Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * smc91x.c
   3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
   4 *
   5 * Copyright (C) 1996 by Erik Stahlman
   6 * Copyright (C) 2001 Standard Microsystems Corporation
   7 *	Developed by Simple Network Magic Corporation
   8 * Copyright (C) 2003 Monta Vista Software, Inc.
   9 *	Unified SMC91x driver by Nicolas Pitre
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  23 *
  24 * Arguments:
  25 * 	io	= for the base address
  26 *	irq	= for the IRQ
  27 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
  28 *
  29 * original author:
  30 * 	Erik Stahlman <erik@vt.edu>
  31 *
  32 * hardware multicast code:
  33 *    Peter Cammaert <pc@denkart.be>
  34 *
  35 * contributors:
  36 * 	Daris A Nevil <dnevil@snmc.com>
  37 *      Nicolas Pitre <nico@fluxnic.net>
  38 *	Russell King <rmk@arm.linux.org.uk>
  39 *
  40 * History:
  41 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
  42 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
  43 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
  44 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
  45 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
  46 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
  47 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
  48 *                                more bus abstraction, big cleanup, etc.
  49 *   29/09/03  Russell King       - add driver model support
  50 *                                - ethtool support
  51 *                                - convert to use generic MII interface
  52 *                                - add link up/down notification
  53 *                                - don't try to handle full negotiation in
  54 *                                  smc_phy_configure
  55 *                                - clean up (and fix stack overrun) in PHY
  56 *                                  MII read/write functions
  57 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
  58 */
  59static const char version[] =
  60	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
  61
  62/* Debugging level */
  63#ifndef SMC_DEBUG
  64#define SMC_DEBUG		0
  65#endif
  66
  67
  68#include <linux/module.h>
  69#include <linux/kernel.h>
  70#include <linux/sched.h>
  71#include <linux/delay.h>
  72#include <linux/interrupt.h>
  73#include <linux/irq.h>
  74#include <linux/errno.h>
  75#include <linux/ioport.h>
  76#include <linux/crc32.h>
  77#include <linux/platform_device.h>
  78#include <linux/spinlock.h>
  79#include <linux/ethtool.h>
  80#include <linux/mii.h>
  81#include <linux/workqueue.h>
  82#include <linux/of.h>
  83#include <linux/of_device.h>
  84
  85#include <linux/netdevice.h>
  86#include <linux/etherdevice.h>
  87#include <linux/skbuff.h>
  88
  89#include <asm/io.h>
  90
  91#include "smc91x.h"
  92
  93#ifndef SMC_NOWAIT
  94# define SMC_NOWAIT		0
  95#endif
  96static int nowait = SMC_NOWAIT;
  97module_param(nowait, int, 0400);
  98MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
  99
 100/*
 101 * Transmit timeout, default 5 seconds.
 102 */
 103static int watchdog = 1000;
 104module_param(watchdog, int, 0400);
 105MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 106
 107MODULE_LICENSE("GPL");
 108MODULE_ALIAS("platform:smc91x");
 109
 110/*
 111 * The internal workings of the driver.  If you are changing anything
 112 * here with the SMC stuff, you should have the datasheet and know
 113 * what you are doing.
 114 */
 115#define CARDNAME "smc91x"
 116
 117/*
 118 * Use power-down feature of the chip
 119 */
 120#define POWER_DOWN		1
 121
 122/*
 123 * Wait time for memory to be free.  This probably shouldn't be
 124 * tuned that much, as waiting for this means nothing else happens
 125 * in the system
 126 */
 127#define MEMORY_WAIT_TIME	16
 128
 129/*
 130 * The maximum number of processing loops allowed for each call to the
 131 * IRQ handler.
 132 */
 133#define MAX_IRQ_LOOPS		8
 134
 135/*
 136 * This selects whether TX packets are sent one by one to the SMC91x internal
 137 * memory and throttled until transmission completes.  This may prevent
 138 * RX overruns a litle by keeping much of the memory free for RX packets
 139 * but to the expense of reduced TX throughput and increased IRQ overhead.
 140 * Note this is not a cure for a too slow data bus or too high IRQ latency.
 141 */
 142#define THROTTLE_TX_PKTS	0
 143
 144/*
 145 * The MII clock high/low times.  2x this number gives the MII clock period
 146 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
 147 */
 148#define MII_DELAY		1
 149
 150#define DBG(n, dev, fmt, ...)					\
 151	do {							\
 152		if (SMC_DEBUG >= (n))				\
 153			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
 154	} while (0)
 155
 156#define PRINTK(dev, fmt, ...)					\
 157	do {							\
 158		if (SMC_DEBUG > 0)				\
 159			netdev_info(dev, fmt, ##__VA_ARGS__);	\
 160		else						\
 161			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
 162	} while (0)
 163
 164#if SMC_DEBUG > 3
 165static void PRINT_PKT(u_char *buf, int length)
 166{
 167	int i;
 168	int remainder;
 169	int lines;
 170
 171	lines = length / 16;
 172	remainder = length % 16;
 173
 174	for (i = 0; i < lines ; i ++) {
 175		int cur;
 176		printk(KERN_DEBUG);
 177		for (cur = 0; cur < 8; cur++) {
 178			u_char a, b;
 179			a = *buf++;
 180			b = *buf++;
 181			pr_cont("%02x%02x ", a, b);
 182		}
 183		pr_cont("\n");
 184	}
 185	printk(KERN_DEBUG);
 186	for (i = 0; i < remainder/2 ; i++) {
 187		u_char a, b;
 188		a = *buf++;
 189		b = *buf++;
 190		pr_cont("%02x%02x ", a, b);
 191	}
 192	pr_cont("\n");
 193}
 194#else
 195static inline void PRINT_PKT(u_char *buf, int length) { }
 196#endif
 197
 198
 199/* this enables an interrupt in the interrupt mask register */
 200#define SMC_ENABLE_INT(lp, x) do {					\
 201	unsigned char mask;						\
 202	unsigned long smc_enable_flags;					\
 203	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
 204	mask = SMC_GET_INT_MASK(lp);					\
 205	mask |= (x);							\
 206	SMC_SET_INT_MASK(lp, mask);					\
 207	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
 208} while (0)
 209
 210/* this disables an interrupt from the interrupt mask register */
 211#define SMC_DISABLE_INT(lp, x) do {					\
 212	unsigned char mask;						\
 213	unsigned long smc_disable_flags;				\
 214	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
 215	mask = SMC_GET_INT_MASK(lp);					\
 216	mask &= ~(x);							\
 217	SMC_SET_INT_MASK(lp, mask);					\
 218	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
 219} while (0)
 220
 221/*
 222 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
 223 * if at all, but let's avoid deadlocking the system if the hardware
 224 * decides to go south.
 225 */
 226#define SMC_WAIT_MMU_BUSY(lp) do {					\
 227	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
 228		unsigned long timeout = jiffies + 2;			\
 229		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
 230			if (time_after(jiffies, timeout)) {		\
 231				netdev_dbg(dev, "timeout %s line %d\n",	\
 232					   __FILE__, __LINE__);		\
 233				break;					\
 234			}						\
 235			cpu_relax();					\
 236		}							\
 237	}								\
 238} while (0)
 239
 240
 241/*
 242 * this does a soft reset on the device
 243 */
 244static void smc_reset(struct net_device *dev)
 245{
 246	struct smc_local *lp = netdev_priv(dev);
 247	void __iomem *ioaddr = lp->base;
 248	unsigned int ctl, cfg;
 249	struct sk_buff *pending_skb;
 250
 251	DBG(2, dev, "%s\n", __func__);
 252
 253	/* Disable all interrupts, block TX tasklet */
 254	spin_lock_irq(&lp->lock);
 255	SMC_SELECT_BANK(lp, 2);
 256	SMC_SET_INT_MASK(lp, 0);
 257	pending_skb = lp->pending_tx_skb;
 258	lp->pending_tx_skb = NULL;
 259	spin_unlock_irq(&lp->lock);
 260
 261	/* free any pending tx skb */
 262	if (pending_skb) {
 263		dev_kfree_skb(pending_skb);
 264		dev->stats.tx_errors++;
 265		dev->stats.tx_aborted_errors++;
 266	}
 267
 268	/*
 269	 * This resets the registers mostly to defaults, but doesn't
 270	 * affect EEPROM.  That seems unnecessary
 271	 */
 272	SMC_SELECT_BANK(lp, 0);
 273	SMC_SET_RCR(lp, RCR_SOFTRST);
 274
 275	/*
 276	 * Setup the Configuration Register
 277	 * This is necessary because the CONFIG_REG is not affected
 278	 * by a soft reset
 279	 */
 280	SMC_SELECT_BANK(lp, 1);
 281
 282	cfg = CONFIG_DEFAULT;
 283
 284	/*
 285	 * Setup for fast accesses if requested.  If the card/system
 286	 * can't handle it then there will be no recovery except for
 287	 * a hard reset or power cycle
 288	 */
 289	if (lp->cfg.flags & SMC91X_NOWAIT)
 290		cfg |= CONFIG_NO_WAIT;
 291
 292	/*
 293	 * Release from possible power-down state
 294	 * Configuration register is not affected by Soft Reset
 295	 */
 296	cfg |= CONFIG_EPH_POWER_EN;
 297
 298	SMC_SET_CONFIG(lp, cfg);
 299
 300	/* this should pause enough for the chip to be happy */
 301	/*
 302	 * elaborate?  What does the chip _need_? --jgarzik
 303	 *
 304	 * This seems to be undocumented, but something the original
 305	 * driver(s) have always done.  Suspect undocumented timing
 306	 * info/determined empirically. --rmk
 307	 */
 308	udelay(1);
 309
 310	/* Disable transmit and receive functionality */
 311	SMC_SELECT_BANK(lp, 0);
 312	SMC_SET_RCR(lp, RCR_CLEAR);
 313	SMC_SET_TCR(lp, TCR_CLEAR);
 314
 315	SMC_SELECT_BANK(lp, 1);
 316	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
 317
 318	/*
 319	 * Set the control register to automatically release successfully
 320	 * transmitted packets, to make the best use out of our limited
 321	 * memory
 322	 */
 323	if(!THROTTLE_TX_PKTS)
 324		ctl |= CTL_AUTO_RELEASE;
 325	else
 326		ctl &= ~CTL_AUTO_RELEASE;
 327	SMC_SET_CTL(lp, ctl);
 328
 329	/* Reset the MMU */
 330	SMC_SELECT_BANK(lp, 2);
 331	SMC_SET_MMU_CMD(lp, MC_RESET);
 332	SMC_WAIT_MMU_BUSY(lp);
 333}
 334
 335/*
 336 * Enable Interrupts, Receive, and Transmit
 337 */
 338static void smc_enable(struct net_device *dev)
 339{
 340	struct smc_local *lp = netdev_priv(dev);
 341	void __iomem *ioaddr = lp->base;
 342	int mask;
 343
 344	DBG(2, dev, "%s\n", __func__);
 345
 346	/* see the header file for options in TCR/RCR DEFAULT */
 347	SMC_SELECT_BANK(lp, 0);
 348	SMC_SET_TCR(lp, lp->tcr_cur_mode);
 349	SMC_SET_RCR(lp, lp->rcr_cur_mode);
 350
 351	SMC_SELECT_BANK(lp, 1);
 352	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
 353
 354	/* now, enable interrupts */
 355	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
 356	if (lp->version >= (CHIP_91100 << 4))
 357		mask |= IM_MDINT;
 358	SMC_SELECT_BANK(lp, 2);
 359	SMC_SET_INT_MASK(lp, mask);
 360
 361	/*
 362	 * From this point the register bank must _NOT_ be switched away
 363	 * to something else than bank 2 without proper locking against
 364	 * races with any tasklet or interrupt handlers until smc_shutdown()
 365	 * or smc_reset() is called.
 366	 */
 367}
 368
 369/*
 370 * this puts the device in an inactive state
 371 */
 372static void smc_shutdown(struct net_device *dev)
 373{
 374	struct smc_local *lp = netdev_priv(dev);
 375	void __iomem *ioaddr = lp->base;
 376	struct sk_buff *pending_skb;
 377
 378	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
 379
 380	/* no more interrupts for me */
 381	spin_lock_irq(&lp->lock);
 382	SMC_SELECT_BANK(lp, 2);
 383	SMC_SET_INT_MASK(lp, 0);
 384	pending_skb = lp->pending_tx_skb;
 385	lp->pending_tx_skb = NULL;
 386	spin_unlock_irq(&lp->lock);
 387	if (pending_skb)
 388		dev_kfree_skb(pending_skb);
 389
 390	/* and tell the card to stay away from that nasty outside world */
 391	SMC_SELECT_BANK(lp, 0);
 392	SMC_SET_RCR(lp, RCR_CLEAR);
 393	SMC_SET_TCR(lp, TCR_CLEAR);
 394
 395#ifdef POWER_DOWN
 396	/* finally, shut the chip down */
 397	SMC_SELECT_BANK(lp, 1);
 398	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
 399#endif
 400}
 401
 402/*
 403 * This is the procedure to handle the receipt of a packet.
 404 */
 405static inline void  smc_rcv(struct net_device *dev)
 406{
 407	struct smc_local *lp = netdev_priv(dev);
 408	void __iomem *ioaddr = lp->base;
 409	unsigned int packet_number, status, packet_len;
 410
 411	DBG(3, dev, "%s\n", __func__);
 412
 413	packet_number = SMC_GET_RXFIFO(lp);
 414	if (unlikely(packet_number & RXFIFO_REMPTY)) {
 415		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
 416		return;
 417	}
 418
 419	/* read from start of packet */
 420	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
 421
 422	/* First two words are status and packet length */
 423	SMC_GET_PKT_HDR(lp, status, packet_len);
 424	packet_len &= 0x07ff;  /* mask off top bits */
 425	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
 426	    packet_number, status, packet_len, packet_len);
 427
 428	back:
 429	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
 430		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
 431			/* accept VLAN packets */
 432			status &= ~RS_TOOLONG;
 433			goto back;
 434		}
 435		if (packet_len < 6) {
 436			/* bloody hardware */
 437			netdev_err(dev, "fubar (rxlen %u status %x\n",
 438				   packet_len, status);
 439			status |= RS_TOOSHORT;
 440		}
 441		SMC_WAIT_MMU_BUSY(lp);
 442		SMC_SET_MMU_CMD(lp, MC_RELEASE);
 443		dev->stats.rx_errors++;
 444		if (status & RS_ALGNERR)
 445			dev->stats.rx_frame_errors++;
 446		if (status & (RS_TOOSHORT | RS_TOOLONG))
 447			dev->stats.rx_length_errors++;
 448		if (status & RS_BADCRC)
 449			dev->stats.rx_crc_errors++;
 450	} else {
 451		struct sk_buff *skb;
 452		unsigned char *data;
 453		unsigned int data_len;
 454
 455		/* set multicast stats */
 456		if (status & RS_MULTICAST)
 457			dev->stats.multicast++;
 458
 459		/*
 460		 * Actual payload is packet_len - 6 (or 5 if odd byte).
 461		 * We want skb_reserve(2) and the final ctrl word
 462		 * (2 bytes, possibly containing the payload odd byte).
 463		 * Furthermore, we add 2 bytes to allow rounding up to
 464		 * multiple of 4 bytes on 32 bit buses.
 465		 * Hence packet_len - 6 + 2 + 2 + 2.
 466		 */
 467		skb = netdev_alloc_skb(dev, packet_len);
 468		if (unlikely(skb == NULL)) {
 469			SMC_WAIT_MMU_BUSY(lp);
 470			SMC_SET_MMU_CMD(lp, MC_RELEASE);
 471			dev->stats.rx_dropped++;
 472			return;
 473		}
 474
 475		/* Align IP header to 32 bits */
 476		skb_reserve(skb, 2);
 477
 478		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
 479		if (lp->version == 0x90)
 480			status |= RS_ODDFRAME;
 481
 482		/*
 483		 * If odd length: packet_len - 5,
 484		 * otherwise packet_len - 6.
 485		 * With the trailing ctrl byte it's packet_len - 4.
 486		 */
 487		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
 488		data = skb_put(skb, data_len);
 489		SMC_PULL_DATA(lp, data, packet_len - 4);
 490
 491		SMC_WAIT_MMU_BUSY(lp);
 492		SMC_SET_MMU_CMD(lp, MC_RELEASE);
 493
 494		PRINT_PKT(data, packet_len - 4);
 495
 496		skb->protocol = eth_type_trans(skb, dev);
 497		netif_rx(skb);
 498		dev->stats.rx_packets++;
 499		dev->stats.rx_bytes += data_len;
 500	}
 501}
 502
 503#ifdef CONFIG_SMP
 504/*
 505 * On SMP we have the following problem:
 506 *
 507 * 	A = smc_hardware_send_pkt()
 508 * 	B = smc_hard_start_xmit()
 509 * 	C = smc_interrupt()
 510 *
 511 * A and B can never be executed simultaneously.  However, at least on UP,
 512 * it is possible (and even desirable) for C to interrupt execution of
 513 * A or B in order to have better RX reliability and avoid overruns.
 514 * C, just like A and B, must have exclusive access to the chip and
 515 * each of them must lock against any other concurrent access.
 516 * Unfortunately this is not possible to have C suspend execution of A or
 517 * B taking place on another CPU. On UP this is no an issue since A and B
 518 * are run from softirq context and C from hard IRQ context, and there is
 519 * no other CPU where concurrent access can happen.
 520 * If ever there is a way to force at least B and C to always be executed
 521 * on the same CPU then we could use read/write locks to protect against
 522 * any other concurrent access and C would always interrupt B. But life
 523 * isn't that easy in a SMP world...
 524 */
 525#define smc_special_trylock(lock, flags)				\
 526({									\
 527	int __ret;							\
 528	local_irq_save(flags);						\
 529	__ret = spin_trylock(lock);					\
 530	if (!__ret)							\
 531		local_irq_restore(flags);				\
 532	__ret;								\
 533})
 534#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
 535#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
 536#else
 537#define smc_special_trylock(lock, flags)	(flags == flags)
 538#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
 539#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
 540#endif
 541
 542/*
 543 * This is called to actually send a packet to the chip.
 544 */
 545static void smc_hardware_send_pkt(unsigned long data)
 546{
 547	struct net_device *dev = (struct net_device *)data;
 548	struct smc_local *lp = netdev_priv(dev);
 549	void __iomem *ioaddr = lp->base;
 550	struct sk_buff *skb;
 551	unsigned int packet_no, len;
 552	unsigned char *buf;
 553	unsigned long flags;
 554
 555	DBG(3, dev, "%s\n", __func__);
 556
 557	if (!smc_special_trylock(&lp->lock, flags)) {
 558		netif_stop_queue(dev);
 559		tasklet_schedule(&lp->tx_task);
 560		return;
 561	}
 562
 563	skb = lp->pending_tx_skb;
 564	if (unlikely(!skb)) {
 565		smc_special_unlock(&lp->lock, flags);
 566		return;
 567	}
 568	lp->pending_tx_skb = NULL;
 569
 570	packet_no = SMC_GET_AR(lp);
 571	if (unlikely(packet_no & AR_FAILED)) {
 572		netdev_err(dev, "Memory allocation failed.\n");
 573		dev->stats.tx_errors++;
 574		dev->stats.tx_fifo_errors++;
 575		smc_special_unlock(&lp->lock, flags);
 576		goto done;
 577	}
 578
 579	/* point to the beginning of the packet */
 580	SMC_SET_PN(lp, packet_no);
 581	SMC_SET_PTR(lp, PTR_AUTOINC);
 582
 583	buf = skb->data;
 584	len = skb->len;
 585	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
 586	    packet_no, len, len, buf);
 587	PRINT_PKT(buf, len);
 588
 589	/*
 590	 * Send the packet length (+6 for status words, length, and ctl.
 591	 * The card will pad to 64 bytes with zeroes if packet is too small.
 592	 */
 593	SMC_PUT_PKT_HDR(lp, 0, len + 6);
 594
 595	/* send the actual data */
 596	SMC_PUSH_DATA(lp, buf, len & ~1);
 597
 598	/* Send final ctl word with the last byte if there is one */
 599	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
 600
 601	/*
 602	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
 603	 * have the effect of having at most one packet queued for TX
 604	 * in the chip's memory at all time.
 605	 *
 606	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
 607	 * when memory allocation (MC_ALLOC) does not succeed right away.
 608	 */
 609	if (THROTTLE_TX_PKTS)
 610		netif_stop_queue(dev);
 611
 612	/* queue the packet for TX */
 613	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
 614	smc_special_unlock(&lp->lock, flags);
 615
 616	dev->trans_start = jiffies;
 617	dev->stats.tx_packets++;
 618	dev->stats.tx_bytes += len;
 619
 620	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
 621
 622done:	if (!THROTTLE_TX_PKTS)
 623		netif_wake_queue(dev);
 624
 625	dev_consume_skb_any(skb);
 626}
 627
 628/*
 629 * Since I am not sure if I will have enough room in the chip's ram
 630 * to store the packet, I call this routine which either sends it
 631 * now, or set the card to generates an interrupt when ready
 632 * for the packet.
 633 */
 634static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
 635{
 636	struct smc_local *lp = netdev_priv(dev);
 637	void __iomem *ioaddr = lp->base;
 638	unsigned int numPages, poll_count, status;
 639	unsigned long flags;
 640
 641	DBG(3, dev, "%s\n", __func__);
 642
 643	BUG_ON(lp->pending_tx_skb != NULL);
 644
 645	/*
 646	 * The MMU wants the number of pages to be the number of 256 bytes
 647	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
 648	 *
 649	 * The 91C111 ignores the size bits, but earlier models don't.
 650	 *
 651	 * Pkt size for allocating is data length +6 (for additional status
 652	 * words, length and ctl)
 653	 *
 654	 * If odd size then last byte is included in ctl word.
 655	 */
 656	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
 657	if (unlikely(numPages > 7)) {
 658		netdev_warn(dev, "Far too big packet error.\n");
 659		dev->stats.tx_errors++;
 660		dev->stats.tx_dropped++;
 661		dev_kfree_skb_any(skb);
 662		return NETDEV_TX_OK;
 663	}
 664
 665	smc_special_lock(&lp->lock, flags);
 666
 667	/* now, try to allocate the memory */
 668	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
 669
 670	/*
 671	 * Poll the chip for a short amount of time in case the
 672	 * allocation succeeds quickly.
 673	 */
 674	poll_count = MEMORY_WAIT_TIME;
 675	do {
 676		status = SMC_GET_INT(lp);
 677		if (status & IM_ALLOC_INT) {
 678			SMC_ACK_INT(lp, IM_ALLOC_INT);
 679  			break;
 680		}
 681   	} while (--poll_count);
 682
 683	smc_special_unlock(&lp->lock, flags);
 684
 685	lp->pending_tx_skb = skb;
 686   	if (!poll_count) {
 687		/* oh well, wait until the chip finds memory later */
 688		netif_stop_queue(dev);
 689		DBG(2, dev, "TX memory allocation deferred.\n");
 690		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
 691   	} else {
 692		/*
 693		 * Allocation succeeded: push packet to the chip's own memory
 694		 * immediately.
 695		 */
 696		smc_hardware_send_pkt((unsigned long)dev);
 697	}
 698
 699	return NETDEV_TX_OK;
 700}
 701
 702/*
 703 * This handles a TX interrupt, which is only called when:
 704 * - a TX error occurred, or
 705 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
 706 */
 707static void smc_tx(struct net_device *dev)
 708{
 709	struct smc_local *lp = netdev_priv(dev);
 710	void __iomem *ioaddr = lp->base;
 711	unsigned int saved_packet, packet_no, tx_status, pkt_len;
 712
 713	DBG(3, dev, "%s\n", __func__);
 714
 715	/* If the TX FIFO is empty then nothing to do */
 716	packet_no = SMC_GET_TXFIFO(lp);
 717	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
 718		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
 719		return;
 720	}
 721
 722	/* select packet to read from */
 723	saved_packet = SMC_GET_PN(lp);
 724	SMC_SET_PN(lp, packet_no);
 725
 726	/* read the first word (status word) from this packet */
 727	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
 728	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
 729	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
 730	    tx_status, packet_no);
 731
 732	if (!(tx_status & ES_TX_SUC))
 733		dev->stats.tx_errors++;
 734
 735	if (tx_status & ES_LOSTCARR)
 736		dev->stats.tx_carrier_errors++;
 737
 738	if (tx_status & (ES_LATCOL | ES_16COL)) {
 739		PRINTK(dev, "%s occurred on last xmit\n",
 740		       (tx_status & ES_LATCOL) ?
 741			"late collision" : "too many collisions");
 742		dev->stats.tx_window_errors++;
 743		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
 744			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
 745		}
 746	}
 747
 748	/* kill the packet */
 749	SMC_WAIT_MMU_BUSY(lp);
 750	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
 751
 752	/* Don't restore Packet Number Reg until busy bit is cleared */
 753	SMC_WAIT_MMU_BUSY(lp);
 754	SMC_SET_PN(lp, saved_packet);
 755
 756	/* re-enable transmit */
 757	SMC_SELECT_BANK(lp, 0);
 758	SMC_SET_TCR(lp, lp->tcr_cur_mode);
 759	SMC_SELECT_BANK(lp, 2);
 760}
 761
 762
 763/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
 764
 765static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
 766{
 767	struct smc_local *lp = netdev_priv(dev);
 768	void __iomem *ioaddr = lp->base;
 769	unsigned int mii_reg, mask;
 770
 771	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 772	mii_reg |= MII_MDOE;
 773
 774	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
 775		if (val & mask)
 776			mii_reg |= MII_MDO;
 777		else
 778			mii_reg &= ~MII_MDO;
 779
 780		SMC_SET_MII(lp, mii_reg);
 781		udelay(MII_DELAY);
 782		SMC_SET_MII(lp, mii_reg | MII_MCLK);
 783		udelay(MII_DELAY);
 784	}
 785}
 786
 787static unsigned int smc_mii_in(struct net_device *dev, int bits)
 788{
 789	struct smc_local *lp = netdev_priv(dev);
 790	void __iomem *ioaddr = lp->base;
 791	unsigned int mii_reg, mask, val;
 792
 793	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 794	SMC_SET_MII(lp, mii_reg);
 795
 796	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
 797		if (SMC_GET_MII(lp) & MII_MDI)
 798			val |= mask;
 799
 800		SMC_SET_MII(lp, mii_reg);
 801		udelay(MII_DELAY);
 802		SMC_SET_MII(lp, mii_reg | MII_MCLK);
 803		udelay(MII_DELAY);
 804	}
 805
 806	return val;
 807}
 808
 809/*
 810 * Reads a register from the MII Management serial interface
 811 */
 812static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
 813{
 814	struct smc_local *lp = netdev_priv(dev);
 815	void __iomem *ioaddr = lp->base;
 816	unsigned int phydata;
 817
 818	SMC_SELECT_BANK(lp, 3);
 819
 820	/* Idle - 32 ones */
 821	smc_mii_out(dev, 0xffffffff, 32);
 822
 823	/* Start code (01) + read (10) + phyaddr + phyreg */
 824	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
 825
 826	/* Turnaround (2bits) + phydata */
 827	phydata = smc_mii_in(dev, 18);
 828
 829	/* Return to idle state */
 830	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 831
 832	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 833	    __func__, phyaddr, phyreg, phydata);
 834
 835	SMC_SELECT_BANK(lp, 2);
 836	return phydata;
 837}
 838
 839/*
 840 * Writes a register to the MII Management serial interface
 841 */
 842static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
 843			  int phydata)
 844{
 845	struct smc_local *lp = netdev_priv(dev);
 846	void __iomem *ioaddr = lp->base;
 847
 848	SMC_SELECT_BANK(lp, 3);
 849
 850	/* Idle - 32 ones */
 851	smc_mii_out(dev, 0xffffffff, 32);
 852
 853	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
 854	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
 855
 856	/* Return to idle state */
 857	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 858
 859	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 860	    __func__, phyaddr, phyreg, phydata);
 861
 862	SMC_SELECT_BANK(lp, 2);
 863}
 864
 865/*
 866 * Finds and reports the PHY address
 867 */
 868static void smc_phy_detect(struct net_device *dev)
 869{
 870	struct smc_local *lp = netdev_priv(dev);
 871	int phyaddr;
 872
 873	DBG(2, dev, "%s\n", __func__);
 874
 875	lp->phy_type = 0;
 876
 877	/*
 878	 * Scan all 32 PHY addresses if necessary, starting at
 879	 * PHY#1 to PHY#31, and then PHY#0 last.
 880	 */
 881	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
 882		unsigned int id1, id2;
 883
 884		/* Read the PHY identifiers */
 885		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
 886		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
 887
 888		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
 889		    id1, id2);
 890
 891		/* Make sure it is a valid identifier */
 892		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
 893		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
 894			/* Save the PHY's address */
 895			lp->mii.phy_id = phyaddr & 31;
 896			lp->phy_type = id1 << 16 | id2;
 897			break;
 898		}
 899	}
 900}
 901
 902/*
 903 * Sets the PHY to a configuration as determined by the user
 904 */
 905static int smc_phy_fixed(struct net_device *dev)
 906{
 907	struct smc_local *lp = netdev_priv(dev);
 908	void __iomem *ioaddr = lp->base;
 909	int phyaddr = lp->mii.phy_id;
 910	int bmcr, cfg1;
 911
 912	DBG(3, dev, "%s\n", __func__);
 913
 914	/* Enter Link Disable state */
 915	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
 916	cfg1 |= PHY_CFG1_LNKDIS;
 917	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
 918
 919	/*
 920	 * Set our fixed capabilities
 921	 * Disable auto-negotiation
 922	 */
 923	bmcr = 0;
 924
 925	if (lp->ctl_rfduplx)
 926		bmcr |= BMCR_FULLDPLX;
 927
 928	if (lp->ctl_rspeed == 100)
 929		bmcr |= BMCR_SPEED100;
 930
 931	/* Write our capabilities to the phy control register */
 932	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
 933
 934	/* Re-Configure the Receive/Phy Control register */
 935	SMC_SELECT_BANK(lp, 0);
 936	SMC_SET_RPC(lp, lp->rpc_cur_mode);
 937	SMC_SELECT_BANK(lp, 2);
 938
 939	return 1;
 940}
 941
 942/**
 943 * smc_phy_reset - reset the phy
 944 * @dev: net device
 945 * @phy: phy address
 946 *
 947 * Issue a software reset for the specified PHY and
 948 * wait up to 100ms for the reset to complete.  We should
 949 * not access the PHY for 50ms after issuing the reset.
 950 *
 951 * The time to wait appears to be dependent on the PHY.
 952 *
 953 * Must be called with lp->lock locked.
 954 */
 955static int smc_phy_reset(struct net_device *dev, int phy)
 956{
 957	struct smc_local *lp = netdev_priv(dev);
 958	unsigned int bmcr;
 959	int timeout;
 960
 961	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
 962
 963	for (timeout = 2; timeout; timeout--) {
 964		spin_unlock_irq(&lp->lock);
 965		msleep(50);
 966		spin_lock_irq(&lp->lock);
 967
 968		bmcr = smc_phy_read(dev, phy, MII_BMCR);
 969		if (!(bmcr & BMCR_RESET))
 970			break;
 971	}
 972
 973	return bmcr & BMCR_RESET;
 974}
 975
 976/**
 977 * smc_phy_powerdown - powerdown phy
 978 * @dev: net device
 979 *
 980 * Power down the specified PHY
 981 */
 982static void smc_phy_powerdown(struct net_device *dev)
 983{
 984	struct smc_local *lp = netdev_priv(dev);
 985	unsigned int bmcr;
 986	int phy = lp->mii.phy_id;
 987
 988	if (lp->phy_type == 0)
 989		return;
 990
 991	/* We need to ensure that no calls to smc_phy_configure are
 992	   pending.
 993	*/
 994	cancel_work_sync(&lp->phy_configure);
 995
 996	bmcr = smc_phy_read(dev, phy, MII_BMCR);
 997	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
 998}
 999
1000/**
1001 * smc_phy_check_media - check the media status and adjust TCR
1002 * @dev: net device
1003 * @init: set true for initialisation
1004 *
1005 * Select duplex mode depending on negotiation state.  This
1006 * also updates our carrier state.
1007 */
1008static void smc_phy_check_media(struct net_device *dev, int init)
1009{
1010	struct smc_local *lp = netdev_priv(dev);
1011	void __iomem *ioaddr = lp->base;
1012
1013	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1014		/* duplex state has changed */
1015		if (lp->mii.full_duplex) {
1016			lp->tcr_cur_mode |= TCR_SWFDUP;
1017		} else {
1018			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1019		}
1020
1021		SMC_SELECT_BANK(lp, 0);
1022		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1023	}
1024}
1025
1026/*
1027 * Configures the specified PHY through the MII management interface
1028 * using Autonegotiation.
1029 * Calls smc_phy_fixed() if the user has requested a certain config.
1030 * If RPC ANEG bit is set, the media selection is dependent purely on
1031 * the selection by the MII (either in the MII BMCR reg or the result
1032 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1033 * is controlled by the RPC SPEED and RPC DPLX bits.
1034 */
1035static void smc_phy_configure(struct work_struct *work)
1036{
1037	struct smc_local *lp =
1038		container_of(work, struct smc_local, phy_configure);
1039	struct net_device *dev = lp->dev;
1040	void __iomem *ioaddr = lp->base;
1041	int phyaddr = lp->mii.phy_id;
1042	int my_phy_caps; /* My PHY capabilities */
1043	int my_ad_caps; /* My Advertised capabilities */
1044	int status;
1045
1046	DBG(3, dev, "smc_program_phy()\n");
1047
1048	spin_lock_irq(&lp->lock);
1049
1050	/*
1051	 * We should not be called if phy_type is zero.
1052	 */
1053	if (lp->phy_type == 0)
1054		goto smc_phy_configure_exit;
1055
1056	if (smc_phy_reset(dev, phyaddr)) {
1057		netdev_info(dev, "PHY reset timed out\n");
1058		goto smc_phy_configure_exit;
1059	}
1060
1061	/*
1062	 * Enable PHY Interrupts (for register 18)
1063	 * Interrupts listed here are disabled
1064	 */
1065	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1066		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1067		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1068		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1069
1070	/* Configure the Receive/Phy Control register */
1071	SMC_SELECT_BANK(lp, 0);
1072	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1073
1074	/* If the user requested no auto neg, then go set his request */
1075	if (lp->mii.force_media) {
1076		smc_phy_fixed(dev);
1077		goto smc_phy_configure_exit;
1078	}
1079
1080	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1081	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1082
1083	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1084		netdev_info(dev, "Auto negotiation NOT supported\n");
1085		smc_phy_fixed(dev);
1086		goto smc_phy_configure_exit;
1087	}
1088
1089	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1090
1091	if (my_phy_caps & BMSR_100BASE4)
1092		my_ad_caps |= ADVERTISE_100BASE4;
1093	if (my_phy_caps & BMSR_100FULL)
1094		my_ad_caps |= ADVERTISE_100FULL;
1095	if (my_phy_caps & BMSR_100HALF)
1096		my_ad_caps |= ADVERTISE_100HALF;
1097	if (my_phy_caps & BMSR_10FULL)
1098		my_ad_caps |= ADVERTISE_10FULL;
1099	if (my_phy_caps & BMSR_10HALF)
1100		my_ad_caps |= ADVERTISE_10HALF;
1101
1102	/* Disable capabilities not selected by our user */
1103	if (lp->ctl_rspeed != 100)
1104		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1105
1106	if (!lp->ctl_rfduplx)
1107		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1108
1109	/* Update our Auto-Neg Advertisement Register */
1110	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1111	lp->mii.advertising = my_ad_caps;
1112
1113	/*
1114	 * Read the register back.  Without this, it appears that when
1115	 * auto-negotiation is restarted, sometimes it isn't ready and
1116	 * the link does not come up.
1117	 */
1118	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1119
1120	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1121	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1122
1123	/* Restart auto-negotiation process in order to advertise my caps */
1124	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1125
1126	smc_phy_check_media(dev, 1);
1127
1128smc_phy_configure_exit:
1129	SMC_SELECT_BANK(lp, 2);
1130	spin_unlock_irq(&lp->lock);
1131}
1132
1133/*
1134 * smc_phy_interrupt
1135 *
1136 * Purpose:  Handle interrupts relating to PHY register 18. This is
1137 *  called from the "hard" interrupt handler under our private spinlock.
1138 */
1139static void smc_phy_interrupt(struct net_device *dev)
1140{
1141	struct smc_local *lp = netdev_priv(dev);
1142	int phyaddr = lp->mii.phy_id;
1143	int phy18;
1144
1145	DBG(2, dev, "%s\n", __func__);
1146
1147	if (lp->phy_type == 0)
1148		return;
1149
1150	for(;;) {
1151		smc_phy_check_media(dev, 0);
1152
1153		/* Read PHY Register 18, Status Output */
1154		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1155		if ((phy18 & PHY_INT_INT) == 0)
1156			break;
1157	}
1158}
1159
1160/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1161
1162static void smc_10bt_check_media(struct net_device *dev, int init)
1163{
1164	struct smc_local *lp = netdev_priv(dev);
1165	void __iomem *ioaddr = lp->base;
1166	unsigned int old_carrier, new_carrier;
1167
1168	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1169
1170	SMC_SELECT_BANK(lp, 0);
1171	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1172	SMC_SELECT_BANK(lp, 2);
1173
1174	if (init || (old_carrier != new_carrier)) {
1175		if (!new_carrier) {
1176			netif_carrier_off(dev);
1177		} else {
1178			netif_carrier_on(dev);
1179		}
1180		if (netif_msg_link(lp))
1181			netdev_info(dev, "link %s\n",
1182				    new_carrier ? "up" : "down");
1183	}
1184}
1185
1186static void smc_eph_interrupt(struct net_device *dev)
1187{
1188	struct smc_local *lp = netdev_priv(dev);
1189	void __iomem *ioaddr = lp->base;
1190	unsigned int ctl;
1191
1192	smc_10bt_check_media(dev, 0);
1193
1194	SMC_SELECT_BANK(lp, 1);
1195	ctl = SMC_GET_CTL(lp);
1196	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1197	SMC_SET_CTL(lp, ctl);
1198	SMC_SELECT_BANK(lp, 2);
1199}
1200
1201/*
1202 * This is the main routine of the driver, to handle the device when
1203 * it needs some attention.
1204 */
1205static irqreturn_t smc_interrupt(int irq, void *dev_id)
1206{
1207	struct net_device *dev = dev_id;
1208	struct smc_local *lp = netdev_priv(dev);
1209	void __iomem *ioaddr = lp->base;
1210	int status, mask, timeout, card_stats;
1211	int saved_pointer;
1212
1213	DBG(3, dev, "%s\n", __func__);
1214
1215	spin_lock(&lp->lock);
1216
1217	/* A preamble may be used when there is a potential race
1218	 * between the interruptible transmit functions and this
1219	 * ISR. */
1220	SMC_INTERRUPT_PREAMBLE;
1221
1222	saved_pointer = SMC_GET_PTR(lp);
1223	mask = SMC_GET_INT_MASK(lp);
1224	SMC_SET_INT_MASK(lp, 0);
1225
1226	/* set a timeout value, so I don't stay here forever */
1227	timeout = MAX_IRQ_LOOPS;
1228
1229	do {
1230		status = SMC_GET_INT(lp);
1231
1232		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1233		    status, mask,
1234		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1235		       meminfo = SMC_GET_MIR(lp);
1236		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1237		    SMC_GET_FIFO(lp));
1238
1239		status &= mask;
1240		if (!status)
1241			break;
1242
1243		if (status & IM_TX_INT) {
1244			/* do this before RX as it will free memory quickly */
1245			DBG(3, dev, "TX int\n");
1246			smc_tx(dev);
1247			SMC_ACK_INT(lp, IM_TX_INT);
1248			if (THROTTLE_TX_PKTS)
1249				netif_wake_queue(dev);
1250		} else if (status & IM_RCV_INT) {
1251			DBG(3, dev, "RX irq\n");
1252			smc_rcv(dev);
1253		} else if (status & IM_ALLOC_INT) {
1254			DBG(3, dev, "Allocation irq\n");
1255			tasklet_hi_schedule(&lp->tx_task);
1256			mask &= ~IM_ALLOC_INT;
1257		} else if (status & IM_TX_EMPTY_INT) {
1258			DBG(3, dev, "TX empty\n");
1259			mask &= ~IM_TX_EMPTY_INT;
1260
1261			/* update stats */
1262			SMC_SELECT_BANK(lp, 0);
1263			card_stats = SMC_GET_COUNTER(lp);
1264			SMC_SELECT_BANK(lp, 2);
1265
1266			/* single collisions */
1267			dev->stats.collisions += card_stats & 0xF;
1268			card_stats >>= 4;
1269
1270			/* multiple collisions */
1271			dev->stats.collisions += card_stats & 0xF;
1272		} else if (status & IM_RX_OVRN_INT) {
1273			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1274			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1275			       eph_st = SMC_GET_EPH_STATUS(lp);
1276			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1277			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1278			dev->stats.rx_errors++;
1279			dev->stats.rx_fifo_errors++;
1280		} else if (status & IM_EPH_INT) {
1281			smc_eph_interrupt(dev);
1282		} else if (status & IM_MDINT) {
1283			SMC_ACK_INT(lp, IM_MDINT);
1284			smc_phy_interrupt(dev);
1285		} else if (status & IM_ERCV_INT) {
1286			SMC_ACK_INT(lp, IM_ERCV_INT);
1287			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1288		}
1289	} while (--timeout);
1290
1291	/* restore register states */
1292	SMC_SET_PTR(lp, saved_pointer);
1293	SMC_SET_INT_MASK(lp, mask);
1294	spin_unlock(&lp->lock);
1295
1296#ifndef CONFIG_NET_POLL_CONTROLLER
1297	if (timeout == MAX_IRQ_LOOPS)
1298		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1299		       mask);
1300#endif
1301	DBG(3, dev, "Interrupt done (%d loops)\n",
1302	    MAX_IRQ_LOOPS - timeout);
1303
1304	/*
1305	 * We return IRQ_HANDLED unconditionally here even if there was
1306	 * nothing to do.  There is a possibility that a packet might
1307	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1308	 * but just before the CPU acknowledges the IRQ.
1309	 * Better take an unneeded IRQ in some occasions than complexifying
1310	 * the code for all cases.
1311	 */
1312	return IRQ_HANDLED;
1313}
1314
1315#ifdef CONFIG_NET_POLL_CONTROLLER
1316/*
1317 * Polling receive - used by netconsole and other diagnostic tools
1318 * to allow network i/o with interrupts disabled.
1319 */
1320static void smc_poll_controller(struct net_device *dev)
1321{
1322	disable_irq(dev->irq);
1323	smc_interrupt(dev->irq, dev);
1324	enable_irq(dev->irq);
1325}
1326#endif
1327
1328/* Our watchdog timed out. Called by the networking layer */
1329static void smc_timeout(struct net_device *dev)
1330{
1331	struct smc_local *lp = netdev_priv(dev);
1332	void __iomem *ioaddr = lp->base;
1333	int status, mask, eph_st, meminfo, fifo;
1334
1335	DBG(2, dev, "%s\n", __func__);
1336
1337	spin_lock_irq(&lp->lock);
1338	status = SMC_GET_INT(lp);
1339	mask = SMC_GET_INT_MASK(lp);
1340	fifo = SMC_GET_FIFO(lp);
1341	SMC_SELECT_BANK(lp, 0);
1342	eph_st = SMC_GET_EPH_STATUS(lp);
1343	meminfo = SMC_GET_MIR(lp);
1344	SMC_SELECT_BANK(lp, 2);
1345	spin_unlock_irq(&lp->lock);
1346	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1347	       status, mask, meminfo, fifo, eph_st);
1348
1349	smc_reset(dev);
1350	smc_enable(dev);
1351
1352	/*
1353	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1354	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1355	 * which calls schedule().  Hence we use a work queue.
1356	 */
1357	if (lp->phy_type != 0)
1358		schedule_work(&lp->phy_configure);
1359
1360	/* We can accept TX packets again */
1361	dev->trans_start = jiffies; /* prevent tx timeout */
1362	netif_wake_queue(dev);
1363}
1364
1365/*
1366 * This routine will, depending on the values passed to it,
1367 * either make it accept multicast packets, go into
1368 * promiscuous mode (for TCPDUMP and cousins) or accept
1369 * a select set of multicast packets
1370 */
1371static void smc_set_multicast_list(struct net_device *dev)
1372{
1373	struct smc_local *lp = netdev_priv(dev);
1374	void __iomem *ioaddr = lp->base;
1375	unsigned char multicast_table[8];
1376	int update_multicast = 0;
1377
1378	DBG(2, dev, "%s\n", __func__);
1379
1380	if (dev->flags & IFF_PROMISC) {
1381		DBG(2, dev, "RCR_PRMS\n");
1382		lp->rcr_cur_mode |= RCR_PRMS;
1383	}
1384
1385/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1386   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1387   when promiscuous mode is turned on.
1388*/
1389
1390	/*
1391	 * Here, I am setting this to accept all multicast packets.
1392	 * I don't need to zero the multicast table, because the flag is
1393	 * checked before the table is
1394	 */
1395	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1396		DBG(2, dev, "RCR_ALMUL\n");
1397		lp->rcr_cur_mode |= RCR_ALMUL;
1398	}
1399
1400	/*
1401	 * This sets the internal hardware table to filter out unwanted
1402	 * multicast packets before they take up memory.
1403	 *
1404	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1405	 * address are the offset into the table.  If that bit is 1, then the
1406	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1407	 *
1408	 * To use the 6 bits as an offset into the table, the high 3 bits are
1409	 * the number of the 8 bit register, while the low 3 bits are the bit
1410	 * within that register.
1411	 */
1412	else if (!netdev_mc_empty(dev)) {
1413		struct netdev_hw_addr *ha;
1414
1415		/* table for flipping the order of 3 bits */
1416		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1417
1418		/* start with a table of all zeros: reject all */
1419		memset(multicast_table, 0, sizeof(multicast_table));
1420
1421		netdev_for_each_mc_addr(ha, dev) {
1422			int position;
1423
1424			/* only use the low order bits */
1425			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1426
1427			/* do some messy swapping to put the bit in the right spot */
1428			multicast_table[invert3[position&7]] |=
1429				(1<<invert3[(position>>3)&7]);
1430		}
1431
1432		/* be sure I get rid of flags I might have set */
1433		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1434
1435		/* now, the table can be loaded into the chipset */
1436		update_multicast = 1;
1437	} else  {
1438		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1439		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1440
1441		/*
1442		 * since I'm disabling all multicast entirely, I need to
1443		 * clear the multicast list
1444		 */
1445		memset(multicast_table, 0, sizeof(multicast_table));
1446		update_multicast = 1;
1447	}
1448
1449	spin_lock_irq(&lp->lock);
1450	SMC_SELECT_BANK(lp, 0);
1451	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1452	if (update_multicast) {
1453		SMC_SELECT_BANK(lp, 3);
1454		SMC_SET_MCAST(lp, multicast_table);
1455	}
1456	SMC_SELECT_BANK(lp, 2);
1457	spin_unlock_irq(&lp->lock);
1458}
1459
1460
1461/*
1462 * Open and Initialize the board
1463 *
1464 * Set up everything, reset the card, etc..
1465 */
1466static int
1467smc_open(struct net_device *dev)
1468{
1469	struct smc_local *lp = netdev_priv(dev);
1470
1471	DBG(2, dev, "%s\n", __func__);
1472
1473	/* Setup the default Register Modes */
1474	lp->tcr_cur_mode = TCR_DEFAULT;
1475	lp->rcr_cur_mode = RCR_DEFAULT;
1476	lp->rpc_cur_mode = RPC_DEFAULT |
1477				lp->cfg.leda << RPC_LSXA_SHFT |
1478				lp->cfg.ledb << RPC_LSXB_SHFT;
1479
1480	/*
1481	 * If we are not using a MII interface, we need to
1482	 * monitor our own carrier signal to detect faults.
1483	 */
1484	if (lp->phy_type == 0)
1485		lp->tcr_cur_mode |= TCR_MON_CSN;
1486
1487	/* reset the hardware */
1488	smc_reset(dev);
1489	smc_enable(dev);
1490
1491	/* Configure the PHY, initialize the link state */
1492	if (lp->phy_type != 0)
1493		smc_phy_configure(&lp->phy_configure);
1494	else {
1495		spin_lock_irq(&lp->lock);
1496		smc_10bt_check_media(dev, 1);
1497		spin_unlock_irq(&lp->lock);
1498	}
1499
1500	netif_start_queue(dev);
1501	return 0;
1502}
1503
1504/*
1505 * smc_close
1506 *
1507 * this makes the board clean up everything that it can
1508 * and not talk to the outside world.   Caused by
1509 * an 'ifconfig ethX down'
1510 */
1511static int smc_close(struct net_device *dev)
1512{
1513	struct smc_local *lp = netdev_priv(dev);
1514
1515	DBG(2, dev, "%s\n", __func__);
1516
1517	netif_stop_queue(dev);
1518	netif_carrier_off(dev);
1519
1520	/* clear everything */
1521	smc_shutdown(dev);
1522	tasklet_kill(&lp->tx_task);
1523	smc_phy_powerdown(dev);
1524	return 0;
1525}
1526
1527/*
1528 * Ethtool support
1529 */
1530static int
1531smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1532{
1533	struct smc_local *lp = netdev_priv(dev);
1534	int ret;
1535
1536	cmd->maxtxpkt = 1;
1537	cmd->maxrxpkt = 1;
1538
1539	if (lp->phy_type != 0) {
1540		spin_lock_irq(&lp->lock);
1541		ret = mii_ethtool_gset(&lp->mii, cmd);
1542		spin_unlock_irq(&lp->lock);
1543	} else {
1544		cmd->supported = SUPPORTED_10baseT_Half |
1545				 SUPPORTED_10baseT_Full |
1546				 SUPPORTED_TP | SUPPORTED_AUI;
1547
1548		if (lp->ctl_rspeed == 10)
1549			ethtool_cmd_speed_set(cmd, SPEED_10);
1550		else if (lp->ctl_rspeed == 100)
1551			ethtool_cmd_speed_set(cmd, SPEED_100);
1552
1553		cmd->autoneg = AUTONEG_DISABLE;
1554		cmd->transceiver = XCVR_INTERNAL;
1555		cmd->port = 0;
1556		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1557
1558		ret = 0;
1559	}
1560
1561	return ret;
1562}
1563
1564static int
1565smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1566{
1567	struct smc_local *lp = netdev_priv(dev);
1568	int ret;
1569
1570	if (lp->phy_type != 0) {
1571		spin_lock_irq(&lp->lock);
1572		ret = mii_ethtool_sset(&lp->mii, cmd);
1573		spin_unlock_irq(&lp->lock);
1574	} else {
1575		if (cmd->autoneg != AUTONEG_DISABLE ||
1576		    cmd->speed != SPEED_10 ||
1577		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1578		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1579			return -EINVAL;
1580
1581//		lp->port = cmd->port;
1582		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1583
1584//		if (netif_running(dev))
1585//			smc_set_port(dev);
1586
1587		ret = 0;
1588	}
1589
1590	return ret;
1591}
1592
1593static void
1594smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1595{
1596	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1597	strlcpy(info->version, version, sizeof(info->version));
1598	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1599		sizeof(info->bus_info));
1600}
1601
1602static int smc_ethtool_nwayreset(struct net_device *dev)
1603{
1604	struct smc_local *lp = netdev_priv(dev);
1605	int ret = -EINVAL;
1606
1607	if (lp->phy_type != 0) {
1608		spin_lock_irq(&lp->lock);
1609		ret = mii_nway_restart(&lp->mii);
1610		spin_unlock_irq(&lp->lock);
1611	}
1612
1613	return ret;
1614}
1615
1616static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1617{
1618	struct smc_local *lp = netdev_priv(dev);
1619	return lp->msg_enable;
1620}
1621
1622static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1623{
1624	struct smc_local *lp = netdev_priv(dev);
1625	lp->msg_enable = level;
1626}
1627
1628static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1629{
1630	u16 ctl;
1631	struct smc_local *lp = netdev_priv(dev);
1632	void __iomem *ioaddr = lp->base;
1633
1634	spin_lock_irq(&lp->lock);
1635	/* load word into GP register */
1636	SMC_SELECT_BANK(lp, 1);
1637	SMC_SET_GP(lp, word);
1638	/* set the address to put the data in EEPROM */
1639	SMC_SELECT_BANK(lp, 2);
1640	SMC_SET_PTR(lp, addr);
1641	/* tell it to write */
1642	SMC_SELECT_BANK(lp, 1);
1643	ctl = SMC_GET_CTL(lp);
1644	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1645	/* wait for it to finish */
1646	do {
1647		udelay(1);
1648	} while (SMC_GET_CTL(lp) & CTL_STORE);
1649	/* clean up */
1650	SMC_SET_CTL(lp, ctl);
1651	SMC_SELECT_BANK(lp, 2);
1652	spin_unlock_irq(&lp->lock);
1653	return 0;
1654}
1655
1656static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1657{
1658	u16 ctl;
1659	struct smc_local *lp = netdev_priv(dev);
1660	void __iomem *ioaddr = lp->base;
1661
1662	spin_lock_irq(&lp->lock);
1663	/* set the EEPROM address to get the data from */
1664	SMC_SELECT_BANK(lp, 2);
1665	SMC_SET_PTR(lp, addr | PTR_READ);
1666	/* tell it to load */
1667	SMC_SELECT_BANK(lp, 1);
1668	SMC_SET_GP(lp, 0xffff);	/* init to known */
1669	ctl = SMC_GET_CTL(lp);
1670	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1671	/* wait for it to finish */
1672	do {
1673		udelay(1);
1674	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1675	/* read word from GP register */
1676	*word = SMC_GET_GP(lp);
1677	/* clean up */
1678	SMC_SET_CTL(lp, ctl);
1679	SMC_SELECT_BANK(lp, 2);
1680	spin_unlock_irq(&lp->lock);
1681	return 0;
1682}
1683
1684static int smc_ethtool_geteeprom_len(struct net_device *dev)
1685{
1686	return 0x23 * 2;
1687}
1688
1689static int smc_ethtool_geteeprom(struct net_device *dev,
1690		struct ethtool_eeprom *eeprom, u8 *data)
1691{
1692	int i;
1693	int imax;
1694
1695	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1696		eeprom->len, eeprom->offset, eeprom->offset);
1697	imax = smc_ethtool_geteeprom_len(dev);
1698	for (i = 0; i < eeprom->len; i += 2) {
1699		int ret;
1700		u16 wbuf;
1701		int offset = i + eeprom->offset;
1702		if (offset > imax)
1703			break;
1704		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1705		if (ret != 0)
1706			return ret;
1707		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1708		data[i] = (wbuf >> 8) & 0xff;
1709		data[i+1] = wbuf & 0xff;
1710	}
1711	return 0;
1712}
1713
1714static int smc_ethtool_seteeprom(struct net_device *dev,
1715		struct ethtool_eeprom *eeprom, u8 *data)
1716{
1717	int i;
1718	int imax;
1719
1720	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1721	    eeprom->len, eeprom->offset, eeprom->offset);
1722	imax = smc_ethtool_geteeprom_len(dev);
1723	for (i = 0; i < eeprom->len; i += 2) {
1724		int ret;
1725		u16 wbuf;
1726		int offset = i + eeprom->offset;
1727		if (offset > imax)
1728			break;
1729		wbuf = (data[i] << 8) | data[i + 1];
1730		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1731		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1732		if (ret != 0)
1733			return ret;
1734	}
1735	return 0;
1736}
1737
1738
1739static const struct ethtool_ops smc_ethtool_ops = {
1740	.get_settings	= smc_ethtool_getsettings,
1741	.set_settings	= smc_ethtool_setsettings,
1742	.get_drvinfo	= smc_ethtool_getdrvinfo,
1743
1744	.get_msglevel	= smc_ethtool_getmsglevel,
1745	.set_msglevel	= smc_ethtool_setmsglevel,
1746	.nway_reset	= smc_ethtool_nwayreset,
1747	.get_link	= ethtool_op_get_link,
1748	.get_eeprom_len = smc_ethtool_geteeprom_len,
1749	.get_eeprom	= smc_ethtool_geteeprom,
1750	.set_eeprom	= smc_ethtool_seteeprom,
1751};
1752
1753static const struct net_device_ops smc_netdev_ops = {
1754	.ndo_open		= smc_open,
1755	.ndo_stop		= smc_close,
1756	.ndo_start_xmit		= smc_hard_start_xmit,
1757	.ndo_tx_timeout		= smc_timeout,
1758	.ndo_set_rx_mode	= smc_set_multicast_list,
1759	.ndo_change_mtu		= eth_change_mtu,
1760	.ndo_validate_addr	= eth_validate_addr,
1761	.ndo_set_mac_address 	= eth_mac_addr,
1762#ifdef CONFIG_NET_POLL_CONTROLLER
1763	.ndo_poll_controller	= smc_poll_controller,
1764#endif
1765};
1766
1767/*
1768 * smc_findirq
1769 *
1770 * This routine has a simple purpose -- make the SMC chip generate an
1771 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1772 */
1773/*
1774 * does this still work?
1775 *
1776 * I just deleted auto_irq.c, since it was never built...
1777 *   --jgarzik
1778 */
1779static int smc_findirq(struct smc_local *lp)
1780{
1781	void __iomem *ioaddr = lp->base;
1782	int timeout = 20;
1783	unsigned long cookie;
1784
1785	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1786
1787	cookie = probe_irq_on();
1788
1789	/*
1790	 * What I try to do here is trigger an ALLOC_INT. This is done
1791	 * by allocating a small chunk of memory, which will give an interrupt
1792	 * when done.
1793	 */
1794	/* enable ALLOCation interrupts ONLY */
1795	SMC_SELECT_BANK(lp, 2);
1796	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1797
1798	/*
1799 	 * Allocate 512 bytes of memory.  Note that the chip was just
1800	 * reset so all the memory is available
1801	 */
1802	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1803
1804	/*
1805	 * Wait until positive that the interrupt has been generated
1806	 */
1807	do {
1808		int int_status;
1809		udelay(10);
1810		int_status = SMC_GET_INT(lp);
1811		if (int_status & IM_ALLOC_INT)
1812			break;		/* got the interrupt */
1813	} while (--timeout);
1814
1815	/*
1816	 * there is really nothing that I can do here if timeout fails,
1817	 * as autoirq_report will return a 0 anyway, which is what I
1818	 * want in this case.   Plus, the clean up is needed in both
1819	 * cases.
1820	 */
1821
1822	/* and disable all interrupts again */
1823	SMC_SET_INT_MASK(lp, 0);
1824
1825	/* and return what I found */
1826	return probe_irq_off(cookie);
1827}
1828
1829/*
1830 * Function: smc_probe(unsigned long ioaddr)
1831 *
1832 * Purpose:
1833 *	Tests to see if a given ioaddr points to an SMC91x chip.
1834 *	Returns a 0 on success
1835 *
1836 * Algorithm:
1837 *	(1) see if the high byte of BANK_SELECT is 0x33
1838 * 	(2) compare the ioaddr with the base register's address
1839 *	(3) see if I recognize the chip ID in the appropriate register
1840 *
1841 * Here I do typical initialization tasks.
1842 *
1843 * o  Initialize the structure if needed
1844 * o  print out my vanity message if not done so already
1845 * o  print out what type of hardware is detected
1846 * o  print out the ethernet address
1847 * o  find the IRQ
1848 * o  set up my private data
1849 * o  configure the dev structure with my subroutines
1850 * o  actually GRAB the irq.
1851 * o  GRAB the region
1852 */
1853static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1854		     unsigned long irq_flags)
1855{
1856	struct smc_local *lp = netdev_priv(dev);
1857	int retval;
1858	unsigned int val, revision_register;
1859	const char *version_string;
1860
1861	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1862
1863	/* First, see if the high byte is 0x33 */
1864	val = SMC_CURRENT_BANK(lp);
1865	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1866	    CARDNAME, val);
1867	if ((val & 0xFF00) != 0x3300) {
1868		if ((val & 0xFF) == 0x33) {
1869			netdev_warn(dev,
1870				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1871				    CARDNAME, ioaddr);
1872		}
1873		retval = -ENODEV;
1874		goto err_out;
1875	}
1876
1877	/*
1878	 * The above MIGHT indicate a device, but I need to write to
1879	 * further test this.
1880	 */
1881	SMC_SELECT_BANK(lp, 0);
1882	val = SMC_CURRENT_BANK(lp);
1883	if ((val & 0xFF00) != 0x3300) {
1884		retval = -ENODEV;
1885		goto err_out;
1886	}
1887
1888	/*
1889	 * well, we've already written once, so hopefully another
1890	 * time won't hurt.  This time, I need to switch the bank
1891	 * register to bank 1, so I can access the base address
1892	 * register
1893	 */
1894	SMC_SELECT_BANK(lp, 1);
1895	val = SMC_GET_BASE(lp);
1896	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1897	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1898		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1899			    CARDNAME, ioaddr, val);
1900	}
1901
1902	/*
1903	 * check if the revision register is something that I
1904	 * recognize.  These might need to be added to later,
1905	 * as future revisions could be added.
1906	 */
1907	SMC_SELECT_BANK(lp, 3);
1908	revision_register = SMC_GET_REV(lp);
1909	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1910	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1911	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1912		/* I don't recognize this chip, so... */
1913		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1914			    CARDNAME, ioaddr, revision_register);
1915
1916		retval = -ENODEV;
1917		goto err_out;
1918	}
1919
1920	/* At this point I'll assume that the chip is an SMC91x. */
1921	pr_info_once("%s\n", version);
1922
1923	/* fill in some of the fields */
1924	dev->base_addr = (unsigned long)ioaddr;
1925	lp->base = ioaddr;
1926	lp->version = revision_register & 0xff;
1927	spin_lock_init(&lp->lock);
1928
1929	/* Get the MAC address */
1930	SMC_SELECT_BANK(lp, 1);
1931	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1932
1933	/* now, reset the chip, and put it into a known state */
1934	smc_reset(dev);
1935
1936	/*
1937	 * If dev->irq is 0, then the device has to be banged on to see
1938	 * what the IRQ is.
1939	 *
1940	 * This banging doesn't always detect the IRQ, for unknown reasons.
1941	 * a workaround is to reset the chip and try again.
1942	 *
1943	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1944	 * be what is requested on the command line.   I don't do that, mostly
1945	 * because the card that I have uses a non-standard method of accessing
1946	 * the IRQs, and because this _should_ work in most configurations.
1947	 *
1948	 * Specifying an IRQ is done with the assumption that the user knows
1949	 * what (s)he is doing.  No checking is done!!!!
1950	 */
1951	if (dev->irq < 1) {
1952		int trials;
1953
1954		trials = 3;
1955		while (trials--) {
1956			dev->irq = smc_findirq(lp);
1957			if (dev->irq)
1958				break;
1959			/* kick the card and try again */
1960			smc_reset(dev);
1961		}
1962	}
1963	if (dev->irq == 0) {
1964		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1965		retval = -ENODEV;
1966		goto err_out;
1967	}
1968	dev->irq = irq_canonicalize(dev->irq);
1969
1970	/* Fill in the fields of the device structure with ethernet values. */
1971	ether_setup(dev);
1972
1973	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1974	dev->netdev_ops = &smc_netdev_ops;
1975	dev->ethtool_ops = &smc_ethtool_ops;
1976
1977	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1978	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1979	lp->dev = dev;
1980	lp->mii.phy_id_mask = 0x1f;
1981	lp->mii.reg_num_mask = 0x1f;
1982	lp->mii.force_media = 0;
1983	lp->mii.full_duplex = 0;
1984	lp->mii.dev = dev;
1985	lp->mii.mdio_read = smc_phy_read;
1986	lp->mii.mdio_write = smc_phy_write;
1987
1988	/*
1989	 * Locate the phy, if any.
1990	 */
1991	if (lp->version >= (CHIP_91100 << 4))
1992		smc_phy_detect(dev);
1993
1994	/* then shut everything down to save power */
1995	smc_shutdown(dev);
1996	smc_phy_powerdown(dev);
1997
1998	/* Set default parameters */
1999	lp->msg_enable = NETIF_MSG_LINK;
2000	lp->ctl_rfduplx = 0;
2001	lp->ctl_rspeed = 10;
2002
2003	if (lp->version >= (CHIP_91100 << 4)) {
2004		lp->ctl_rfduplx = 1;
2005		lp->ctl_rspeed = 100;
2006	}
2007
2008	/* Grab the IRQ */
2009	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2010      	if (retval)
2011      		goto err_out;
2012
2013#ifdef CONFIG_ARCH_PXA
2014#  ifdef SMC_USE_PXA_DMA
2015	lp->cfg.flags |= SMC91X_USE_DMA;
2016#  endif
2017	if (lp->cfg.flags & SMC91X_USE_DMA) {
2018		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2019					  smc_pxa_dma_irq, NULL);
2020		if (dma >= 0)
2021			dev->dma = dma;
2022	}
2023#endif
2024
2025	retval = register_netdev(dev);
2026	if (retval == 0) {
2027		/* now, print out the card info, in a short format.. */
2028		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2029			    version_string, revision_register & 0x0f,
2030			    lp->base, dev->irq);
2031
2032		if (dev->dma != (unsigned char)-1)
2033			pr_cont(" DMA %d", dev->dma);
2034
2035		pr_cont("%s%s\n",
2036			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2037			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2038
2039		if (!is_valid_ether_addr(dev->dev_addr)) {
2040			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2041		} else {
2042			/* Print the Ethernet address */
2043			netdev_info(dev, "Ethernet addr: %pM\n",
2044				    dev->dev_addr);
2045		}
2046
2047		if (lp->phy_type == 0) {
2048			PRINTK(dev, "No PHY found\n");
2049		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2050			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2051		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2052			PRINTK(dev, "PHY LAN83C180\n");
2053		}
2054	}
2055
2056err_out:
2057#ifdef CONFIG_ARCH_PXA
2058	if (retval && dev->dma != (unsigned char)-1)
2059		pxa_free_dma(dev->dma);
2060#endif
2061	return retval;
2062}
2063
2064static int smc_enable_device(struct platform_device *pdev)
2065{
2066	struct net_device *ndev = platform_get_drvdata(pdev);
2067	struct smc_local *lp = netdev_priv(ndev);
2068	unsigned long flags;
2069	unsigned char ecor, ecsr;
2070	void __iomem *addr;
2071	struct resource * res;
2072
2073	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2074	if (!res)
2075		return 0;
2076
2077	/*
2078	 * Map the attribute space.  This is overkill, but clean.
2079	 */
2080	addr = ioremap(res->start, ATTRIB_SIZE);
2081	if (!addr)
2082		return -ENOMEM;
2083
2084	/*
2085	 * Reset the device.  We must disable IRQs around this
2086	 * since a reset causes the IRQ line become active.
2087	 */
2088	local_irq_save(flags);
2089	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2090	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2091	readb(addr + (ECOR << SMC_IO_SHIFT));
2092
2093	/*
2094	 * Wait 100us for the chip to reset.
2095	 */
2096	udelay(100);
2097
2098	/*
2099	 * The device will ignore all writes to the enable bit while
2100	 * reset is asserted, even if the reset bit is cleared in the
2101	 * same write.  Must clear reset first, then enable the device.
2102	 */
2103	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2104	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2105
2106	/*
2107	 * Set the appropriate byte/word mode.
2108	 */
2109	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2110	if (!SMC_16BIT(lp))
2111		ecsr |= ECSR_IOIS8;
2112	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2113	local_irq_restore(flags);
2114
2115	iounmap(addr);
2116
2117	/*
2118	 * Wait for the chip to wake up.  We could poll the control
2119	 * register in the main register space, but that isn't mapped
2120	 * yet.  We know this is going to take 750us.
2121	 */
2122	msleep(1);
2123
2124	return 0;
2125}
2126
2127static int smc_request_attrib(struct platform_device *pdev,
2128			      struct net_device *ndev)
2129{
2130	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2131	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2132
2133	if (!res)
2134		return 0;
2135
2136	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2137		return -EBUSY;
2138
2139	return 0;
2140}
2141
2142static void smc_release_attrib(struct platform_device *pdev,
2143			       struct net_device *ndev)
2144{
2145	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2146	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2147
2148	if (res)
2149		release_mem_region(res->start, ATTRIB_SIZE);
2150}
2151
2152static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2153{
2154	if (SMC_CAN_USE_DATACS) {
2155		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2156		struct smc_local *lp = netdev_priv(ndev);
2157
2158		if (!res)
2159			return;
2160
2161		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2162			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2163				    CARDNAME);
2164			return;
2165		}
2166
2167		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2168	}
2169}
2170
2171static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2172{
2173	if (SMC_CAN_USE_DATACS) {
2174		struct smc_local *lp = netdev_priv(ndev);
2175		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2176
2177		if (lp->datacs)
2178			iounmap(lp->datacs);
2179
2180		lp->datacs = NULL;
2181
2182		if (res)
2183			release_mem_region(res->start, SMC_DATA_EXTENT);
2184	}
2185}
2186
2187#if IS_BUILTIN(CONFIG_OF)
2188static const struct of_device_id smc91x_match[] = {
2189	{ .compatible = "smsc,lan91c94", },
2190	{ .compatible = "smsc,lan91c111", },
2191	{},
2192};
2193MODULE_DEVICE_TABLE(of, smc91x_match);
2194#endif
2195
2196/*
2197 * smc_init(void)
2198 *   Input parameters:
2199 *	dev->base_addr == 0, try to find all possible locations
2200 *	dev->base_addr > 0x1ff, this is the address to check
2201 *	dev->base_addr == <anything else>, return failure code
2202 *
2203 *   Output:
2204 *	0 --> there is a device
2205 *	anything else, error
2206 */
2207static int smc_drv_probe(struct platform_device *pdev)
2208{
2209	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2210	const struct of_device_id *match = NULL;
2211	struct smc_local *lp;
2212	struct net_device *ndev;
2213	struct resource *res, *ires;
2214	unsigned int __iomem *addr;
2215	unsigned long irq_flags = SMC_IRQ_FLAGS;
2216	int ret;
2217
2218	ndev = alloc_etherdev(sizeof(struct smc_local));
2219	if (!ndev) {
2220		ret = -ENOMEM;
2221		goto out;
2222	}
2223	SET_NETDEV_DEV(ndev, &pdev->dev);
2224
2225	/* get configuration from platform data, only allow use of
2226	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2227	 */
2228
2229	lp = netdev_priv(ndev);
2230	lp->cfg.flags = 0;
2231
2232	if (pd) {
2233		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2234		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2235	}
2236
2237#if IS_BUILTIN(CONFIG_OF)
2238	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2239	if (match) {
2240		struct device_node *np = pdev->dev.of_node;
2241		u32 val;
2242
2243		/* Combination of IO widths supported, default to 16-bit */
2244		if (!of_property_read_u32(np, "reg-io-width", &val)) {
2245			if (val & 1)
2246				lp->cfg.flags |= SMC91X_USE_8BIT;
2247			if ((val == 0) || (val & 2))
2248				lp->cfg.flags |= SMC91X_USE_16BIT;
2249			if (val & 4)
2250				lp->cfg.flags |= SMC91X_USE_32BIT;
2251		} else {
2252			lp->cfg.flags |= SMC91X_USE_16BIT;
2253		}
2254	}
2255#endif
2256
2257	if (!pd && !match) {
2258		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2259		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2260		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2261		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2262	}
2263
2264	if (!lp->cfg.leda && !lp->cfg.ledb) {
2265		lp->cfg.leda = RPC_LSA_DEFAULT;
2266		lp->cfg.ledb = RPC_LSB_DEFAULT;
2267	}
2268
2269	ndev->dma = (unsigned char)-1;
2270
2271	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2272	if (!res)
2273		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2274	if (!res) {
2275		ret = -ENODEV;
2276		goto out_free_netdev;
2277	}
2278
2279
2280	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2281		ret = -EBUSY;
2282		goto out_free_netdev;
2283	}
2284
2285	ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2286	if (!ires) {
2287		ret = -ENODEV;
2288		goto out_release_io;
2289	}
2290
2291	ndev->irq = ires->start;
2292
2293	if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2294		irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2295
2296	ret = smc_request_attrib(pdev, ndev);
2297	if (ret)
2298		goto out_release_io;
2299#if defined(CONFIG_SA1100_ASSABET)
2300	neponset_ncr_set(NCR_ENET_OSC_EN);
2301#endif
2302	platform_set_drvdata(pdev, ndev);
2303	ret = smc_enable_device(pdev);
2304	if (ret)
2305		goto out_release_attrib;
2306
2307	addr = ioremap(res->start, SMC_IO_EXTENT);
2308	if (!addr) {
2309		ret = -ENOMEM;
2310		goto out_release_attrib;
2311	}
2312
2313#ifdef CONFIG_ARCH_PXA
2314	{
2315		struct smc_local *lp = netdev_priv(ndev);
2316		lp->device = &pdev->dev;
2317		lp->physaddr = res->start;
2318	}
2319#endif
2320
2321	ret = smc_probe(ndev, addr, irq_flags);
2322	if (ret != 0)
2323		goto out_iounmap;
2324
2325	smc_request_datacs(pdev, ndev);
2326
2327	return 0;
2328
2329 out_iounmap:
2330	iounmap(addr);
2331 out_release_attrib:
2332	smc_release_attrib(pdev, ndev);
2333 out_release_io:
2334	release_mem_region(res->start, SMC_IO_EXTENT);
2335 out_free_netdev:
2336	free_netdev(ndev);
2337 out:
2338	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2339
2340	return ret;
2341}
2342
2343static int smc_drv_remove(struct platform_device *pdev)
2344{
2345	struct net_device *ndev = platform_get_drvdata(pdev);
2346	struct smc_local *lp = netdev_priv(ndev);
2347	struct resource *res;
2348
2349	unregister_netdev(ndev);
2350
2351	free_irq(ndev->irq, ndev);
2352
2353#ifdef CONFIG_ARCH_PXA
2354	if (ndev->dma != (unsigned char)-1)
2355		pxa_free_dma(ndev->dma);
2356#endif
2357	iounmap(lp->base);
2358
2359	smc_release_datacs(pdev,ndev);
2360	smc_release_attrib(pdev,ndev);
2361
2362	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2363	if (!res)
2364		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2365	release_mem_region(res->start, SMC_IO_EXTENT);
2366
2367	free_netdev(ndev);
2368
2369	return 0;
2370}
2371
2372static int smc_drv_suspend(struct device *dev)
2373{
2374	struct platform_device *pdev = to_platform_device(dev);
2375	struct net_device *ndev = platform_get_drvdata(pdev);
2376
2377	if (ndev) {
2378		if (netif_running(ndev)) {
2379			netif_device_detach(ndev);
2380			smc_shutdown(ndev);
2381			smc_phy_powerdown(ndev);
2382		}
2383	}
2384	return 0;
2385}
2386
2387static int smc_drv_resume(struct device *dev)
2388{
2389	struct platform_device *pdev = to_platform_device(dev);
2390	struct net_device *ndev = platform_get_drvdata(pdev);
2391
2392	if (ndev) {
2393		struct smc_local *lp = netdev_priv(ndev);
2394		smc_enable_device(pdev);
2395		if (netif_running(ndev)) {
2396			smc_reset(ndev);
2397			smc_enable(ndev);
2398			if (lp->phy_type != 0)
2399				smc_phy_configure(&lp->phy_configure);
2400			netif_device_attach(ndev);
2401		}
2402	}
2403	return 0;
2404}
2405
2406static struct dev_pm_ops smc_drv_pm_ops = {
2407	.suspend	= smc_drv_suspend,
2408	.resume		= smc_drv_resume,
2409};
2410
2411static struct platform_driver smc_driver = {
2412	.probe		= smc_drv_probe,
2413	.remove		= smc_drv_remove,
2414	.driver		= {
2415		.name	= CARDNAME,
2416		.owner	= THIS_MODULE,
2417		.pm	= &smc_drv_pm_ops,
2418		.of_match_table = of_match_ptr(smc91x_match),
2419	},
2420};
2421
2422module_platform_driver(smc_driver);