Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * regmap based irq_chip
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/export.h>
 14#include <linux/device.h>
 15#include <linux/regmap.h>
 16#include <linux/irq.h>
 17#include <linux/interrupt.h>
 18#include <linux/irqdomain.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/slab.h>
 21
 22#include "internal.h"
 23
 24struct regmap_irq_chip_data {
 25	struct mutex lock;
 26	struct irq_chip irq_chip;
 27
 28	struct regmap *map;
 29	const struct regmap_irq_chip *chip;
 30
 31	int irq_base;
 32	struct irq_domain *domain;
 33
 34	int irq;
 35	int wake_count;
 36
 37	void *status_reg_buf;
 38	unsigned int *status_buf;
 39	unsigned int *mask_buf;
 40	unsigned int *mask_buf_def;
 41	unsigned int *wake_buf;
 42
 43	unsigned int irq_reg_stride;
 44};
 45
 46static inline const
 47struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 48				     int irq)
 49{
 50	return &data->chip->irqs[irq];
 51}
 52
 53static void regmap_irq_lock(struct irq_data *data)
 54{
 55	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 56
 57	mutex_lock(&d->lock);
 58}
 59
 60static void regmap_irq_sync_unlock(struct irq_data *data)
 61{
 62	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 63	struct regmap *map = d->map;
 64	int i, ret;
 65	u32 reg;
 66
 67	if (d->chip->runtime_pm) {
 68		ret = pm_runtime_get_sync(map->dev);
 69		if (ret < 0)
 70			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 71				ret);
 72	}
 73
 74	/*
 75	 * If there's been a change in the mask write it back to the
 76	 * hardware.  We rely on the use of the regmap core cache to
 77	 * suppress pointless writes.
 78	 */
 79	for (i = 0; i < d->chip->num_regs; i++) {
 80		reg = d->chip->mask_base +
 81			(i * map->reg_stride * d->irq_reg_stride);
 82		if (d->chip->mask_invert)
 83			ret = regmap_update_bits(d->map, reg,
 84					 d->mask_buf_def[i], ~d->mask_buf[i]);
 85		else
 86			ret = regmap_update_bits(d->map, reg,
 87					 d->mask_buf_def[i], d->mask_buf[i]);
 88		if (ret != 0)
 89			dev_err(d->map->dev, "Failed to sync masks in %x\n",
 90				reg);
 91
 92		reg = d->chip->wake_base +
 93			(i * map->reg_stride * d->irq_reg_stride);
 94		if (d->wake_buf) {
 95			if (d->chip->wake_invert)
 96				ret = regmap_update_bits(d->map, reg,
 97							 d->mask_buf_def[i],
 98							 ~d->wake_buf[i]);
 99			else
100				ret = regmap_update_bits(d->map, reg,
101							 d->mask_buf_def[i],
102							 d->wake_buf[i]);
103			if (ret != 0)
104				dev_err(d->map->dev,
105					"Failed to sync wakes in %x: %d\n",
106					reg, ret);
107		}
108
109		if (!d->chip->init_ack_masked)
110			continue;
111		/*
112		 * Ack all the masked interrupts uncondictionly,
113		 * OR if there is masked interrupt which hasn't been Acked,
114		 * it'll be ignored in irq handler, then may introduce irq storm
115		 */
116		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
117			reg = d->chip->ack_base +
118				(i * map->reg_stride * d->irq_reg_stride);
119			ret = regmap_write(map, reg, d->mask_buf[i]);
120			if (ret != 0)
121				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
122					reg, ret);
123		}
124	}
125
126	if (d->chip->runtime_pm)
127		pm_runtime_put(map->dev);
128
129	/* If we've changed our wakeup count propagate it to the parent */
130	if (d->wake_count < 0)
131		for (i = d->wake_count; i < 0; i++)
132			irq_set_irq_wake(d->irq, 0);
133	else if (d->wake_count > 0)
134		for (i = 0; i < d->wake_count; i++)
135			irq_set_irq_wake(d->irq, 1);
136
137	d->wake_count = 0;
138
139	mutex_unlock(&d->lock);
140}
141
142static void regmap_irq_enable(struct irq_data *data)
143{
144	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
145	struct regmap *map = d->map;
146	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
147
148	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
149}
150
151static void regmap_irq_disable(struct irq_data *data)
152{
153	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
154	struct regmap *map = d->map;
155	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
156
157	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
158}
159
160static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
161{
162	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
163	struct regmap *map = d->map;
164	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
165
166	if (on) {
167		if (d->wake_buf)
168			d->wake_buf[irq_data->reg_offset / map->reg_stride]
169				&= ~irq_data->mask;
170		d->wake_count++;
171	} else {
172		if (d->wake_buf)
173			d->wake_buf[irq_data->reg_offset / map->reg_stride]
174				|= irq_data->mask;
175		d->wake_count--;
176	}
177
178	return 0;
179}
180
181static const struct irq_chip regmap_irq_chip = {
182	.irq_bus_lock		= regmap_irq_lock,
183	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
184	.irq_disable		= regmap_irq_disable,
185	.irq_enable		= regmap_irq_enable,
186	.irq_set_wake		= regmap_irq_set_wake,
187};
188
189static irqreturn_t regmap_irq_thread(int irq, void *d)
190{
191	struct regmap_irq_chip_data *data = d;
192	const struct regmap_irq_chip *chip = data->chip;
193	struct regmap *map = data->map;
194	int ret, i;
195	bool handled = false;
196	u32 reg;
197
198	if (chip->runtime_pm) {
199		ret = pm_runtime_get_sync(map->dev);
200		if (ret < 0) {
201			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
202				ret);
203			pm_runtime_put(map->dev);
204			return IRQ_NONE;
205		}
206	}
207
208	/*
209	 * Read in the statuses, using a single bulk read if possible
210	 * in order to reduce the I/O overheads.
211	 */
212	if (!map->use_single_rw && map->reg_stride == 1 &&
213	    data->irq_reg_stride == 1) {
214		u8 *buf8 = data->status_reg_buf;
215		u16 *buf16 = data->status_reg_buf;
216		u32 *buf32 = data->status_reg_buf;
217
218		BUG_ON(!data->status_reg_buf);
219
220		ret = regmap_bulk_read(map, chip->status_base,
221				       data->status_reg_buf,
222				       chip->num_regs);
223		if (ret != 0) {
224			dev_err(map->dev, "Failed to read IRQ status: %d\n",
225				ret);
226			return IRQ_NONE;
227		}
228
229		for (i = 0; i < data->chip->num_regs; i++) {
230			switch (map->format.val_bytes) {
231			case 1:
232				data->status_buf[i] = buf8[i];
233				break;
234			case 2:
235				data->status_buf[i] = buf16[i];
236				break;
237			case 4:
238				data->status_buf[i] = buf32[i];
239				break;
240			default:
241				BUG();
242				return IRQ_NONE;
243			}
244		}
245
246	} else {
247		for (i = 0; i < data->chip->num_regs; i++) {
248			ret = regmap_read(map, chip->status_base +
249					  (i * map->reg_stride
250					   * data->irq_reg_stride),
251					  &data->status_buf[i]);
252
253			if (ret != 0) {
254				dev_err(map->dev,
255					"Failed to read IRQ status: %d\n",
256					ret);
257				if (chip->runtime_pm)
258					pm_runtime_put(map->dev);
259				return IRQ_NONE;
260			}
261		}
262	}
263
264	/*
265	 * Ignore masked IRQs and ack if we need to; we ack early so
266	 * there is no race between handling and acknowleding the
267	 * interrupt.  We assume that typically few of the interrupts
268	 * will fire simultaneously so don't worry about overhead from
269	 * doing a write per register.
270	 */
271	for (i = 0; i < data->chip->num_regs; i++) {
272		data->status_buf[i] &= ~data->mask_buf[i];
273
274		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
275			reg = chip->ack_base +
276				(i * map->reg_stride * data->irq_reg_stride);
277			ret = regmap_write(map, reg, data->status_buf[i]);
278			if (ret != 0)
279				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
280					reg, ret);
281		}
282	}
283
284	for (i = 0; i < chip->num_irqs; i++) {
285		if (data->status_buf[chip->irqs[i].reg_offset /
286				     map->reg_stride] & chip->irqs[i].mask) {
287			handle_nested_irq(irq_find_mapping(data->domain, i));
288			handled = true;
289		}
290	}
291
292	if (chip->runtime_pm)
293		pm_runtime_put(map->dev);
294
295	if (handled)
296		return IRQ_HANDLED;
297	else
298		return IRQ_NONE;
299}
300
301static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
302			  irq_hw_number_t hw)
303{
304	struct regmap_irq_chip_data *data = h->host_data;
305
306	irq_set_chip_data(virq, data);
307	irq_set_chip(virq, &data->irq_chip);
308	irq_set_nested_thread(virq, 1);
309
310	/* ARM needs us to explicitly flag the IRQ as valid
311	 * and will set them noprobe when we do so. */
312#ifdef CONFIG_ARM
313	set_irq_flags(virq, IRQF_VALID);
314#else
315	irq_set_noprobe(virq);
316#endif
317
318	return 0;
319}
320
321static struct irq_domain_ops regmap_domain_ops = {
322	.map	= regmap_irq_map,
323	.xlate	= irq_domain_xlate_twocell,
324};
325
326/**
327 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
328 *
329 * map:       The regmap for the device.
330 * irq:       The IRQ the device uses to signal interrupts
331 * irq_flags: The IRQF_ flags to use for the primary interrupt.
332 * chip:      Configuration for the interrupt controller.
333 * data:      Runtime data structure for the controller, allocated on success
334 *
335 * Returns 0 on success or an errno on failure.
336 *
337 * In order for this to be efficient the chip really should use a
338 * register cache.  The chip driver is responsible for restoring the
339 * register values used by the IRQ controller over suspend and resume.
340 */
341int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
342			int irq_base, const struct regmap_irq_chip *chip,
343			struct regmap_irq_chip_data **data)
344{
345	struct regmap_irq_chip_data *d;
346	int i;
347	int ret = -ENOMEM;
348	u32 reg;
349
350	for (i = 0; i < chip->num_irqs; i++) {
351		if (chip->irqs[i].reg_offset % map->reg_stride)
352			return -EINVAL;
353		if (chip->irqs[i].reg_offset / map->reg_stride >=
354		    chip->num_regs)
355			return -EINVAL;
356	}
357
358	if (irq_base) {
359		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
360		if (irq_base < 0) {
361			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
362				 irq_base);
363			return irq_base;
364		}
365	}
366
367	d = kzalloc(sizeof(*d), GFP_KERNEL);
368	if (!d)
369		return -ENOMEM;
370
371	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
372				GFP_KERNEL);
373	if (!d->status_buf)
374		goto err_alloc;
375
376	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
377			      GFP_KERNEL);
378	if (!d->mask_buf)
379		goto err_alloc;
380
381	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
382				  GFP_KERNEL);
383	if (!d->mask_buf_def)
384		goto err_alloc;
385
386	if (chip->wake_base) {
387		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
388				      GFP_KERNEL);
389		if (!d->wake_buf)
390			goto err_alloc;
391	}
392
393	d->irq_chip = regmap_irq_chip;
394	d->irq_chip.name = chip->name;
395	d->irq = irq;
396	d->map = map;
397	d->chip = chip;
398	d->irq_base = irq_base;
399
400	if (chip->irq_reg_stride)
401		d->irq_reg_stride = chip->irq_reg_stride;
402	else
403		d->irq_reg_stride = 1;
404
405	if (!map->use_single_rw && map->reg_stride == 1 &&
406	    d->irq_reg_stride == 1) {
407		d->status_reg_buf = kmalloc(map->format.val_bytes *
408					    chip->num_regs, GFP_KERNEL);
409		if (!d->status_reg_buf)
410			goto err_alloc;
411	}
412
413	mutex_init(&d->lock);
414
415	for (i = 0; i < chip->num_irqs; i++)
416		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
417			|= chip->irqs[i].mask;
418
419	/* Mask all the interrupts by default */
420	for (i = 0; i < chip->num_regs; i++) {
421		d->mask_buf[i] = d->mask_buf_def[i];
422		reg = chip->mask_base +
423			(i * map->reg_stride * d->irq_reg_stride);
424		if (chip->mask_invert)
425			ret = regmap_update_bits(map, reg,
426					 d->mask_buf[i], ~d->mask_buf[i]);
427		else
428			ret = regmap_update_bits(map, reg,
429					 d->mask_buf[i], d->mask_buf[i]);
430		if (ret != 0) {
431			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
432				reg, ret);
433			goto err_alloc;
434		}
435
436		if (!chip->init_ack_masked)
437			continue;
438
439		/* Ack masked but set interrupts */
440		reg = chip->status_base +
441			(i * map->reg_stride * d->irq_reg_stride);
442		ret = regmap_read(map, reg, &d->status_buf[i]);
443		if (ret != 0) {
444			dev_err(map->dev, "Failed to read IRQ status: %d\n",
445				ret);
446			goto err_alloc;
447		}
448
449		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
450			reg = chip->ack_base +
451				(i * map->reg_stride * d->irq_reg_stride);
452			ret = regmap_write(map, reg,
453					d->status_buf[i] & d->mask_buf[i]);
454			if (ret != 0) {
455				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
456					reg, ret);
457				goto err_alloc;
458			}
459		}
460	}
461
462	/* Wake is disabled by default */
463	if (d->wake_buf) {
464		for (i = 0; i < chip->num_regs; i++) {
465			d->wake_buf[i] = d->mask_buf_def[i];
466			reg = chip->wake_base +
467				(i * map->reg_stride * d->irq_reg_stride);
468
469			if (chip->wake_invert)
470				ret = regmap_update_bits(map, reg,
471							 d->mask_buf_def[i],
472							 0);
473			else
474				ret = regmap_update_bits(map, reg,
475							 d->mask_buf_def[i],
476							 d->wake_buf[i]);
477			if (ret != 0) {
478				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
479					reg, ret);
480				goto err_alloc;
481			}
482		}
483	}
484
485	if (irq_base)
486		d->domain = irq_domain_add_legacy(map->dev->of_node,
487						  chip->num_irqs, irq_base, 0,
488						  &regmap_domain_ops, d);
489	else
490		d->domain = irq_domain_add_linear(map->dev->of_node,
491						  chip->num_irqs,
492						  &regmap_domain_ops, d);
493	if (!d->domain) {
494		dev_err(map->dev, "Failed to create IRQ domain\n");
495		ret = -ENOMEM;
496		goto err_alloc;
497	}
498
499	ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
500				   chip->name, d);
501	if (ret != 0) {
502		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
503			irq, chip->name, ret);
504		goto err_domain;
505	}
506
507	*data = d;
508
509	return 0;
510
511err_domain:
512	/* Should really dispose of the domain but... */
513err_alloc:
514	kfree(d->wake_buf);
515	kfree(d->mask_buf_def);
516	kfree(d->mask_buf);
517	kfree(d->status_buf);
518	kfree(d->status_reg_buf);
519	kfree(d);
520	return ret;
521}
522EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
523
524/**
525 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
526 *
527 * @irq: Primary IRQ for the device
528 * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
529 */
530void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
531{
532	if (!d)
533		return;
534
535	free_irq(irq, d);
536	irq_domain_remove(d->domain);
537	kfree(d->wake_buf);
538	kfree(d->mask_buf_def);
539	kfree(d->mask_buf);
540	kfree(d->status_reg_buf);
541	kfree(d->status_buf);
542	kfree(d);
543}
544EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
545
546/**
547 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
548 *
549 * Useful for drivers to request their own IRQs.
550 *
551 * @data: regmap_irq controller to operate on.
552 */
553int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
554{
555	WARN_ON(!data->irq_base);
556	return data->irq_base;
557}
558EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
559
560/**
561 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
562 *
563 * Useful for drivers to request their own IRQs.
564 *
565 * @data: regmap_irq controller to operate on.
566 * @irq: index of the interrupt requested in the chip IRQs
567 */
568int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
569{
570	/* Handle holes in the IRQ list */
571	if (!data->chip->irqs[irq].mask)
572		return -EINVAL;
573
574	return irq_create_mapping(data->domain, irq);
575}
576EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
577
578/**
579 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
580 *
581 * Useful for drivers to request their own IRQs and for integration
582 * with subsystems.  For ease of integration NULL is accepted as a
583 * domain, allowing devices to just call this even if no domain is
584 * allocated.
585 *
586 * @data: regmap_irq controller to operate on.
587 */
588struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
589{
590	if (data)
591		return data->domain;
592	else
593		return NULL;
594}
595EXPORT_SYMBOL_GPL(regmap_irq_get_domain);