Loading...
1/* smp.c: Sparc SMP support.
2 *
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
7
8#include <asm/head.h>
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/threads.h>
13#include <linux/smp.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/delay.h>
23#include <linux/cpu.h>
24
25#include <asm/ptrace.h>
26#include <linux/atomic.h>
27
28#include <asm/irq.h>
29#include <asm/page.h>
30#include <asm/pgalloc.h>
31#include <asm/pgtable.h>
32#include <asm/oplib.h>
33#include <asm/cacheflush.h>
34#include <asm/tlbflush.h>
35#include <asm/cpudata.h>
36#include <asm/timer.h>
37#include <asm/leon.h>
38
39#include "kernel.h"
40#include "irq.h"
41
42volatile unsigned long cpu_callin_map[NR_CPUS] = {0,};
43
44cpumask_t smp_commenced_mask = CPU_MASK_NONE;
45
46const struct sparc32_ipi_ops *sparc32_ipi_ops;
47
48/* The only guaranteed locking primitive available on all Sparc
49 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
50 * places the current byte at the effective address into dest_reg and
51 * places 0xff there afterwards. Pretty lame locking primitive
52 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
53 * instruction which is much better...
54 */
55
56void smp_store_cpu_info(int id)
57{
58 int cpu_node;
59 int mid;
60
61 cpu_data(id).udelay_val = loops_per_jiffy;
62
63 cpu_find_by_mid(id, &cpu_node);
64 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
65 "clock-frequency", 0);
66 cpu_data(id).prom_node = cpu_node;
67 mid = cpu_get_hwmid(cpu_node);
68
69 if (mid < 0) {
70 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
71 mid = 0;
72 }
73 cpu_data(id).mid = mid;
74}
75
76void __init smp_cpus_done(unsigned int max_cpus)
77{
78 extern void smp4m_smp_done(void);
79 extern void smp4d_smp_done(void);
80 unsigned long bogosum = 0;
81 int cpu, num = 0;
82
83 for_each_online_cpu(cpu) {
84 num++;
85 bogosum += cpu_data(cpu).udelay_val;
86 }
87
88 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
89 num, bogosum/(500000/HZ),
90 (bogosum/(5000/HZ))%100);
91
92 switch(sparc_cpu_model) {
93 case sun4m:
94 smp4m_smp_done();
95 break;
96 case sun4d:
97 smp4d_smp_done();
98 break;
99 case sparc_leon:
100 leon_smp_done();
101 break;
102 case sun4e:
103 printk("SUN4E\n");
104 BUG();
105 break;
106 case sun4u:
107 printk("SUN4U\n");
108 BUG();
109 break;
110 default:
111 printk("UNKNOWN!\n");
112 BUG();
113 break;
114 }
115}
116
117void cpu_panic(void)
118{
119 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
120 panic("SMP bolixed\n");
121}
122
123struct linux_prom_registers smp_penguin_ctable = { 0 };
124
125void smp_send_reschedule(int cpu)
126{
127 /*
128 * CPU model dependent way of implementing IPI generation targeting
129 * a single CPU. The trap handler needs only to do trap entry/return
130 * to call schedule.
131 */
132 sparc32_ipi_ops->resched(cpu);
133}
134
135void smp_send_stop(void)
136{
137}
138
139void arch_send_call_function_single_ipi(int cpu)
140{
141 /* trigger one IPI single call on one CPU */
142 sparc32_ipi_ops->single(cpu);
143}
144
145void arch_send_call_function_ipi_mask(const struct cpumask *mask)
146{
147 int cpu;
148
149 /* trigger IPI mask call on each CPU */
150 for_each_cpu(cpu, mask)
151 sparc32_ipi_ops->mask_one(cpu);
152}
153
154void smp_resched_interrupt(void)
155{
156 irq_enter();
157 scheduler_ipi();
158 local_cpu_data().irq_resched_count++;
159 irq_exit();
160 /* re-schedule routine called by interrupt return code. */
161}
162
163void smp_call_function_single_interrupt(void)
164{
165 irq_enter();
166 generic_smp_call_function_single_interrupt();
167 local_cpu_data().irq_call_count++;
168 irq_exit();
169}
170
171void smp_call_function_interrupt(void)
172{
173 irq_enter();
174 generic_smp_call_function_interrupt();
175 local_cpu_data().irq_call_count++;
176 irq_exit();
177}
178
179int setup_profiling_timer(unsigned int multiplier)
180{
181 return -EINVAL;
182}
183
184void __init smp_prepare_cpus(unsigned int max_cpus)
185{
186 extern void __init smp4m_boot_cpus(void);
187 extern void __init smp4d_boot_cpus(void);
188 int i, cpuid, extra;
189
190 printk("Entering SMP Mode...\n");
191
192 extra = 0;
193 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
194 if (cpuid >= NR_CPUS)
195 extra++;
196 }
197 /* i = number of cpus */
198 if (extra && max_cpus > i - extra)
199 printk("Warning: NR_CPUS is too low to start all cpus\n");
200
201 smp_store_cpu_info(boot_cpu_id);
202
203 switch(sparc_cpu_model) {
204 case sun4m:
205 smp4m_boot_cpus();
206 break;
207 case sun4d:
208 smp4d_boot_cpus();
209 break;
210 case sparc_leon:
211 leon_boot_cpus();
212 break;
213 case sun4e:
214 printk("SUN4E\n");
215 BUG();
216 break;
217 case sun4u:
218 printk("SUN4U\n");
219 BUG();
220 break;
221 default:
222 printk("UNKNOWN!\n");
223 BUG();
224 break;
225 }
226}
227
228/* Set this up early so that things like the scheduler can init
229 * properly. We use the same cpu mask for both the present and
230 * possible cpu map.
231 */
232void __init smp_setup_cpu_possible_map(void)
233{
234 int instance, mid;
235
236 instance = 0;
237 while (!cpu_find_by_instance(instance, NULL, &mid)) {
238 if (mid < NR_CPUS) {
239 set_cpu_possible(mid, true);
240 set_cpu_present(mid, true);
241 }
242 instance++;
243 }
244}
245
246void __init smp_prepare_boot_cpu(void)
247{
248 int cpuid = hard_smp_processor_id();
249
250 if (cpuid >= NR_CPUS) {
251 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
252 prom_halt();
253 }
254 if (cpuid != 0)
255 printk("boot cpu id != 0, this could work but is untested\n");
256
257 current_thread_info()->cpu = cpuid;
258 set_cpu_online(cpuid, true);
259 set_cpu_possible(cpuid, true);
260}
261
262int __cpu_up(unsigned int cpu, struct task_struct *tidle)
263{
264 extern int smp4m_boot_one_cpu(int, struct task_struct *);
265 extern int smp4d_boot_one_cpu(int, struct task_struct *);
266 int ret=0;
267
268 switch(sparc_cpu_model) {
269 case sun4m:
270 ret = smp4m_boot_one_cpu(cpu, tidle);
271 break;
272 case sun4d:
273 ret = smp4d_boot_one_cpu(cpu, tidle);
274 break;
275 case sparc_leon:
276 ret = leon_boot_one_cpu(cpu, tidle);
277 break;
278 case sun4e:
279 printk("SUN4E\n");
280 BUG();
281 break;
282 case sun4u:
283 printk("SUN4U\n");
284 BUG();
285 break;
286 default:
287 printk("UNKNOWN!\n");
288 BUG();
289 break;
290 }
291
292 if (!ret) {
293 cpumask_set_cpu(cpu, &smp_commenced_mask);
294 while (!cpu_online(cpu))
295 mb();
296 }
297 return ret;
298}
299
300void arch_cpu_pre_starting(void *arg)
301{
302 local_ops->cache_all();
303 local_ops->tlb_all();
304
305 switch(sparc_cpu_model) {
306 case sun4m:
307 sun4m_cpu_pre_starting(arg);
308 break;
309 case sun4d:
310 sun4d_cpu_pre_starting(arg);
311 break;
312 case sparc_leon:
313 leon_cpu_pre_starting(arg);
314 break;
315 default:
316 BUG();
317 }
318}
319
320void arch_cpu_pre_online(void *arg)
321{
322 unsigned int cpuid = hard_smp_processor_id();
323
324 register_percpu_ce(cpuid);
325
326 calibrate_delay();
327 smp_store_cpu_info(cpuid);
328
329 local_ops->cache_all();
330 local_ops->tlb_all();
331
332 switch(sparc_cpu_model) {
333 case sun4m:
334 sun4m_cpu_pre_online(arg);
335 break;
336 case sun4d:
337 sun4d_cpu_pre_online(arg);
338 break;
339 case sparc_leon:
340 leon_cpu_pre_online(arg);
341 break;
342 default:
343 BUG();
344 }
345}
346
347void sparc_start_secondary(void *arg)
348{
349 unsigned int cpu;
350
351 /*
352 * SMP booting is extremely fragile in some architectures. So run
353 * the cpu initialization code first before anything else.
354 */
355 arch_cpu_pre_starting(arg);
356
357 preempt_disable();
358 cpu = smp_processor_id();
359
360 /* Invoke the CPU_STARTING notifier callbacks */
361 notify_cpu_starting(cpu);
362
363 arch_cpu_pre_online(arg);
364
365 /* Set the CPU in the cpu_online_mask */
366 set_cpu_online(cpu, true);
367
368 /* Enable local interrupts now */
369 local_irq_enable();
370
371 wmb();
372 cpu_startup_entry(CPUHP_ONLINE);
373
374 /* We should never reach here! */
375 BUG();
376}
377
378void smp_callin(void)
379{
380 sparc_start_secondary(NULL);
381}
382
383void smp_bogo(struct seq_file *m)
384{
385 int i;
386
387 for_each_online_cpu(i) {
388 seq_printf(m,
389 "Cpu%dBogo\t: %lu.%02lu\n",
390 i,
391 cpu_data(i).udelay_val/(500000/HZ),
392 (cpu_data(i).udelay_val/(5000/HZ))%100);
393 }
394}
395
396void smp_info(struct seq_file *m)
397{
398 int i;
399
400 seq_printf(m, "State:\n");
401 for_each_online_cpu(i)
402 seq_printf(m, "CPU%d\t\t: online\n", i);
403}
1/* smp.c: Sparc SMP support.
2 *
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
7
8#include <asm/head.h>
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/threads.h>
13#include <linux/smp.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/delay.h>
23
24#include <asm/ptrace.h>
25#include <linux/atomic.h>
26
27#include <asm/irq.h>
28#include <asm/page.h>
29#include <asm/pgalloc.h>
30#include <asm/pgtable.h>
31#include <asm/oplib.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/cpudata.h>
35#include <asm/leon.h>
36
37#include "irq.h"
38
39volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40
41cpumask_t smp_commenced_mask = CPU_MASK_NONE;
42
43/* The only guaranteed locking primitive available on all Sparc
44 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
45 * places the current byte at the effective address into dest_reg and
46 * places 0xff there afterwards. Pretty lame locking primitive
47 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
48 * instruction which is much better...
49 */
50
51void __cpuinit smp_store_cpu_info(int id)
52{
53 int cpu_node;
54 int mid;
55
56 cpu_data(id).udelay_val = loops_per_jiffy;
57
58 cpu_find_by_mid(id, &cpu_node);
59 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
60 "clock-frequency", 0);
61 cpu_data(id).prom_node = cpu_node;
62 mid = cpu_get_hwmid(cpu_node);
63
64 if (mid < 0) {
65 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
66 mid = 0;
67 }
68 cpu_data(id).mid = mid;
69}
70
71void __init smp_cpus_done(unsigned int max_cpus)
72{
73 extern void smp4m_smp_done(void);
74 extern void smp4d_smp_done(void);
75 unsigned long bogosum = 0;
76 int cpu, num = 0;
77
78 for_each_online_cpu(cpu) {
79 num++;
80 bogosum += cpu_data(cpu).udelay_val;
81 }
82
83 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
84 num, bogosum/(500000/HZ),
85 (bogosum/(5000/HZ))%100);
86
87 switch(sparc_cpu_model) {
88 case sun4:
89 printk("SUN4\n");
90 BUG();
91 break;
92 case sun4c:
93 printk("SUN4C\n");
94 BUG();
95 break;
96 case sun4m:
97 smp4m_smp_done();
98 break;
99 case sun4d:
100 smp4d_smp_done();
101 break;
102 case sparc_leon:
103 leon_smp_done();
104 break;
105 case sun4e:
106 printk("SUN4E\n");
107 BUG();
108 break;
109 case sun4u:
110 printk("SUN4U\n");
111 BUG();
112 break;
113 default:
114 printk("UNKNOWN!\n");
115 BUG();
116 break;
117 }
118}
119
120void cpu_panic(void)
121{
122 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
123 panic("SMP bolixed\n");
124}
125
126struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
127
128void smp_send_reschedule(int cpu)
129{
130 /*
131 * CPU model dependent way of implementing IPI generation targeting
132 * a single CPU. The trap handler needs only to do trap entry/return
133 * to call schedule.
134 */
135 BTFIXUP_CALL(smp_ipi_resched)(cpu);
136}
137
138void smp_send_stop(void)
139{
140}
141
142void arch_send_call_function_single_ipi(int cpu)
143{
144 /* trigger one IPI single call on one CPU */
145 BTFIXUP_CALL(smp_ipi_single)(cpu);
146}
147
148void arch_send_call_function_ipi_mask(const struct cpumask *mask)
149{
150 int cpu;
151
152 /* trigger IPI mask call on each CPU */
153 for_each_cpu(cpu, mask)
154 BTFIXUP_CALL(smp_ipi_mask_one)(cpu);
155}
156
157void smp_resched_interrupt(void)
158{
159 irq_enter();
160 scheduler_ipi();
161 local_cpu_data().irq_resched_count++;
162 irq_exit();
163 /* re-schedule routine called by interrupt return code. */
164}
165
166void smp_call_function_single_interrupt(void)
167{
168 irq_enter();
169 generic_smp_call_function_single_interrupt();
170 local_cpu_data().irq_call_count++;
171 irq_exit();
172}
173
174void smp_call_function_interrupt(void)
175{
176 irq_enter();
177 generic_smp_call_function_interrupt();
178 local_cpu_data().irq_call_count++;
179 irq_exit();
180}
181
182void smp_flush_cache_all(void)
183{
184 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
185 local_flush_cache_all();
186}
187
188void smp_flush_tlb_all(void)
189{
190 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
191 local_flush_tlb_all();
192}
193
194void smp_flush_cache_mm(struct mm_struct *mm)
195{
196 if(mm->context != NO_CONTEXT) {
197 cpumask_t cpu_mask;
198 cpumask_copy(&cpu_mask, mm_cpumask(mm));
199 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
200 if (!cpumask_empty(&cpu_mask))
201 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
202 local_flush_cache_mm(mm);
203 }
204}
205
206void smp_flush_tlb_mm(struct mm_struct *mm)
207{
208 if(mm->context != NO_CONTEXT) {
209 cpumask_t cpu_mask;
210 cpumask_copy(&cpu_mask, mm_cpumask(mm));
211 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
212 if (!cpumask_empty(&cpu_mask)) {
213 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
214 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
215 cpumask_copy(mm_cpumask(mm),
216 cpumask_of(smp_processor_id()));
217 }
218 local_flush_tlb_mm(mm);
219 }
220}
221
222void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
223 unsigned long end)
224{
225 struct mm_struct *mm = vma->vm_mm;
226
227 if (mm->context != NO_CONTEXT) {
228 cpumask_t cpu_mask;
229 cpumask_copy(&cpu_mask, mm_cpumask(mm));
230 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
231 if (!cpumask_empty(&cpu_mask))
232 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
233 local_flush_cache_range(vma, start, end);
234 }
235}
236
237void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
238 unsigned long end)
239{
240 struct mm_struct *mm = vma->vm_mm;
241
242 if (mm->context != NO_CONTEXT) {
243 cpumask_t cpu_mask;
244 cpumask_copy(&cpu_mask, mm_cpumask(mm));
245 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
246 if (!cpumask_empty(&cpu_mask))
247 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
248 local_flush_tlb_range(vma, start, end);
249 }
250}
251
252void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
253{
254 struct mm_struct *mm = vma->vm_mm;
255
256 if(mm->context != NO_CONTEXT) {
257 cpumask_t cpu_mask;
258 cpumask_copy(&cpu_mask, mm_cpumask(mm));
259 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
260 if (!cpumask_empty(&cpu_mask))
261 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
262 local_flush_cache_page(vma, page);
263 }
264}
265
266void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
267{
268 struct mm_struct *mm = vma->vm_mm;
269
270 if(mm->context != NO_CONTEXT) {
271 cpumask_t cpu_mask;
272 cpumask_copy(&cpu_mask, mm_cpumask(mm));
273 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
274 if (!cpumask_empty(&cpu_mask))
275 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
276 local_flush_tlb_page(vma, page);
277 }
278}
279
280void smp_flush_page_to_ram(unsigned long page)
281{
282 /* Current theory is that those who call this are the one's
283 * who have just dirtied their cache with the pages contents
284 * in kernel space, therefore we only run this on local cpu.
285 *
286 * XXX This experiment failed, research further... -DaveM
287 */
288#if 1
289 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
290#endif
291 local_flush_page_to_ram(page);
292}
293
294void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
295{
296 cpumask_t cpu_mask;
297 cpumask_copy(&cpu_mask, mm_cpumask(mm));
298 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
299 if (!cpumask_empty(&cpu_mask))
300 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
301 local_flush_sig_insns(mm, insn_addr);
302}
303
304extern unsigned int lvl14_resolution;
305
306/* /proc/profile writes can call this, don't __init it please. */
307static DEFINE_SPINLOCK(prof_setup_lock);
308
309int setup_profiling_timer(unsigned int multiplier)
310{
311 int i;
312 unsigned long flags;
313
314 /* Prevent level14 ticker IRQ flooding. */
315 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
316 return -EINVAL;
317
318 spin_lock_irqsave(&prof_setup_lock, flags);
319 for_each_possible_cpu(i) {
320 load_profile_irq(i, lvl14_resolution / multiplier);
321 prof_multiplier(i) = multiplier;
322 }
323 spin_unlock_irqrestore(&prof_setup_lock, flags);
324
325 return 0;
326}
327
328void __init smp_prepare_cpus(unsigned int max_cpus)
329{
330 extern void __init smp4m_boot_cpus(void);
331 extern void __init smp4d_boot_cpus(void);
332 int i, cpuid, extra;
333
334 printk("Entering SMP Mode...\n");
335
336 extra = 0;
337 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
338 if (cpuid >= NR_CPUS)
339 extra++;
340 }
341 /* i = number of cpus */
342 if (extra && max_cpus > i - extra)
343 printk("Warning: NR_CPUS is too low to start all cpus\n");
344
345 smp_store_cpu_info(boot_cpu_id);
346
347 switch(sparc_cpu_model) {
348 case sun4:
349 printk("SUN4\n");
350 BUG();
351 break;
352 case sun4c:
353 printk("SUN4C\n");
354 BUG();
355 break;
356 case sun4m:
357 smp4m_boot_cpus();
358 break;
359 case sun4d:
360 smp4d_boot_cpus();
361 break;
362 case sparc_leon:
363 leon_boot_cpus();
364 break;
365 case sun4e:
366 printk("SUN4E\n");
367 BUG();
368 break;
369 case sun4u:
370 printk("SUN4U\n");
371 BUG();
372 break;
373 default:
374 printk("UNKNOWN!\n");
375 BUG();
376 break;
377 }
378}
379
380/* Set this up early so that things like the scheduler can init
381 * properly. We use the same cpu mask for both the present and
382 * possible cpu map.
383 */
384void __init smp_setup_cpu_possible_map(void)
385{
386 int instance, mid;
387
388 instance = 0;
389 while (!cpu_find_by_instance(instance, NULL, &mid)) {
390 if (mid < NR_CPUS) {
391 set_cpu_possible(mid, true);
392 set_cpu_present(mid, true);
393 }
394 instance++;
395 }
396}
397
398void __init smp_prepare_boot_cpu(void)
399{
400 int cpuid = hard_smp_processor_id();
401
402 if (cpuid >= NR_CPUS) {
403 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
404 prom_halt();
405 }
406 if (cpuid != 0)
407 printk("boot cpu id != 0, this could work but is untested\n");
408
409 current_thread_info()->cpu = cpuid;
410 set_cpu_online(cpuid, true);
411 set_cpu_possible(cpuid, true);
412}
413
414int __cpuinit __cpu_up(unsigned int cpu)
415{
416 extern int __cpuinit smp4m_boot_one_cpu(int);
417 extern int __cpuinit smp4d_boot_one_cpu(int);
418 int ret=0;
419
420 switch(sparc_cpu_model) {
421 case sun4:
422 printk("SUN4\n");
423 BUG();
424 break;
425 case sun4c:
426 printk("SUN4C\n");
427 BUG();
428 break;
429 case sun4m:
430 ret = smp4m_boot_one_cpu(cpu);
431 break;
432 case sun4d:
433 ret = smp4d_boot_one_cpu(cpu);
434 break;
435 case sparc_leon:
436 ret = leon_boot_one_cpu(cpu);
437 break;
438 case sun4e:
439 printk("SUN4E\n");
440 BUG();
441 break;
442 case sun4u:
443 printk("SUN4U\n");
444 BUG();
445 break;
446 default:
447 printk("UNKNOWN!\n");
448 BUG();
449 break;
450 }
451
452 if (!ret) {
453 cpumask_set_cpu(cpu, &smp_commenced_mask);
454 while (!cpu_online(cpu))
455 mb();
456 }
457 return ret;
458}
459
460void smp_bogo(struct seq_file *m)
461{
462 int i;
463
464 for_each_online_cpu(i) {
465 seq_printf(m,
466 "Cpu%dBogo\t: %lu.%02lu\n",
467 i,
468 cpu_data(i).udelay_val/(500000/HZ),
469 (cpu_data(i).udelay_val/(5000/HZ))%100);
470 }
471}
472
473void smp_info(struct seq_file *m)
474{
475 int i;
476
477 seq_printf(m, "State:\n");
478 for_each_online_cpu(i)
479 seq_printf(m, "CPU%d\t\t: online\n", i);
480}