Loading...
1/*
2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3 * Home page:
4 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5 * This is from the implementation of CUBIC TCP in
6 * Sangtae Ha, Injong Rhee and Lisong Xu,
7 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8 * in ACM SIGOPS Operating System Review, July 2008.
9 * Available from:
10 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11 *
12 * CUBIC integrates a new slow start algorithm, called HyStart.
13 * The details of HyStart are presented in
14 * Sangtae Ha and Injong Rhee,
15 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16 * Available from:
17 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18 *
19 * All testing results are available from:
20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21 *
22 * Unless CUBIC is enabled and congestion window is large
23 * this behaves the same as the original Reno.
24 */
25
26#include <linux/mm.h>
27#include <linux/module.h>
28#include <linux/math64.h>
29#include <net/tcp.h>
30
31#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
32 * max_cwnd = snd_cwnd * beta
33 */
34#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
35
36/* Two methods of hybrid slow start */
37#define HYSTART_ACK_TRAIN 0x1
38#define HYSTART_DELAY 0x2
39
40/* Number of delay samples for detecting the increase of delay */
41#define HYSTART_MIN_SAMPLES 8
42#define HYSTART_DELAY_MIN (4U<<3)
43#define HYSTART_DELAY_MAX (16U<<3)
44#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45
46static int fast_convergence __read_mostly = 1;
47static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
48static int initial_ssthresh __read_mostly;
49static int bic_scale __read_mostly = 41;
50static int tcp_friendliness __read_mostly = 1;
51
52static int hystart __read_mostly = 1;
53static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54static int hystart_low_window __read_mostly = 16;
55static int hystart_ack_delta __read_mostly = 2;
56
57static u32 cube_rtt_scale __read_mostly;
58static u32 beta_scale __read_mostly;
59static u64 cube_factor __read_mostly;
60
61/* Note parameters that are used for precomputing scale factors are read-only */
62module_param(fast_convergence, int, 0644);
63MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64module_param(beta, int, 0644);
65MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66module_param(initial_ssthresh, int, 0644);
67MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68module_param(bic_scale, int, 0444);
69MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70module_param(tcp_friendliness, int, 0644);
71MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72module_param(hystart, int, 0644);
73MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74module_param(hystart_detect, int, 0644);
75MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76 " 1: packet-train 2: delay 3: both packet-train and delay");
77module_param(hystart_low_window, int, 0644);
78MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79module_param(hystart_ack_delta, int, 0644);
80MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81
82/* BIC TCP Parameters */
83struct bictcp {
84 u32 cnt; /* increase cwnd by 1 after ACKs */
85 u32 last_max_cwnd; /* last maximum snd_cwnd */
86 u32 loss_cwnd; /* congestion window at last loss */
87 u32 last_cwnd; /* the last snd_cwnd */
88 u32 last_time; /* time when updated last_cwnd */
89 u32 bic_origin_point;/* origin point of bic function */
90 u32 bic_K; /* time to origin point from the beginning of the current epoch */
91 u32 delay_min; /* min delay (msec << 3) */
92 u32 epoch_start; /* beginning of an epoch */
93 u32 ack_cnt; /* number of acks */
94 u32 tcp_cwnd; /* estimated tcp cwnd */
95#define ACK_RATIO_SHIFT 4
96#define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
97 u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
98 u8 sample_cnt; /* number of samples to decide curr_rtt */
99 u8 found; /* the exit point is found? */
100 u32 round_start; /* beginning of each round */
101 u32 end_seq; /* end_seq of the round */
102 u32 last_ack; /* last time when the ACK spacing is close */
103 u32 curr_rtt; /* the minimum rtt of current round */
104};
105
106static inline void bictcp_reset(struct bictcp *ca)
107{
108 ca->cnt = 0;
109 ca->last_max_cwnd = 0;
110 ca->last_cwnd = 0;
111 ca->last_time = 0;
112 ca->bic_origin_point = 0;
113 ca->bic_K = 0;
114 ca->delay_min = 0;
115 ca->epoch_start = 0;
116 ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
117 ca->ack_cnt = 0;
118 ca->tcp_cwnd = 0;
119 ca->found = 0;
120}
121
122static inline u32 bictcp_clock(void)
123{
124#if HZ < 1000
125 return ktime_to_ms(ktime_get_real());
126#else
127 return jiffies_to_msecs(jiffies);
128#endif
129}
130
131static inline void bictcp_hystart_reset(struct sock *sk)
132{
133 struct tcp_sock *tp = tcp_sk(sk);
134 struct bictcp *ca = inet_csk_ca(sk);
135
136 ca->round_start = ca->last_ack = bictcp_clock();
137 ca->end_seq = tp->snd_nxt;
138 ca->curr_rtt = 0;
139 ca->sample_cnt = 0;
140}
141
142static void bictcp_init(struct sock *sk)
143{
144 struct bictcp *ca = inet_csk_ca(sk);
145
146 bictcp_reset(ca);
147 ca->loss_cwnd = 0;
148
149 if (hystart)
150 bictcp_hystart_reset(sk);
151
152 if (!hystart && initial_ssthresh)
153 tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
154}
155
156/* calculate the cubic root of x using a table lookup followed by one
157 * Newton-Raphson iteration.
158 * Avg err ~= 0.195%
159 */
160static u32 cubic_root(u64 a)
161{
162 u32 x, b, shift;
163 /*
164 * cbrt(x) MSB values for x MSB values in [0..63].
165 * Precomputed then refined by hand - Willy Tarreau
166 *
167 * For x in [0..63],
168 * v = cbrt(x << 18) - 1
169 * cbrt(x) = (v[x] + 10) >> 6
170 */
171 static const u8 v[] = {
172 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
173 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
174 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
175 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
176 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
177 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
178 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
179 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
180 };
181
182 b = fls64(a);
183 if (b < 7) {
184 /* a in [0..63] */
185 return ((u32)v[(u32)a] + 35) >> 6;
186 }
187
188 b = ((b * 84) >> 8) - 1;
189 shift = (a >> (b * 3));
190
191 x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
192
193 /*
194 * Newton-Raphson iteration
195 * 2
196 * x = ( 2 * x + a / x ) / 3
197 * k+1 k k
198 */
199 x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
200 x = ((x * 341) >> 10);
201 return x;
202}
203
204/*
205 * Compute congestion window to use.
206 */
207static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
208{
209 u32 delta, bic_target, max_cnt;
210 u64 offs, t;
211
212 ca->ack_cnt++; /* count the number of ACKs */
213
214 if (ca->last_cwnd == cwnd &&
215 (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
216 return;
217
218 ca->last_cwnd = cwnd;
219 ca->last_time = tcp_time_stamp;
220
221 if (ca->epoch_start == 0) {
222 ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
223 ca->ack_cnt = 1; /* start counting */
224 ca->tcp_cwnd = cwnd; /* syn with cubic */
225
226 if (ca->last_max_cwnd <= cwnd) {
227 ca->bic_K = 0;
228 ca->bic_origin_point = cwnd;
229 } else {
230 /* Compute new K based on
231 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
232 */
233 ca->bic_K = cubic_root(cube_factor
234 * (ca->last_max_cwnd - cwnd));
235 ca->bic_origin_point = ca->last_max_cwnd;
236 }
237 }
238
239 /* cubic function - calc*/
240 /* calculate c * time^3 / rtt,
241 * while considering overflow in calculation of time^3
242 * (so time^3 is done by using 64 bit)
243 * and without the support of division of 64bit numbers
244 * (so all divisions are done by using 32 bit)
245 * also NOTE the unit of those veriables
246 * time = (t - K) / 2^bictcp_HZ
247 * c = bic_scale >> 10
248 * rtt = (srtt >> 3) / HZ
249 * !!! The following code does not have overflow problems,
250 * if the cwnd < 1 million packets !!!
251 */
252
253 t = (s32)(tcp_time_stamp - ca->epoch_start);
254 t += msecs_to_jiffies(ca->delay_min >> 3);
255 /* change the unit from HZ to bictcp_HZ */
256 t <<= BICTCP_HZ;
257 do_div(t, HZ);
258
259 if (t < ca->bic_K) /* t - K */
260 offs = ca->bic_K - t;
261 else
262 offs = t - ca->bic_K;
263
264 /* c/rtt * (t-K)^3 */
265 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
266 if (t < ca->bic_K) /* below origin*/
267 bic_target = ca->bic_origin_point - delta;
268 else /* above origin*/
269 bic_target = ca->bic_origin_point + delta;
270
271 /* cubic function - calc bictcp_cnt*/
272 if (bic_target > cwnd) {
273 ca->cnt = cwnd / (bic_target - cwnd);
274 } else {
275 ca->cnt = 100 * cwnd; /* very small increment*/
276 }
277
278 /*
279 * The initial growth of cubic function may be too conservative
280 * when the available bandwidth is still unknown.
281 */
282 if (ca->last_max_cwnd == 0 && ca->cnt > 20)
283 ca->cnt = 20; /* increase cwnd 5% per RTT */
284
285 /* TCP Friendly */
286 if (tcp_friendliness) {
287 u32 scale = beta_scale;
288 delta = (cwnd * scale) >> 3;
289 while (ca->ack_cnt > delta) { /* update tcp cwnd */
290 ca->ack_cnt -= delta;
291 ca->tcp_cwnd++;
292 }
293
294 if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
295 delta = ca->tcp_cwnd - cwnd;
296 max_cnt = cwnd / delta;
297 if (ca->cnt > max_cnt)
298 ca->cnt = max_cnt;
299 }
300 }
301
302 ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
303 if (ca->cnt == 0) /* cannot be zero */
304 ca->cnt = 1;
305}
306
307static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked,
308 u32 in_flight)
309{
310 struct tcp_sock *tp = tcp_sk(sk);
311 struct bictcp *ca = inet_csk_ca(sk);
312
313 if (!tcp_is_cwnd_limited(sk, in_flight))
314 return;
315
316 if (tp->snd_cwnd <= tp->snd_ssthresh) {
317 if (hystart && after(ack, ca->end_seq))
318 bictcp_hystart_reset(sk);
319 tcp_slow_start(tp, acked);
320 } else {
321 bictcp_update(ca, tp->snd_cwnd);
322 tcp_cong_avoid_ai(tp, ca->cnt);
323 }
324
325}
326
327static u32 bictcp_recalc_ssthresh(struct sock *sk)
328{
329 const struct tcp_sock *tp = tcp_sk(sk);
330 struct bictcp *ca = inet_csk_ca(sk);
331
332 ca->epoch_start = 0; /* end of epoch */
333
334 /* Wmax and fast convergence */
335 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
336 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
337 / (2 * BICTCP_BETA_SCALE);
338 else
339 ca->last_max_cwnd = tp->snd_cwnd;
340
341 ca->loss_cwnd = tp->snd_cwnd;
342
343 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
344}
345
346static u32 bictcp_undo_cwnd(struct sock *sk)
347{
348 struct bictcp *ca = inet_csk_ca(sk);
349
350 return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
351}
352
353static void bictcp_state(struct sock *sk, u8 new_state)
354{
355 if (new_state == TCP_CA_Loss) {
356 bictcp_reset(inet_csk_ca(sk));
357 bictcp_hystart_reset(sk);
358 }
359}
360
361static void hystart_update(struct sock *sk, u32 delay)
362{
363 struct tcp_sock *tp = tcp_sk(sk);
364 struct bictcp *ca = inet_csk_ca(sk);
365
366 if (!(ca->found & hystart_detect)) {
367 u32 now = bictcp_clock();
368
369 /* first detection parameter - ack-train detection */
370 if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
371 ca->last_ack = now;
372 if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
373 ca->found |= HYSTART_ACK_TRAIN;
374 }
375
376 /* obtain the minimum delay of more than sampling packets */
377 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
378 if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
379 ca->curr_rtt = delay;
380
381 ca->sample_cnt++;
382 } else {
383 if (ca->curr_rtt > ca->delay_min +
384 HYSTART_DELAY_THRESH(ca->delay_min>>4))
385 ca->found |= HYSTART_DELAY;
386 }
387 /*
388 * Either one of two conditions are met,
389 * we exit from slow start immediately.
390 */
391 if (ca->found & hystart_detect)
392 tp->snd_ssthresh = tp->snd_cwnd;
393 }
394}
395
396/* Track delayed acknowledgment ratio using sliding window
397 * ratio = (15*ratio + sample) / 16
398 */
399static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
400{
401 const struct inet_connection_sock *icsk = inet_csk(sk);
402 const struct tcp_sock *tp = tcp_sk(sk);
403 struct bictcp *ca = inet_csk_ca(sk);
404 u32 delay;
405
406 if (icsk->icsk_ca_state == TCP_CA_Open) {
407 u32 ratio = ca->delayed_ack;
408
409 ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
410 ratio += cnt;
411
412 ca->delayed_ack = clamp(ratio, 1U, ACK_RATIO_LIMIT);
413 }
414
415 /* Some calls are for duplicates without timetamps */
416 if (rtt_us < 0)
417 return;
418
419 /* Discard delay samples right after fast recovery */
420 if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
421 return;
422
423 delay = (rtt_us << 3) / USEC_PER_MSEC;
424 if (delay == 0)
425 delay = 1;
426
427 /* first time call or link delay decreases */
428 if (ca->delay_min == 0 || ca->delay_min > delay)
429 ca->delay_min = delay;
430
431 /* hystart triggers when cwnd is larger than some threshold */
432 if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
433 tp->snd_cwnd >= hystart_low_window)
434 hystart_update(sk, delay);
435}
436
437static struct tcp_congestion_ops cubictcp __read_mostly = {
438 .init = bictcp_init,
439 .ssthresh = bictcp_recalc_ssthresh,
440 .cong_avoid = bictcp_cong_avoid,
441 .set_state = bictcp_state,
442 .undo_cwnd = bictcp_undo_cwnd,
443 .pkts_acked = bictcp_acked,
444 .owner = THIS_MODULE,
445 .name = "cubic",
446};
447
448static int __init cubictcp_register(void)
449{
450 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
451
452 /* Precompute a bunch of the scaling factors that are used per-packet
453 * based on SRTT of 100ms
454 */
455
456 beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
457
458 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
459
460 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
461 * so K = cubic_root( (wmax-cwnd)*rtt/c )
462 * the unit of K is bictcp_HZ=2^10, not HZ
463 *
464 * c = bic_scale >> 10
465 * rtt = 100ms
466 *
467 * the following code has been designed and tested for
468 * cwnd < 1 million packets
469 * RTT < 100 seconds
470 * HZ < 1,000,00 (corresponding to 10 nano-second)
471 */
472
473 /* 1/c * 2^2*bictcp_HZ * srtt */
474 cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
475
476 /* divide by bic_scale and by constant Srtt (100ms) */
477 do_div(cube_factor, bic_scale * 10);
478
479 return tcp_register_congestion_control(&cubictcp);
480}
481
482static void __exit cubictcp_unregister(void)
483{
484 tcp_unregister_congestion_control(&cubictcp);
485}
486
487module_init(cubictcp_register);
488module_exit(cubictcp_unregister);
489
490MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
491MODULE_LICENSE("GPL");
492MODULE_DESCRIPTION("CUBIC TCP");
493MODULE_VERSION("2.3");
1/*
2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3 * Home page:
4 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5 * This is from the implementation of CUBIC TCP in
6 * Sangtae Ha, Injong Rhee and Lisong Xu,
7 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8 * in ACM SIGOPS Operating System Review, July 2008.
9 * Available from:
10 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11 *
12 * CUBIC integrates a new slow start algorithm, called HyStart.
13 * The details of HyStart are presented in
14 * Sangtae Ha and Injong Rhee,
15 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16 * Available from:
17 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18 *
19 * All testing results are available from:
20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21 *
22 * Unless CUBIC is enabled and congestion window is large
23 * this behaves the same as the original Reno.
24 */
25
26#include <linux/mm.h>
27#include <linux/module.h>
28#include <linux/math64.h>
29#include <net/tcp.h>
30
31#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
32 * max_cwnd = snd_cwnd * beta
33 */
34#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
35
36/* Two methods of hybrid slow start */
37#define HYSTART_ACK_TRAIN 0x1
38#define HYSTART_DELAY 0x2
39
40/* Number of delay samples for detecting the increase of delay */
41#define HYSTART_MIN_SAMPLES 8
42#define HYSTART_DELAY_MIN (4U<<3)
43#define HYSTART_DELAY_MAX (16U<<3)
44#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45
46static int fast_convergence __read_mostly = 1;
47static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
48static int initial_ssthresh __read_mostly;
49static int bic_scale __read_mostly = 41;
50static int tcp_friendliness __read_mostly = 1;
51
52static int hystart __read_mostly = 1;
53static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54static int hystart_low_window __read_mostly = 16;
55static int hystart_ack_delta __read_mostly = 2;
56
57static u32 cube_rtt_scale __read_mostly;
58static u32 beta_scale __read_mostly;
59static u64 cube_factor __read_mostly;
60
61/* Note parameters that are used for precomputing scale factors are read-only */
62module_param(fast_convergence, int, 0644);
63MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64module_param(beta, int, 0644);
65MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66module_param(initial_ssthresh, int, 0644);
67MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68module_param(bic_scale, int, 0444);
69MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70module_param(tcp_friendliness, int, 0644);
71MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72module_param(hystart, int, 0644);
73MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74module_param(hystart_detect, int, 0644);
75MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76 " 1: packet-train 2: delay 3: both packet-train and delay");
77module_param(hystart_low_window, int, 0644);
78MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79module_param(hystart_ack_delta, int, 0644);
80MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81
82/* BIC TCP Parameters */
83struct bictcp {
84 u32 cnt; /* increase cwnd by 1 after ACKs */
85 u32 last_max_cwnd; /* last maximum snd_cwnd */
86 u32 loss_cwnd; /* congestion window at last loss */
87 u32 last_cwnd; /* the last snd_cwnd */
88 u32 last_time; /* time when updated last_cwnd */
89 u32 bic_origin_point;/* origin point of bic function */
90 u32 bic_K; /* time to origin point from the beginning of the current epoch */
91 u32 delay_min; /* min delay (msec << 3) */
92 u32 epoch_start; /* beginning of an epoch */
93 u32 ack_cnt; /* number of acks */
94 u32 tcp_cwnd; /* estimated tcp cwnd */
95#define ACK_RATIO_SHIFT 4
96#define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
97 u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
98 u8 sample_cnt; /* number of samples to decide curr_rtt */
99 u8 found; /* the exit point is found? */
100 u32 round_start; /* beginning of each round */
101 u32 end_seq; /* end_seq of the round */
102 u32 last_ack; /* last time when the ACK spacing is close */
103 u32 curr_rtt; /* the minimum rtt of current round */
104};
105
106static inline void bictcp_reset(struct bictcp *ca)
107{
108 ca->cnt = 0;
109 ca->last_max_cwnd = 0;
110 ca->loss_cwnd = 0;
111 ca->last_cwnd = 0;
112 ca->last_time = 0;
113 ca->bic_origin_point = 0;
114 ca->bic_K = 0;
115 ca->delay_min = 0;
116 ca->epoch_start = 0;
117 ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
118 ca->ack_cnt = 0;
119 ca->tcp_cwnd = 0;
120 ca->found = 0;
121}
122
123static inline u32 bictcp_clock(void)
124{
125#if HZ < 1000
126 return ktime_to_ms(ktime_get_real());
127#else
128 return jiffies_to_msecs(jiffies);
129#endif
130}
131
132static inline void bictcp_hystart_reset(struct sock *sk)
133{
134 struct tcp_sock *tp = tcp_sk(sk);
135 struct bictcp *ca = inet_csk_ca(sk);
136
137 ca->round_start = ca->last_ack = bictcp_clock();
138 ca->end_seq = tp->snd_nxt;
139 ca->curr_rtt = 0;
140 ca->sample_cnt = 0;
141}
142
143static void bictcp_init(struct sock *sk)
144{
145 bictcp_reset(inet_csk_ca(sk));
146
147 if (hystart)
148 bictcp_hystart_reset(sk);
149
150 if (!hystart && initial_ssthresh)
151 tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
152}
153
154/* calculate the cubic root of x using a table lookup followed by one
155 * Newton-Raphson iteration.
156 * Avg err ~= 0.195%
157 */
158static u32 cubic_root(u64 a)
159{
160 u32 x, b, shift;
161 /*
162 * cbrt(x) MSB values for x MSB values in [0..63].
163 * Precomputed then refined by hand - Willy Tarreau
164 *
165 * For x in [0..63],
166 * v = cbrt(x << 18) - 1
167 * cbrt(x) = (v[x] + 10) >> 6
168 */
169 static const u8 v[] = {
170 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
171 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
172 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
173 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
174 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
175 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
176 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
177 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
178 };
179
180 b = fls64(a);
181 if (b < 7) {
182 /* a in [0..63] */
183 return ((u32)v[(u32)a] + 35) >> 6;
184 }
185
186 b = ((b * 84) >> 8) - 1;
187 shift = (a >> (b * 3));
188
189 x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
190
191 /*
192 * Newton-Raphson iteration
193 * 2
194 * x = ( 2 * x + a / x ) / 3
195 * k+1 k k
196 */
197 x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
198 x = ((x * 341) >> 10);
199 return x;
200}
201
202/*
203 * Compute congestion window to use.
204 */
205static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
206{
207 u64 offs;
208 u32 delta, t, bic_target, max_cnt;
209
210 ca->ack_cnt++; /* count the number of ACKs */
211
212 if (ca->last_cwnd == cwnd &&
213 (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
214 return;
215
216 ca->last_cwnd = cwnd;
217 ca->last_time = tcp_time_stamp;
218
219 if (ca->epoch_start == 0) {
220 ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
221 ca->ack_cnt = 1; /* start counting */
222 ca->tcp_cwnd = cwnd; /* syn with cubic */
223
224 if (ca->last_max_cwnd <= cwnd) {
225 ca->bic_K = 0;
226 ca->bic_origin_point = cwnd;
227 } else {
228 /* Compute new K based on
229 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
230 */
231 ca->bic_K = cubic_root(cube_factor
232 * (ca->last_max_cwnd - cwnd));
233 ca->bic_origin_point = ca->last_max_cwnd;
234 }
235 }
236
237 /* cubic function - calc*/
238 /* calculate c * time^3 / rtt,
239 * while considering overflow in calculation of time^3
240 * (so time^3 is done by using 64 bit)
241 * and without the support of division of 64bit numbers
242 * (so all divisions are done by using 32 bit)
243 * also NOTE the unit of those veriables
244 * time = (t - K) / 2^bictcp_HZ
245 * c = bic_scale >> 10
246 * rtt = (srtt >> 3) / HZ
247 * !!! The following code does not have overflow problems,
248 * if the cwnd < 1 million packets !!!
249 */
250
251 /* change the unit from HZ to bictcp_HZ */
252 t = ((tcp_time_stamp + msecs_to_jiffies(ca->delay_min>>3)
253 - ca->epoch_start) << BICTCP_HZ) / HZ;
254
255 if (t < ca->bic_K) /* t - K */
256 offs = ca->bic_K - t;
257 else
258 offs = t - ca->bic_K;
259
260 /* c/rtt * (t-K)^3 */
261 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
262 if (t < ca->bic_K) /* below origin*/
263 bic_target = ca->bic_origin_point - delta;
264 else /* above origin*/
265 bic_target = ca->bic_origin_point + delta;
266
267 /* cubic function - calc bictcp_cnt*/
268 if (bic_target > cwnd) {
269 ca->cnt = cwnd / (bic_target - cwnd);
270 } else {
271 ca->cnt = 100 * cwnd; /* very small increment*/
272 }
273
274 /*
275 * The initial growth of cubic function may be too conservative
276 * when the available bandwidth is still unknown.
277 */
278 if (ca->loss_cwnd == 0 && ca->cnt > 20)
279 ca->cnt = 20; /* increase cwnd 5% per RTT */
280
281 /* TCP Friendly */
282 if (tcp_friendliness) {
283 u32 scale = beta_scale;
284 delta = (cwnd * scale) >> 3;
285 while (ca->ack_cnt > delta) { /* update tcp cwnd */
286 ca->ack_cnt -= delta;
287 ca->tcp_cwnd++;
288 }
289
290 if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
291 delta = ca->tcp_cwnd - cwnd;
292 max_cnt = cwnd / delta;
293 if (ca->cnt > max_cnt)
294 ca->cnt = max_cnt;
295 }
296 }
297
298 ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
299 if (ca->cnt == 0) /* cannot be zero */
300 ca->cnt = 1;
301}
302
303static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
304{
305 struct tcp_sock *tp = tcp_sk(sk);
306 struct bictcp *ca = inet_csk_ca(sk);
307
308 if (!tcp_is_cwnd_limited(sk, in_flight))
309 return;
310
311 if (tp->snd_cwnd <= tp->snd_ssthresh) {
312 if (hystart && after(ack, ca->end_seq))
313 bictcp_hystart_reset(sk);
314 tcp_slow_start(tp);
315 } else {
316 bictcp_update(ca, tp->snd_cwnd);
317 tcp_cong_avoid_ai(tp, ca->cnt);
318 }
319
320}
321
322static u32 bictcp_recalc_ssthresh(struct sock *sk)
323{
324 const struct tcp_sock *tp = tcp_sk(sk);
325 struct bictcp *ca = inet_csk_ca(sk);
326
327 ca->epoch_start = 0; /* end of epoch */
328
329 /* Wmax and fast convergence */
330 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
331 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
332 / (2 * BICTCP_BETA_SCALE);
333 else
334 ca->last_max_cwnd = tp->snd_cwnd;
335
336 ca->loss_cwnd = tp->snd_cwnd;
337
338 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
339}
340
341static u32 bictcp_undo_cwnd(struct sock *sk)
342{
343 struct bictcp *ca = inet_csk_ca(sk);
344
345 return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
346}
347
348static void bictcp_state(struct sock *sk, u8 new_state)
349{
350 if (new_state == TCP_CA_Loss) {
351 bictcp_reset(inet_csk_ca(sk));
352 bictcp_hystart_reset(sk);
353 }
354}
355
356static void hystart_update(struct sock *sk, u32 delay)
357{
358 struct tcp_sock *tp = tcp_sk(sk);
359 struct bictcp *ca = inet_csk_ca(sk);
360
361 if (!(ca->found & hystart_detect)) {
362 u32 now = bictcp_clock();
363
364 /* first detection parameter - ack-train detection */
365 if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
366 ca->last_ack = now;
367 if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
368 ca->found |= HYSTART_ACK_TRAIN;
369 }
370
371 /* obtain the minimum delay of more than sampling packets */
372 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
373 if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
374 ca->curr_rtt = delay;
375
376 ca->sample_cnt++;
377 } else {
378 if (ca->curr_rtt > ca->delay_min +
379 HYSTART_DELAY_THRESH(ca->delay_min>>4))
380 ca->found |= HYSTART_DELAY;
381 }
382 /*
383 * Either one of two conditions are met,
384 * we exit from slow start immediately.
385 */
386 if (ca->found & hystart_detect)
387 tp->snd_ssthresh = tp->snd_cwnd;
388 }
389}
390
391/* Track delayed acknowledgment ratio using sliding window
392 * ratio = (15*ratio + sample) / 16
393 */
394static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
395{
396 const struct inet_connection_sock *icsk = inet_csk(sk);
397 const struct tcp_sock *tp = tcp_sk(sk);
398 struct bictcp *ca = inet_csk_ca(sk);
399 u32 delay;
400
401 if (icsk->icsk_ca_state == TCP_CA_Open) {
402 u32 ratio = ca->delayed_ack;
403
404 ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
405 ratio += cnt;
406
407 ca->delayed_ack = min(ratio, ACK_RATIO_LIMIT);
408 }
409
410 /* Some calls are for duplicates without timetamps */
411 if (rtt_us < 0)
412 return;
413
414 /* Discard delay samples right after fast recovery */
415 if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
416 return;
417
418 delay = (rtt_us << 3) / USEC_PER_MSEC;
419 if (delay == 0)
420 delay = 1;
421
422 /* first time call or link delay decreases */
423 if (ca->delay_min == 0 || ca->delay_min > delay)
424 ca->delay_min = delay;
425
426 /* hystart triggers when cwnd is larger than some threshold */
427 if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
428 tp->snd_cwnd >= hystart_low_window)
429 hystart_update(sk, delay);
430}
431
432static struct tcp_congestion_ops cubictcp __read_mostly = {
433 .init = bictcp_init,
434 .ssthresh = bictcp_recalc_ssthresh,
435 .cong_avoid = bictcp_cong_avoid,
436 .set_state = bictcp_state,
437 .undo_cwnd = bictcp_undo_cwnd,
438 .pkts_acked = bictcp_acked,
439 .owner = THIS_MODULE,
440 .name = "cubic",
441};
442
443static int __init cubictcp_register(void)
444{
445 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
446
447 /* Precompute a bunch of the scaling factors that are used per-packet
448 * based on SRTT of 100ms
449 */
450
451 beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
452
453 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
454
455 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
456 * so K = cubic_root( (wmax-cwnd)*rtt/c )
457 * the unit of K is bictcp_HZ=2^10, not HZ
458 *
459 * c = bic_scale >> 10
460 * rtt = 100ms
461 *
462 * the following code has been designed and tested for
463 * cwnd < 1 million packets
464 * RTT < 100 seconds
465 * HZ < 1,000,00 (corresponding to 10 nano-second)
466 */
467
468 /* 1/c * 2^2*bictcp_HZ * srtt */
469 cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
470
471 /* divide by bic_scale and by constant Srtt (100ms) */
472 do_div(cube_factor, bic_scale * 10);
473
474 /* hystart needs ms clock resolution */
475 if (hystart && HZ < 1000)
476 cubictcp.flags |= TCP_CONG_RTT_STAMP;
477
478 return tcp_register_congestion_control(&cubictcp);
479}
480
481static void __exit cubictcp_unregister(void)
482{
483 tcp_unregister_congestion_control(&cubictcp);
484}
485
486module_init(cubictcp_register);
487module_exit(cubictcp_unregister);
488
489MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
490MODULE_LICENSE("GPL");
491MODULE_DESCRIPTION("CUBIC TCP");
492MODULE_VERSION("2.3");