Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * arch/sh/kernel/process.c
  3 *
  4 * This file handles the architecture-dependent parts of process handling..
  5 *
  6 *  Copyright (C) 1995  Linus Torvalds
  7 *
  8 *  SuperH version:  Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
  9 *		     Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
 10 *		     Copyright (C) 2002 - 2008  Paul Mundt
 11 *
 12 * This file is subject to the terms and conditions of the GNU General Public
 13 * License.  See the file "COPYING" in the main directory of this archive
 14 * for more details.
 15 */
 16#include <linux/module.h>
 17#include <linux/mm.h>
 18#include <linux/slab.h>
 19#include <linux/elfcore.h>
 20#include <linux/kallsyms.h>
 21#include <linux/fs.h>
 22#include <linux/ftrace.h>
 23#include <linux/hw_breakpoint.h>
 24#include <linux/prefetch.h>
 25#include <linux/stackprotector.h>
 26#include <asm/uaccess.h>
 27#include <asm/mmu_context.h>
 
 28#include <asm/fpu.h>
 29#include <asm/syscalls.h>
 30#include <asm/switch_to.h>
 31
 32void show_regs(struct pt_regs * regs)
 33{
 34	printk("\n");
 35	show_regs_print_info(KERN_DEFAULT);
 
 
 
 
 36
 37	print_symbol("PC is at %s\n", instruction_pointer(regs));
 38	print_symbol("PR is at %s\n", regs->pr);
 39
 40	printk("PC  : %08lx SP  : %08lx SR  : %08lx ",
 41	       regs->pc, regs->regs[15], regs->sr);
 42#ifdef CONFIG_MMU
 43	printk("TEA : %08x\n", __raw_readl(MMU_TEA));
 44#else
 45	printk("\n");
 46#endif
 47
 48	printk("R0  : %08lx R1  : %08lx R2  : %08lx R3  : %08lx\n",
 49	       regs->regs[0],regs->regs[1],
 50	       regs->regs[2],regs->regs[3]);
 51	printk("R4  : %08lx R5  : %08lx R6  : %08lx R7  : %08lx\n",
 52	       regs->regs[4],regs->regs[5],
 53	       regs->regs[6],regs->regs[7]);
 54	printk("R8  : %08lx R9  : %08lx R10 : %08lx R11 : %08lx\n",
 55	       regs->regs[8],regs->regs[9],
 56	       regs->regs[10],regs->regs[11]);
 57	printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
 58	       regs->regs[12],regs->regs[13],
 59	       regs->regs[14]);
 60	printk("MACH: %08lx MACL: %08lx GBR : %08lx PR  : %08lx\n",
 61	       regs->mach, regs->macl, regs->gbr, regs->pr);
 62
 63	show_trace(NULL, (unsigned long *)regs->regs[15], regs);
 64	show_code(regs);
 65}
 66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67void start_thread(struct pt_regs *regs, unsigned long new_pc,
 68		  unsigned long new_sp)
 69{
 70	regs->pr = 0;
 71	regs->sr = SR_FD;
 72	regs->pc = new_pc;
 73	regs->regs[15] = new_sp;
 74
 75	free_thread_xstate(current);
 76}
 77EXPORT_SYMBOL(start_thread);
 78
 79/*
 80 * Free current thread data structures etc..
 81 */
 82void exit_thread(void)
 83{
 84}
 85
 86void flush_thread(void)
 87{
 88	struct task_struct *tsk = current;
 89
 90	flush_ptrace_hw_breakpoint(tsk);
 91
 92#if defined(CONFIG_SH_FPU)
 93	/* Forget lazy FPU state */
 94	clear_fpu(tsk, task_pt_regs(tsk));
 95	clear_used_math();
 96#endif
 97}
 98
 99void release_thread(struct task_struct *dead_task)
100{
101	/* do nothing */
102}
103
104/* Fill in the fpu structure for a core dump.. */
105int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
106{
107	int fpvalid = 0;
108
109#if defined(CONFIG_SH_FPU)
110	struct task_struct *tsk = current;
111
112	fpvalid = !!tsk_used_math(tsk);
113	if (fpvalid)
114		fpvalid = !fpregs_get(tsk, NULL, 0,
115				      sizeof(struct user_fpu_struct),
116				      fpu, NULL);
117#endif
118
119	return fpvalid;
120}
121EXPORT_SYMBOL(dump_fpu);
122
 
 
 
 
 
 
 
 
 
123asmlinkage void ret_from_fork(void);
124asmlinkage void ret_from_kernel_thread(void);
125
126int copy_thread(unsigned long clone_flags, unsigned long usp,
127		unsigned long arg, struct task_struct *p)
 
128{
129	struct thread_info *ti = task_thread_info(p);
130	struct pt_regs *childregs;
131
132#if defined(CONFIG_SH_DSP)
133	struct task_struct *tsk = current;
134
135	if (is_dsp_enabled(tsk)) {
136		/* We can use the __save_dsp or just copy the struct:
137		 * __save_dsp(p);
138		 * p->thread.dsp_status.status |= SR_DSP
139		 */
140		p->thread.dsp_status = tsk->thread.dsp_status;
141	}
142#endif
143
144	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
145
146	childregs = task_pt_regs(p);
147	p->thread.sp = (unsigned long) childregs;
148	if (unlikely(p->flags & PF_KTHREAD)) {
149		memset(childregs, 0, sizeof(struct pt_regs));
150		p->thread.pc = (unsigned long) ret_from_kernel_thread;
151		childregs->regs[4] = arg;
152		childregs->regs[5] = usp;
153		childregs->sr = SR_MD;
154#if defined(CONFIG_SH_FPU)
155		childregs->sr |= SR_FD;
156#endif
157		ti->addr_limit = KERNEL_DS;
158		ti->status &= ~TS_USEDFPU;
159		p->thread.fpu_counter = 0;
160		return 0;
161	}
162	*childregs = *current_pt_regs();
163
164	if (usp)
165		childregs->regs[15] = usp;
166	ti->addr_limit = USER_DS;
167
168	if (clone_flags & CLONE_SETTLS)
169		childregs->gbr = childregs->regs[0];
170
171	childregs->regs[0] = 0; /* Set return value for child */
 
 
172	p->thread.pc = (unsigned long) ret_from_fork;
 
 
 
173	return 0;
174}
175
176/*
177 *	switch_to(x,y) should switch tasks from x to y.
178 *
179 */
180__notrace_funcgraph struct task_struct *
181__switch_to(struct task_struct *prev, struct task_struct *next)
182{
183	struct thread_struct *next_t = &next->thread;
184
185#if defined(CONFIG_CC_STACKPROTECTOR) && !defined(CONFIG_SMP)
186	__stack_chk_guard = next->stack_canary;
187#endif
188
189	unlazy_fpu(prev, task_pt_regs(prev));
190
191	/* we're going to use this soon, after a few expensive things */
192	if (next->thread.fpu_counter > 5)
193		prefetch(next_t->xstate);
194
195#ifdef CONFIG_MMU
196	/*
197	 * Restore the kernel mode register
198	 *	k7 (r7_bank1)
199	 */
200	asm volatile("ldc	%0, r7_bank"
201		     : /* no output */
202		     : "r" (task_thread_info(next)));
203#endif
204
205	/*
206	 * If the task has used fpu the last 5 timeslices, just do a full
207	 * restore of the math state immediately to avoid the trap; the
208	 * chances of needing FPU soon are obviously high now
209	 */
210	if (next->thread.fpu_counter > 5)
211		__fpu_state_restore();
212
213	return prev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214}
215
216unsigned long get_wchan(struct task_struct *p)
217{
218	unsigned long pc;
219
220	if (!p || p == current || p->state == TASK_RUNNING)
221		return 0;
222
223	/*
224	 * The same comment as on the Alpha applies here, too ...
225	 */
226	pc = thread_saved_pc(p);
227
228#ifdef CONFIG_FRAME_POINTER
229	if (in_sched_functions(pc)) {
230		unsigned long schedule_frame = (unsigned long)p->thread.sp;
231		return ((unsigned long *)schedule_frame)[21];
232	}
233#endif
234
235	return pc;
236}
v3.1
  1/*
  2 * arch/sh/kernel/process.c
  3 *
  4 * This file handles the architecture-dependent parts of process handling..
  5 *
  6 *  Copyright (C) 1995  Linus Torvalds
  7 *
  8 *  SuperH version:  Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
  9 *		     Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
 10 *		     Copyright (C) 2002 - 2008  Paul Mundt
 11 *
 12 * This file is subject to the terms and conditions of the GNU General Public
 13 * License.  See the file "COPYING" in the main directory of this archive
 14 * for more details.
 15 */
 16#include <linux/module.h>
 17#include <linux/mm.h>
 18#include <linux/slab.h>
 19#include <linux/elfcore.h>
 20#include <linux/kallsyms.h>
 21#include <linux/fs.h>
 22#include <linux/ftrace.h>
 23#include <linux/hw_breakpoint.h>
 24#include <linux/prefetch.h>
 
 25#include <asm/uaccess.h>
 26#include <asm/mmu_context.h>
 27#include <asm/system.h>
 28#include <asm/fpu.h>
 29#include <asm/syscalls.h>
 
 30
 31void show_regs(struct pt_regs * regs)
 32{
 33	printk("\n");
 34	printk("Pid : %d, Comm: \t\t%s\n", task_pid_nr(current), current->comm);
 35	printk("CPU : %d        \t\t%s  (%s %.*s)\n\n",
 36	       smp_processor_id(), print_tainted(), init_utsname()->release,
 37	       (int)strcspn(init_utsname()->version, " "),
 38	       init_utsname()->version);
 39
 40	print_symbol("PC is at %s\n", instruction_pointer(regs));
 41	print_symbol("PR is at %s\n", regs->pr);
 42
 43	printk("PC  : %08lx SP  : %08lx SR  : %08lx ",
 44	       regs->pc, regs->regs[15], regs->sr);
 45#ifdef CONFIG_MMU
 46	printk("TEA : %08x\n", __raw_readl(MMU_TEA));
 47#else
 48	printk("\n");
 49#endif
 50
 51	printk("R0  : %08lx R1  : %08lx R2  : %08lx R3  : %08lx\n",
 52	       regs->regs[0],regs->regs[1],
 53	       regs->regs[2],regs->regs[3]);
 54	printk("R4  : %08lx R5  : %08lx R6  : %08lx R7  : %08lx\n",
 55	       regs->regs[4],regs->regs[5],
 56	       regs->regs[6],regs->regs[7]);
 57	printk("R8  : %08lx R9  : %08lx R10 : %08lx R11 : %08lx\n",
 58	       regs->regs[8],regs->regs[9],
 59	       regs->regs[10],regs->regs[11]);
 60	printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
 61	       regs->regs[12],regs->regs[13],
 62	       regs->regs[14]);
 63	printk("MACH: %08lx MACL: %08lx GBR : %08lx PR  : %08lx\n",
 64	       regs->mach, regs->macl, regs->gbr, regs->pr);
 65
 66	show_trace(NULL, (unsigned long *)regs->regs[15], regs);
 67	show_code(regs);
 68}
 69
 70/*
 71 * Create a kernel thread
 72 */
 73ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
 74{
 75	do_exit(fn(arg));
 76}
 77
 78/* Don't use this in BL=1(cli).  Or else, CPU resets! */
 79int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
 80{
 81	struct pt_regs regs;
 82	int pid;
 83
 84	memset(&regs, 0, sizeof(regs));
 85	regs.regs[4] = (unsigned long)arg;
 86	regs.regs[5] = (unsigned long)fn;
 87
 88	regs.pc = (unsigned long)kernel_thread_helper;
 89	regs.sr = SR_MD;
 90#if defined(CONFIG_SH_FPU)
 91	regs.sr |= SR_FD;
 92#endif
 93
 94	/* Ok, create the new process.. */
 95	pid = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
 96		      &regs, 0, NULL, NULL);
 97
 98	return pid;
 99}
100EXPORT_SYMBOL(kernel_thread);
101
102void start_thread(struct pt_regs *regs, unsigned long new_pc,
103		  unsigned long new_sp)
104{
105	regs->pr = 0;
106	regs->sr = SR_FD;
107	regs->pc = new_pc;
108	regs->regs[15] = new_sp;
109
110	free_thread_xstate(current);
111}
112EXPORT_SYMBOL(start_thread);
113
114/*
115 * Free current thread data structures etc..
116 */
117void exit_thread(void)
118{
119}
120
121void flush_thread(void)
122{
123	struct task_struct *tsk = current;
124
125	flush_ptrace_hw_breakpoint(tsk);
126
127#if defined(CONFIG_SH_FPU)
128	/* Forget lazy FPU state */
129	clear_fpu(tsk, task_pt_regs(tsk));
130	clear_used_math();
131#endif
132}
133
134void release_thread(struct task_struct *dead_task)
135{
136	/* do nothing */
137}
138
139/* Fill in the fpu structure for a core dump.. */
140int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
141{
142	int fpvalid = 0;
143
144#if defined(CONFIG_SH_FPU)
145	struct task_struct *tsk = current;
146
147	fpvalid = !!tsk_used_math(tsk);
148	if (fpvalid)
149		fpvalid = !fpregs_get(tsk, NULL, 0,
150				      sizeof(struct user_fpu_struct),
151				      fpu, NULL);
152#endif
153
154	return fpvalid;
155}
156EXPORT_SYMBOL(dump_fpu);
157
158/*
159 * This gets called before we allocate a new thread and copy
160 * the current task into it.
161 */
162void prepare_to_copy(struct task_struct *tsk)
163{
164	unlazy_fpu(tsk, task_pt_regs(tsk));
165}
166
167asmlinkage void ret_from_fork(void);
 
168
169int copy_thread(unsigned long clone_flags, unsigned long usp,
170		unsigned long unused,
171		struct task_struct *p, struct pt_regs *regs)
172{
173	struct thread_info *ti = task_thread_info(p);
174	struct pt_regs *childregs;
175
176#if defined(CONFIG_SH_DSP)
177	struct task_struct *tsk = current;
178
179	if (is_dsp_enabled(tsk)) {
180		/* We can use the __save_dsp or just copy the struct:
181		 * __save_dsp(p);
182		 * p->thread.dsp_status.status |= SR_DSP
183		 */
184		p->thread.dsp_status = tsk->thread.dsp_status;
185	}
186#endif
187
 
 
188	childregs = task_pt_regs(p);
189	*childregs = *regs;
190
191	if (user_mode(regs)) {
192		childregs->regs[15] = usp;
193		ti->addr_limit = USER_DS;
194	} else {
195		childregs->regs[15] = (unsigned long)childregs;
 
 
 
196		ti->addr_limit = KERNEL_DS;
197		ti->status &= ~TS_USEDFPU;
198		p->fpu_counter = 0;
 
199	}
 
 
 
 
 
200
201	if (clone_flags & CLONE_SETTLS)
202		childregs->gbr = childregs->regs[0];
203
204	childregs->regs[0] = 0; /* Set return value for child */
205
206	p->thread.sp = (unsigned long) childregs;
207	p->thread.pc = (unsigned long) ret_from_fork;
208
209	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
210
211	return 0;
212}
213
214/*
215 *	switch_to(x,y) should switch tasks from x to y.
216 *
217 */
218__notrace_funcgraph struct task_struct *
219__switch_to(struct task_struct *prev, struct task_struct *next)
220{
221	struct thread_struct *next_t = &next->thread;
222
 
 
 
 
223	unlazy_fpu(prev, task_pt_regs(prev));
224
225	/* we're going to use this soon, after a few expensive things */
226	if (next->fpu_counter > 5)
227		prefetch(next_t->xstate);
228
229#ifdef CONFIG_MMU
230	/*
231	 * Restore the kernel mode register
232	 *	k7 (r7_bank1)
233	 */
234	asm volatile("ldc	%0, r7_bank"
235		     : /* no output */
236		     : "r" (task_thread_info(next)));
237#endif
238
239	/*
240	 * If the task has used fpu the last 5 timeslices, just do a full
241	 * restore of the math state immediately to avoid the trap; the
242	 * chances of needing FPU soon are obviously high now
243	 */
244	if (next->fpu_counter > 5)
245		__fpu_state_restore();
246
247	return prev;
248}
249
250asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
251			unsigned long r6, unsigned long r7,
252			struct pt_regs __regs)
253{
254#ifdef CONFIG_MMU
255	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
256	return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
257#else
258	/* fork almost works, enough to trick you into looking elsewhere :-( */
259	return -EINVAL;
260#endif
261}
262
263asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
264			 unsigned long parent_tidptr,
265			 unsigned long child_tidptr,
266			 struct pt_regs __regs)
267{
268	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
269	if (!newsp)
270		newsp = regs->regs[15];
271	return do_fork(clone_flags, newsp, regs, 0,
272			(int __user *)parent_tidptr,
273			(int __user *)child_tidptr);
274}
275
276/*
277 * This is trivial, and on the face of it looks like it
278 * could equally well be done in user mode.
279 *
280 * Not so, for quite unobvious reasons - register pressure.
281 * In user mode vfork() cannot have a stack frame, and if
282 * done by calling the "clone()" system call directly, you
283 * do not have enough call-clobbered registers to hold all
284 * the information you need.
285 */
286asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
287			 unsigned long r6, unsigned long r7,
288			 struct pt_regs __regs)
289{
290	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
291	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
292		       0, NULL, NULL);
293}
294
295/*
296 * sys_execve() executes a new program.
297 */
298asmlinkage int sys_execve(const char __user *ufilename,
299			  const char __user *const __user *uargv,
300			  const char __user *const __user *uenvp,
301			  unsigned long r7, struct pt_regs __regs)
302{
303	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
304	int error;
305	char *filename;
306
307	filename = getname(ufilename);
308	error = PTR_ERR(filename);
309	if (IS_ERR(filename))
310		goto out;
311
312	error = do_execve(filename, uargv, uenvp, regs);
313	putname(filename);
314out:
315	return error;
316}
317
318unsigned long get_wchan(struct task_struct *p)
319{
320	unsigned long pc;
321
322	if (!p || p == current || p->state == TASK_RUNNING)
323		return 0;
324
325	/*
326	 * The same comment as on the Alpha applies here, too ...
327	 */
328	pc = thread_saved_pc(p);
329
330#ifdef CONFIG_FRAME_POINTER
331	if (in_sched_functions(pc)) {
332		unsigned long schedule_frame = (unsigned long)p->thread.sp;
333		return ((unsigned long *)schedule_frame)[21];
334	}
335#endif
336
337	return pc;
338}