defined in
493 * decode_prio_command
494 */
495
496#define TNC_UNINITIALIZED 0
497#define TNC_UNSYNC_STARTUP 1
498#define TNC_UNSYNCED 2
499#define TNC_IN_SYNC 3
500
501static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
502{
503 char *msg;
504
505 switch (new_tnc_state) {
506 default: /* gcc oh piece-o-crap ... */
507 case TNC_UNSYNC_STARTUP:
508 msg = "Synchronizing with TNC";
509 break;
510 case TNC_UNSYNCED:
511 msg = "Lost synchronization with TNC\n";
512 break;
513 case TNC_IN_SYNC:
514 msg = "Found TNC";
515 break;
516 }
517
518 sp->tnc_state = new_tnc_state;
519 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
520}
521
522static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
523{
524 int old_tnc_state = sp->tnc_state;
525
526 if (old_tnc_state != new_tnc_state)
527 __tnc_set_sync_state(sp, new_tnc_state);
528}
529
530static void resync_tnc(unsigned long channel)
531{
532 struct sixpack *sp = (struct sixpack *) channel;
533 static char resync_cmd = 0xe8;
534
535 /* clear any data that might have been received */
536
537 sp->rx_count = 0;
538 sp->rx_count_cooked = 0;
539
540 /* reset state machine */
541
542 sp->status = 1;
543 sp->status1 = 1;
544 sp->status2 = 0;
545
546 /* resync the TNC */
547
548 sp->led_state = 0x60;
549 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
550 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
551
552
553 /* Start resync timer again -- the TNC might be still absent */
554
555 del_timer(&sp->resync_t);
556 sp->resync_t.data = (unsigned long) sp;
557 sp->resync_t.function = resync_tnc;
558 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
559 add_timer(&sp->resync_t);
560}
561
562static inline int tnc_init(struct sixpack *sp)
563{
564 unsigned char inbyte = 0xe8;
565
566 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
567
568 sp->tty->ops->write(sp->tty, &inbyte, 1);
569
570 del_timer(&sp->resync_t);
571 sp->resync_t.data = (unsigned long) sp;
572 sp->resync_t.function = resync_tnc;
573 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
574 add_timer(&sp->resync_t);
575
576 return 0;
577}
578
579/*
580 * Open the high-level part of the 6pack channel.
581 * This function is called by the TTY module when the
582 * 6pack line discipline is called for. Because we are
583 * sure the tty line exists, we only have to link it to
584 * a free 6pcack channel...
585 */
586static int sixpack_open(struct tty_struct *tty)
587{
588 char *rbuff = NULL, *xbuff = NULL;
589 struct net_device *dev;
590 struct sixpack *sp;
591 unsigned long len;
592 int err = 0;
593
594 if (!capable(CAP_NET_ADMIN))
595 return -EPERM;
596 if (tty->ops->write == NULL)
597 return -EOPNOTSUPP;
598
599 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
600 if (!dev) {
601 err = -ENOMEM;
602 goto out;
603 }
604
605 sp = netdev_priv(dev);
606 sp->dev = dev;
607
608 spin_lock_init(&sp->lock);
609 atomic_set(&sp->refcnt, 1);
610 sema_init(&sp->dead_sem, 0);
611
612 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
613
614 len = dev->mtu * 2;
615
616 rbuff = kmalloc(len + 4, GFP_KERNEL);
617 xbuff = kmalloc(len + 4, GFP_KERNEL);
618
619 if (rbuff == NULL || xbuff == NULL) {
620 err = -ENOBUFS;
621 goto out_free;
622 }
623
624 spin_lock_bh(&sp->lock);
625
626 sp->tty = tty;
627
628 sp->rbuff = rbuff;
629 sp->xbuff = xbuff;
630
631 sp->mtu = AX25_MTU + 73;
632 sp->buffsize = len;
633 sp->rcount = 0;
634 sp->rx_count = 0;
635 sp->rx_count_cooked = 0;
636 sp->xleft = 0;
637
638 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
639
640 sp->duplex = 0;
641 sp->tx_delay = SIXP_TXDELAY;
642 sp->persistence = SIXP_PERSIST;
643 sp->slottime = SIXP_SLOTTIME;
644 sp->led_state = 0x60;
645 sp->status = 1;
646 sp->status1 = 1;
647 sp->status2 = 0;
648 sp->tx_enable = 0;
649
650 netif_start_queue(dev);
651
652 init_timer(&sp->tx_t);
653 sp->tx_t.function = sp_xmit_on_air;
654 sp->tx_t.data = (unsigned long) sp;
655
656 init_timer(&sp->resync_t);
657
658 spin_unlock_bh(&sp->lock);
659
660 /* Done. We have linked the TTY line to a channel. */
661 tty->disc_data = sp;
662 tty->receive_room = 65536;
663
664 /* Now we're ready to register. */
665 err = register_netdev(dev);
666 if (err)
667 goto out_free;
668
669 tnc_init(sp);
670
671 return 0;
672
673out_free:
674 kfree(xbuff);
675 kfree(rbuff);
676
677 if (dev)
678 free_netdev(dev);
679
680out:
681 return err;
682}
683
684
685/*
686 * Close down a 6pack channel.
687 * This means flushing out any pending queues, and then restoring the
688 * TTY line discipline to what it was before it got hooked to 6pack
689 * (which usually is TTY again).
690 */
691static void sixpack_close(struct tty_struct *tty)
692{
693 struct sixpack *sp;
694
695 write_lock_bh(&disc_data_lock);
696 sp = tty->disc_data;
697 tty->disc_data = NULL;
698 write_unlock_bh(&disc_data_lock);
699 if (!sp)
700 return;
701
702 /*
703 * We have now ensured that nobody can start using ap from now on, but
704 * we have to wait for all existing users to finish.
705 */
706 if (!atomic_dec_and_test(&sp->refcnt))
707 down(&sp->dead_sem);
708
709 unregister_netdev(sp->dev);
710
711 del_timer(&sp->tx_t);
712 del_timer(&sp->resync_t);
713
714 /* Free all 6pack frame buffers. */
715 kfree(sp->rbuff);
716 kfree(sp->xbuff);
717}
718
719/* Perform I/O control on an active 6pack channel. */
720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
721 unsigned int cmd, unsigned long arg)
722{
723 struct sixpack *sp = sp_get(tty);
724 struct net_device *dev;
725 unsigned int tmp, err;
726
727 if (!sp)
728 return -ENXIO;
729 dev = sp->dev;
730
731 switch(cmd) {
732 case SIOCGIFNAME:
733 err = copy_to_user((void __user *) arg, dev->name,
734 strlen(dev->name) + 1) ? -EFAULT : 0;
735 break;
736
737 case SIOCGIFENCAP:
738 err = put_user(0, (int __user *) arg);
739 break;
740
741 case SIOCSIFENCAP:
742 if (get_user(tmp, (int __user *) arg)) {
743 err = -EFAULT;
744 break;
745 }
746
747 sp->mode = tmp;
748 dev->addr_len = AX25_ADDR_LEN;
749 dev->hard_header_len = AX25_KISS_HEADER_LEN +
750 AX25_MAX_HEADER_LEN + 3;
751 dev->type = ARPHRD_AX25;
752
753 err = 0;
754 break;
755
756 case SIOCSIFHWADDR: {
757 char addr[AX25_ADDR_LEN];
758
759 if (copy_from_user(&addr,
760 (void __user *) arg, AX25_ADDR_LEN)) {
761 err = -EFAULT;
762 break;
763 }
764
765 netif_tx_lock_bh(dev);
766 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
767 netif_tx_unlock_bh(dev);
768
769 err = 0;
770 break;
771 }
772
773 default:
774 err = tty_mode_ioctl(tty, file, cmd, arg);
775 }
776
777 sp_put(sp);
778
779 return err;
780}
781
782#ifdef CONFIG_COMPAT
783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
784 unsigned int cmd, unsigned long arg)
785{
786 switch (cmd) {
787 case SIOCGIFNAME:
788 case SIOCGIFENCAP:
789 case SIOCSIFENCAP:
790 case SIOCSIFHWADDR:
791 return sixpack_ioctl(tty, file, cmd,
792 (unsigned long)compat_ptr(arg));
793 }
794
795 return -ENOIOCTLCMD;
796}
797#endif
798
799static struct tty_ldisc_ops sp_ldisc = {
800 .owner = THIS_MODULE,
801 .magic = TTY_LDISC_MAGIC,
802 .name = "6pack",
803 .open = sixpack_open,
804 .close = sixpack_close,
805 .ioctl = sixpack_ioctl,
806#ifdef CONFIG_COMPAT
807 .compat_ioctl = sixpack_compat_ioctl,
808#endif
809 .receive_buf = sixpack_receive_buf,
810 .write_wakeup = sixpack_write_wakeup,
811};
812
813/* Initialize 6pack control device -- register 6pack line discipline */
814
815static const char msg_banner[] __initconst = KERN_INFO \
816 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
817static const char msg_regfail[] __initconst = KERN_ERR \
818 "6pack: can't register line discipline (err = %d)\n";
819
820static int __init sixpack_init_driver(void)
821{
822 int status;
823
824 printk(msg_banner);
825
826 /* Register the provided line protocol discipline */
827 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
828 printk(msg_regfail, status);
829
830 return status;
831}
832
833static const char msg_unregfail[] = KERN_ERR \
834 "6pack: can't unregister line discipline (err = %d)\n";
835
836static void __exit sixpack_exit_driver(void)
837{
838 int ret;
839
840 if ((ret = tty_unregister_ldisc(N_6PACK)))
841 printk(msg_unregfail, ret);
842}
843
844/* encode an AX.25 packet into 6pack */
845
846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
847 int length, unsigned char tx_delay)
848{
849 int count = 0;
850 unsigned char checksum = 0, buf[400];
851 int raw_count = 0;
852
853 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
854 tx_buf_raw[raw_count++] = SIXP_SEOF;
855
856 buf[0] = tx_delay;
857 for (count = 1; count < length; count++)
858 buf[count] = tx_buf[count];
859
860 for (count = 0; count < length; count++)
861 checksum += buf[count];
862 buf[length] = (unsigned char) 0xff - checksum;
863
864 for (count = 0; count <= length; count++) {
865 if ((count % 3) == 0) {
866 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
867 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
868 } else if ((count % 3) == 1) {
869 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
870 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
871 } else {
872 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
873 tx_buf_raw[raw_count++] = (buf[count] >> 2);
874 }
875 }
876 if ((length % 3) != 2)
877 raw_count++;
878 tx_buf_raw[raw_count++] = SIXP_SEOF;
879 return raw_count;
880}
881
882/* decode 4 sixpack-encoded bytes into 3 data bytes */
883
884static void decode_data(struct sixpack *sp, unsigned char inbyte)
885{
886 unsigned char *buf;
887
888 if (sp->rx_count != 3) {
889 sp->raw_buf[sp->rx_count++] = inbyte;
890
891 return;
892 }
893
894 buf = sp->raw_buf;
895 sp->cooked_buf[sp->rx_count_cooked++] =
896 buf[0] | ((buf[1] << 2) & 0xc0);
897 sp->cooked_buf[sp->rx_count_cooked++] =
898 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
899 sp->cooked_buf[sp->rx_count_cooked++] =
900 (buf[2] & 0x03) | (inbyte << 2);
901 sp->rx_count = 0;
902}
903
904/* identify and execute a 6pack priority command byte */
905
906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
907{
908 unsigned char channel;
909 int actual;
910
911 channel = cmd & SIXP_CHN_MASK;
912 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
913
914 /* RX and DCD flags can only be set in the same prio command,
915 if the DCD flag has been set without the RX flag in the previous
916 prio command. If DCD has not been set before, something in the
917 transmission has gone wrong. In this case, RX and DCD are
918 cleared in order to prevent the decode_data routine from
919 reading further data that might be corrupt. */
920
921 if (((sp->status & SIXP_DCD_MASK) == 0) &&
922 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
923 if (sp->status != 1)
924 printk(KERN_DEBUG "6pack: protocol violation\n");
925 else
926 sp->status = 0;
927 cmd &= ~SIXP_RX_DCD_MASK;
928 }
929 sp->status = cmd & SIXP_PRIO_DATA_MASK;
930 } else { /* output watchdog char if idle */
931 if ((sp->status2 != 0) && (sp->duplex == 1)) {
932 sp->led_state = 0x70;
933 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
934 sp->tx_enable = 1;
935 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
936 sp->xleft -= actual;
937 sp->xhead += actual;
938 sp->led_state = 0x60;
939 sp->status2 = 0;
940
941 }
942 }
943
944 /* needed to trigger the TNC watchdog */
945 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
946
947 /* if the state byte has been received, the TNC is present,
948 so the resync timer can be reset. */
949
950 if (sp->tnc_state == TNC_IN_SYNC) {
951 del_timer(&sp->resync_t);
952 sp->resync_t.data = (unsigned long) sp;
953 sp->resync_t.function = resync_tnc;
954 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
955 add_timer(&sp->resync_t);
956 }
957
958 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
959}
960
961/* identify and execute a standard 6pack command byte */
962
963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
964{
965 unsigned char checksum = 0, rest = 0, channel;
966 short i;
967
968 channel = cmd & SIXP_CHN_MASK;
969 switch (cmd & SIXP_CMD_MASK) { /* normal command */
970 case SIXP_SEOF:
971 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
972 if ((sp->status & SIXP_RX_DCD_MASK) ==
973 SIXP_RX_DCD_MASK) {
974 sp->led_state = 0x68;
975 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
976 }
977 } else {
978 sp->led_state = 0x60;
979 /* fill trailing bytes with zeroes */
980 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
981 rest = sp->rx_count;
982 if (rest != 0)
983 for (i = rest; i <= 3; i++)
984 decode_data(sp, 0);
985 if (rest == 2)
986 sp->rx_count_cooked -= 2;
987 else if (rest == 3)
988 sp->rx_count_cooked -= 1;
989 for (i = 0; i < sp->rx_count_cooked; i++)
990 checksum += sp->cooked_buf[i];
991 if (checksum != SIXP_CHKSUM) {
992 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
993 } else {
994 sp->rcount = sp->rx_count_cooked-2;
995 sp_bump(sp, 0);
996 }
997 sp->rx_count_cooked = 0;
998 }
999 break;
1000 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001 break;
1002 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003 break;
1004 case SIXP_RX_BUF_OVL:
1005 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006 }
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014 unsigned char inbyte;
1015 int count1;
1016
1017 for (count1 = 0; count1 < count; count1++) {
1018 inbyte = pre_rbuff[count1];
1019 if (inbyte == SIXP_FOUND_TNC) {
1020 tnc_set_sync_state(sp, TNC_IN_SYNC);
1021 del_timer(&sp->resync_t);
1022 }
1023 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024 decode_prio_command(sp, inbyte);
1025 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026 decode_std_command(sp, inbyte);
1027 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1028 decode_data(sp, inbyte);
1029 }
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);
1/*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
5 *
6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
8 *
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10 *
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13 */
14
15#include <linux/module.h>
16#include <asm/system.h>
17#include <asm/uaccess.h>
18#include <linux/bitops.h>
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/interrupt.h>
22#include <linux/in.h>
23#include <linux/tty.h>
24#include <linux/errno.h>
25#include <linux/netdevice.h>
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <net/ax25.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/rtnetlink.h>
32#include <linux/spinlock.h>
33#include <linux/if_arp.h>
34#include <linux/init.h>
35#include <linux/ip.h>
36#include <linux/tcp.h>
37#include <linux/semaphore.h>
38#include <linux/compat.h>
39#include <linux/atomic.h>
40
41#define SIXPACK_VERSION "Revision: 0.3.0"
42
43/* sixpack priority commands */
44#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
45#define SIXP_TX_URUN 0x48 /* transmit overrun */
46#define SIXP_RX_ORUN 0x50 /* receive overrun */
47#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
48
49#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
50
51/* masks to get certain bits out of the status bytes sent by the TNC */
52
53#define SIXP_CMD_MASK 0xC0
54#define SIXP_CHN_MASK 0x07
55#define SIXP_PRIO_CMD_MASK 0x80
56#define SIXP_STD_CMD_MASK 0x40
57#define SIXP_PRIO_DATA_MASK 0x38
58#define SIXP_TX_MASK 0x20
59#define SIXP_RX_MASK 0x10
60#define SIXP_RX_DCD_MASK 0x18
61#define SIXP_LEDS_ON 0x78
62#define SIXP_LEDS_OFF 0x60
63#define SIXP_CON 0x08
64#define SIXP_STA 0x10
65
66#define SIXP_FOUND_TNC 0xe9
67#define SIXP_CON_ON 0x68
68#define SIXP_DCD_MASK 0x08
69#define SIXP_DAMA_OFF 0
70
71/* default level 2 parameters */
72#define SIXP_TXDELAY (HZ/4) /* in 1 s */
73#define SIXP_PERSIST 50 /* in 256ths */
74#define SIXP_SLOTTIME (HZ/10) /* in 1 s */
75#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
76#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
77
78/* 6pack configuration. */
79#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
80#define SIXP_MTU 256 /* Default MTU */
81
82enum sixpack_flags {
83 SIXPF_ERROR, /* Parity, etc. error */
84};
85
86struct sixpack {
87 /* Various fields. */
88 struct tty_struct *tty; /* ptr to TTY structure */
89 struct net_device *dev; /* easy for intr handling */
90
91 /* These are pointers to the malloc()ed frame buffers. */
92 unsigned char *rbuff; /* receiver buffer */
93 int rcount; /* received chars counter */
94 unsigned char *xbuff; /* transmitter buffer */
95 unsigned char *xhead; /* next byte to XMIT */
96 int xleft; /* bytes left in XMIT queue */
97
98 unsigned char raw_buf[4];
99 unsigned char cooked_buf[400];
100
101 unsigned int rx_count;
102 unsigned int rx_count_cooked;
103
104 int mtu; /* Our mtu (to spot changes!) */
105 int buffsize; /* Max buffers sizes */
106
107 unsigned long flags; /* Flag values/ mode etc */
108 unsigned char mode; /* 6pack mode */
109
110 /* 6pack stuff */
111 unsigned char tx_delay;
112 unsigned char persistence;
113 unsigned char slottime;
114 unsigned char duplex;
115 unsigned char led_state;
116 unsigned char status;
117 unsigned char status1;
118 unsigned char status2;
119 unsigned char tx_enable;
120 unsigned char tnc_state;
121
122 struct timer_list tx_t;
123 struct timer_list resync_t;
124 atomic_t refcnt;
125 struct semaphore dead_sem;
126 spinlock_t lock;
127};
128
129#define AX25_6PACK_HEADER_LEN 0
130
131static void sixpack_decode(struct sixpack *, unsigned char[], int);
132static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
133
134/*
135 * Perform the persistence/slottime algorithm for CSMA access. If the
136 * persistence check was successful, write the data to the serial driver.
137 * Note that in case of DAMA operation, the data is not sent here.
138 */
139
140static void sp_xmit_on_air(unsigned long channel)
141{
142 struct sixpack *sp = (struct sixpack *) channel;
143 int actual, when = sp->slottime;
144 static unsigned char random;
145
146 random = random * 17 + 41;
147
148 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
149 sp->led_state = 0x70;
150 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151 sp->tx_enable = 1;
152 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
153 sp->xleft -= actual;
154 sp->xhead += actual;
155 sp->led_state = 0x60;
156 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
157 sp->status2 = 0;
158 } else
159 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
160}
161
162/* ----> 6pack timer interrupt handler and friends. <---- */
163
164/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
165static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
166{
167 unsigned char *msg, *p = icp;
168 int actual, count;
169
170 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
171 msg = "oversized transmit packet!";
172 goto out_drop;
173 }
174
175 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
176 msg = "oversized transmit packet!";
177 goto out_drop;
178 }
179
180 if (p[0] > 5) {
181 msg = "invalid KISS command";
182 goto out_drop;
183 }
184
185 if ((p[0] != 0) && (len > 2)) {
186 msg = "KISS control packet too long";
187 goto out_drop;
188 }
189
190 if ((p[0] == 0) && (len < 15)) {
191 msg = "bad AX.25 packet to transmit";
192 goto out_drop;
193 }
194
195 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
196 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
197
198 switch (p[0]) {
199 case 1: sp->tx_delay = p[1];
200 return;
201 case 2: sp->persistence = p[1];
202 return;
203 case 3: sp->slottime = p[1];
204 return;
205 case 4: /* ignored */
206 return;
207 case 5: sp->duplex = p[1];
208 return;
209 }
210
211 if (p[0] != 0)
212 return;
213
214 /*
215 * In case of fullduplex or DAMA operation, we don't take care about the
216 * state of the DCD or of any timers, as the determination of the
217 * correct time to send is the job of the AX.25 layer. We send
218 * immediately after data has arrived.
219 */
220 if (sp->duplex == 1) {
221 sp->led_state = 0x70;
222 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
223 sp->tx_enable = 1;
224 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
225 sp->xleft = count - actual;
226 sp->xhead = sp->xbuff + actual;
227 sp->led_state = 0x60;
228 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
229 } else {
230 sp->xleft = count;
231 sp->xhead = sp->xbuff;
232 sp->status2 = count;
233 sp_xmit_on_air((unsigned long)sp);
234 }
235
236 return;
237
238out_drop:
239 sp->dev->stats.tx_dropped++;
240 netif_start_queue(sp->dev);
241 if (net_ratelimit())
242 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
243}
244
245/* Encapsulate an IP datagram and kick it into a TTY queue. */
246
247static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
248{
249 struct sixpack *sp = netdev_priv(dev);
250
251 spin_lock_bh(&sp->lock);
252 /* We were not busy, so we are now... :-) */
253 netif_stop_queue(dev);
254 dev->stats.tx_bytes += skb->len;
255 sp_encaps(sp, skb->data, skb->len);
256 spin_unlock_bh(&sp->lock);
257
258 dev_kfree_skb(skb);
259
260 return NETDEV_TX_OK;
261}
262
263static int sp_open_dev(struct net_device *dev)
264{
265 struct sixpack *sp = netdev_priv(dev);
266
267 if (sp->tty == NULL)
268 return -ENODEV;
269 return 0;
270}
271
272/* Close the low-level part of the 6pack channel. */
273static int sp_close(struct net_device *dev)
274{
275 struct sixpack *sp = netdev_priv(dev);
276
277 spin_lock_bh(&sp->lock);
278 if (sp->tty) {
279 /* TTY discipline is running. */
280 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
281 }
282 netif_stop_queue(dev);
283 spin_unlock_bh(&sp->lock);
284
285 return 0;
286}
287
288/* Return the frame type ID */
289static int sp_header(struct sk_buff *skb, struct net_device *dev,
290 unsigned short type, const void *daddr,
291 const void *saddr, unsigned len)
292{
293#ifdef CONFIG_INET
294 if (type != ETH_P_AX25)
295 return ax25_hard_header(skb, dev, type, daddr, saddr, len);
296#endif
297 return 0;
298}
299
300static int sp_set_mac_address(struct net_device *dev, void *addr)
301{
302 struct sockaddr_ax25 *sa = addr;
303
304 netif_tx_lock_bh(dev);
305 netif_addr_lock(dev);
306 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
307 netif_addr_unlock(dev);
308 netif_tx_unlock_bh(dev);
309
310 return 0;
311}
312
313static int sp_rebuild_header(struct sk_buff *skb)
314{
315#ifdef CONFIG_INET
316 return ax25_rebuild_header(skb);
317#else
318 return 0;
319#endif
320}
321
322static const struct header_ops sp_header_ops = {
323 .create = sp_header,
324 .rebuild = sp_rebuild_header,
325};
326
327static const struct net_device_ops sp_netdev_ops = {
328 .ndo_open = sp_open_dev,
329 .ndo_stop = sp_close,
330 .ndo_start_xmit = sp_xmit,
331 .ndo_set_mac_address = sp_set_mac_address,
332};
333
334static void sp_setup(struct net_device *dev)
335{
336 /* Finish setting up the DEVICE info. */
337 dev->netdev_ops = &sp_netdev_ops;
338 dev->destructor = free_netdev;
339 dev->mtu = SIXP_MTU;
340 dev->hard_header_len = AX25_MAX_HEADER_LEN;
341 dev->header_ops = &sp_header_ops;
342
343 dev->addr_len = AX25_ADDR_LEN;
344 dev->type = ARPHRD_AX25;
345 dev->tx_queue_len = 10;
346
347 /* Only activated in AX.25 mode */
348 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
349 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
350
351 dev->flags = 0;
352}
353
354/* Send one completely decapsulated IP datagram to the IP layer. */
355
356/*
357 * This is the routine that sends the received data to the kernel AX.25.
358 * 'cmd' is the KISS command. For AX.25 data, it is zero.
359 */
360
361static void sp_bump(struct sixpack *sp, char cmd)
362{
363 struct sk_buff *skb;
364 int count;
365 unsigned char *ptr;
366
367 count = sp->rcount + 1;
368
369 sp->dev->stats.rx_bytes += count;
370
371 if ((skb = dev_alloc_skb(count)) == NULL)
372 goto out_mem;
373
374 ptr = skb_put(skb, count);
375 *ptr++ = cmd; /* KISS command */
376
377 memcpy(ptr, sp->cooked_buf + 1, count);
378 skb->protocol = ax25_type_trans(skb, sp->dev);
379 netif_rx(skb);
380 sp->dev->stats.rx_packets++;
381
382 return;
383
384out_mem:
385 sp->dev->stats.rx_dropped++;
386}
387
388
389/* ----------------------------------------------------------------------- */
390
391/*
392 * We have a potential race on dereferencing tty->disc_data, because the tty
393 * layer provides no locking at all - thus one cpu could be running
394 * sixpack_receive_buf while another calls sixpack_close, which zeroes
395 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
396 * best way to fix this is to use a rwlock in the tty struct, but for now we
397 * use a single global rwlock for all ttys in ppp line discipline.
398 */
399static DEFINE_RWLOCK(disc_data_lock);
400
401static struct sixpack *sp_get(struct tty_struct *tty)
402{
403 struct sixpack *sp;
404
405 read_lock(&disc_data_lock);
406 sp = tty->disc_data;
407 if (sp)
408 atomic_inc(&sp->refcnt);
409 read_unlock(&disc_data_lock);
410
411 return sp;
412}
413
414static void sp_put(struct sixpack *sp)
415{
416 if (atomic_dec_and_test(&sp->refcnt))
417 up(&sp->dead_sem);
418}
419
420/*
421 * Called by the TTY driver when there's room for more data. If we have
422 * more packets to send, we send them here.
423 */
424static void sixpack_write_wakeup(struct tty_struct *tty)
425{
426 struct sixpack *sp = sp_get(tty);
427 int actual;
428
429 if (!sp)
430 return;
431 if (sp->xleft <= 0) {
432 /* Now serial buffer is almost free & we can start
433 * transmission of another packet */
434 sp->dev->stats.tx_packets++;
435 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
436 sp->tx_enable = 0;
437 netif_wake_queue(sp->dev);
438 goto out;
439 }
440
441 if (sp->tx_enable) {
442 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
443 sp->xleft -= actual;
444 sp->xhead += actual;
445 }
446
447out:
448 sp_put(sp);
449}
450
451/* ----------------------------------------------------------------------- */
452
453/*
454 * Handle the 'receiver data ready' interrupt.
455 * This function is called by the 'tty_io' module in the kernel when
456 * a block of 6pack data has been received, which can now be decapsulated
457 * and sent on to some IP layer for further processing.
458 */
459static void sixpack_receive_buf(struct tty_struct *tty,
460 const unsigned char *cp, char *fp, int count)
461{
462 struct sixpack *sp;
463 unsigned char buf[512];
464 int count1;
465
466 if (!count)
467 return;
468
469 sp = sp_get(tty);
470 if (!sp)
471 return;
472
473 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
474
475 /* Read the characters out of the buffer */
476
477 count1 = count;
478 while (count) {
479 count--;
480 if (fp && *fp++) {
481 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
482 sp->dev->stats.rx_errors++;
483 continue;
484 }
485 }
486 sixpack_decode(sp, buf, count1);
487
488 sp_put(sp);
489 tty_unthrottle(tty);
490}
491
492/*
493 * Try to resync the TNC. Called by the resync timer defined in
494 * decode_prio_command
495 */
496
497#define TNC_UNINITIALIZED 0
498#define TNC_UNSYNC_STARTUP 1
499#define TNC_UNSYNCED 2
500#define TNC_IN_SYNC 3
501
502static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
503{
504 char *msg;
505
506 switch (new_tnc_state) {
507 default: /* gcc oh piece-o-crap ... */
508 case TNC_UNSYNC_STARTUP:
509 msg = "Synchronizing with TNC";
510 break;
511 case TNC_UNSYNCED:
512 msg = "Lost synchronization with TNC\n";
513 break;
514 case TNC_IN_SYNC:
515 msg = "Found TNC";
516 break;
517 }
518
519 sp->tnc_state = new_tnc_state;
520 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
521}
522
523static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
524{
525 int old_tnc_state = sp->tnc_state;
526
527 if (old_tnc_state != new_tnc_state)
528 __tnc_set_sync_state(sp, new_tnc_state);
529}
530
531static void resync_tnc(unsigned long channel)
532{
533 struct sixpack *sp = (struct sixpack *) channel;
534 static char resync_cmd = 0xe8;
535
536 /* clear any data that might have been received */
537
538 sp->rx_count = 0;
539 sp->rx_count_cooked = 0;
540
541 /* reset state machine */
542
543 sp->status = 1;
544 sp->status1 = 1;
545 sp->status2 = 0;
546
547 /* resync the TNC */
548
549 sp->led_state = 0x60;
550 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
551 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
552
553
554 /* Start resync timer again -- the TNC might be still absent */
555
556 del_timer(&sp->resync_t);
557 sp->resync_t.data = (unsigned long) sp;
558 sp->resync_t.function = resync_tnc;
559 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
560 add_timer(&sp->resync_t);
561}
562
563static inline int tnc_init(struct sixpack *sp)
564{
565 unsigned char inbyte = 0xe8;
566
567 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
568
569 sp->tty->ops->write(sp->tty, &inbyte, 1);
570
571 del_timer(&sp->resync_t);
572 sp->resync_t.data = (unsigned long) sp;
573 sp->resync_t.function = resync_tnc;
574 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
575 add_timer(&sp->resync_t);
576
577 return 0;
578}
579
580/*
581 * Open the high-level part of the 6pack channel.
582 * This function is called by the TTY module when the
583 * 6pack line discipline is called for. Because we are
584 * sure the tty line exists, we only have to link it to
585 * a free 6pcack channel...
586 */
587static int sixpack_open(struct tty_struct *tty)
588{
589 char *rbuff = NULL, *xbuff = NULL;
590 struct net_device *dev;
591 struct sixpack *sp;
592 unsigned long len;
593 int err = 0;
594
595 if (!capable(CAP_NET_ADMIN))
596 return -EPERM;
597 if (tty->ops->write == NULL)
598 return -EOPNOTSUPP;
599
600 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
601 if (!dev) {
602 err = -ENOMEM;
603 goto out;
604 }
605
606 sp = netdev_priv(dev);
607 sp->dev = dev;
608
609 spin_lock_init(&sp->lock);
610 atomic_set(&sp->refcnt, 1);
611 sema_init(&sp->dead_sem, 0);
612
613 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
614
615 len = dev->mtu * 2;
616
617 rbuff = kmalloc(len + 4, GFP_KERNEL);
618 xbuff = kmalloc(len + 4, GFP_KERNEL);
619
620 if (rbuff == NULL || xbuff == NULL) {
621 err = -ENOBUFS;
622 goto out_free;
623 }
624
625 spin_lock_bh(&sp->lock);
626
627 sp->tty = tty;
628
629 sp->rbuff = rbuff;
630 sp->xbuff = xbuff;
631
632 sp->mtu = AX25_MTU + 73;
633 sp->buffsize = len;
634 sp->rcount = 0;
635 sp->rx_count = 0;
636 sp->rx_count_cooked = 0;
637 sp->xleft = 0;
638
639 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
640
641 sp->duplex = 0;
642 sp->tx_delay = SIXP_TXDELAY;
643 sp->persistence = SIXP_PERSIST;
644 sp->slottime = SIXP_SLOTTIME;
645 sp->led_state = 0x60;
646 sp->status = 1;
647 sp->status1 = 1;
648 sp->status2 = 0;
649 sp->tx_enable = 0;
650
651 netif_start_queue(dev);
652
653 init_timer(&sp->tx_t);
654 sp->tx_t.function = sp_xmit_on_air;
655 sp->tx_t.data = (unsigned long) sp;
656
657 init_timer(&sp->resync_t);
658
659 spin_unlock_bh(&sp->lock);
660
661 /* Done. We have linked the TTY line to a channel. */
662 tty->disc_data = sp;
663 tty->receive_room = 65536;
664
665 /* Now we're ready to register. */
666 if (register_netdev(dev))
667 goto out_free;
668
669 tnc_init(sp);
670
671 return 0;
672
673out_free:
674 kfree(xbuff);
675 kfree(rbuff);
676
677 if (dev)
678 free_netdev(dev);
679
680out:
681 return err;
682}
683
684
685/*
686 * Close down a 6pack channel.
687 * This means flushing out any pending queues, and then restoring the
688 * TTY line discipline to what it was before it got hooked to 6pack
689 * (which usually is TTY again).
690 */
691static void sixpack_close(struct tty_struct *tty)
692{
693 struct sixpack *sp;
694
695 write_lock_bh(&disc_data_lock);
696 sp = tty->disc_data;
697 tty->disc_data = NULL;
698 write_unlock_bh(&disc_data_lock);
699 if (!sp)
700 return;
701
702 /*
703 * We have now ensured that nobody can start using ap from now on, but
704 * we have to wait for all existing users to finish.
705 */
706 if (!atomic_dec_and_test(&sp->refcnt))
707 down(&sp->dead_sem);
708
709 unregister_netdev(sp->dev);
710
711 del_timer(&sp->tx_t);
712 del_timer(&sp->resync_t);
713
714 /* Free all 6pack frame buffers. */
715 kfree(sp->rbuff);
716 kfree(sp->xbuff);
717}
718
719/* Perform I/O control on an active 6pack channel. */
720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
721 unsigned int cmd, unsigned long arg)
722{
723 struct sixpack *sp = sp_get(tty);
724 struct net_device *dev;
725 unsigned int tmp, err;
726
727 if (!sp)
728 return -ENXIO;
729 dev = sp->dev;
730
731 switch(cmd) {
732 case SIOCGIFNAME:
733 err = copy_to_user((void __user *) arg, dev->name,
734 strlen(dev->name) + 1) ? -EFAULT : 0;
735 break;
736
737 case SIOCGIFENCAP:
738 err = put_user(0, (int __user *) arg);
739 break;
740
741 case SIOCSIFENCAP:
742 if (get_user(tmp, (int __user *) arg)) {
743 err = -EFAULT;
744 break;
745 }
746
747 sp->mode = tmp;
748 dev->addr_len = AX25_ADDR_LEN;
749 dev->hard_header_len = AX25_KISS_HEADER_LEN +
750 AX25_MAX_HEADER_LEN + 3;
751 dev->type = ARPHRD_AX25;
752
753 err = 0;
754 break;
755
756 case SIOCSIFHWADDR: {
757 char addr[AX25_ADDR_LEN];
758
759 if (copy_from_user(&addr,
760 (void __user *) arg, AX25_ADDR_LEN)) {
761 err = -EFAULT;
762 break;
763 }
764
765 netif_tx_lock_bh(dev);
766 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
767 netif_tx_unlock_bh(dev);
768
769 err = 0;
770 break;
771 }
772
773 default:
774 err = tty_mode_ioctl(tty, file, cmd, arg);
775 }
776
777 sp_put(sp);
778
779 return err;
780}
781
782#ifdef CONFIG_COMPAT
783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
784 unsigned int cmd, unsigned long arg)
785{
786 switch (cmd) {
787 case SIOCGIFNAME:
788 case SIOCGIFENCAP:
789 case SIOCSIFENCAP:
790 case SIOCSIFHWADDR:
791 return sixpack_ioctl(tty, file, cmd,
792 (unsigned long)compat_ptr(arg));
793 }
794
795 return -ENOIOCTLCMD;
796}
797#endif
798
799static struct tty_ldisc_ops sp_ldisc = {
800 .owner = THIS_MODULE,
801 .magic = TTY_LDISC_MAGIC,
802 .name = "6pack",
803 .open = sixpack_open,
804 .close = sixpack_close,
805 .ioctl = sixpack_ioctl,
806#ifdef CONFIG_COMPAT
807 .compat_ioctl = sixpack_compat_ioctl,
808#endif
809 .receive_buf = sixpack_receive_buf,
810 .write_wakeup = sixpack_write_wakeup,
811};
812
813/* Initialize 6pack control device -- register 6pack line discipline */
814
815static const char msg_banner[] __initdata = KERN_INFO \
816 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
817static const char msg_regfail[] __initdata = KERN_ERR \
818 "6pack: can't register line discipline (err = %d)\n";
819
820static int __init sixpack_init_driver(void)
821{
822 int status;
823
824 printk(msg_banner);
825
826 /* Register the provided line protocol discipline */
827 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
828 printk(msg_regfail, status);
829
830 return status;
831}
832
833static const char msg_unregfail[] __exitdata = KERN_ERR \
834 "6pack: can't unregister line discipline (err = %d)\n";
835
836static void __exit sixpack_exit_driver(void)
837{
838 int ret;
839
840 if ((ret = tty_unregister_ldisc(N_6PACK)))
841 printk(msg_unregfail, ret);
842}
843
844/* encode an AX.25 packet into 6pack */
845
846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
847 int length, unsigned char tx_delay)
848{
849 int count = 0;
850 unsigned char checksum = 0, buf[400];
851 int raw_count = 0;
852
853 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
854 tx_buf_raw[raw_count++] = SIXP_SEOF;
855
856 buf[0] = tx_delay;
857 for (count = 1; count < length; count++)
858 buf[count] = tx_buf[count];
859
860 for (count = 0; count < length; count++)
861 checksum += buf[count];
862 buf[length] = (unsigned char) 0xff - checksum;
863
864 for (count = 0; count <= length; count++) {
865 if ((count % 3) == 0) {
866 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
867 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
868 } else if ((count % 3) == 1) {
869 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
870 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
871 } else {
872 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
873 tx_buf_raw[raw_count++] = (buf[count] >> 2);
874 }
875 }
876 if ((length % 3) != 2)
877 raw_count++;
878 tx_buf_raw[raw_count++] = SIXP_SEOF;
879 return raw_count;
880}
881
882/* decode 4 sixpack-encoded bytes into 3 data bytes */
883
884static void decode_data(struct sixpack *sp, unsigned char inbyte)
885{
886 unsigned char *buf;
887
888 if (sp->rx_count != 3) {
889 sp->raw_buf[sp->rx_count++] = inbyte;
890
891 return;
892 }
893
894 buf = sp->raw_buf;
895 sp->cooked_buf[sp->rx_count_cooked++] =
896 buf[0] | ((buf[1] << 2) & 0xc0);
897 sp->cooked_buf[sp->rx_count_cooked++] =
898 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
899 sp->cooked_buf[sp->rx_count_cooked++] =
900 (buf[2] & 0x03) | (inbyte << 2);
901 sp->rx_count = 0;
902}
903
904/* identify and execute a 6pack priority command byte */
905
906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
907{
908 unsigned char channel;
909 int actual;
910
911 channel = cmd & SIXP_CHN_MASK;
912 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
913
914 /* RX and DCD flags can only be set in the same prio command,
915 if the DCD flag has been set without the RX flag in the previous
916 prio command. If DCD has not been set before, something in the
917 transmission has gone wrong. In this case, RX and DCD are
918 cleared in order to prevent the decode_data routine from
919 reading further data that might be corrupt. */
920
921 if (((sp->status & SIXP_DCD_MASK) == 0) &&
922 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
923 if (sp->status != 1)
924 printk(KERN_DEBUG "6pack: protocol violation\n");
925 else
926 sp->status = 0;
927 cmd &= ~SIXP_RX_DCD_MASK;
928 }
929 sp->status = cmd & SIXP_PRIO_DATA_MASK;
930 } else { /* output watchdog char if idle */
931 if ((sp->status2 != 0) && (sp->duplex == 1)) {
932 sp->led_state = 0x70;
933 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
934 sp->tx_enable = 1;
935 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
936 sp->xleft -= actual;
937 sp->xhead += actual;
938 sp->led_state = 0x60;
939 sp->status2 = 0;
940
941 }
942 }
943
944 /* needed to trigger the TNC watchdog */
945 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
946
947 /* if the state byte has been received, the TNC is present,
948 so the resync timer can be reset. */
949
950 if (sp->tnc_state == TNC_IN_SYNC) {
951 del_timer(&sp->resync_t);
952 sp->resync_t.data = (unsigned long) sp;
953 sp->resync_t.function = resync_tnc;
954 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
955 add_timer(&sp->resync_t);
956 }
957
958 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
959}
960
961/* identify and execute a standard 6pack command byte */
962
963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
964{
965 unsigned char checksum = 0, rest = 0, channel;
966 short i;
967
968 channel = cmd & SIXP_CHN_MASK;
969 switch (cmd & SIXP_CMD_MASK) { /* normal command */
970 case SIXP_SEOF:
971 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
972 if ((sp->status & SIXP_RX_DCD_MASK) ==
973 SIXP_RX_DCD_MASK) {
974 sp->led_state = 0x68;
975 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
976 }
977 } else {
978 sp->led_state = 0x60;
979 /* fill trailing bytes with zeroes */
980 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
981 rest = sp->rx_count;
982 if (rest != 0)
983 for (i = rest; i <= 3; i++)
984 decode_data(sp, 0);
985 if (rest == 2)
986 sp->rx_count_cooked -= 2;
987 else if (rest == 3)
988 sp->rx_count_cooked -= 1;
989 for (i = 0; i < sp->rx_count_cooked; i++)
990 checksum += sp->cooked_buf[i];
991 if (checksum != SIXP_CHKSUM) {
992 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
993 } else {
994 sp->rcount = sp->rx_count_cooked-2;
995 sp_bump(sp, 0);
996 }
997 sp->rx_count_cooked = 0;
998 }
999 break;
1000 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001 break;
1002 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003 break;
1004 case SIXP_RX_BUF_OVL:
1005 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006 }
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014 unsigned char inbyte;
1015 int count1;
1016
1017 for (count1 = 0; count1 < count; count1++) {
1018 inbyte = pre_rbuff[count1];
1019 if (inbyte == SIXP_FOUND_TNC) {
1020 tnc_set_sync_state(sp, TNC_IN_SYNC);
1021 del_timer(&sp->resync_t);
1022 }
1023 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024 decode_prio_command(sp, inbyte);
1025 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026 decode_std_command(sp, inbyte);
1027 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1028 decode_data(sp, inbyte);
1029 }
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);