Loading...
1/*
2 *
3 * BRIEF MODULE DESCRIPTION
4 * A DMA channel allocator for Au1x00. API is modeled loosely off of
5 * linux/kernel/dma.c.
6 *
7 * Copyright 2000, 2008 MontaVista Software Inc.
8 * Author: MontaVista Software, Inc. <source@mvista.com>
9 * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 */
32
33#include <linux/init.h>
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/errno.h>
37#include <linux/spinlock.h>
38#include <linux/interrupt.h>
39
40#include <asm/mach-au1x00/au1000.h>
41#include <asm/mach-au1x00/au1000_dma.h>
42
43/*
44 * A note on resource allocation:
45 *
46 * All drivers needing DMA channels, should allocate and release them
47 * through the public routines `request_dma()' and `free_dma()'.
48 *
49 * In order to avoid problems, all processes should allocate resources in
50 * the same sequence and release them in the reverse order.
51 *
52 * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
53 * When releasing them, first release the IRQ, then release the DMA. The
54 * main reason for this order is that, if you are requesting the DMA buffer
55 * done interrupt, you won't know the irq number until the DMA channel is
56 * returned from request_dma.
57 */
58
59/* DMA Channel register block spacing */
60#define DMA_CHANNEL_LEN 0x00000100
61
62DEFINE_SPINLOCK(au1000_dma_spin_lock);
63
64struct dma_chan au1000_dma_table[NUM_AU1000_DMA_CHANNELS] = {
65 {.dev_id = -1,},
66 {.dev_id = -1,},
67 {.dev_id = -1,},
68 {.dev_id = -1,},
69 {.dev_id = -1,},
70 {.dev_id = -1,},
71 {.dev_id = -1,},
72 {.dev_id = -1,}
73};
74EXPORT_SYMBOL(au1000_dma_table);
75
76/* Device FIFO addresses and default DMA modes */
77static const struct dma_dev {
78 unsigned int fifo_addr;
79 unsigned int dma_mode;
80} dma_dev_table[DMA_NUM_DEV] = {
81 { AU1000_UART0_PHYS_ADDR + 0x04, DMA_DW8 }, /* UART0_TX */
82 { AU1000_UART0_PHYS_ADDR + 0x00, DMA_DW8 | DMA_DR }, /* UART0_RX */
83 { 0, 0 }, /* DMA_REQ0 */
84 { 0, 0 }, /* DMA_REQ1 */
85 { AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 }, /* AC97 TX c */
86 { AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 | DMA_DR }, /* AC97 RX c */
87 { AU1000_UART3_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* UART3_TX */
88 { AU1000_UART3_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* UART3_RX */
89 { AU1000_USB_UDC_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* EP0RD */
90 { AU1000_USB_UDC_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* EP0WR */
91 { AU1000_USB_UDC_PHYS_ADDR + 0x08, DMA_DW8 | DMA_NC }, /* EP2WR */
92 { AU1000_USB_UDC_PHYS_ADDR + 0x0c, DMA_DW8 | DMA_NC }, /* EP3WR */
93 { AU1000_USB_UDC_PHYS_ADDR + 0x10, DMA_DW8 | DMA_NC | DMA_DR }, /* EP4RD */
94 { AU1000_USB_UDC_PHYS_ADDR + 0x14, DMA_DW8 | DMA_NC | DMA_DR }, /* EP5RD */
95 /* on Au1500, these 2 are DMA_REQ2/3 (GPIO208/209) instead! */
96 { AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC}, /* I2S TX */
97 { AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC | DMA_DR}, /* I2S RX */
98};
99
100int au1000_dma_read_proc(char *buf, char **start, off_t fpos,
101 int length, int *eof, void *data)
102{
103 int i, len = 0;
104 struct dma_chan *chan;
105
106 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
107 chan = get_dma_chan(i);
108 if (chan != NULL)
109 len += sprintf(buf + len, "%2d: %s\n",
110 i, chan->dev_str);
111 }
112
113 if (fpos >= len) {
114 *start = buf;
115 *eof = 1;
116 return 0;
117 }
118 *start = buf + fpos;
119 len -= fpos;
120 if (len > length)
121 return length;
122 *eof = 1;
123 return len;
124}
125
126/* Device FIFO addresses and default DMA modes - 2nd bank */
127static const struct dma_dev dma_dev_table_bank2[DMA_NUM_DEV_BANK2] = {
128 { AU1100_SD0_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 }, /* coherent */
129 { AU1100_SD0_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR }, /* coherent */
130 { AU1100_SD1_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 }, /* coherent */
131 { AU1100_SD1_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR } /* coherent */
132};
133
134void dump_au1000_dma_channel(unsigned int dmanr)
135{
136 struct dma_chan *chan;
137
138 if (dmanr >= NUM_AU1000_DMA_CHANNELS)
139 return;
140 chan = &au1000_dma_table[dmanr];
141
142 printk(KERN_INFO "Au1000 DMA%d Register Dump:\n", dmanr);
143 printk(KERN_INFO " mode = 0x%08x\n",
144 au_readl(chan->io + DMA_MODE_SET));
145 printk(KERN_INFO " addr = 0x%08x\n",
146 au_readl(chan->io + DMA_PERIPHERAL_ADDR));
147 printk(KERN_INFO " start0 = 0x%08x\n",
148 au_readl(chan->io + DMA_BUFFER0_START));
149 printk(KERN_INFO " start1 = 0x%08x\n",
150 au_readl(chan->io + DMA_BUFFER1_START));
151 printk(KERN_INFO " count0 = 0x%08x\n",
152 au_readl(chan->io + DMA_BUFFER0_COUNT));
153 printk(KERN_INFO " count1 = 0x%08x\n",
154 au_readl(chan->io + DMA_BUFFER1_COUNT));
155}
156
157/*
158 * Finds a free channel, and binds the requested device to it.
159 * Returns the allocated channel number, or negative on error.
160 * Requests the DMA done IRQ if irqhandler != NULL.
161 */
162int request_au1000_dma(int dev_id, const char *dev_str,
163 irq_handler_t irqhandler,
164 unsigned long irqflags,
165 void *irq_dev_id)
166{
167 struct dma_chan *chan;
168 const struct dma_dev *dev;
169 int i, ret;
170
171 if (alchemy_get_cputype() == ALCHEMY_CPU_AU1100) {
172 if (dev_id < 0 || dev_id >= (DMA_NUM_DEV + DMA_NUM_DEV_BANK2))
173 return -EINVAL;
174 } else {
175 if (dev_id < 0 || dev_id >= DMA_NUM_DEV)
176 return -EINVAL;
177 }
178
179 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
180 if (au1000_dma_table[i].dev_id < 0)
181 break;
182
183 if (i == NUM_AU1000_DMA_CHANNELS)
184 return -ENODEV;
185
186 chan = &au1000_dma_table[i];
187
188 if (dev_id >= DMA_NUM_DEV) {
189 dev_id -= DMA_NUM_DEV;
190 dev = &dma_dev_table_bank2[dev_id];
191 } else
192 dev = &dma_dev_table[dev_id];
193
194 if (irqhandler) {
195 chan->irq_dev = irq_dev_id;
196 ret = request_irq(chan->irq, irqhandler, irqflags, dev_str,
197 chan->irq_dev);
198 if (ret) {
199 chan->irq_dev = NULL;
200 return ret;
201 }
202 } else {
203 chan->irq_dev = NULL;
204 }
205
206 /* fill it in */
207 chan->io = KSEG1ADDR(AU1000_DMA_PHYS_ADDR) + i * DMA_CHANNEL_LEN;
208 chan->dev_id = dev_id;
209 chan->dev_str = dev_str;
210 chan->fifo_addr = dev->fifo_addr;
211 chan->mode = dev->dma_mode;
212
213 /* initialize the channel before returning */
214 init_dma(i);
215
216 return i;
217}
218EXPORT_SYMBOL(request_au1000_dma);
219
220void free_au1000_dma(unsigned int dmanr)
221{
222 struct dma_chan *chan = get_dma_chan(dmanr);
223
224 if (!chan) {
225 printk(KERN_ERR "Error trying to free DMA%d\n", dmanr);
226 return;
227 }
228
229 disable_dma(dmanr);
230 if (chan->irq_dev)
231 free_irq(chan->irq, chan->irq_dev);
232
233 chan->irq_dev = NULL;
234 chan->dev_id = -1;
235}
236EXPORT_SYMBOL(free_au1000_dma);
237
238static int __init au1000_dma_init(void)
239{
240 int base, i;
241
242 switch (alchemy_get_cputype()) {
243 case ALCHEMY_CPU_AU1000:
244 base = AU1000_DMA_INT_BASE;
245 break;
246 case ALCHEMY_CPU_AU1500:
247 base = AU1500_DMA_INT_BASE;
248 break;
249 case ALCHEMY_CPU_AU1100:
250 base = AU1100_DMA_INT_BASE;
251 break;
252 default:
253 goto out;
254 }
255
256 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
257 au1000_dma_table[i].irq = base + i;
258
259 printk(KERN_INFO "Alchemy DMA initialized\n");
260
261out:
262 return 0;
263}
264arch_initcall(au1000_dma_init);
1/*
2 *
3 * BRIEF MODULE DESCRIPTION
4 * A DMA channel allocator for Au1x00. API is modeled loosely off of
5 * linux/kernel/dma.c.
6 *
7 * Copyright 2000, 2008 MontaVista Software Inc.
8 * Author: MontaVista Software, Inc. <source@mvista.com>
9 * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 */
32
33#include <linux/init.h>
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/errno.h>
37#include <linux/spinlock.h>
38#include <linux/interrupt.h>
39
40#include <asm/mach-au1x00/au1000.h>
41#include <asm/mach-au1x00/au1000_dma.h>
42
43#if defined(CONFIG_SOC_AU1000) || defined(CONFIG_SOC_AU1500) || \
44 defined(CONFIG_SOC_AU1100)
45/*
46 * A note on resource allocation:
47 *
48 * All drivers needing DMA channels, should allocate and release them
49 * through the public routines `request_dma()' and `free_dma()'.
50 *
51 * In order to avoid problems, all processes should allocate resources in
52 * the same sequence and release them in the reverse order.
53 *
54 * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
55 * When releasing them, first release the IRQ, then release the DMA. The
56 * main reason for this order is that, if you are requesting the DMA buffer
57 * done interrupt, you won't know the irq number until the DMA channel is
58 * returned from request_dma.
59 */
60
61/* DMA Channel register block spacing */
62#define DMA_CHANNEL_LEN 0x00000100
63
64DEFINE_SPINLOCK(au1000_dma_spin_lock);
65
66struct dma_chan au1000_dma_table[NUM_AU1000_DMA_CHANNELS] = {
67 {.dev_id = -1,},
68 {.dev_id = -1,},
69 {.dev_id = -1,},
70 {.dev_id = -1,},
71 {.dev_id = -1,},
72 {.dev_id = -1,},
73 {.dev_id = -1,},
74 {.dev_id = -1,}
75};
76EXPORT_SYMBOL(au1000_dma_table);
77
78/* Device FIFO addresses and default DMA modes */
79static const struct dma_dev {
80 unsigned int fifo_addr;
81 unsigned int dma_mode;
82} dma_dev_table[DMA_NUM_DEV] = {
83 { AU1000_UART0_PHYS_ADDR + 0x04, DMA_DW8 }, /* UART0_TX */
84 { AU1000_UART0_PHYS_ADDR + 0x00, DMA_DW8 | DMA_DR }, /* UART0_RX */
85 { 0, 0 }, /* DMA_REQ0 */
86 { 0, 0 }, /* DMA_REQ1 */
87 { AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 }, /* AC97 TX c */
88 { AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 | DMA_DR }, /* AC97 RX c */
89 { AU1000_UART3_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* UART3_TX */
90 { AU1000_UART3_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* UART3_RX */
91 { AU1000_USBD_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* EP0RD */
92 { AU1000_USBD_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* EP0WR */
93 { AU1000_USBD_PHYS_ADDR + 0x08, DMA_DW8 | DMA_NC }, /* EP2WR */
94 { AU1000_USBD_PHYS_ADDR + 0x0c, DMA_DW8 | DMA_NC }, /* EP3WR */
95 { AU1000_USBD_PHYS_ADDR + 0x10, DMA_DW8 | DMA_NC | DMA_DR }, /* EP4RD */
96 { AU1000_USBD_PHYS_ADDR + 0x14, DMA_DW8 | DMA_NC | DMA_DR }, /* EP5RD */
97 /* on Au1500, these 2 are DMA_REQ2/3 (GPIO208/209) instead! */
98 { AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC}, /* I2S TX */
99 { AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC | DMA_DR}, /* I2S RX */
100};
101
102int au1000_dma_read_proc(char *buf, char **start, off_t fpos,
103 int length, int *eof, void *data)
104{
105 int i, len = 0;
106 struct dma_chan *chan;
107
108 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
109 chan = get_dma_chan(i);
110 if (chan != NULL)
111 len += sprintf(buf + len, "%2d: %s\n",
112 i, chan->dev_str);
113 }
114
115 if (fpos >= len) {
116 *start = buf;
117 *eof = 1;
118 return 0;
119 }
120 *start = buf + fpos;
121 len -= fpos;
122 if (len > length)
123 return length;
124 *eof = 1;
125 return len;
126}
127
128/* Device FIFO addresses and default DMA modes - 2nd bank */
129static const struct dma_dev dma_dev_table_bank2[DMA_NUM_DEV_BANK2] = {
130 { AU1100_SD0_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 }, /* coherent */
131 { AU1100_SD0_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR }, /* coherent */
132 { AU1100_SD1_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 }, /* coherent */
133 { AU1100_SD1_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR } /* coherent */
134};
135
136void dump_au1000_dma_channel(unsigned int dmanr)
137{
138 struct dma_chan *chan;
139
140 if (dmanr >= NUM_AU1000_DMA_CHANNELS)
141 return;
142 chan = &au1000_dma_table[dmanr];
143
144 printk(KERN_INFO "Au1000 DMA%d Register Dump:\n", dmanr);
145 printk(KERN_INFO " mode = 0x%08x\n",
146 au_readl(chan->io + DMA_MODE_SET));
147 printk(KERN_INFO " addr = 0x%08x\n",
148 au_readl(chan->io + DMA_PERIPHERAL_ADDR));
149 printk(KERN_INFO " start0 = 0x%08x\n",
150 au_readl(chan->io + DMA_BUFFER0_START));
151 printk(KERN_INFO " start1 = 0x%08x\n",
152 au_readl(chan->io + DMA_BUFFER1_START));
153 printk(KERN_INFO " count0 = 0x%08x\n",
154 au_readl(chan->io + DMA_BUFFER0_COUNT));
155 printk(KERN_INFO " count1 = 0x%08x\n",
156 au_readl(chan->io + DMA_BUFFER1_COUNT));
157}
158
159/*
160 * Finds a free channel, and binds the requested device to it.
161 * Returns the allocated channel number, or negative on error.
162 * Requests the DMA done IRQ if irqhandler != NULL.
163 */
164int request_au1000_dma(int dev_id, const char *dev_str,
165 irq_handler_t irqhandler,
166 unsigned long irqflags,
167 void *irq_dev_id)
168{
169 struct dma_chan *chan;
170 const struct dma_dev *dev;
171 int i, ret;
172
173#if defined(CONFIG_SOC_AU1100)
174 if (dev_id < 0 || dev_id >= (DMA_NUM_DEV + DMA_NUM_DEV_BANK2))
175 return -EINVAL;
176#else
177 if (dev_id < 0 || dev_id >= DMA_NUM_DEV)
178 return -EINVAL;
179#endif
180
181 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
182 if (au1000_dma_table[i].dev_id < 0)
183 break;
184
185 if (i == NUM_AU1000_DMA_CHANNELS)
186 return -ENODEV;
187
188 chan = &au1000_dma_table[i];
189
190 if (dev_id >= DMA_NUM_DEV) {
191 dev_id -= DMA_NUM_DEV;
192 dev = &dma_dev_table_bank2[dev_id];
193 } else
194 dev = &dma_dev_table[dev_id];
195
196 if (irqhandler) {
197 chan->irq_dev = irq_dev_id;
198 ret = request_irq(chan->irq, irqhandler, irqflags, dev_str,
199 chan->irq_dev);
200 if (ret) {
201 chan->irq_dev = NULL;
202 return ret;
203 }
204 } else {
205 chan->irq_dev = NULL;
206 }
207
208 /* fill it in */
209 chan->io = KSEG1ADDR(AU1000_DMA_PHYS_ADDR) + i * DMA_CHANNEL_LEN;
210 chan->dev_id = dev_id;
211 chan->dev_str = dev_str;
212 chan->fifo_addr = dev->fifo_addr;
213 chan->mode = dev->dma_mode;
214
215 /* initialize the channel before returning */
216 init_dma(i);
217
218 return i;
219}
220EXPORT_SYMBOL(request_au1000_dma);
221
222void free_au1000_dma(unsigned int dmanr)
223{
224 struct dma_chan *chan = get_dma_chan(dmanr);
225
226 if (!chan) {
227 printk(KERN_ERR "Error trying to free DMA%d\n", dmanr);
228 return;
229 }
230
231 disable_dma(dmanr);
232 if (chan->irq_dev)
233 free_irq(chan->irq, chan->irq_dev);
234
235 chan->irq_dev = NULL;
236 chan->dev_id = -1;
237}
238EXPORT_SYMBOL(free_au1000_dma);
239
240static int __init au1000_dma_init(void)
241{
242 int base, i;
243
244 switch (alchemy_get_cputype()) {
245 case ALCHEMY_CPU_AU1000:
246 base = AU1000_DMA_INT_BASE;
247 break;
248 case ALCHEMY_CPU_AU1500:
249 base = AU1500_DMA_INT_BASE;
250 break;
251 case ALCHEMY_CPU_AU1100:
252 base = AU1100_DMA_INT_BASE;
253 break;
254 default:
255 goto out;
256 }
257
258 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
259 au1000_dma_table[i].irq = base + i;
260
261 printk(KERN_INFO "Alchemy DMA initialized\n");
262
263out:
264 return 0;
265}
266arch_initcall(au1000_dma_init);
267
268#endif /* AU1000 AU1500 AU1100 */