Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * arch/sh/kernel/smp.c
  3 *
  4 * SMP support for the SuperH processors.
  5 *
  6 * Copyright (C) 2002 - 2010 Paul Mundt
  7 * Copyright (C) 2006 - 2007 Akio Idehara
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13#include <linux/err.h>
 14#include <linux/cache.h>
 15#include <linux/cpumask.h>
 16#include <linux/delay.h>
 17#include <linux/init.h>
 18#include <linux/spinlock.h>
 19#include <linux/mm.h>
 20#include <linux/module.h>
 21#include <linux/cpu.h>
 22#include <linux/interrupt.h>
 23#include <linux/sched.h>
 24#include <linux/atomic.h>
 25#include <asm/processor.h>
 
 26#include <asm/mmu_context.h>
 27#include <asm/smp.h>
 28#include <asm/cacheflush.h>
 29#include <asm/sections.h>
 30#include <asm/setup.h>
 31
 32int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 33int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 34
 35struct plat_smp_ops *mp_ops = NULL;
 36
 37/* State of each CPU */
 38DEFINE_PER_CPU(int, cpu_state) = { 0 };
 39
 40void register_smp_ops(struct plat_smp_ops *ops)
 41{
 42	if (mp_ops)
 43		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 44
 45	mp_ops = ops;
 46}
 47
 48static inline void smp_store_cpu_info(unsigned int cpu)
 49{
 50	struct sh_cpuinfo *c = cpu_data + cpu;
 51
 52	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
 53
 54	c->loops_per_jiffy = loops_per_jiffy;
 55}
 56
 57void __init smp_prepare_cpus(unsigned int max_cpus)
 58{
 59	unsigned int cpu = smp_processor_id();
 60
 61	init_new_context(current, &init_mm);
 62	current_thread_info()->cpu = cpu;
 63	mp_ops->prepare_cpus(max_cpus);
 64
 65#ifndef CONFIG_HOTPLUG_CPU
 66	init_cpu_present(cpu_possible_mask);
 67#endif
 68}
 69
 70void __init smp_prepare_boot_cpu(void)
 71{
 72	unsigned int cpu = smp_processor_id();
 73
 74	__cpu_number_map[0] = cpu;
 75	__cpu_logical_map[0] = cpu;
 76
 77	set_cpu_online(cpu, true);
 78	set_cpu_possible(cpu, true);
 79
 80	per_cpu(cpu_state, cpu) = CPU_ONLINE;
 81}
 82
 83#ifdef CONFIG_HOTPLUG_CPU
 84void native_cpu_die(unsigned int cpu)
 85{
 86	unsigned int i;
 87
 88	for (i = 0; i < 10; i++) {
 89		smp_rmb();
 90		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
 91			if (system_state == SYSTEM_RUNNING)
 92				pr_info("CPU %u is now offline\n", cpu);
 93
 94			return;
 95		}
 96
 97		msleep(100);
 98	}
 99
100	pr_err("CPU %u didn't die...\n", cpu);
101}
102
103int native_cpu_disable(unsigned int cpu)
104{
105	return cpu == 0 ? -EPERM : 0;
106}
107
108void play_dead_common(void)
109{
110	idle_task_exit();
111	irq_ctx_exit(raw_smp_processor_id());
112	mb();
113
114	__get_cpu_var(cpu_state) = CPU_DEAD;
115	local_irq_disable();
116}
117
118void native_play_dead(void)
119{
120	play_dead_common();
121}
122
123int __cpu_disable(void)
124{
125	unsigned int cpu = smp_processor_id();
 
126	int ret;
127
128	ret = mp_ops->cpu_disable(cpu);
129	if (ret)
130		return ret;
131
132	/*
133	 * Take this CPU offline.  Once we clear this, we can't return,
134	 * and we must not schedule until we're ready to give up the cpu.
135	 */
136	set_cpu_online(cpu, false);
137
138	/*
139	 * OK - migrate IRQs away from this CPU
140	 */
141	migrate_irqs();
142
143	/*
144	 * Stop the local timer for this CPU.
145	 */
146	local_timer_stop(cpu);
147
148	/*
149	 * Flush user cache and TLB mappings, and then remove this CPU
150	 * from the vm mask set of all processes.
151	 */
152	flush_cache_all();
153	local_flush_tlb_all();
154
155	clear_tasks_mm_cpumask(cpu);
 
 
 
 
156
157	return 0;
158}
159#else /* ... !CONFIG_HOTPLUG_CPU */
160int native_cpu_disable(unsigned int cpu)
161{
162	return -ENOSYS;
163}
164
165void native_cpu_die(unsigned int cpu)
166{
167	/* We said "no" in __cpu_disable */
168	BUG();
169}
170
171void native_play_dead(void)
172{
173	BUG();
174}
175#endif
176
177asmlinkage void start_secondary(void)
178{
179	unsigned int cpu = smp_processor_id();
180	struct mm_struct *mm = &init_mm;
181
182	enable_mmu();
183	atomic_inc(&mm->mm_count);
184	atomic_inc(&mm->mm_users);
185	current->active_mm = mm;
186	enter_lazy_tlb(mm, current);
187	local_flush_tlb_all();
188
189	per_cpu_trap_init();
190
191	preempt_disable();
192
193	notify_cpu_starting(cpu);
194
195	local_irq_enable();
196
197	/* Enable local timers */
198	local_timer_setup(cpu);
199	calibrate_delay();
200
201	smp_store_cpu_info(cpu);
202
203	set_cpu_online(cpu, true);
204	per_cpu(cpu_state, cpu) = CPU_ONLINE;
205
206	cpu_startup_entry(CPUHP_ONLINE);
207}
208
209extern struct {
210	unsigned long sp;
211	unsigned long bss_start;
212	unsigned long bss_end;
213	void *start_kernel_fn;
214	void *cpu_init_fn;
215	void *thread_info;
216} stack_start;
217
218int __cpu_up(unsigned int cpu, struct task_struct *tsk)
219{
 
220	unsigned long timeout;
 
 
 
 
 
 
 
 
 
 
 
221
222	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
223
224	/* Fill in data in head.S for secondary cpus */
225	stack_start.sp = tsk->thread.sp;
226	stack_start.thread_info = tsk->stack;
227	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
228	stack_start.start_kernel_fn = start_secondary;
229
230	flush_icache_range((unsigned long)&stack_start,
231			   (unsigned long)&stack_start + sizeof(stack_start));
232	wmb();
233
234	mp_ops->start_cpu(cpu, (unsigned long)_stext);
235
236	timeout = jiffies + HZ;
237	while (time_before(jiffies, timeout)) {
238		if (cpu_online(cpu))
239			break;
240
241		udelay(10);
242		barrier();
243	}
244
245	if (cpu_online(cpu))
246		return 0;
247
248	return -ENOENT;
249}
250
251void __init smp_cpus_done(unsigned int max_cpus)
252{
253	unsigned long bogosum = 0;
254	int cpu;
255
256	for_each_online_cpu(cpu)
257		bogosum += cpu_data[cpu].loops_per_jiffy;
258
259	printk(KERN_INFO "SMP: Total of %d processors activated "
260	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
261	       bogosum / (500000/HZ),
262	       (bogosum / (5000/HZ)) % 100);
263}
264
265void smp_send_reschedule(int cpu)
266{
267	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
268}
269
270void smp_send_stop(void)
271{
272	smp_call_function(stop_this_cpu, 0, 0);
273}
274
275void arch_send_call_function_ipi_mask(const struct cpumask *mask)
276{
277	int cpu;
278
279	for_each_cpu(cpu, mask)
280		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
281}
282
283void arch_send_call_function_single_ipi(int cpu)
284{
285	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
286}
287
288void smp_timer_broadcast(const struct cpumask *mask)
289{
290	int cpu;
291
292	for_each_cpu(cpu, mask)
293		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
294}
295
296static void ipi_timer(void)
297{
298	irq_enter();
299	local_timer_interrupt();
300	irq_exit();
301}
302
303void smp_message_recv(unsigned int msg)
304{
305	switch (msg) {
306	case SMP_MSG_FUNCTION:
307		generic_smp_call_function_interrupt();
308		break;
309	case SMP_MSG_RESCHEDULE:
310		scheduler_ipi();
311		break;
312	case SMP_MSG_FUNCTION_SINGLE:
313		generic_smp_call_function_single_interrupt();
314		break;
315	case SMP_MSG_TIMER:
316		ipi_timer();
317		break;
318	default:
319		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
320		       smp_processor_id(), __func__, msg);
321		break;
322	}
323}
324
325/* Not really SMP stuff ... */
326int setup_profiling_timer(unsigned int multiplier)
327{
328	return 0;
329}
330
331static void flush_tlb_all_ipi(void *info)
332{
333	local_flush_tlb_all();
334}
335
336void flush_tlb_all(void)
337{
338	on_each_cpu(flush_tlb_all_ipi, 0, 1);
339}
340
341static void flush_tlb_mm_ipi(void *mm)
342{
343	local_flush_tlb_mm((struct mm_struct *)mm);
344}
345
346/*
347 * The following tlb flush calls are invoked when old translations are
348 * being torn down, or pte attributes are changing. For single threaded
349 * address spaces, a new context is obtained on the current cpu, and tlb
350 * context on other cpus are invalidated to force a new context allocation
351 * at switch_mm time, should the mm ever be used on other cpus. For
352 * multithreaded address spaces, intercpu interrupts have to be sent.
353 * Another case where intercpu interrupts are required is when the target
354 * mm might be active on another cpu (eg debuggers doing the flushes on
355 * behalf of debugees, kswapd stealing pages from another process etc).
356 * Kanoj 07/00.
357 */
358void flush_tlb_mm(struct mm_struct *mm)
359{
360	preempt_disable();
361
362	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
363		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
364	} else {
365		int i;
366		for (i = 0; i < num_online_cpus(); i++)
367			if (smp_processor_id() != i)
368				cpu_context(i, mm) = 0;
369	}
370	local_flush_tlb_mm(mm);
371
372	preempt_enable();
373}
374
375struct flush_tlb_data {
376	struct vm_area_struct *vma;
377	unsigned long addr1;
378	unsigned long addr2;
379};
380
381static void flush_tlb_range_ipi(void *info)
382{
383	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
384
385	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
386}
387
388void flush_tlb_range(struct vm_area_struct *vma,
389		     unsigned long start, unsigned long end)
390{
391	struct mm_struct *mm = vma->vm_mm;
392
393	preempt_disable();
394	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
395		struct flush_tlb_data fd;
396
397		fd.vma = vma;
398		fd.addr1 = start;
399		fd.addr2 = end;
400		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
401	} else {
402		int i;
403		for (i = 0; i < num_online_cpus(); i++)
404			if (smp_processor_id() != i)
405				cpu_context(i, mm) = 0;
406	}
407	local_flush_tlb_range(vma, start, end);
408	preempt_enable();
409}
410
411static void flush_tlb_kernel_range_ipi(void *info)
412{
413	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
414
415	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
416}
417
418void flush_tlb_kernel_range(unsigned long start, unsigned long end)
419{
420	struct flush_tlb_data fd;
421
422	fd.addr1 = start;
423	fd.addr2 = end;
424	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
425}
426
427static void flush_tlb_page_ipi(void *info)
428{
429	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
430
431	local_flush_tlb_page(fd->vma, fd->addr1);
432}
433
434void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
435{
436	preempt_disable();
437	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
438	    (current->mm != vma->vm_mm)) {
439		struct flush_tlb_data fd;
440
441		fd.vma = vma;
442		fd.addr1 = page;
443		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
444	} else {
445		int i;
446		for (i = 0; i < num_online_cpus(); i++)
447			if (smp_processor_id() != i)
448				cpu_context(i, vma->vm_mm) = 0;
449	}
450	local_flush_tlb_page(vma, page);
451	preempt_enable();
452}
453
454static void flush_tlb_one_ipi(void *info)
455{
456	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
457	local_flush_tlb_one(fd->addr1, fd->addr2);
458}
459
460void flush_tlb_one(unsigned long asid, unsigned long vaddr)
461{
462	struct flush_tlb_data fd;
463
464	fd.addr1 = asid;
465	fd.addr2 = vaddr;
466
467	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
468	local_flush_tlb_one(asid, vaddr);
469}
v3.1
  1/*
  2 * arch/sh/kernel/smp.c
  3 *
  4 * SMP support for the SuperH processors.
  5 *
  6 * Copyright (C) 2002 - 2010 Paul Mundt
  7 * Copyright (C) 2006 - 2007 Akio Idehara
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13#include <linux/err.h>
 14#include <linux/cache.h>
 15#include <linux/cpumask.h>
 16#include <linux/delay.h>
 17#include <linux/init.h>
 18#include <linux/spinlock.h>
 19#include <linux/mm.h>
 20#include <linux/module.h>
 21#include <linux/cpu.h>
 22#include <linux/interrupt.h>
 23#include <linux/sched.h>
 24#include <linux/atomic.h>
 25#include <asm/processor.h>
 26#include <asm/system.h>
 27#include <asm/mmu_context.h>
 28#include <asm/smp.h>
 29#include <asm/cacheflush.h>
 30#include <asm/sections.h>
 
 31
 32int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 33int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 34
 35struct plat_smp_ops *mp_ops = NULL;
 36
 37/* State of each CPU */
 38DEFINE_PER_CPU(int, cpu_state) = { 0 };
 39
 40void __cpuinit register_smp_ops(struct plat_smp_ops *ops)
 41{
 42	if (mp_ops)
 43		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 44
 45	mp_ops = ops;
 46}
 47
 48static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
 49{
 50	struct sh_cpuinfo *c = cpu_data + cpu;
 51
 52	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
 53
 54	c->loops_per_jiffy = loops_per_jiffy;
 55}
 56
 57void __init smp_prepare_cpus(unsigned int max_cpus)
 58{
 59	unsigned int cpu = smp_processor_id();
 60
 61	init_new_context(current, &init_mm);
 62	current_thread_info()->cpu = cpu;
 63	mp_ops->prepare_cpus(max_cpus);
 64
 65#ifndef CONFIG_HOTPLUG_CPU
 66	init_cpu_present(&cpu_possible_map);
 67#endif
 68}
 69
 70void __init smp_prepare_boot_cpu(void)
 71{
 72	unsigned int cpu = smp_processor_id();
 73
 74	__cpu_number_map[0] = cpu;
 75	__cpu_logical_map[0] = cpu;
 76
 77	set_cpu_online(cpu, true);
 78	set_cpu_possible(cpu, true);
 79
 80	per_cpu(cpu_state, cpu) = CPU_ONLINE;
 81}
 82
 83#ifdef CONFIG_HOTPLUG_CPU
 84void native_cpu_die(unsigned int cpu)
 85{
 86	unsigned int i;
 87
 88	for (i = 0; i < 10; i++) {
 89		smp_rmb();
 90		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
 91			if (system_state == SYSTEM_RUNNING)
 92				pr_info("CPU %u is now offline\n", cpu);
 93
 94			return;
 95		}
 96
 97		msleep(100);
 98	}
 99
100	pr_err("CPU %u didn't die...\n", cpu);
101}
102
103int native_cpu_disable(unsigned int cpu)
104{
105	return cpu == 0 ? -EPERM : 0;
106}
107
108void play_dead_common(void)
109{
110	idle_task_exit();
111	irq_ctx_exit(raw_smp_processor_id());
112	mb();
113
114	__get_cpu_var(cpu_state) = CPU_DEAD;
115	local_irq_disable();
116}
117
118void native_play_dead(void)
119{
120	play_dead_common();
121}
122
123int __cpu_disable(void)
124{
125	unsigned int cpu = smp_processor_id();
126	struct task_struct *p;
127	int ret;
128
129	ret = mp_ops->cpu_disable(cpu);
130	if (ret)
131		return ret;
132
133	/*
134	 * Take this CPU offline.  Once we clear this, we can't return,
135	 * and we must not schedule until we're ready to give up the cpu.
136	 */
137	set_cpu_online(cpu, false);
138
139	/*
140	 * OK - migrate IRQs away from this CPU
141	 */
142	migrate_irqs();
143
144	/*
145	 * Stop the local timer for this CPU.
146	 */
147	local_timer_stop(cpu);
148
149	/*
150	 * Flush user cache and TLB mappings, and then remove this CPU
151	 * from the vm mask set of all processes.
152	 */
153	flush_cache_all();
154	local_flush_tlb_all();
155
156	read_lock(&tasklist_lock);
157	for_each_process(p)
158		if (p->mm)
159			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
160	read_unlock(&tasklist_lock);
161
162	return 0;
163}
164#else /* ... !CONFIG_HOTPLUG_CPU */
165int native_cpu_disable(unsigned int cpu)
166{
167	return -ENOSYS;
168}
169
170void native_cpu_die(unsigned int cpu)
171{
172	/* We said "no" in __cpu_disable */
173	BUG();
174}
175
176void native_play_dead(void)
177{
178	BUG();
179}
180#endif
181
182asmlinkage void __cpuinit start_secondary(void)
183{
184	unsigned int cpu = smp_processor_id();
185	struct mm_struct *mm = &init_mm;
186
187	enable_mmu();
188	atomic_inc(&mm->mm_count);
189	atomic_inc(&mm->mm_users);
190	current->active_mm = mm;
191	enter_lazy_tlb(mm, current);
192	local_flush_tlb_all();
193
194	per_cpu_trap_init();
195
196	preempt_disable();
197
198	notify_cpu_starting(cpu);
199
200	local_irq_enable();
201
202	/* Enable local timers */
203	local_timer_setup(cpu);
204	calibrate_delay();
205
206	smp_store_cpu_info(cpu);
207
208	set_cpu_online(cpu, true);
209	per_cpu(cpu_state, cpu) = CPU_ONLINE;
210
211	cpu_idle();
212}
213
214extern struct {
215	unsigned long sp;
216	unsigned long bss_start;
217	unsigned long bss_end;
218	void *start_kernel_fn;
219	void *cpu_init_fn;
220	void *thread_info;
221} stack_start;
222
223int __cpuinit __cpu_up(unsigned int cpu)
224{
225	struct task_struct *tsk;
226	unsigned long timeout;
227
228	tsk = cpu_data[cpu].idle;
229	if (!tsk) {
230		tsk = fork_idle(cpu);
231		if (IS_ERR(tsk)) {
232			pr_err("Failed forking idle task for cpu %d\n", cpu);
233			return PTR_ERR(tsk);
234		}
235
236		cpu_data[cpu].idle = tsk;
237	}
238
239	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
240
241	/* Fill in data in head.S for secondary cpus */
242	stack_start.sp = tsk->thread.sp;
243	stack_start.thread_info = tsk->stack;
244	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
245	stack_start.start_kernel_fn = start_secondary;
246
247	flush_icache_range((unsigned long)&stack_start,
248			   (unsigned long)&stack_start + sizeof(stack_start));
249	wmb();
250
251	mp_ops->start_cpu(cpu, (unsigned long)_stext);
252
253	timeout = jiffies + HZ;
254	while (time_before(jiffies, timeout)) {
255		if (cpu_online(cpu))
256			break;
257
258		udelay(10);
259		barrier();
260	}
261
262	if (cpu_online(cpu))
263		return 0;
264
265	return -ENOENT;
266}
267
268void __init smp_cpus_done(unsigned int max_cpus)
269{
270	unsigned long bogosum = 0;
271	int cpu;
272
273	for_each_online_cpu(cpu)
274		bogosum += cpu_data[cpu].loops_per_jiffy;
275
276	printk(KERN_INFO "SMP: Total of %d processors activated "
277	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
278	       bogosum / (500000/HZ),
279	       (bogosum / (5000/HZ)) % 100);
280}
281
282void smp_send_reschedule(int cpu)
283{
284	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
285}
286
287void smp_send_stop(void)
288{
289	smp_call_function(stop_this_cpu, 0, 0);
290}
291
292void arch_send_call_function_ipi_mask(const struct cpumask *mask)
293{
294	int cpu;
295
296	for_each_cpu(cpu, mask)
297		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
298}
299
300void arch_send_call_function_single_ipi(int cpu)
301{
302	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
303}
304
305void smp_timer_broadcast(const struct cpumask *mask)
306{
307	int cpu;
308
309	for_each_cpu(cpu, mask)
310		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
311}
312
313static void ipi_timer(void)
314{
315	irq_enter();
316	local_timer_interrupt();
317	irq_exit();
318}
319
320void smp_message_recv(unsigned int msg)
321{
322	switch (msg) {
323	case SMP_MSG_FUNCTION:
324		generic_smp_call_function_interrupt();
325		break;
326	case SMP_MSG_RESCHEDULE:
327		scheduler_ipi();
328		break;
329	case SMP_MSG_FUNCTION_SINGLE:
330		generic_smp_call_function_single_interrupt();
331		break;
332	case SMP_MSG_TIMER:
333		ipi_timer();
334		break;
335	default:
336		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
337		       smp_processor_id(), __func__, msg);
338		break;
339	}
340}
341
342/* Not really SMP stuff ... */
343int setup_profiling_timer(unsigned int multiplier)
344{
345	return 0;
346}
347
348static void flush_tlb_all_ipi(void *info)
349{
350	local_flush_tlb_all();
351}
352
353void flush_tlb_all(void)
354{
355	on_each_cpu(flush_tlb_all_ipi, 0, 1);
356}
357
358static void flush_tlb_mm_ipi(void *mm)
359{
360	local_flush_tlb_mm((struct mm_struct *)mm);
361}
362
363/*
364 * The following tlb flush calls are invoked when old translations are
365 * being torn down, or pte attributes are changing. For single threaded
366 * address spaces, a new context is obtained on the current cpu, and tlb
367 * context on other cpus are invalidated to force a new context allocation
368 * at switch_mm time, should the mm ever be used on other cpus. For
369 * multithreaded address spaces, intercpu interrupts have to be sent.
370 * Another case where intercpu interrupts are required is when the target
371 * mm might be active on another cpu (eg debuggers doing the flushes on
372 * behalf of debugees, kswapd stealing pages from another process etc).
373 * Kanoj 07/00.
374 */
375void flush_tlb_mm(struct mm_struct *mm)
376{
377	preempt_disable();
378
379	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
380		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
381	} else {
382		int i;
383		for (i = 0; i < num_online_cpus(); i++)
384			if (smp_processor_id() != i)
385				cpu_context(i, mm) = 0;
386	}
387	local_flush_tlb_mm(mm);
388
389	preempt_enable();
390}
391
392struct flush_tlb_data {
393	struct vm_area_struct *vma;
394	unsigned long addr1;
395	unsigned long addr2;
396};
397
398static void flush_tlb_range_ipi(void *info)
399{
400	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
401
402	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
403}
404
405void flush_tlb_range(struct vm_area_struct *vma,
406		     unsigned long start, unsigned long end)
407{
408	struct mm_struct *mm = vma->vm_mm;
409
410	preempt_disable();
411	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
412		struct flush_tlb_data fd;
413
414		fd.vma = vma;
415		fd.addr1 = start;
416		fd.addr2 = end;
417		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
418	} else {
419		int i;
420		for (i = 0; i < num_online_cpus(); i++)
421			if (smp_processor_id() != i)
422				cpu_context(i, mm) = 0;
423	}
424	local_flush_tlb_range(vma, start, end);
425	preempt_enable();
426}
427
428static void flush_tlb_kernel_range_ipi(void *info)
429{
430	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
431
432	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
433}
434
435void flush_tlb_kernel_range(unsigned long start, unsigned long end)
436{
437	struct flush_tlb_data fd;
438
439	fd.addr1 = start;
440	fd.addr2 = end;
441	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
442}
443
444static void flush_tlb_page_ipi(void *info)
445{
446	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
447
448	local_flush_tlb_page(fd->vma, fd->addr1);
449}
450
451void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
452{
453	preempt_disable();
454	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
455	    (current->mm != vma->vm_mm)) {
456		struct flush_tlb_data fd;
457
458		fd.vma = vma;
459		fd.addr1 = page;
460		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
461	} else {
462		int i;
463		for (i = 0; i < num_online_cpus(); i++)
464			if (smp_processor_id() != i)
465				cpu_context(i, vma->vm_mm) = 0;
466	}
467	local_flush_tlb_page(vma, page);
468	preempt_enable();
469}
470
471static void flush_tlb_one_ipi(void *info)
472{
473	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
474	local_flush_tlb_one(fd->addr1, fd->addr2);
475}
476
477void flush_tlb_one(unsigned long asid, unsigned long vaddr)
478{
479	struct flush_tlb_data fd;
480
481	fd.addr1 = asid;
482	fd.addr2 = vaddr;
483
484	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
485	local_flush_tlb_one(asid, vaddr);
486}