Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/mman.h>
  20#include <linux/kvm_host.h>
  21#include <linux/io.h>
  22#include <linux/hugetlb.h>
  23#include <trace/events/kvm.h>
  24#include <asm/pgalloc.h>
  25#include <asm/cacheflush.h>
  26#include <asm/kvm_arm.h>
  27#include <asm/kvm_mmu.h>
  28#include <asm/kvm_mmio.h>
  29#include <asm/kvm_asm.h>
  30#include <asm/kvm_emulate.h>
  31
  32#include "trace.h"
  33
  34extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
  35
  36static pgd_t *boot_hyp_pgd;
  37static pgd_t *hyp_pgd;
  38static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
  39
  40static void *init_bounce_page;
  41static unsigned long hyp_idmap_start;
  42static unsigned long hyp_idmap_end;
  43static phys_addr_t hyp_idmap_vector;
  44
  45#define pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
  46
  47#define kvm_pmd_huge(_x)	(pmd_huge(_x) || pmd_trans_huge(_x))
  48
  49static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
  50{
  51	/*
  52	 * This function also gets called when dealing with HYP page
  53	 * tables. As HYP doesn't have an associated struct kvm (and
  54	 * the HYP page tables are fairly static), we don't do
  55	 * anything there.
  56	 */
  57	if (kvm)
  58		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
  59}
  60
  61static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  62				  int min, int max)
  63{
  64	void *page;
  65
  66	BUG_ON(max > KVM_NR_MEM_OBJS);
  67	if (cache->nobjs >= min)
  68		return 0;
  69	while (cache->nobjs < max) {
  70		page = (void *)__get_free_page(PGALLOC_GFP);
  71		if (!page)
  72			return -ENOMEM;
  73		cache->objects[cache->nobjs++] = page;
  74	}
  75	return 0;
  76}
  77
  78static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  79{
  80	while (mc->nobjs)
  81		free_page((unsigned long)mc->objects[--mc->nobjs]);
  82}
  83
  84static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  85{
  86	void *p;
  87
  88	BUG_ON(!mc || !mc->nobjs);
  89	p = mc->objects[--mc->nobjs];
  90	return p;
  91}
  92
  93static bool page_empty(void *ptr)
  94{
  95	struct page *ptr_page = virt_to_page(ptr);
  96	return page_count(ptr_page) == 1;
  97}
  98
  99static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
 100{
 101	if (pud_huge(*pud)) {
 102		pud_clear(pud);
 103		kvm_tlb_flush_vmid_ipa(kvm, addr);
 104	} else {
 105		pmd_t *pmd_table = pmd_offset(pud, 0);
 106		pud_clear(pud);
 107		kvm_tlb_flush_vmid_ipa(kvm, addr);
 108		pmd_free(NULL, pmd_table);
 109	}
 110	put_page(virt_to_page(pud));
 111}
 112
 113static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
 114{
 115	if (kvm_pmd_huge(*pmd)) {
 116		pmd_clear(pmd);
 117		kvm_tlb_flush_vmid_ipa(kvm, addr);
 118	} else {
 119		pte_t *pte_table = pte_offset_kernel(pmd, 0);
 120		pmd_clear(pmd);
 121		kvm_tlb_flush_vmid_ipa(kvm, addr);
 122		pte_free_kernel(NULL, pte_table);
 123	}
 124	put_page(virt_to_page(pmd));
 125}
 126
 127static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
 128{
 129	if (pte_present(*pte)) {
 130		kvm_set_pte(pte, __pte(0));
 131		put_page(virt_to_page(pte));
 132		kvm_tlb_flush_vmid_ipa(kvm, addr);
 133	}
 134}
 135
 136static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
 137			unsigned long long start, u64 size)
 138{
 139	pgd_t *pgd;
 140	pud_t *pud;
 141	pmd_t *pmd;
 142	pte_t *pte;
 143	unsigned long long addr = start, end = start + size;
 144	u64 next;
 145
 146	while (addr < end) {
 147		pgd = pgdp + pgd_index(addr);
 148		pud = pud_offset(pgd, addr);
 149		pte = NULL;
 150		if (pud_none(*pud)) {
 151			addr = kvm_pud_addr_end(addr, end);
 152			continue;
 153		}
 154
 155		if (pud_huge(*pud)) {
 156			/*
 157			 * If we are dealing with a huge pud, just clear it and
 158			 * move on.
 159			 */
 160			clear_pud_entry(kvm, pud, addr);
 161			addr = kvm_pud_addr_end(addr, end);
 162			continue;
 163		}
 164
 165		pmd = pmd_offset(pud, addr);
 166		if (pmd_none(*pmd)) {
 167			addr = kvm_pmd_addr_end(addr, end);
 168			continue;
 169		}
 170
 171		if (!kvm_pmd_huge(*pmd)) {
 172			pte = pte_offset_kernel(pmd, addr);
 173			clear_pte_entry(kvm, pte, addr);
 174			next = addr + PAGE_SIZE;
 175		}
 176
 177		/*
 178		 * If the pmd entry is to be cleared, walk back up the ladder
 179		 */
 180		if (kvm_pmd_huge(*pmd) || (pte && page_empty(pte))) {
 181			clear_pmd_entry(kvm, pmd, addr);
 182			next = kvm_pmd_addr_end(addr, end);
 183			if (page_empty(pmd) && !page_empty(pud)) {
 184				clear_pud_entry(kvm, pud, addr);
 185				next = kvm_pud_addr_end(addr, end);
 186			}
 187		}
 188
 189		addr = next;
 190	}
 191}
 192
 193static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
 194			      phys_addr_t addr, phys_addr_t end)
 195{
 196	pte_t *pte;
 197
 198	pte = pte_offset_kernel(pmd, addr);
 199	do {
 200		if (!pte_none(*pte)) {
 201			hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
 202			kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
 203		}
 204	} while (pte++, addr += PAGE_SIZE, addr != end);
 205}
 206
 207static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
 208			      phys_addr_t addr, phys_addr_t end)
 209{
 210	pmd_t *pmd;
 211	phys_addr_t next;
 212
 213	pmd = pmd_offset(pud, addr);
 214	do {
 215		next = kvm_pmd_addr_end(addr, end);
 216		if (!pmd_none(*pmd)) {
 217			if (kvm_pmd_huge(*pmd)) {
 218				hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
 219				kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
 220			} else {
 221				stage2_flush_ptes(kvm, pmd, addr, next);
 222			}
 223		}
 224	} while (pmd++, addr = next, addr != end);
 225}
 226
 227static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
 228			      phys_addr_t addr, phys_addr_t end)
 229{
 230	pud_t *pud;
 231	phys_addr_t next;
 232
 233	pud = pud_offset(pgd, addr);
 234	do {
 235		next = kvm_pud_addr_end(addr, end);
 236		if (!pud_none(*pud)) {
 237			if (pud_huge(*pud)) {
 238				hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
 239				kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
 240			} else {
 241				stage2_flush_pmds(kvm, pud, addr, next);
 242			}
 243		}
 244	} while (pud++, addr = next, addr != end);
 245}
 246
 247static void stage2_flush_memslot(struct kvm *kvm,
 248				 struct kvm_memory_slot *memslot)
 249{
 250	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 251	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
 252	phys_addr_t next;
 253	pgd_t *pgd;
 254
 255	pgd = kvm->arch.pgd + pgd_index(addr);
 256	do {
 257		next = kvm_pgd_addr_end(addr, end);
 258		stage2_flush_puds(kvm, pgd, addr, next);
 259	} while (pgd++, addr = next, addr != end);
 260}
 261
 262/**
 263 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 264 * @kvm: The struct kvm pointer
 265 *
 266 * Go through the stage 2 page tables and invalidate any cache lines
 267 * backing memory already mapped to the VM.
 268 */
 269void stage2_flush_vm(struct kvm *kvm)
 270{
 271	struct kvm_memslots *slots;
 272	struct kvm_memory_slot *memslot;
 273	int idx;
 274
 275	idx = srcu_read_lock(&kvm->srcu);
 276	spin_lock(&kvm->mmu_lock);
 277
 278	slots = kvm_memslots(kvm);
 279	kvm_for_each_memslot(memslot, slots)
 280		stage2_flush_memslot(kvm, memslot);
 281
 282	spin_unlock(&kvm->mmu_lock);
 283	srcu_read_unlock(&kvm->srcu, idx);
 284}
 285
 286/**
 287 * free_boot_hyp_pgd - free HYP boot page tables
 288 *
 289 * Free the HYP boot page tables. The bounce page is also freed.
 290 */
 291void free_boot_hyp_pgd(void)
 292{
 293	mutex_lock(&kvm_hyp_pgd_mutex);
 294
 295	if (boot_hyp_pgd) {
 296		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
 297		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
 298		free_pages((unsigned long)boot_hyp_pgd, pgd_order);
 299		boot_hyp_pgd = NULL;
 300	}
 301
 302	if (hyp_pgd)
 303		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
 304
 305	free_page((unsigned long)init_bounce_page);
 306	init_bounce_page = NULL;
 307
 308	mutex_unlock(&kvm_hyp_pgd_mutex);
 309}
 310
 311/**
 312 * free_hyp_pgds - free Hyp-mode page tables
 313 *
 314 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 315 * therefore contains either mappings in the kernel memory area (above
 316 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 317 * VMALLOC_START to VMALLOC_END).
 318 *
 319 * boot_hyp_pgd should only map two pages for the init code.
 320 */
 321void free_hyp_pgds(void)
 322{
 323	unsigned long addr;
 324
 325	free_boot_hyp_pgd();
 326
 327	mutex_lock(&kvm_hyp_pgd_mutex);
 328
 329	if (hyp_pgd) {
 330		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
 331			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
 332		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
 333			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
 334
 335		free_pages((unsigned long)hyp_pgd, pgd_order);
 336		hyp_pgd = NULL;
 337	}
 338
 339	mutex_unlock(&kvm_hyp_pgd_mutex);
 340}
 341
 342static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
 343				    unsigned long end, unsigned long pfn,
 344				    pgprot_t prot)
 345{
 346	pte_t *pte;
 347	unsigned long addr;
 348
 349	addr = start;
 350	do {
 351		pte = pte_offset_kernel(pmd, addr);
 352		kvm_set_pte(pte, pfn_pte(pfn, prot));
 353		get_page(virt_to_page(pte));
 354		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
 355		pfn++;
 356	} while (addr += PAGE_SIZE, addr != end);
 357}
 358
 359static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
 360				   unsigned long end, unsigned long pfn,
 361				   pgprot_t prot)
 362{
 363	pmd_t *pmd;
 364	pte_t *pte;
 365	unsigned long addr, next;
 366
 367	addr = start;
 368	do {
 369		pmd = pmd_offset(pud, addr);
 370
 371		BUG_ON(pmd_sect(*pmd));
 372
 373		if (pmd_none(*pmd)) {
 374			pte = pte_alloc_one_kernel(NULL, addr);
 375			if (!pte) {
 376				kvm_err("Cannot allocate Hyp pte\n");
 377				return -ENOMEM;
 378			}
 379			pmd_populate_kernel(NULL, pmd, pte);
 380			get_page(virt_to_page(pmd));
 381			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
 382		}
 383
 384		next = pmd_addr_end(addr, end);
 385
 386		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
 387		pfn += (next - addr) >> PAGE_SHIFT;
 388	} while (addr = next, addr != end);
 389
 390	return 0;
 391}
 392
 393static int __create_hyp_mappings(pgd_t *pgdp,
 394				 unsigned long start, unsigned long end,
 395				 unsigned long pfn, pgprot_t prot)
 396{
 397	pgd_t *pgd;
 398	pud_t *pud;
 399	pmd_t *pmd;
 400	unsigned long addr, next;
 401	int err = 0;
 402
 403	mutex_lock(&kvm_hyp_pgd_mutex);
 404	addr = start & PAGE_MASK;
 405	end = PAGE_ALIGN(end);
 406	do {
 407		pgd = pgdp + pgd_index(addr);
 408		pud = pud_offset(pgd, addr);
 409
 410		if (pud_none_or_clear_bad(pud)) {
 411			pmd = pmd_alloc_one(NULL, addr);
 412			if (!pmd) {
 413				kvm_err("Cannot allocate Hyp pmd\n");
 414				err = -ENOMEM;
 415				goto out;
 416			}
 417			pud_populate(NULL, pud, pmd);
 418			get_page(virt_to_page(pud));
 419			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
 420		}
 421
 422		next = pgd_addr_end(addr, end);
 423		err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
 424		if (err)
 425			goto out;
 426		pfn += (next - addr) >> PAGE_SHIFT;
 427	} while (addr = next, addr != end);
 428out:
 429	mutex_unlock(&kvm_hyp_pgd_mutex);
 430	return err;
 431}
 432
 433static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
 434{
 435	if (!is_vmalloc_addr(kaddr)) {
 436		BUG_ON(!virt_addr_valid(kaddr));
 437		return __pa(kaddr);
 438	} else {
 439		return page_to_phys(vmalloc_to_page(kaddr)) +
 440		       offset_in_page(kaddr);
 441	}
 442}
 443
 444/**
 445 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
 446 * @from:	The virtual kernel start address of the range
 447 * @to:		The virtual kernel end address of the range (exclusive)
 448 *
 449 * The same virtual address as the kernel virtual address is also used
 450 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 451 * physical pages.
 452 */
 453int create_hyp_mappings(void *from, void *to)
 454{
 455	phys_addr_t phys_addr;
 456	unsigned long virt_addr;
 457	unsigned long start = KERN_TO_HYP((unsigned long)from);
 458	unsigned long end = KERN_TO_HYP((unsigned long)to);
 459
 460	start = start & PAGE_MASK;
 461	end = PAGE_ALIGN(end);
 462
 463	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
 464		int err;
 465
 466		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
 467		err = __create_hyp_mappings(hyp_pgd, virt_addr,
 468					    virt_addr + PAGE_SIZE,
 469					    __phys_to_pfn(phys_addr),
 470					    PAGE_HYP);
 471		if (err)
 472			return err;
 473	}
 474
 475	return 0;
 476}
 477
 478/**
 479 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 480 * @from:	The kernel start VA of the range
 481 * @to:		The kernel end VA of the range (exclusive)
 482 * @phys_addr:	The physical start address which gets mapped
 483 *
 484 * The resulting HYP VA is the same as the kernel VA, modulo
 485 * HYP_PAGE_OFFSET.
 486 */
 487int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
 488{
 489	unsigned long start = KERN_TO_HYP((unsigned long)from);
 490	unsigned long end = KERN_TO_HYP((unsigned long)to);
 491
 492	/* Check for a valid kernel IO mapping */
 493	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
 494		return -EINVAL;
 495
 496	return __create_hyp_mappings(hyp_pgd, start, end,
 497				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
 498}
 499
 500/**
 501 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 502 * @kvm:	The KVM struct pointer for the VM.
 503 *
 504 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
 505 * support either full 40-bit input addresses or limited to 32-bit input
 506 * addresses). Clears the allocated pages.
 507 *
 508 * Note we don't need locking here as this is only called when the VM is
 509 * created, which can only be done once.
 510 */
 511int kvm_alloc_stage2_pgd(struct kvm *kvm)
 512{
 513	pgd_t *pgd;
 514
 515	if (kvm->arch.pgd != NULL) {
 516		kvm_err("kvm_arch already initialized?\n");
 517		return -EINVAL;
 518	}
 519
 520	pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
 521	if (!pgd)
 522		return -ENOMEM;
 523
 524	memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
 525	kvm_clean_pgd(pgd);
 526	kvm->arch.pgd = pgd;
 527
 528	return 0;
 529}
 530
 531/**
 532 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 533 * @kvm:   The VM pointer
 534 * @start: The intermediate physical base address of the range to unmap
 535 * @size:  The size of the area to unmap
 536 *
 537 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 538 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 539 * destroying the VM), otherwise another faulting VCPU may come in and mess
 540 * with things behind our backs.
 541 */
 542static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
 543{
 544	unmap_range(kvm, kvm->arch.pgd, start, size);
 545}
 546
 547/**
 548 * kvm_free_stage2_pgd - free all stage-2 tables
 549 * @kvm:	The KVM struct pointer for the VM.
 550 *
 551 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 552 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 553 * and setting the struct pointer to NULL.
 554 *
 555 * Note we don't need locking here as this is only called when the VM is
 556 * destroyed, which can only be done once.
 557 */
 558void kvm_free_stage2_pgd(struct kvm *kvm)
 559{
 560	if (kvm->arch.pgd == NULL)
 561		return;
 562
 563	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
 564	free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
 565	kvm->arch.pgd = NULL;
 566}
 567
 568static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 569			     phys_addr_t addr)
 570{
 571	pgd_t *pgd;
 572	pud_t *pud;
 573	pmd_t *pmd;
 574
 575	pgd = kvm->arch.pgd + pgd_index(addr);
 576	pud = pud_offset(pgd, addr);
 577	if (pud_none(*pud)) {
 578		if (!cache)
 579			return NULL;
 580		pmd = mmu_memory_cache_alloc(cache);
 581		pud_populate(NULL, pud, pmd);
 582		get_page(virt_to_page(pud));
 583	}
 584
 585	return pmd_offset(pud, addr);
 586}
 587
 588static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
 589			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
 590{
 591	pmd_t *pmd, old_pmd;
 592
 593	pmd = stage2_get_pmd(kvm, cache, addr);
 594	VM_BUG_ON(!pmd);
 595
 596	/*
 597	 * Mapping in huge pages should only happen through a fault.  If a
 598	 * page is merged into a transparent huge page, the individual
 599	 * subpages of that huge page should be unmapped through MMU
 600	 * notifiers before we get here.
 601	 *
 602	 * Merging of CompoundPages is not supported; they should become
 603	 * splitting first, unmapped, merged, and mapped back in on-demand.
 604	 */
 605	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
 606
 607	old_pmd = *pmd;
 608	kvm_set_pmd(pmd, *new_pmd);
 609	if (pmd_present(old_pmd))
 610		kvm_tlb_flush_vmid_ipa(kvm, addr);
 611	else
 612		get_page(virt_to_page(pmd));
 613	return 0;
 614}
 615
 616static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 617			  phys_addr_t addr, const pte_t *new_pte, bool iomap)
 618{
 619	pmd_t *pmd;
 620	pte_t *pte, old_pte;
 621
 622	/* Create stage-2 page table mapping - Level 1 */
 623	pmd = stage2_get_pmd(kvm, cache, addr);
 624	if (!pmd) {
 625		/*
 626		 * Ignore calls from kvm_set_spte_hva for unallocated
 627		 * address ranges.
 628		 */
 629		return 0;
 630	}
 631
 632	/* Create stage-2 page mappings - Level 2 */
 633	if (pmd_none(*pmd)) {
 634		if (!cache)
 635			return 0; /* ignore calls from kvm_set_spte_hva */
 636		pte = mmu_memory_cache_alloc(cache);
 637		kvm_clean_pte(pte);
 638		pmd_populate_kernel(NULL, pmd, pte);
 639		get_page(virt_to_page(pmd));
 640	}
 641
 642	pte = pte_offset_kernel(pmd, addr);
 643
 644	if (iomap && pte_present(*pte))
 645		return -EFAULT;
 646
 647	/* Create 2nd stage page table mapping - Level 3 */
 648	old_pte = *pte;
 649	kvm_set_pte(pte, *new_pte);
 650	if (pte_present(old_pte))
 651		kvm_tlb_flush_vmid_ipa(kvm, addr);
 652	else
 653		get_page(virt_to_page(pte));
 654
 655	return 0;
 656}
 657
 658/**
 659 * kvm_phys_addr_ioremap - map a device range to guest IPA
 660 *
 661 * @kvm:	The KVM pointer
 662 * @guest_ipa:	The IPA at which to insert the mapping
 663 * @pa:		The physical address of the device
 664 * @size:	The size of the mapping
 665 */
 666int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
 667			  phys_addr_t pa, unsigned long size)
 668{
 669	phys_addr_t addr, end;
 670	int ret = 0;
 671	unsigned long pfn;
 672	struct kvm_mmu_memory_cache cache = { 0, };
 673
 674	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
 675	pfn = __phys_to_pfn(pa);
 676
 677	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
 678		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
 679
 680		ret = mmu_topup_memory_cache(&cache, 2, 2);
 681		if (ret)
 682			goto out;
 683		spin_lock(&kvm->mmu_lock);
 684		ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
 685		spin_unlock(&kvm->mmu_lock);
 686		if (ret)
 687			goto out;
 688
 689		pfn++;
 690	}
 691
 692out:
 693	mmu_free_memory_cache(&cache);
 694	return ret;
 695}
 696
 697static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
 698{
 699	pfn_t pfn = *pfnp;
 700	gfn_t gfn = *ipap >> PAGE_SHIFT;
 701
 702	if (PageTransCompound(pfn_to_page(pfn))) {
 703		unsigned long mask;
 704		/*
 705		 * The address we faulted on is backed by a transparent huge
 706		 * page.  However, because we map the compound huge page and
 707		 * not the individual tail page, we need to transfer the
 708		 * refcount to the head page.  We have to be careful that the
 709		 * THP doesn't start to split while we are adjusting the
 710		 * refcounts.
 711		 *
 712		 * We are sure this doesn't happen, because mmu_notifier_retry
 713		 * was successful and we are holding the mmu_lock, so if this
 714		 * THP is trying to split, it will be blocked in the mmu
 715		 * notifier before touching any of the pages, specifically
 716		 * before being able to call __split_huge_page_refcount().
 717		 *
 718		 * We can therefore safely transfer the refcount from PG_tail
 719		 * to PG_head and switch the pfn from a tail page to the head
 720		 * page accordingly.
 721		 */
 722		mask = PTRS_PER_PMD - 1;
 723		VM_BUG_ON((gfn & mask) != (pfn & mask));
 724		if (pfn & mask) {
 725			*ipap &= PMD_MASK;
 726			kvm_release_pfn_clean(pfn);
 727			pfn &= ~mask;
 728			kvm_get_pfn(pfn);
 729			*pfnp = pfn;
 730		}
 731
 732		return true;
 733	}
 734
 735	return false;
 736}
 737
 738static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
 739			  struct kvm_memory_slot *memslot,
 740			  unsigned long fault_status)
 741{
 742	int ret;
 743	bool write_fault, writable, hugetlb = false, force_pte = false;
 744	unsigned long mmu_seq;
 745	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
 746	unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
 747	struct kvm *kvm = vcpu->kvm;
 748	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 749	struct vm_area_struct *vma;
 750	pfn_t pfn;
 751
 752	write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
 753	if (fault_status == FSC_PERM && !write_fault) {
 754		kvm_err("Unexpected L2 read permission error\n");
 755		return -EFAULT;
 756	}
 757
 758	/* Let's check if we will get back a huge page backed by hugetlbfs */
 759	down_read(&current->mm->mmap_sem);
 760	vma = find_vma_intersection(current->mm, hva, hva + 1);
 761	if (is_vm_hugetlb_page(vma)) {
 762		hugetlb = true;
 763		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
 764	} else {
 765		/*
 766		 * Pages belonging to memslots that don't have the same
 767		 * alignment for userspace and IPA cannot be mapped using
 768		 * block descriptors even if the pages belong to a THP for
 769		 * the process, because the stage-2 block descriptor will
 770		 * cover more than a single THP and we loose atomicity for
 771		 * unmapping, updates, and splits of the THP or other pages
 772		 * in the stage-2 block range.
 773		 */
 774		if ((memslot->userspace_addr & ~PMD_MASK) !=
 775		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
 776			force_pte = true;
 777	}
 778	up_read(&current->mm->mmap_sem);
 779
 780	/* We need minimum second+third level pages */
 781	ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
 782	if (ret)
 783		return ret;
 784
 785	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 786	/*
 787	 * Ensure the read of mmu_notifier_seq happens before we call
 788	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
 789	 * the page we just got a reference to gets unmapped before we have a
 790	 * chance to grab the mmu_lock, which ensure that if the page gets
 791	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
 792	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
 793	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
 794	 */
 795	smp_rmb();
 796
 797	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
 798	if (is_error_pfn(pfn))
 799		return -EFAULT;
 800
 801	spin_lock(&kvm->mmu_lock);
 802	if (mmu_notifier_retry(kvm, mmu_seq))
 803		goto out_unlock;
 804	if (!hugetlb && !force_pte)
 805		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
 806
 807	if (hugetlb) {
 808		pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
 809		new_pmd = pmd_mkhuge(new_pmd);
 810		if (writable) {
 811			kvm_set_s2pmd_writable(&new_pmd);
 812			kvm_set_pfn_dirty(pfn);
 813		}
 814		coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
 815		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
 816	} else {
 817		pte_t new_pte = pfn_pte(pfn, PAGE_S2);
 818		if (writable) {
 819			kvm_set_s2pte_writable(&new_pte);
 820			kvm_set_pfn_dirty(pfn);
 821		}
 822		coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
 823		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
 824	}
 825
 826
 827out_unlock:
 828	spin_unlock(&kvm->mmu_lock);
 829	kvm_release_pfn_clean(pfn);
 830	return ret;
 831}
 832
 833/**
 834 * kvm_handle_guest_abort - handles all 2nd stage aborts
 835 * @vcpu:	the VCPU pointer
 836 * @run:	the kvm_run structure
 837 *
 838 * Any abort that gets to the host is almost guaranteed to be caused by a
 839 * missing second stage translation table entry, which can mean that either the
 840 * guest simply needs more memory and we must allocate an appropriate page or it
 841 * can mean that the guest tried to access I/O memory, which is emulated by user
 842 * space. The distinction is based on the IPA causing the fault and whether this
 843 * memory region has been registered as standard RAM by user space.
 844 */
 845int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
 846{
 847	unsigned long fault_status;
 848	phys_addr_t fault_ipa;
 849	struct kvm_memory_slot *memslot;
 850	bool is_iabt;
 851	gfn_t gfn;
 852	int ret, idx;
 853
 854	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
 855	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
 856
 857	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
 858			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
 859
 860	/* Check the stage-2 fault is trans. fault or write fault */
 861	fault_status = kvm_vcpu_trap_get_fault(vcpu);
 862	if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
 863		kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
 864			kvm_vcpu_trap_get_class(vcpu), fault_status);
 865		return -EFAULT;
 866	}
 867
 868	idx = srcu_read_lock(&vcpu->kvm->srcu);
 869
 870	gfn = fault_ipa >> PAGE_SHIFT;
 871	if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
 872		if (is_iabt) {
 873			/* Prefetch Abort on I/O address */
 874			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
 875			ret = 1;
 876			goto out_unlock;
 877		}
 878
 879		if (fault_status != FSC_FAULT) {
 880			kvm_err("Unsupported fault status on io memory: %#lx\n",
 881				fault_status);
 882			ret = -EFAULT;
 883			goto out_unlock;
 884		}
 885
 886		/*
 887		 * The IPA is reported as [MAX:12], so we need to
 888		 * complement it with the bottom 12 bits from the
 889		 * faulting VA. This is always 12 bits, irrespective
 890		 * of the page size.
 891		 */
 892		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
 893		ret = io_mem_abort(vcpu, run, fault_ipa);
 894		goto out_unlock;
 895	}
 896
 897	memslot = gfn_to_memslot(vcpu->kvm, gfn);
 898
 899	ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
 900	if (ret == 0)
 901		ret = 1;
 902out_unlock:
 903	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 904	return ret;
 905}
 906
 907static void handle_hva_to_gpa(struct kvm *kvm,
 908			      unsigned long start,
 909			      unsigned long end,
 910			      void (*handler)(struct kvm *kvm,
 911					      gpa_t gpa, void *data),
 912			      void *data)
 913{
 914	struct kvm_memslots *slots;
 915	struct kvm_memory_slot *memslot;
 916
 917	slots = kvm_memslots(kvm);
 918
 919	/* we only care about the pages that the guest sees */
 920	kvm_for_each_memslot(memslot, slots) {
 921		unsigned long hva_start, hva_end;
 922		gfn_t gfn, gfn_end;
 923
 924		hva_start = max(start, memslot->userspace_addr);
 925		hva_end = min(end, memslot->userspace_addr +
 926					(memslot->npages << PAGE_SHIFT));
 927		if (hva_start >= hva_end)
 928			continue;
 929
 930		/*
 931		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 932		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 933		 */
 934		gfn = hva_to_gfn_memslot(hva_start, memslot);
 935		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 936
 937		for (; gfn < gfn_end; ++gfn) {
 938			gpa_t gpa = gfn << PAGE_SHIFT;
 939			handler(kvm, gpa, data);
 940		}
 941	}
 942}
 943
 944static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
 945{
 946	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
 947}
 948
 949int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
 950{
 951	unsigned long end = hva + PAGE_SIZE;
 952
 953	if (!kvm->arch.pgd)
 954		return 0;
 955
 956	trace_kvm_unmap_hva(hva);
 957	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
 958	return 0;
 959}
 960
 961int kvm_unmap_hva_range(struct kvm *kvm,
 962			unsigned long start, unsigned long end)
 963{
 964	if (!kvm->arch.pgd)
 965		return 0;
 966
 967	trace_kvm_unmap_hva_range(start, end);
 968	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
 969	return 0;
 970}
 971
 972static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
 973{
 974	pte_t *pte = (pte_t *)data;
 975
 976	stage2_set_pte(kvm, NULL, gpa, pte, false);
 977}
 978
 979
 980void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 981{
 982	unsigned long end = hva + PAGE_SIZE;
 983	pte_t stage2_pte;
 984
 985	if (!kvm->arch.pgd)
 986		return;
 987
 988	trace_kvm_set_spte_hva(hva);
 989	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
 990	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
 991}
 992
 993void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 994{
 995	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
 996}
 997
 998phys_addr_t kvm_mmu_get_httbr(void)
 999{
1000	return virt_to_phys(hyp_pgd);
1001}
1002
1003phys_addr_t kvm_mmu_get_boot_httbr(void)
1004{
1005	return virt_to_phys(boot_hyp_pgd);
1006}
1007
1008phys_addr_t kvm_get_idmap_vector(void)
1009{
1010	return hyp_idmap_vector;
1011}
1012
1013int kvm_mmu_init(void)
1014{
1015	int err;
1016
1017	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1018	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1019	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1020
1021	if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1022		/*
1023		 * Our init code is crossing a page boundary. Allocate
1024		 * a bounce page, copy the code over and use that.
1025		 */
1026		size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1027		phys_addr_t phys_base;
1028
1029		init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1030		if (!init_bounce_page) {
1031			kvm_err("Couldn't allocate HYP init bounce page\n");
1032			err = -ENOMEM;
1033			goto out;
1034		}
1035
1036		memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1037		/*
1038		 * Warning: the code we just copied to the bounce page
1039		 * must be flushed to the point of coherency.
1040		 * Otherwise, the data may be sitting in L2, and HYP
1041		 * mode won't be able to observe it as it runs with
1042		 * caches off at that point.
1043		 */
1044		kvm_flush_dcache_to_poc(init_bounce_page, len);
1045
1046		phys_base = kvm_virt_to_phys(init_bounce_page);
1047		hyp_idmap_vector += phys_base - hyp_idmap_start;
1048		hyp_idmap_start = phys_base;
1049		hyp_idmap_end = phys_base + len;
1050
1051		kvm_info("Using HYP init bounce page @%lx\n",
1052			 (unsigned long)phys_base);
1053	}
1054
1055	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1056	boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1057
1058	if (!hyp_pgd || !boot_hyp_pgd) {
1059		kvm_err("Hyp mode PGD not allocated\n");
1060		err = -ENOMEM;
1061		goto out;
1062	}
1063
1064	/* Create the idmap in the boot page tables */
1065	err = 	__create_hyp_mappings(boot_hyp_pgd,
1066				      hyp_idmap_start, hyp_idmap_end,
1067				      __phys_to_pfn(hyp_idmap_start),
1068				      PAGE_HYP);
1069
1070	if (err) {
1071		kvm_err("Failed to idmap %lx-%lx\n",
1072			hyp_idmap_start, hyp_idmap_end);
1073		goto out;
1074	}
1075
1076	/* Map the very same page at the trampoline VA */
1077	err = 	__create_hyp_mappings(boot_hyp_pgd,
1078				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1079				      __phys_to_pfn(hyp_idmap_start),
1080				      PAGE_HYP);
1081	if (err) {
1082		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1083			TRAMPOLINE_VA);
1084		goto out;
1085	}
1086
1087	/* Map the same page again into the runtime page tables */
1088	err = 	__create_hyp_mappings(hyp_pgd,
1089				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1090				      __phys_to_pfn(hyp_idmap_start),
1091				      PAGE_HYP);
1092	if (err) {
1093		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1094			TRAMPOLINE_VA);
1095		goto out;
1096	}
1097
1098	return 0;
1099out:
1100	free_hyp_pgds();
1101	return err;
1102}