Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Xen time implementation.
  3 *
  4 * This is implemented in terms of a clocksource driver which uses
  5 * the hypervisor clock as a nanosecond timebase, and a clockevent
  6 * driver which uses the hypervisor's timer mechanism.
  7 *
  8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  9 */
 10#include <linux/kernel.h>
 11#include <linux/interrupt.h>
 12#include <linux/clocksource.h>
 13#include <linux/clockchips.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/math64.h>
 16#include <linux/gfp.h>
 17#include <linux/slab.h>
 18#include <linux/pvclock_gtod.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Xen may fire a timer up to this many ns early */
 32#define TIMER_SLOP	100000
 33#define NS_PER_TICK	(1000000000LL / HZ)
 34
 35/* runstate info updated by Xen */
 36static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
 37
 38/* snapshots of runstate info */
 39static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
 40
 41/* unused ns of stolen time */
 42static DEFINE_PER_CPU(u64, xen_residual_stolen);
 
 43
 44/* return an consistent snapshot of 64-bit time/counter value */
 45static u64 get64(const u64 *p)
 46{
 47	u64 ret;
 48
 49	if (BITS_PER_LONG < 64) {
 50		u32 *p32 = (u32 *)p;
 51		u32 h, l;
 52
 53		/*
 54		 * Read high then low, and then make sure high is
 55		 * still the same; this will only loop if low wraps
 56		 * and carries into high.
 57		 * XXX some clean way to make this endian-proof?
 58		 */
 59		do {
 60			h = p32[1];
 61			barrier();
 62			l = p32[0];
 63			barrier();
 64		} while (p32[1] != h);
 65
 66		ret = (((u64)h) << 32) | l;
 67	} else
 68		ret = *p;
 69
 70	return ret;
 71}
 72
 73/*
 74 * Runstate accounting
 75 */
 76static void get_runstate_snapshot(struct vcpu_runstate_info *res)
 77{
 78	u64 state_time;
 79	struct vcpu_runstate_info *state;
 80
 81	BUG_ON(preemptible());
 82
 83	state = &__get_cpu_var(xen_runstate);
 84
 85	/*
 86	 * The runstate info is always updated by the hypervisor on
 87	 * the current CPU, so there's no need to use anything
 88	 * stronger than a compiler barrier when fetching it.
 89	 */
 90	do {
 91		state_time = get64(&state->state_entry_time);
 92		barrier();
 93		*res = *state;
 94		barrier();
 95	} while (get64(&state->state_entry_time) != state_time);
 96}
 97
 98/* return true when a vcpu could run but has no real cpu to run on */
 99bool xen_vcpu_stolen(int vcpu)
100{
101	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
102}
103
104void xen_setup_runstate_info(int cpu)
105{
106	struct vcpu_register_runstate_memory_area area;
107
108	area.addr.v = &per_cpu(xen_runstate, cpu);
109
110	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
111			       cpu, &area))
112		BUG();
113}
114
115static void do_stolen_accounting(void)
116{
117	struct vcpu_runstate_info state;
118	struct vcpu_runstate_info *snap;
119	s64 runnable, offline, stolen;
120	cputime_t ticks;
121
122	get_runstate_snapshot(&state);
123
124	WARN_ON(state.state != RUNSTATE_running);
125
126	snap = &__get_cpu_var(xen_runstate_snapshot);
127
128	/* work out how much time the VCPU has not been runn*ing*  */
 
129	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131
132	*snap = state;
133
134	/* Add the appropriate number of ticks of stolen time,
135	   including any left-overs from last time. */
136	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
137
138	if (stolen < 0)
139		stolen = 0;
140
141	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142	__this_cpu_write(xen_residual_stolen, stolen);
143	account_steal_ticks(ticks);
 
 
 
 
 
 
 
 
 
 
 
144}
145
146/* Get the TSC speed from Xen */
147static unsigned long xen_tsc_khz(void)
148{
149	struct pvclock_vcpu_time_info *info =
150		&HYPERVISOR_shared_info->vcpu_info[0].time;
151
152	return pvclock_tsc_khz(info);
153}
154
155cycle_t xen_clocksource_read(void)
156{
157        struct pvclock_vcpu_time_info *src;
158	cycle_t ret;
159
160	preempt_disable_notrace();
161	src = &__get_cpu_var(xen_vcpu)->time;
162	ret = pvclock_clocksource_read(src);
163	preempt_enable_notrace();
164	return ret;
165}
166
167static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
168{
169	return xen_clocksource_read();
170}
171
172static void xen_read_wallclock(struct timespec *ts)
173{
174	struct shared_info *s = HYPERVISOR_shared_info;
175	struct pvclock_wall_clock *wall_clock = &(s->wc);
176        struct pvclock_vcpu_time_info *vcpu_time;
177
178	vcpu_time = &get_cpu_var(xen_vcpu)->time;
179	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
180	put_cpu_var(xen_vcpu);
181}
182
183static void xen_get_wallclock(struct timespec *now)
184{
185	xen_read_wallclock(now);
186}
187
188static int xen_set_wallclock(const struct timespec *now)
189{
190	return -1;
191}
192
193static int xen_pvclock_gtod_notify(struct notifier_block *nb,
194				   unsigned long was_set, void *priv)
195{
196	/* Protected by the calling core code serialization */
197	static struct timespec next_sync;
198
199	struct xen_platform_op op;
200	struct timespec now;
201
202	now = __current_kernel_time();
203
204	/*
205	 * We only take the expensive HV call when the clock was set
206	 * or when the 11 minutes RTC synchronization time elapsed.
207	 */
208	if (!was_set && timespec_compare(&now, &next_sync) < 0)
209		return NOTIFY_OK;
210
211	op.cmd = XENPF_settime;
212	op.u.settime.secs = now.tv_sec;
213	op.u.settime.nsecs = now.tv_nsec;
214	op.u.settime.system_time = xen_clocksource_read();
215
216	(void)HYPERVISOR_dom0_op(&op);
217
218	/*
219	 * Move the next drift compensation time 11 minutes
220	 * ahead. That's emulating the sync_cmos_clock() update for
221	 * the hardware RTC.
222	 */
223	next_sync = now;
224	next_sync.tv_sec += 11 * 60;
225
226	return NOTIFY_OK;
227}
228
229static struct notifier_block xen_pvclock_gtod_notifier = {
230	.notifier_call = xen_pvclock_gtod_notify,
231};
232
233static struct clocksource xen_clocksource __read_mostly = {
234	.name = "xen",
235	.rating = 400,
236	.read = xen_clocksource_get_cycles,
237	.mask = ~0,
238	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
239};
240
241/*
242   Xen clockevent implementation
243
244   Xen has two clockevent implementations:
245
246   The old timer_op one works with all released versions of Xen prior
247   to version 3.0.4.  This version of the hypervisor provides a
248   single-shot timer with nanosecond resolution.  However, sharing the
249   same event channel is a 100Hz tick which is delivered while the
250   vcpu is running.  We don't care about or use this tick, but it will
251   cause the core time code to think the timer fired too soon, and
252   will end up resetting it each time.  It could be filtered, but
253   doing so has complications when the ktime clocksource is not yet
254   the xen clocksource (ie, at boot time).
255
256   The new vcpu_op-based timer interface allows the tick timer period
257   to be changed or turned off.  The tick timer is not useful as a
258   periodic timer because events are only delivered to running vcpus.
259   The one-shot timer can report when a timeout is in the past, so
260   set_next_event is capable of returning -ETIME when appropriate.
261   This interface is used when available.
262*/
263
264
265/*
266  Get a hypervisor absolute time.  In theory we could maintain an
267  offset between the kernel's time and the hypervisor's time, and
268  apply that to a kernel's absolute timeout.  Unfortunately the
269  hypervisor and kernel times can drift even if the kernel is using
270  the Xen clocksource, because ntp can warp the kernel's clocksource.
271*/
272static s64 get_abs_timeout(unsigned long delta)
273{
274	return xen_clocksource_read() + delta;
275}
276
277static void xen_timerop_set_mode(enum clock_event_mode mode,
278				 struct clock_event_device *evt)
279{
280	switch (mode) {
281	case CLOCK_EVT_MODE_PERIODIC:
282		/* unsupported */
283		WARN_ON(1);
284		break;
285
286	case CLOCK_EVT_MODE_ONESHOT:
287	case CLOCK_EVT_MODE_RESUME:
288		break;
289
290	case CLOCK_EVT_MODE_UNUSED:
291	case CLOCK_EVT_MODE_SHUTDOWN:
292		HYPERVISOR_set_timer_op(0);  /* cancel timeout */
293		break;
294	}
295}
296
297static int xen_timerop_set_next_event(unsigned long delta,
298				      struct clock_event_device *evt)
299{
300	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
301
302	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
303		BUG();
304
305	/* We may have missed the deadline, but there's no real way of
306	   knowing for sure.  If the event was in the past, then we'll
307	   get an immediate interrupt. */
308
309	return 0;
310}
311
312static const struct clock_event_device xen_timerop_clockevent = {
313	.name = "xen",
314	.features = CLOCK_EVT_FEAT_ONESHOT,
315
316	.max_delta_ns = 0xffffffff,
317	.min_delta_ns = TIMER_SLOP,
318
319	.mult = 1,
320	.shift = 0,
321	.rating = 500,
322
323	.set_mode = xen_timerop_set_mode,
324	.set_next_event = xen_timerop_set_next_event,
325};
326
327
328
329static void xen_vcpuop_set_mode(enum clock_event_mode mode,
330				struct clock_event_device *evt)
331{
332	int cpu = smp_processor_id();
333
334	switch (mode) {
335	case CLOCK_EVT_MODE_PERIODIC:
336		WARN_ON(1);	/* unsupported */
337		break;
338
339	case CLOCK_EVT_MODE_ONESHOT:
340		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
341			BUG();
342		break;
343
344	case CLOCK_EVT_MODE_UNUSED:
345	case CLOCK_EVT_MODE_SHUTDOWN:
346		if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
347		    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
348			BUG();
349		break;
350	case CLOCK_EVT_MODE_RESUME:
351		break;
352	}
353}
354
355static int xen_vcpuop_set_next_event(unsigned long delta,
356				     struct clock_event_device *evt)
357{
358	int cpu = smp_processor_id();
359	struct vcpu_set_singleshot_timer single;
360	int ret;
361
362	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
363
364	single.timeout_abs_ns = get_abs_timeout(delta);
365	single.flags = VCPU_SSHOTTMR_future;
366
367	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
368
369	BUG_ON(ret != 0 && ret != -ETIME);
370
371	return ret;
372}
373
374static const struct clock_event_device xen_vcpuop_clockevent = {
375	.name = "xen",
376	.features = CLOCK_EVT_FEAT_ONESHOT,
377
378	.max_delta_ns = 0xffffffff,
379	.min_delta_ns = TIMER_SLOP,
380
381	.mult = 1,
382	.shift = 0,
383	.rating = 500,
384
385	.set_mode = xen_vcpuop_set_mode,
386	.set_next_event = xen_vcpuop_set_next_event,
387};
388
389static const struct clock_event_device *xen_clockevent =
390	&xen_timerop_clockevent;
391
392struct xen_clock_event_device {
393	struct clock_event_device evt;
394	char *name;
395};
396static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
397
398static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
399{
400	struct clock_event_device *evt = &__get_cpu_var(xen_clock_events).evt;
401	irqreturn_t ret;
402
403	ret = IRQ_NONE;
404	if (evt->event_handler) {
405		evt->event_handler(evt);
406		ret = IRQ_HANDLED;
407	}
408
409	do_stolen_accounting();
410
411	return ret;
412}
413
414void xen_teardown_timer(int cpu)
415{
416	struct clock_event_device *evt;
417	BUG_ON(cpu == 0);
418	evt = &per_cpu(xen_clock_events, cpu).evt;
419
420	if (evt->irq >= 0) {
421		unbind_from_irqhandler(evt->irq, NULL);
422		evt->irq = -1;
423		kfree(per_cpu(xen_clock_events, cpu).name);
424		per_cpu(xen_clock_events, cpu).name = NULL;
425	}
426}
427
428void xen_setup_timer(int cpu)
429{
430	char *name;
431	struct clock_event_device *evt;
432	int irq;
433
434	evt = &per_cpu(xen_clock_events, cpu).evt;
435	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
436	if (evt->irq >= 0)
437		xen_teardown_timer(cpu);
438
439	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
440
441	name = kasprintf(GFP_KERNEL, "timer%d", cpu);
442	if (!name)
443		name = "<timer kasprintf failed>";
444
445	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
446				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
 
447				      IRQF_FORCE_RESUME,
448				      name, NULL);
449	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
450
 
451	memcpy(evt, xen_clockevent, sizeof(*evt));
452
453	evt->cpumask = cpumask_of(cpu);
454	evt->irq = irq;
455	per_cpu(xen_clock_events, cpu).name = name;
456}
457
 
 
 
 
 
 
 
458
459void xen_setup_cpu_clockevents(void)
460{
461	BUG_ON(preemptible());
462
463	clockevents_register_device(&__get_cpu_var(xen_clock_events).evt);
464}
465
466void xen_timer_resume(void)
467{
468	int cpu;
469
470	pvclock_resume();
471
472	if (xen_clockevent != &xen_vcpuop_clockevent)
473		return;
474
475	for_each_online_cpu(cpu) {
476		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
477			BUG();
478	}
479}
480
481static const struct pv_time_ops xen_time_ops __initconst = {
482	.sched_clock = xen_clocksource_read,
483};
484
485static void __init xen_time_init(void)
486{
487	int cpu = smp_processor_id();
488	struct timespec tp;
489
490	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
491
492	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
493		/* Successfully turned off 100Hz tick, so we have the
494		   vcpuop-based timer interface */
495		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
496		xen_clockevent = &xen_vcpuop_clockevent;
497	}
498
499	/* Set initial system time with full resolution */
500	xen_read_wallclock(&tp);
501	do_settimeofday(&tp);
502
503	setup_force_cpu_cap(X86_FEATURE_TSC);
504
505	xen_setup_runstate_info(cpu);
506	xen_setup_timer(cpu);
507	xen_setup_cpu_clockevents();
508
509	if (xen_initial_domain())
510		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
511}
512
513void __init xen_init_time_ops(void)
514{
515	pv_time_ops = xen_time_ops;
516
517	x86_init.timers.timer_init = xen_time_init;
518	x86_init.timers.setup_percpu_clockev = x86_init_noop;
519	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
520
521	x86_platform.calibrate_tsc = xen_tsc_khz;
522	x86_platform.get_wallclock = xen_get_wallclock;
523	/* Dom0 uses the native method to set the hardware RTC. */
524	if (!xen_initial_domain())
525		x86_platform.set_wallclock = xen_set_wallclock;
526}
527
528#ifdef CONFIG_XEN_PVHVM
529static void xen_hvm_setup_cpu_clockevents(void)
530{
531	int cpu = smp_processor_id();
532	xen_setup_runstate_info(cpu);
533	/*
534	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
535	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
536	 * early bootup and also during CPU hotplug events).
537	 */
538	xen_setup_cpu_clockevents();
539}
540
541void __init xen_hvm_init_time_ops(void)
542{
543	/* vector callback is needed otherwise we cannot receive interrupts
544	 * on cpu > 0 and at this point we don't know how many cpus are
545	 * available */
546	if (!xen_have_vector_callback)
547		return;
548	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
549		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
550				"disable pv timer\n");
551		return;
552	}
553
554	pv_time_ops = xen_time_ops;
555	x86_init.timers.setup_percpu_clockev = xen_time_init;
556	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
557
558	x86_platform.calibrate_tsc = xen_tsc_khz;
559	x86_platform.get_wallclock = xen_get_wallclock;
560	x86_platform.set_wallclock = xen_set_wallclock;
561}
562#endif
v3.1
  1/*
  2 * Xen time implementation.
  3 *
  4 * This is implemented in terms of a clocksource driver which uses
  5 * the hypervisor clock as a nanosecond timebase, and a clockevent
  6 * driver which uses the hypervisor's timer mechanism.
  7 *
  8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  9 */
 10#include <linux/kernel.h>
 11#include <linux/interrupt.h>
 12#include <linux/clocksource.h>
 13#include <linux/clockchips.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/math64.h>
 16#include <linux/gfp.h>
 
 
 17
 18#include <asm/pvclock.h>
 19#include <asm/xen/hypervisor.h>
 20#include <asm/xen/hypercall.h>
 21
 22#include <xen/events.h>
 23#include <xen/features.h>
 24#include <xen/interface/xen.h>
 25#include <xen/interface/vcpu.h>
 26
 27#include "xen-ops.h"
 28
 29/* Xen may fire a timer up to this many ns early */
 30#define TIMER_SLOP	100000
 31#define NS_PER_TICK	(1000000000LL / HZ)
 32
 33/* runstate info updated by Xen */
 34static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
 35
 36/* snapshots of runstate info */
 37static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
 38
 39/* unused ns of stolen and blocked time */
 40static DEFINE_PER_CPU(u64, xen_residual_stolen);
 41static DEFINE_PER_CPU(u64, xen_residual_blocked);
 42
 43/* return an consistent snapshot of 64-bit time/counter value */
 44static u64 get64(const u64 *p)
 45{
 46	u64 ret;
 47
 48	if (BITS_PER_LONG < 64) {
 49		u32 *p32 = (u32 *)p;
 50		u32 h, l;
 51
 52		/*
 53		 * Read high then low, and then make sure high is
 54		 * still the same; this will only loop if low wraps
 55		 * and carries into high.
 56		 * XXX some clean way to make this endian-proof?
 57		 */
 58		do {
 59			h = p32[1];
 60			barrier();
 61			l = p32[0];
 62			barrier();
 63		} while (p32[1] != h);
 64
 65		ret = (((u64)h) << 32) | l;
 66	} else
 67		ret = *p;
 68
 69	return ret;
 70}
 71
 72/*
 73 * Runstate accounting
 74 */
 75static void get_runstate_snapshot(struct vcpu_runstate_info *res)
 76{
 77	u64 state_time;
 78	struct vcpu_runstate_info *state;
 79
 80	BUG_ON(preemptible());
 81
 82	state = &__get_cpu_var(xen_runstate);
 83
 84	/*
 85	 * The runstate info is always updated by the hypervisor on
 86	 * the current CPU, so there's no need to use anything
 87	 * stronger than a compiler barrier when fetching it.
 88	 */
 89	do {
 90		state_time = get64(&state->state_entry_time);
 91		barrier();
 92		*res = *state;
 93		barrier();
 94	} while (get64(&state->state_entry_time) != state_time);
 95}
 96
 97/* return true when a vcpu could run but has no real cpu to run on */
 98bool xen_vcpu_stolen(int vcpu)
 99{
100	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
101}
102
103void xen_setup_runstate_info(int cpu)
104{
105	struct vcpu_register_runstate_memory_area area;
106
107	area.addr.v = &per_cpu(xen_runstate, cpu);
108
109	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
110			       cpu, &area))
111		BUG();
112}
113
114static void do_stolen_accounting(void)
115{
116	struct vcpu_runstate_info state;
117	struct vcpu_runstate_info *snap;
118	s64 blocked, runnable, offline, stolen;
119	cputime_t ticks;
120
121	get_runstate_snapshot(&state);
122
123	WARN_ON(state.state != RUNSTATE_running);
124
125	snap = &__get_cpu_var(xen_runstate_snapshot);
126
127	/* work out how much time the VCPU has not been runn*ing*  */
128	blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
129	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131
132	*snap = state;
133
134	/* Add the appropriate number of ticks of stolen time,
135	   including any left-overs from last time. */
136	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
137
138	if (stolen < 0)
139		stolen = 0;
140
141	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142	__this_cpu_write(xen_residual_stolen, stolen);
143	account_steal_ticks(ticks);
144
145	/* Add the appropriate number of ticks of blocked time,
146	   including any left-overs from last time. */
147	blocked += __this_cpu_read(xen_residual_blocked);
148
149	if (blocked < 0)
150		blocked = 0;
151
152	ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
153	__this_cpu_write(xen_residual_blocked, blocked);
154	account_idle_ticks(ticks);
155}
156
157/* Get the TSC speed from Xen */
158static unsigned long xen_tsc_khz(void)
159{
160	struct pvclock_vcpu_time_info *info =
161		&HYPERVISOR_shared_info->vcpu_info[0].time;
162
163	return pvclock_tsc_khz(info);
164}
165
166cycle_t xen_clocksource_read(void)
167{
168        struct pvclock_vcpu_time_info *src;
169	cycle_t ret;
170
171	preempt_disable_notrace();
172	src = &__get_cpu_var(xen_vcpu)->time;
173	ret = pvclock_clocksource_read(src);
174	preempt_enable_notrace();
175	return ret;
176}
177
178static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
179{
180	return xen_clocksource_read();
181}
182
183static void xen_read_wallclock(struct timespec *ts)
184{
185	struct shared_info *s = HYPERVISOR_shared_info;
186	struct pvclock_wall_clock *wall_clock = &(s->wc);
187        struct pvclock_vcpu_time_info *vcpu_time;
188
189	vcpu_time = &get_cpu_var(xen_vcpu)->time;
190	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
191	put_cpu_var(xen_vcpu);
192}
193
194static unsigned long xen_get_wallclock(void)
195{
196	struct timespec ts;
 
197
198	xen_read_wallclock(&ts);
199	return ts.tv_sec;
 
200}
201
202static int xen_set_wallclock(unsigned long now)
 
203{
204	/* do nothing for domU */
205	return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206}
207
 
 
 
 
208static struct clocksource xen_clocksource __read_mostly = {
209	.name = "xen",
210	.rating = 400,
211	.read = xen_clocksource_get_cycles,
212	.mask = ~0,
213	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
214};
215
216/*
217   Xen clockevent implementation
218
219   Xen has two clockevent implementations:
220
221   The old timer_op one works with all released versions of Xen prior
222   to version 3.0.4.  This version of the hypervisor provides a
223   single-shot timer with nanosecond resolution.  However, sharing the
224   same event channel is a 100Hz tick which is delivered while the
225   vcpu is running.  We don't care about or use this tick, but it will
226   cause the core time code to think the timer fired too soon, and
227   will end up resetting it each time.  It could be filtered, but
228   doing so has complications when the ktime clocksource is not yet
229   the xen clocksource (ie, at boot time).
230
231   The new vcpu_op-based timer interface allows the tick timer period
232   to be changed or turned off.  The tick timer is not useful as a
233   periodic timer because events are only delivered to running vcpus.
234   The one-shot timer can report when a timeout is in the past, so
235   set_next_event is capable of returning -ETIME when appropriate.
236   This interface is used when available.
237*/
238
239
240/*
241  Get a hypervisor absolute time.  In theory we could maintain an
242  offset between the kernel's time and the hypervisor's time, and
243  apply that to a kernel's absolute timeout.  Unfortunately the
244  hypervisor and kernel times can drift even if the kernel is using
245  the Xen clocksource, because ntp can warp the kernel's clocksource.
246*/
247static s64 get_abs_timeout(unsigned long delta)
248{
249	return xen_clocksource_read() + delta;
250}
251
252static void xen_timerop_set_mode(enum clock_event_mode mode,
253				 struct clock_event_device *evt)
254{
255	switch (mode) {
256	case CLOCK_EVT_MODE_PERIODIC:
257		/* unsupported */
258		WARN_ON(1);
259		break;
260
261	case CLOCK_EVT_MODE_ONESHOT:
262	case CLOCK_EVT_MODE_RESUME:
263		break;
264
265	case CLOCK_EVT_MODE_UNUSED:
266	case CLOCK_EVT_MODE_SHUTDOWN:
267		HYPERVISOR_set_timer_op(0);  /* cancel timeout */
268		break;
269	}
270}
271
272static int xen_timerop_set_next_event(unsigned long delta,
273				      struct clock_event_device *evt)
274{
275	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
276
277	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
278		BUG();
279
280	/* We may have missed the deadline, but there's no real way of
281	   knowing for sure.  If the event was in the past, then we'll
282	   get an immediate interrupt. */
283
284	return 0;
285}
286
287static const struct clock_event_device xen_timerop_clockevent = {
288	.name = "xen",
289	.features = CLOCK_EVT_FEAT_ONESHOT,
290
291	.max_delta_ns = 0xffffffff,
292	.min_delta_ns = TIMER_SLOP,
293
294	.mult = 1,
295	.shift = 0,
296	.rating = 500,
297
298	.set_mode = xen_timerop_set_mode,
299	.set_next_event = xen_timerop_set_next_event,
300};
301
302
303
304static void xen_vcpuop_set_mode(enum clock_event_mode mode,
305				struct clock_event_device *evt)
306{
307	int cpu = smp_processor_id();
308
309	switch (mode) {
310	case CLOCK_EVT_MODE_PERIODIC:
311		WARN_ON(1);	/* unsupported */
312		break;
313
314	case CLOCK_EVT_MODE_ONESHOT:
315		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
316			BUG();
317		break;
318
319	case CLOCK_EVT_MODE_UNUSED:
320	case CLOCK_EVT_MODE_SHUTDOWN:
321		if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
322		    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
323			BUG();
324		break;
325	case CLOCK_EVT_MODE_RESUME:
326		break;
327	}
328}
329
330static int xen_vcpuop_set_next_event(unsigned long delta,
331				     struct clock_event_device *evt)
332{
333	int cpu = smp_processor_id();
334	struct vcpu_set_singleshot_timer single;
335	int ret;
336
337	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
338
339	single.timeout_abs_ns = get_abs_timeout(delta);
340	single.flags = VCPU_SSHOTTMR_future;
341
342	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
343
344	BUG_ON(ret != 0 && ret != -ETIME);
345
346	return ret;
347}
348
349static const struct clock_event_device xen_vcpuop_clockevent = {
350	.name = "xen",
351	.features = CLOCK_EVT_FEAT_ONESHOT,
352
353	.max_delta_ns = 0xffffffff,
354	.min_delta_ns = TIMER_SLOP,
355
356	.mult = 1,
357	.shift = 0,
358	.rating = 500,
359
360	.set_mode = xen_vcpuop_set_mode,
361	.set_next_event = xen_vcpuop_set_next_event,
362};
363
364static const struct clock_event_device *xen_clockevent =
365	&xen_timerop_clockevent;
366static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
 
 
 
 
 
367
368static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
369{
370	struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
371	irqreturn_t ret;
372
373	ret = IRQ_NONE;
374	if (evt->event_handler) {
375		evt->event_handler(evt);
376		ret = IRQ_HANDLED;
377	}
378
379	do_stolen_accounting();
380
381	return ret;
382}
383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384void xen_setup_timer(int cpu)
385{
386	const char *name;
387	struct clock_event_device *evt;
388	int irq;
389
 
 
 
 
 
390	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
391
392	name = kasprintf(GFP_KERNEL, "timer%d", cpu);
393	if (!name)
394		name = "<timer kasprintf failed>";
395
396	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
397				      IRQF_DISABLED|IRQF_PERCPU|
398				      IRQF_NOBALANCING|IRQF_TIMER|
399				      IRQF_FORCE_RESUME,
400				      name, NULL);
 
401
402	evt = &per_cpu(xen_clock_events, cpu);
403	memcpy(evt, xen_clockevent, sizeof(*evt));
404
405	evt->cpumask = cpumask_of(cpu);
406	evt->irq = irq;
 
407}
408
409void xen_teardown_timer(int cpu)
410{
411	struct clock_event_device *evt;
412	BUG_ON(cpu == 0);
413	evt = &per_cpu(xen_clock_events, cpu);
414	unbind_from_irqhandler(evt->irq, NULL);
415}
416
417void xen_setup_cpu_clockevents(void)
418{
419	BUG_ON(preemptible());
420
421	clockevents_register_device(&__get_cpu_var(xen_clock_events));
422}
423
424void xen_timer_resume(void)
425{
426	int cpu;
427
428	pvclock_resume();
429
430	if (xen_clockevent != &xen_vcpuop_clockevent)
431		return;
432
433	for_each_online_cpu(cpu) {
434		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
435			BUG();
436	}
437}
438
439static const struct pv_time_ops xen_time_ops __initconst = {
440	.sched_clock = xen_clocksource_read,
441};
442
443static void __init xen_time_init(void)
444{
445	int cpu = smp_processor_id();
446	struct timespec tp;
447
448	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
449
450	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
451		/* Successfully turned off 100Hz tick, so we have the
452		   vcpuop-based timer interface */
453		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
454		xen_clockevent = &xen_vcpuop_clockevent;
455	}
456
457	/* Set initial system time with full resolution */
458	xen_read_wallclock(&tp);
459	do_settimeofday(&tp);
460
461	setup_force_cpu_cap(X86_FEATURE_TSC);
462
463	xen_setup_runstate_info(cpu);
464	xen_setup_timer(cpu);
465	xen_setup_cpu_clockevents();
 
 
 
466}
467
468void __init xen_init_time_ops(void)
469{
470	pv_time_ops = xen_time_ops;
471
472	x86_init.timers.timer_init = xen_time_init;
473	x86_init.timers.setup_percpu_clockev = x86_init_noop;
474	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
475
476	x86_platform.calibrate_tsc = xen_tsc_khz;
477	x86_platform.get_wallclock = xen_get_wallclock;
478	x86_platform.set_wallclock = xen_set_wallclock;
 
 
479}
480
481#ifdef CONFIG_XEN_PVHVM
482static void xen_hvm_setup_cpu_clockevents(void)
483{
484	int cpu = smp_processor_id();
485	xen_setup_runstate_info(cpu);
486	xen_setup_timer(cpu);
 
 
 
 
487	xen_setup_cpu_clockevents();
488}
489
490void __init xen_hvm_init_time_ops(void)
491{
492	/* vector callback is needed otherwise we cannot receive interrupts
493	 * on cpu > 0 and at this point we don't know how many cpus are
494	 * available */
495	if (!xen_have_vector_callback)
496		return;
497	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
498		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
499				"disable pv timer\n");
500		return;
501	}
502
503	pv_time_ops = xen_time_ops;
504	x86_init.timers.setup_percpu_clockev = xen_time_init;
505	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
506
507	x86_platform.calibrate_tsc = xen_tsc_khz;
508	x86_platform.get_wallclock = xen_get_wallclock;
509	x86_platform.set_wallclock = xen_set_wallclock;
510}
511#endif