Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1998-2003 Hewlett-Packard Co
  7 *	David Mosberger-Tang <davidm@hpl.hp.com>
  8 *	Stephane Eranian <eranian@hpl.hp.com>
  9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
 10 * Copyright (C) 1999 VA Linux Systems
 11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
 13 *
 14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
 15 * memory.
 16 */
 17#include <linux/bootmem.h>
 18#include <linux/efi.h>
 19#include <linux/memblock.h>
 20#include <linux/mm.h>
 21#include <linux/nmi.h>
 22#include <linux/swap.h>
 23
 24#include <asm/meminit.h>
 25#include <asm/pgalloc.h>
 26#include <asm/pgtable.h>
 27#include <asm/sections.h>
 28#include <asm/mca.h>
 29
 30#ifdef CONFIG_VIRTUAL_MEM_MAP
 31static unsigned long max_gap;
 32#endif
 33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34/* physical address where the bootmem map is located */
 35unsigned long bootmap_start;
 36
 37/**
 38 * find_bootmap_location - callback to find a memory area for the bootmap
 39 * @start: start of region
 40 * @end: end of region
 41 * @arg: unused callback data
 42 *
 43 * Find a place to put the bootmap and return its starting address in
 44 * bootmap_start.  This address must be page-aligned.
 45 */
 46static int __init
 47find_bootmap_location (u64 start, u64 end, void *arg)
 48{
 49	u64 needed = *(unsigned long *)arg;
 50	u64 range_start, range_end, free_start;
 51	int i;
 52
 53#if IGNORE_PFN0
 54	if (start == PAGE_OFFSET) {
 55		start += PAGE_SIZE;
 56		if (start >= end)
 57			return 0;
 58	}
 59#endif
 60
 61	free_start = PAGE_OFFSET;
 62
 63	for (i = 0; i < num_rsvd_regions; i++) {
 64		range_start = max(start, free_start);
 65		range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
 66
 67		free_start = PAGE_ALIGN(rsvd_region[i].end);
 68
 69		if (range_end <= range_start)
 70			continue; /* skip over empty range */
 71
 72		if (range_end - range_start >= needed) {
 73			bootmap_start = __pa(range_start);
 74			return -1;	/* done */
 75		}
 76
 77		/* nothing more available in this segment */
 78		if (range_end == end)
 79			return 0;
 80	}
 81	return 0;
 82}
 83
 84#ifdef CONFIG_SMP
 85static void *cpu_data;
 86/**
 87 * per_cpu_init - setup per-cpu variables
 88 *
 89 * Allocate and setup per-cpu data areas.
 90 */
 91void *per_cpu_init(void)
 
 92{
 93	static bool first_time = true;
 94	void *cpu0_data = __cpu0_per_cpu;
 95	unsigned int cpu;
 96
 97	if (!first_time)
 98		goto skip;
 99	first_time = false;
100
101	/*
102	 * get_free_pages() cannot be used before cpu_init() done.
103	 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
104	 * to avoid that AP calls get_zeroed_page().
105	 */
106	for_each_possible_cpu(cpu) {
107		void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
108
109		memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
110		__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
111		per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
112
113		/*
114		 * percpu area for cpu0 is moved from the __init area
115		 * which is setup by head.S and used till this point.
116		 * Update ar.k3.  This move is ensures that percpu
117		 * area for cpu0 is on the correct node and its
118		 * virtual address isn't insanely far from other
119		 * percpu areas which is important for congruent
120		 * percpu allocator.
121		 */
122		if (cpu == 0)
123			ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
124				    (unsigned long)__per_cpu_start);
125
126		cpu_data += PERCPU_PAGE_SIZE;
127	}
128skip:
129	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
130}
131
132static inline void
133alloc_per_cpu_data(void)
134{
135	cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
136				   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
137}
138
139/**
140 * setup_per_cpu_areas - setup percpu areas
141 *
142 * Arch code has already allocated and initialized percpu areas.  All
143 * this function has to do is to teach the determined layout to the
144 * dynamic percpu allocator, which happens to be more complex than
145 * creating whole new ones using helpers.
146 */
147void __init
148setup_per_cpu_areas(void)
149{
150	struct pcpu_alloc_info *ai;
151	struct pcpu_group_info *gi;
152	unsigned int cpu;
153	ssize_t static_size, reserved_size, dyn_size;
154	int rc;
155
156	ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
157	if (!ai)
158		panic("failed to allocate pcpu_alloc_info");
159	gi = &ai->groups[0];
160
161	/* units are assigned consecutively to possible cpus */
162	for_each_possible_cpu(cpu)
163		gi->cpu_map[gi->nr_units++] = cpu;
164
165	/* set parameters */
166	static_size = __per_cpu_end - __per_cpu_start;
167	reserved_size = PERCPU_MODULE_RESERVE;
168	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
169	if (dyn_size < 0)
170		panic("percpu area overflow static=%zd reserved=%zd\n",
171		      static_size, reserved_size);
172
173	ai->static_size		= static_size;
174	ai->reserved_size	= reserved_size;
175	ai->dyn_size		= dyn_size;
176	ai->unit_size		= PERCPU_PAGE_SIZE;
177	ai->atom_size		= PAGE_SIZE;
178	ai->alloc_size		= PERCPU_PAGE_SIZE;
179
180	rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
181	if (rc)
182		panic("failed to setup percpu area (err=%d)", rc);
183
184	pcpu_free_alloc_info(ai);
185}
186#else
187#define alloc_per_cpu_data() do { } while (0)
188#endif /* CONFIG_SMP */
189
190/**
191 * find_memory - setup memory map
192 *
193 * Walk the EFI memory map and find usable memory for the system, taking
194 * into account reserved areas.
195 */
196void __init
197find_memory (void)
198{
199	unsigned long bootmap_size;
200
201	reserve_memory();
202
203	/* first find highest page frame number */
204	min_low_pfn = ~0UL;
205	max_low_pfn = 0;
206	efi_memmap_walk(find_max_min_low_pfn, NULL);
207	max_pfn = max_low_pfn;
208	/* how many bytes to cover all the pages */
209	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
210
211	/* look for a location to hold the bootmap */
212	bootmap_start = ~0UL;
213	efi_memmap_walk(find_bootmap_location, &bootmap_size);
214	if (bootmap_start == ~0UL)
215		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
216
217	bootmap_size = init_bootmem_node(NODE_DATA(0),
218			(bootmap_start >> PAGE_SHIFT), 0, max_pfn);
219
220	/* Free all available memory, then mark bootmem-map as being in use. */
221	efi_memmap_walk(filter_rsvd_memory, free_bootmem);
222	reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
223
224	find_initrd();
225
226	alloc_per_cpu_data();
227}
228
 
 
 
 
 
 
 
 
229/*
230 * Set up the page tables.
231 */
232
233void __init
234paging_init (void)
235{
236	unsigned long max_dma;
237	unsigned long max_zone_pfns[MAX_NR_ZONES];
238
 
 
 
239	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
240#ifdef CONFIG_ZONE_DMA
241	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
242	max_zone_pfns[ZONE_DMA] = max_dma;
243#endif
244	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
245
246#ifdef CONFIG_VIRTUAL_MEM_MAP
247	efi_memmap_walk(filter_memory, register_active_ranges);
248	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
249	if (max_gap < LARGE_GAP) {
250		vmem_map = (struct page *) 0;
251		free_area_init_nodes(max_zone_pfns);
252	} else {
253		unsigned long map_size;
254
255		/* allocate virtual_mem_map */
256
257		map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
258			sizeof(struct page));
259		VMALLOC_END -= map_size;
260		vmem_map = (struct page *) VMALLOC_END;
261		efi_memmap_walk(create_mem_map_page_table, NULL);
262
263		/*
264		 * alloc_node_mem_map makes an adjustment for mem_map
265		 * which isn't compatible with vmem_map.
266		 */
267		NODE_DATA(0)->node_mem_map = vmem_map +
268			find_min_pfn_with_active_regions();
269		free_area_init_nodes(max_zone_pfns);
270
271		printk("Virtual mem_map starts at 0x%p\n", mem_map);
272	}
273#else /* !CONFIG_VIRTUAL_MEM_MAP */
274	memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
275	free_area_init_nodes(max_zone_pfns);
276#endif /* !CONFIG_VIRTUAL_MEM_MAP */
277	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
278}
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1998-2003 Hewlett-Packard Co
  7 *	David Mosberger-Tang <davidm@hpl.hp.com>
  8 *	Stephane Eranian <eranian@hpl.hp.com>
  9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
 10 * Copyright (C) 1999 VA Linux Systems
 11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
 13 *
 14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
 15 * memory.
 16 */
 17#include <linux/bootmem.h>
 18#include <linux/efi.h>
 
 19#include <linux/mm.h>
 20#include <linux/nmi.h>
 21#include <linux/swap.h>
 22
 23#include <asm/meminit.h>
 24#include <asm/pgalloc.h>
 25#include <asm/pgtable.h>
 26#include <asm/sections.h>
 27#include <asm/mca.h>
 28
 29#ifdef CONFIG_VIRTUAL_MEM_MAP
 30static unsigned long max_gap;
 31#endif
 32
 33/**
 34 * show_mem - give short summary of memory stats
 35 *
 36 * Shows a simple page count of reserved and used pages in the system.
 37 * For discontig machines, it does this on a per-pgdat basis.
 38 */
 39void show_mem(unsigned int filter)
 40{
 41	int i, total_reserved = 0;
 42	int total_shared = 0, total_cached = 0;
 43	unsigned long total_present = 0;
 44	pg_data_t *pgdat;
 45
 46	printk(KERN_INFO "Mem-info:\n");
 47	show_free_areas(filter);
 48	printk(KERN_INFO "Node memory in pages:\n");
 49	for_each_online_pgdat(pgdat) {
 50		unsigned long present;
 51		unsigned long flags;
 52		int shared = 0, cached = 0, reserved = 0;
 53		int nid = pgdat->node_id;
 54
 55		if (skip_free_areas_node(filter, nid))
 56			continue;
 57		pgdat_resize_lock(pgdat, &flags);
 58		present = pgdat->node_present_pages;
 59		for(i = 0; i < pgdat->node_spanned_pages; i++) {
 60			struct page *page;
 61			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
 62				touch_nmi_watchdog();
 63			if (pfn_valid(pgdat->node_start_pfn + i))
 64				page = pfn_to_page(pgdat->node_start_pfn + i);
 65			else {
 66#ifdef CONFIG_VIRTUAL_MEM_MAP
 67				if (max_gap < LARGE_GAP)
 68					continue;
 69#endif
 70				i = vmemmap_find_next_valid_pfn(nid, i) - 1;
 71				continue;
 72			}
 73			if (PageReserved(page))
 74				reserved++;
 75			else if (PageSwapCache(page))
 76				cached++;
 77			else if (page_count(page))
 78				shared += page_count(page)-1;
 79		}
 80		pgdat_resize_unlock(pgdat, &flags);
 81		total_present += present;
 82		total_reserved += reserved;
 83		total_cached += cached;
 84		total_shared += shared;
 85		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
 86		       "shrd: %10d, swpd: %10d\n", nid,
 87		       present, reserved, shared, cached);
 88	}
 89	printk(KERN_INFO "%ld pages of RAM\n", total_present);
 90	printk(KERN_INFO "%d reserved pages\n", total_reserved);
 91	printk(KERN_INFO "%d pages shared\n", total_shared);
 92	printk(KERN_INFO "%d pages swap cached\n", total_cached);
 93	printk(KERN_INFO "Total of %ld pages in page table cache\n",
 94	       quicklist_total_size());
 95	printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
 96}
 97
 98
 99/* physical address where the bootmem map is located */
100unsigned long bootmap_start;
101
102/**
103 * find_bootmap_location - callback to find a memory area for the bootmap
104 * @start: start of region
105 * @end: end of region
106 * @arg: unused callback data
107 *
108 * Find a place to put the bootmap and return its starting address in
109 * bootmap_start.  This address must be page-aligned.
110 */
111static int __init
112find_bootmap_location (u64 start, u64 end, void *arg)
113{
114	u64 needed = *(unsigned long *)arg;
115	u64 range_start, range_end, free_start;
116	int i;
117
118#if IGNORE_PFN0
119	if (start == PAGE_OFFSET) {
120		start += PAGE_SIZE;
121		if (start >= end)
122			return 0;
123	}
124#endif
125
126	free_start = PAGE_OFFSET;
127
128	for (i = 0; i < num_rsvd_regions; i++) {
129		range_start = max(start, free_start);
130		range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
131
132		free_start = PAGE_ALIGN(rsvd_region[i].end);
133
134		if (range_end <= range_start)
135			continue; /* skip over empty range */
136
137		if (range_end - range_start >= needed) {
138			bootmap_start = __pa(range_start);
139			return -1;	/* done */
140		}
141
142		/* nothing more available in this segment */
143		if (range_end == end)
144			return 0;
145	}
146	return 0;
147}
148
149#ifdef CONFIG_SMP
150static void *cpu_data;
151/**
152 * per_cpu_init - setup per-cpu variables
153 *
154 * Allocate and setup per-cpu data areas.
155 */
156void * __cpuinit
157per_cpu_init (void)
158{
159	static bool first_time = true;
160	void *cpu0_data = __cpu0_per_cpu;
161	unsigned int cpu;
162
163	if (!first_time)
164		goto skip;
165	first_time = false;
166
167	/*
168	 * get_free_pages() cannot be used before cpu_init() done.
169	 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
170	 * to avoid that AP calls get_zeroed_page().
171	 */
172	for_each_possible_cpu(cpu) {
173		void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
174
175		memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
176		__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
177		per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
178
179		/*
180		 * percpu area for cpu0 is moved from the __init area
181		 * which is setup by head.S and used till this point.
182		 * Update ar.k3.  This move is ensures that percpu
183		 * area for cpu0 is on the correct node and its
184		 * virtual address isn't insanely far from other
185		 * percpu areas which is important for congruent
186		 * percpu allocator.
187		 */
188		if (cpu == 0)
189			ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
190				    (unsigned long)__per_cpu_start);
191
192		cpu_data += PERCPU_PAGE_SIZE;
193	}
194skip:
195	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
196}
197
198static inline void
199alloc_per_cpu_data(void)
200{
201	cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
202				   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
203}
204
205/**
206 * setup_per_cpu_areas - setup percpu areas
207 *
208 * Arch code has already allocated and initialized percpu areas.  All
209 * this function has to do is to teach the determined layout to the
210 * dynamic percpu allocator, which happens to be more complex than
211 * creating whole new ones using helpers.
212 */
213void __init
214setup_per_cpu_areas(void)
215{
216	struct pcpu_alloc_info *ai;
217	struct pcpu_group_info *gi;
218	unsigned int cpu;
219	ssize_t static_size, reserved_size, dyn_size;
220	int rc;
221
222	ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
223	if (!ai)
224		panic("failed to allocate pcpu_alloc_info");
225	gi = &ai->groups[0];
226
227	/* units are assigned consecutively to possible cpus */
228	for_each_possible_cpu(cpu)
229		gi->cpu_map[gi->nr_units++] = cpu;
230
231	/* set parameters */
232	static_size = __per_cpu_end - __per_cpu_start;
233	reserved_size = PERCPU_MODULE_RESERVE;
234	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
235	if (dyn_size < 0)
236		panic("percpu area overflow static=%zd reserved=%zd\n",
237		      static_size, reserved_size);
238
239	ai->static_size		= static_size;
240	ai->reserved_size	= reserved_size;
241	ai->dyn_size		= dyn_size;
242	ai->unit_size		= PERCPU_PAGE_SIZE;
243	ai->atom_size		= PAGE_SIZE;
244	ai->alloc_size		= PERCPU_PAGE_SIZE;
245
246	rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
247	if (rc)
248		panic("failed to setup percpu area (err=%d)", rc);
249
250	pcpu_free_alloc_info(ai);
251}
252#else
253#define alloc_per_cpu_data() do { } while (0)
254#endif /* CONFIG_SMP */
255
256/**
257 * find_memory - setup memory map
258 *
259 * Walk the EFI memory map and find usable memory for the system, taking
260 * into account reserved areas.
261 */
262void __init
263find_memory (void)
264{
265	unsigned long bootmap_size;
266
267	reserve_memory();
268
269	/* first find highest page frame number */
270	min_low_pfn = ~0UL;
271	max_low_pfn = 0;
272	efi_memmap_walk(find_max_min_low_pfn, NULL);
273	max_pfn = max_low_pfn;
274	/* how many bytes to cover all the pages */
275	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
276
277	/* look for a location to hold the bootmap */
278	bootmap_start = ~0UL;
279	efi_memmap_walk(find_bootmap_location, &bootmap_size);
280	if (bootmap_start == ~0UL)
281		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
282
283	bootmap_size = init_bootmem_node(NODE_DATA(0),
284			(bootmap_start >> PAGE_SHIFT), 0, max_pfn);
285
286	/* Free all available memory, then mark bootmem-map as being in use. */
287	efi_memmap_walk(filter_rsvd_memory, free_bootmem);
288	reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
289
290	find_initrd();
291
292	alloc_per_cpu_data();
293}
294
295static int count_pages(u64 start, u64 end, void *arg)
296{
297	unsigned long *count = arg;
298
299	*count += (end - start) >> PAGE_SHIFT;
300	return 0;
301}
302
303/*
304 * Set up the page tables.
305 */
306
307void __init
308paging_init (void)
309{
310	unsigned long max_dma;
311	unsigned long max_zone_pfns[MAX_NR_ZONES];
312
313	num_physpages = 0;
314	efi_memmap_walk(count_pages, &num_physpages);
315
316	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
317#ifdef CONFIG_ZONE_DMA
318	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
319	max_zone_pfns[ZONE_DMA] = max_dma;
320#endif
321	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
322
323#ifdef CONFIG_VIRTUAL_MEM_MAP
324	efi_memmap_walk(filter_memory, register_active_ranges);
325	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
326	if (max_gap < LARGE_GAP) {
327		vmem_map = (struct page *) 0;
328		free_area_init_nodes(max_zone_pfns);
329	} else {
330		unsigned long map_size;
331
332		/* allocate virtual_mem_map */
333
334		map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
335			sizeof(struct page));
336		VMALLOC_END -= map_size;
337		vmem_map = (struct page *) VMALLOC_END;
338		efi_memmap_walk(create_mem_map_page_table, NULL);
339
340		/*
341		 * alloc_node_mem_map makes an adjustment for mem_map
342		 * which isn't compatible with vmem_map.
343		 */
344		NODE_DATA(0)->node_mem_map = vmem_map +
345			find_min_pfn_with_active_regions();
346		free_area_init_nodes(max_zone_pfns);
347
348		printk("Virtual mem_map starts at 0x%p\n", mem_map);
349	}
350#else /* !CONFIG_VIRTUAL_MEM_MAP */
351	add_active_range(0, 0, max_low_pfn);
352	free_area_init_nodes(max_zone_pfns);
353#endif /* !CONFIG_VIRTUAL_MEM_MAP */
354	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
355}