Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.15
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 
 24#include "xfs_sb.h"
 25#include "xfs_ag.h"
 26#include "xfs_mount.h"
 
 
 
 
 27#include "xfs_inode.h"
 28#include "xfs_trans.h"
 29#include "xfs_buf_item.h"
 30#include "xfs_trans_priv.h"
 31#include "xfs_error.h"
 
 32#include "xfs_trace.h"
 33
 34/*
 35 * Check to see if a buffer matching the given parameters is already
 36 * a part of the given transaction.
 37 */
 38STATIC struct xfs_buf *
 39xfs_trans_buf_item_match(
 40	struct xfs_trans	*tp,
 41	struct xfs_buftarg	*target,
 42	struct xfs_buf_map	*map,
 43	int			nmaps)
 44{
 45	struct xfs_log_item_desc *lidp;
 46	struct xfs_buf_log_item	*blip;
 47	int			len = 0;
 48	int			i;
 49
 50	for (i = 0; i < nmaps; i++)
 51		len += map[i].bm_len;
 52
 
 53	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
 54		blip = (struct xfs_buf_log_item *)lidp->lid_item;
 55		if (blip->bli_item.li_type == XFS_LI_BUF &&
 56		    blip->bli_buf->b_target == target &&
 57		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
 58		    blip->bli_buf->b_length == len) {
 59			ASSERT(blip->bli_buf->b_map_count == nmaps);
 60			return blip->bli_buf;
 61		}
 62	}
 63
 64	return NULL;
 65}
 66
 67/*
 68 * Add the locked buffer to the transaction.
 69 *
 70 * The buffer must be locked, and it cannot be associated with any
 71 * transaction.
 72 *
 73 * If the buffer does not yet have a buf log item associated with it,
 74 * then allocate one for it.  Then add the buf item to the transaction.
 75 */
 76STATIC void
 77_xfs_trans_bjoin(
 78	struct xfs_trans	*tp,
 79	struct xfs_buf		*bp,
 80	int			reset_recur)
 81{
 82	struct xfs_buf_log_item	*bip;
 83
 84	ASSERT(bp->b_transp == NULL);
 85
 86	/*
 87	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
 88	 * it doesn't have one yet, then allocate one and initialize it.
 89	 * The checks to see if one is there are in xfs_buf_item_init().
 90	 */
 91	xfs_buf_item_init(bp, tp->t_mountp);
 92	bip = bp->b_fspriv;
 93	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 94	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 95	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 96	if (reset_recur)
 97		bip->bli_recur = 0;
 98
 99	/*
100	 * Take a reference for this transaction on the buf item.
101	 */
102	atomic_inc(&bip->bli_refcount);
103
104	/*
105	 * Get a log_item_desc to point at the new item.
106	 */
107	xfs_trans_add_item(tp, &bip->bli_item);
108
109	/*
110	 * Initialize b_fsprivate2 so we can find it with incore_match()
111	 * in xfs_trans_get_buf() and friends above.
112	 */
113	bp->b_transp = tp;
114
115}
116
117void
118xfs_trans_bjoin(
119	struct xfs_trans	*tp,
120	struct xfs_buf		*bp)
121{
122	_xfs_trans_bjoin(tp, bp, 0);
123	trace_xfs_trans_bjoin(bp->b_fspriv);
124}
125
126/*
127 * Get and lock the buffer for the caller if it is not already
128 * locked within the given transaction.  If it is already locked
129 * within the transaction, just increment its lock recursion count
130 * and return a pointer to it.
131 *
132 * If the transaction pointer is NULL, make this just a normal
133 * get_buf() call.
134 */
135struct xfs_buf *
136xfs_trans_get_buf_map(
137	struct xfs_trans	*tp,
138	struct xfs_buftarg	*target,
139	struct xfs_buf_map	*map,
140	int			nmaps,
141	xfs_buf_flags_t		flags)
142{
143	xfs_buf_t		*bp;
144	xfs_buf_log_item_t	*bip;
145
146	if (!tp)
147		return xfs_buf_get_map(target, map, nmaps, flags);
 
 
 
 
 
 
 
148
149	/*
150	 * If we find the buffer in the cache with this transaction
151	 * pointer in its b_fsprivate2 field, then we know we already
152	 * have it locked.  In this case we just increment the lock
153	 * recursion count and return the buffer to the caller.
154	 */
155	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
156	if (bp != NULL) {
157		ASSERT(xfs_buf_islocked(bp));
158		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
159			xfs_buf_stale(bp);
160			XFS_BUF_DONE(bp);
161		}
 
 
 
 
 
 
162
163		ASSERT(bp->b_transp == tp);
164		bip = bp->b_fspriv;
165		ASSERT(bip != NULL);
166		ASSERT(atomic_read(&bip->bli_refcount) > 0);
167		bip->bli_recur++;
168		trace_xfs_trans_get_buf_recur(bip);
169		return (bp);
170	}
171
172	bp = xfs_buf_get_map(target, map, nmaps, flags);
 
 
 
 
 
 
 
 
173	if (bp == NULL) {
174		return NULL;
175	}
176
177	ASSERT(!bp->b_error);
178
179	_xfs_trans_bjoin(tp, bp, 1);
180	trace_xfs_trans_get_buf(bp->b_fspriv);
181	return (bp);
182}
183
184/*
185 * Get and lock the superblock buffer of this file system for the
186 * given transaction.
187 *
188 * We don't need to use incore_match() here, because the superblock
189 * buffer is a private buffer which we keep a pointer to in the
190 * mount structure.
191 */
192xfs_buf_t *
193xfs_trans_getsb(xfs_trans_t	*tp,
194		struct xfs_mount *mp,
195		int		flags)
196{
197	xfs_buf_t		*bp;
198	xfs_buf_log_item_t	*bip;
199
200	/*
201	 * Default to just trying to lock the superblock buffer
202	 * if tp is NULL.
203	 */
204	if (tp == NULL) {
205		return (xfs_getsb(mp, flags));
206	}
207
208	/*
209	 * If the superblock buffer already has this transaction
210	 * pointer in its b_fsprivate2 field, then we know we already
211	 * have it locked.  In this case we just increment the lock
212	 * recursion count and return the buffer to the caller.
213	 */
214	bp = mp->m_sb_bp;
215	if (bp->b_transp == tp) {
216		bip = bp->b_fspriv;
217		ASSERT(bip != NULL);
218		ASSERT(atomic_read(&bip->bli_refcount) > 0);
219		bip->bli_recur++;
220		trace_xfs_trans_getsb_recur(bip);
221		return (bp);
222	}
223
224	bp = xfs_getsb(mp, flags);
225	if (bp == NULL)
226		return NULL;
227
228	_xfs_trans_bjoin(tp, bp, 1);
229	trace_xfs_trans_getsb(bp->b_fspriv);
230	return (bp);
231}
232
233#ifdef DEBUG
234xfs_buftarg_t *xfs_error_target;
235int	xfs_do_error;
236int	xfs_req_num;
237int	xfs_error_mod = 33;
238#endif
239
240/*
241 * Get and lock the buffer for the caller if it is not already
242 * locked within the given transaction.  If it has not yet been
243 * read in, read it from disk. If it is already locked
244 * within the transaction and already read in, just increment its
245 * lock recursion count and return a pointer to it.
246 *
247 * If the transaction pointer is NULL, make this just a normal
248 * read_buf() call.
249 */
250int
251xfs_trans_read_buf_map(
252	struct xfs_mount	*mp,
253	struct xfs_trans	*tp,
254	struct xfs_buftarg	*target,
255	struct xfs_buf_map	*map,
256	int			nmaps,
257	xfs_buf_flags_t		flags,
258	struct xfs_buf		**bpp,
259	const struct xfs_buf_ops *ops)
260{
261	xfs_buf_t		*bp;
262	xfs_buf_log_item_t	*bip;
263	int			error;
264
265	*bpp = NULL;
266	if (!tp) {
267		bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
 
 
 
 
 
268		if (!bp)
269			return (flags & XBF_TRYLOCK) ?
270					EAGAIN : XFS_ERROR(ENOMEM);
271
272		if (bp->b_error) {
273			error = bp->b_error;
274			xfs_buf_ioerror_alert(bp, __func__);
275			XFS_BUF_UNDONE(bp);
276			xfs_buf_stale(bp);
277			xfs_buf_relse(bp);
278
279			/* bad CRC means corrupted metadata */
280			if (error == EFSBADCRC)
281				error = EFSCORRUPTED;
282			return error;
283		}
284#ifdef DEBUG
285		if (xfs_do_error) {
286			if (xfs_error_target == target) {
287				if (((xfs_req_num++) % xfs_error_mod) == 0) {
288					xfs_buf_relse(bp);
289					xfs_debug(mp, "Returning error!");
290					return XFS_ERROR(EIO);
291				}
292			}
293		}
294#endif
295		if (XFS_FORCED_SHUTDOWN(mp))
296			goto shutdown_abort;
297		*bpp = bp;
298		return 0;
299	}
300
301	/*
302	 * If we find the buffer in the cache with this transaction
303	 * pointer in its b_fsprivate2 field, then we know we already
304	 * have it locked.  If it is already read in we just increment
305	 * the lock recursion count and return the buffer to the caller.
306	 * If the buffer is not yet read in, then we read it in, increment
307	 * the lock recursion count, and return it to the caller.
308	 */
309	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
310	if (bp != NULL) {
311		ASSERT(xfs_buf_islocked(bp));
312		ASSERT(bp->b_transp == tp);
313		ASSERT(bp->b_fspriv != NULL);
314		ASSERT(!bp->b_error);
315		if (!(XFS_BUF_ISDONE(bp))) {
316			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
317			ASSERT(!XFS_BUF_ISASYNC(bp));
318			ASSERT(bp->b_iodone == NULL);
319			XFS_BUF_READ(bp);
320			bp->b_ops = ops;
321
322			/*
323			 * XXX(hch): clean up the error handling here to be less
324			 * of a mess..
325			 */
326			if (XFS_FORCED_SHUTDOWN(mp)) {
327				trace_xfs_bdstrat_shut(bp, _RET_IP_);
328				xfs_bioerror_relse(bp);
329			} else {
330				xfs_buf_iorequest(bp);
331			}
332
333			error = xfs_buf_iowait(bp);
334			if (error) {
335				xfs_buf_ioerror_alert(bp, __func__);
 
336				xfs_buf_relse(bp);
337				/*
338				 * We can gracefully recover from most read
339				 * errors. Ones we can't are those that happen
340				 * after the transaction's already dirty.
341				 */
342				if (tp->t_flags & XFS_TRANS_DIRTY)
343					xfs_force_shutdown(tp->t_mountp,
344							SHUTDOWN_META_IO_ERROR);
345				/* bad CRC means corrupted metadata */
346				if (error == EFSBADCRC)
347					error = EFSCORRUPTED;
348				return error;
349			}
350		}
351		/*
352		 * We never locked this buf ourselves, so we shouldn't
353		 * brelse it either. Just get out.
354		 */
355		if (XFS_FORCED_SHUTDOWN(mp)) {
356			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
357			*bpp = NULL;
358			return XFS_ERROR(EIO);
359		}
360
361
362		bip = bp->b_fspriv;
363		bip->bli_recur++;
364
365		ASSERT(atomic_read(&bip->bli_refcount) > 0);
366		trace_xfs_trans_read_buf_recur(bip);
367		*bpp = bp;
368		return 0;
369	}
370
371	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
 
 
 
 
 
 
 
 
372	if (bp == NULL) {
373		*bpp = NULL;
374		return (flags & XBF_TRYLOCK) ?
375					0 : XFS_ERROR(ENOMEM);
376	}
377	if (bp->b_error) {
378		error = bp->b_error;
379		xfs_buf_stale(bp);
380		XFS_BUF_DONE(bp);
381		xfs_buf_ioerror_alert(bp, __func__);
382		if (tp->t_flags & XFS_TRANS_DIRTY)
383			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
384		xfs_buf_relse(bp);
385
386		/* bad CRC means corrupted metadata */
387		if (error == EFSBADCRC)
388			error = EFSCORRUPTED;
389		return error;
390	}
391#ifdef DEBUG
392	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
393		if (xfs_error_target == target) {
394			if (((xfs_req_num++) % xfs_error_mod) == 0) {
395				xfs_force_shutdown(tp->t_mountp,
396						   SHUTDOWN_META_IO_ERROR);
397				xfs_buf_relse(bp);
398				xfs_debug(mp, "Returning trans error!");
399				return XFS_ERROR(EIO);
400			}
401		}
402	}
403#endif
404	if (XFS_FORCED_SHUTDOWN(mp))
405		goto shutdown_abort;
406
407	_xfs_trans_bjoin(tp, bp, 1);
408	trace_xfs_trans_read_buf(bp->b_fspriv);
409
410	*bpp = bp;
411	return 0;
412
413shutdown_abort:
 
 
 
 
 
 
 
 
 
 
 
 
 
414	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
415	xfs_buf_relse(bp);
416	*bpp = NULL;
417	return XFS_ERROR(EIO);
418}
419
 
420/*
421 * Release the buffer bp which was previously acquired with one of the
422 * xfs_trans_... buffer allocation routines if the buffer has not
423 * been modified within this transaction.  If the buffer is modified
424 * within this transaction, do decrement the recursion count but do
425 * not release the buffer even if the count goes to 0.  If the buffer is not
426 * modified within the transaction, decrement the recursion count and
427 * release the buffer if the recursion count goes to 0.
428 *
429 * If the buffer is to be released and it was not modified before
430 * this transaction began, then free the buf_log_item associated with it.
431 *
432 * If the transaction pointer is NULL, make this just a normal
433 * brelse() call.
434 */
435void
436xfs_trans_brelse(xfs_trans_t	*tp,
437		 xfs_buf_t	*bp)
438{
439	xfs_buf_log_item_t	*bip;
440
441	/*
442	 * Default to a normal brelse() call if the tp is NULL.
443	 */
444	if (tp == NULL) {
 
 
445		ASSERT(bp->b_transp == NULL);
 
 
 
 
 
 
 
 
 
 
446		xfs_buf_relse(bp);
447		return;
448	}
449
450	ASSERT(bp->b_transp == tp);
451	bip = bp->b_fspriv;
452	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
453	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
454	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
455	ASSERT(atomic_read(&bip->bli_refcount) > 0);
456
457	trace_xfs_trans_brelse(bip);
458
459	/*
460	 * If the release is just for a recursive lock,
461	 * then decrement the count and return.
462	 */
463	if (bip->bli_recur > 0) {
464		bip->bli_recur--;
465		return;
466	}
467
468	/*
469	 * If the buffer is dirty within this transaction, we can't
470	 * release it until we commit.
471	 */
472	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
473		return;
474
475	/*
476	 * If the buffer has been invalidated, then we can't release
477	 * it until the transaction commits to disk unless it is re-dirtied
478	 * as part of this transaction.  This prevents us from pulling
479	 * the item from the AIL before we should.
480	 */
481	if (bip->bli_flags & XFS_BLI_STALE)
482		return;
483
484	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
485
486	/*
487	 * Free up the log item descriptor tracking the released item.
488	 */
489	xfs_trans_del_item(&bip->bli_item);
490
491	/*
492	 * Clear the hold flag in the buf log item if it is set.
493	 * We wouldn't want the next user of the buffer to
494	 * get confused.
495	 */
496	if (bip->bli_flags & XFS_BLI_HOLD) {
497		bip->bli_flags &= ~XFS_BLI_HOLD;
498	}
499
500	/*
501	 * Drop our reference to the buf log item.
502	 */
503	atomic_dec(&bip->bli_refcount);
504
505	/*
506	 * If the buf item is not tracking data in the log, then
507	 * we must free it before releasing the buffer back to the
508	 * free pool.  Before releasing the buffer to the free pool,
509	 * clear the transaction pointer in b_fsprivate2 to dissolve
510	 * its relation to this transaction.
511	 */
512	if (!xfs_buf_item_dirty(bip)) {
513/***
514		ASSERT(bp->b_pincount == 0);
515***/
516		ASSERT(atomic_read(&bip->bli_refcount) == 0);
517		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
518		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
519		xfs_buf_item_relse(bp);
 
520	}
521
522	bp->b_transp = NULL;
 
 
 
 
 
 
 
 
 
 
523	xfs_buf_relse(bp);
 
524}
525
526/*
527 * Mark the buffer as not needing to be unlocked when the buf item's
528 * iop_unlock() routine is called.  The buffer must already be locked
529 * and associated with the given transaction.
530 */
531/* ARGSUSED */
532void
533xfs_trans_bhold(xfs_trans_t	*tp,
534		xfs_buf_t	*bp)
535{
536	xfs_buf_log_item_t	*bip = bp->b_fspriv;
537
538	ASSERT(bp->b_transp == tp);
539	ASSERT(bip != NULL);
540	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
541	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
542	ASSERT(atomic_read(&bip->bli_refcount) > 0);
543
544	bip->bli_flags |= XFS_BLI_HOLD;
545	trace_xfs_trans_bhold(bip);
546}
547
548/*
549 * Cancel the previous buffer hold request made on this buffer
550 * for this transaction.
551 */
552void
553xfs_trans_bhold_release(xfs_trans_t	*tp,
554			xfs_buf_t	*bp)
555{
556	xfs_buf_log_item_t	*bip = bp->b_fspriv;
557
558	ASSERT(bp->b_transp == tp);
559	ASSERT(bip != NULL);
560	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
561	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
562	ASSERT(atomic_read(&bip->bli_refcount) > 0);
563	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
564
565	bip->bli_flags &= ~XFS_BLI_HOLD;
566	trace_xfs_trans_bhold_release(bip);
567}
568
569/*
570 * This is called to mark bytes first through last inclusive of the given
571 * buffer as needing to be logged when the transaction is committed.
572 * The buffer must already be associated with the given transaction.
573 *
574 * First and last are numbers relative to the beginning of this buffer,
575 * so the first byte in the buffer is numbered 0 regardless of the
576 * value of b_blkno.
577 */
578void
579xfs_trans_log_buf(xfs_trans_t	*tp,
580		  xfs_buf_t	*bp,
581		  uint		first,
582		  uint		last)
583{
584	xfs_buf_log_item_t	*bip = bp->b_fspriv;
585
586	ASSERT(bp->b_transp == tp);
587	ASSERT(bip != NULL);
588	ASSERT(first <= last && last < BBTOB(bp->b_length));
589	ASSERT(bp->b_iodone == NULL ||
590	       bp->b_iodone == xfs_buf_iodone_callbacks);
591
592	/*
593	 * Mark the buffer as needing to be written out eventually,
594	 * and set its iodone function to remove the buffer's buf log
595	 * item from the AIL and free it when the buffer is flushed
596	 * to disk.  See xfs_buf_attach_iodone() for more details
597	 * on li_cb and xfs_buf_iodone_callbacks().
598	 * If we end up aborting this transaction, we trap this buffer
599	 * inside the b_bdstrat callback so that this won't get written to
600	 * disk.
601	 */
 
602	XFS_BUF_DONE(bp);
603
604	ASSERT(atomic_read(&bip->bli_refcount) > 0);
605	bp->b_iodone = xfs_buf_iodone_callbacks;
606	bip->bli_item.li_cb = xfs_buf_iodone;
607
608	trace_xfs_trans_log_buf(bip);
609
610	/*
611	 * If we invalidated the buffer within this transaction, then
612	 * cancel the invalidation now that we're dirtying the buffer
613	 * again.  There are no races with the code in xfs_buf_item_unpin(),
614	 * because we have a reference to the buffer this entire time.
615	 */
616	if (bip->bli_flags & XFS_BLI_STALE) {
617		bip->bli_flags &= ~XFS_BLI_STALE;
618		ASSERT(XFS_BUF_ISSTALE(bp));
619		XFS_BUF_UNSTALE(bp);
620		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
621	}
622
623	tp->t_flags |= XFS_TRANS_DIRTY;
624	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
625
626	/*
627	 * If we have an ordered buffer we are not logging any dirty range but
628	 * it still needs to be marked dirty and that it has been logged.
629	 */
630	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
631	if (!(bip->bli_flags & XFS_BLI_ORDERED))
632		xfs_buf_item_log(bip, first, last);
633}
634
635
636/*
637 * Invalidate a buffer that is being used within a transaction.
638 *
639 * Typically this is because the blocks in the buffer are being freed, so we
640 * need to prevent it from being written out when we're done.  Allowing it
641 * to be written again might overwrite data in the free blocks if they are
642 * reallocated to a file.
643 *
644 * We prevent the buffer from being written out by marking it stale.  We can't
645 * get rid of the buf log item at this point because the buffer may still be
646 * pinned by another transaction.  If that is the case, then we'll wait until
647 * the buffer is committed to disk for the last time (we can tell by the ref
648 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
649 * keep the buffer locked so that the buffer and buf log item are not reused.
650 *
651 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
652 * the buf item.  This will be used at recovery time to determine that copies
653 * of the buffer in the log before this should not be replayed.
654 *
655 * We mark the item descriptor and the transaction dirty so that we'll hold
656 * the buffer until after the commit.
657 *
658 * Since we're invalidating the buffer, we also clear the state about which
659 * parts of the buffer have been logged.  We also clear the flag indicating
660 * that this is an inode buffer since the data in the buffer will no longer
661 * be valid.
662 *
663 * We set the stale bit in the buffer as well since we're getting rid of it.
664 */
665void
666xfs_trans_binval(
667	xfs_trans_t	*tp,
668	xfs_buf_t	*bp)
669{
670	xfs_buf_log_item_t	*bip = bp->b_fspriv;
671	int			i;
672
673	ASSERT(bp->b_transp == tp);
674	ASSERT(bip != NULL);
675	ASSERT(atomic_read(&bip->bli_refcount) > 0);
676
677	trace_xfs_trans_binval(bip);
678
679	if (bip->bli_flags & XFS_BLI_STALE) {
680		/*
681		 * If the buffer is already invalidated, then
682		 * just return.
683		 */
 
684		ASSERT(XFS_BUF_ISSTALE(bp));
685		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
686		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
687		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
688		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
689		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
690		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
691		return;
692	}
693
694	xfs_buf_stale(bp);
695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696	bip->bli_flags |= XFS_BLI_STALE;
697	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
698	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
699	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
700	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
701	for (i = 0; i < bip->bli_format_count; i++) {
702		memset(bip->bli_formats[i].blf_data_map, 0,
703		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
704	}
705	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
706	tp->t_flags |= XFS_TRANS_DIRTY;
707}
708
709/*
710 * This call is used to indicate that the buffer contains on-disk inodes which
711 * must be handled specially during recovery.  They require special handling
712 * because only the di_next_unlinked from the inodes in the buffer should be
713 * recovered.  The rest of the data in the buffer is logged via the inodes
714 * themselves.
715 *
716 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
717 * transferred to the buffer's log format structure so that we'll know what to
718 * do at recovery time.
719 */
720void
721xfs_trans_inode_buf(
722	xfs_trans_t	*tp,
723	xfs_buf_t	*bp)
724{
725	xfs_buf_log_item_t	*bip = bp->b_fspriv;
726
727	ASSERT(bp->b_transp == tp);
728	ASSERT(bip != NULL);
729	ASSERT(atomic_read(&bip->bli_refcount) > 0);
730
731	bip->bli_flags |= XFS_BLI_INODE_BUF;
732	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
733}
734
735/*
736 * This call is used to indicate that the buffer is going to
737 * be staled and was an inode buffer. This means it gets
738 * special processing during unpin - where any inodes
739 * associated with the buffer should be removed from ail.
740 * There is also special processing during recovery,
741 * any replay of the inodes in the buffer needs to be
742 * prevented as the buffer may have been reused.
743 */
744void
745xfs_trans_stale_inode_buf(
746	xfs_trans_t	*tp,
747	xfs_buf_t	*bp)
748{
749	xfs_buf_log_item_t	*bip = bp->b_fspriv;
750
751	ASSERT(bp->b_transp == tp);
752	ASSERT(bip != NULL);
753	ASSERT(atomic_read(&bip->bli_refcount) > 0);
754
755	bip->bli_flags |= XFS_BLI_STALE_INODE;
756	bip->bli_item.li_cb = xfs_buf_iodone;
757	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
758}
759
760/*
761 * Mark the buffer as being one which contains newly allocated
762 * inodes.  We need to make sure that even if this buffer is
763 * relogged as an 'inode buf' we still recover all of the inode
764 * images in the face of a crash.  This works in coordination with
765 * xfs_buf_item_committed() to ensure that the buffer remains in the
766 * AIL at its original location even after it has been relogged.
767 */
768/* ARGSUSED */
769void
770xfs_trans_inode_alloc_buf(
771	xfs_trans_t	*tp,
772	xfs_buf_t	*bp)
773{
774	xfs_buf_log_item_t	*bip = bp->b_fspriv;
775
776	ASSERT(bp->b_transp == tp);
777	ASSERT(bip != NULL);
778	ASSERT(atomic_read(&bip->bli_refcount) > 0);
779
780	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
781	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
782}
783
784/*
785 * Mark the buffer as ordered for this transaction. This means
786 * that the contents of the buffer are not recorded in the transaction
787 * but it is tracked in the AIL as though it was. This allows us
788 * to record logical changes in transactions rather than the physical
789 * changes we make to the buffer without changing writeback ordering
790 * constraints of metadata buffers.
791 */
792void
793xfs_trans_ordered_buf(
794	struct xfs_trans	*tp,
795	struct xfs_buf		*bp)
796{
797	struct xfs_buf_log_item	*bip = bp->b_fspriv;
798
799	ASSERT(bp->b_transp == tp);
800	ASSERT(bip != NULL);
801	ASSERT(atomic_read(&bip->bli_refcount) > 0);
802
803	bip->bli_flags |= XFS_BLI_ORDERED;
804	trace_xfs_buf_item_ordered(bip);
805}
806
807/*
808 * Set the type of the buffer for log recovery so that it can correctly identify
809 * and hence attach the correct buffer ops to the buffer after replay.
810 */
811void
812xfs_trans_buf_set_type(
813	struct xfs_trans	*tp,
814	struct xfs_buf		*bp,
815	enum xfs_blft		type)
816{
817	struct xfs_buf_log_item	*bip = bp->b_fspriv;
818
819	if (!tp)
820		return;
821
822	ASSERT(bp->b_transp == tp);
823	ASSERT(bip != NULL);
824	ASSERT(atomic_read(&bip->bli_refcount) > 0);
825
826	xfs_blft_to_flags(&bip->__bli_format, type);
827}
828
829void
830xfs_trans_buf_copy_type(
831	struct xfs_buf		*dst_bp,
832	struct xfs_buf		*src_bp)
833{
834	struct xfs_buf_log_item	*sbip = src_bp->b_fspriv;
835	struct xfs_buf_log_item	*dbip = dst_bp->b_fspriv;
836	enum xfs_blft		type;
837
838	type = xfs_blft_from_flags(&sbip->__bli_format);
839	xfs_blft_to_flags(&dbip->__bli_format, type);
840}
841
842/*
843 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
844 * dquots. However, unlike in inode buffer recovery, dquot buffers get
845 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
846 * The only thing that makes dquot buffers different from regular
847 * buffers is that we must not replay dquot bufs when recovering
848 * if a _corresponding_ quotaoff has happened. We also have to distinguish
849 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
850 * can be turned off independently.
851 */
852/* ARGSUSED */
853void
854xfs_trans_dquot_buf(
855	xfs_trans_t	*tp,
856	xfs_buf_t	*bp,
857	uint		type)
858{
859	struct xfs_buf_log_item	*bip = bp->b_fspriv;
860
 
 
861	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
862	       type == XFS_BLF_PDQUOT_BUF ||
863	       type == XFS_BLF_GDQUOT_BUF);
 
864
865	bip->__bli_format.blf_flags |= type;
866
867	switch (type) {
868	case XFS_BLF_UDQUOT_BUF:
869		type = XFS_BLFT_UDQUOT_BUF;
870		break;
871	case XFS_BLF_PDQUOT_BUF:
872		type = XFS_BLFT_PDQUOT_BUF;
873		break;
874	case XFS_BLF_GDQUOT_BUF:
875		type = XFS_BLFT_GDQUOT_BUF;
876		break;
877	default:
878		type = XFS_BLFT_UNKNOWN_BUF;
879		break;
880	}
881
882	xfs_trans_buf_set_type(tp, bp, type);
883}
v3.1
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_bit.h"
 22#include "xfs_log.h"
 23#include "xfs_inum.h"
 24#include "xfs_trans.h"
 25#include "xfs_sb.h"
 26#include "xfs_ag.h"
 27#include "xfs_mount.h"
 28#include "xfs_bmap_btree.h"
 29#include "xfs_alloc_btree.h"
 30#include "xfs_ialloc_btree.h"
 31#include "xfs_dinode.h"
 32#include "xfs_inode.h"
 
 33#include "xfs_buf_item.h"
 34#include "xfs_trans_priv.h"
 35#include "xfs_error.h"
 36#include "xfs_rw.h"
 37#include "xfs_trace.h"
 38
 39/*
 40 * Check to see if a buffer matching the given parameters is already
 41 * a part of the given transaction.
 42 */
 43STATIC struct xfs_buf *
 44xfs_trans_buf_item_match(
 45	struct xfs_trans	*tp,
 46	struct xfs_buftarg	*target,
 47	xfs_daddr_t		blkno,
 48	int			len)
 49{
 50	struct xfs_log_item_desc *lidp;
 51	struct xfs_buf_log_item	*blip;
 
 
 
 
 
 52
 53	len = BBTOB(len);
 54	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
 55		blip = (struct xfs_buf_log_item *)lidp->lid_item;
 56		if (blip->bli_item.li_type == XFS_LI_BUF &&
 57		    blip->bli_buf->b_target == target &&
 58		    XFS_BUF_ADDR(blip->bli_buf) == blkno &&
 59		    XFS_BUF_COUNT(blip->bli_buf) == len)
 
 60			return blip->bli_buf;
 
 61	}
 62
 63	return NULL;
 64}
 65
 66/*
 67 * Add the locked buffer to the transaction.
 68 *
 69 * The buffer must be locked, and it cannot be associated with any
 70 * transaction.
 71 *
 72 * If the buffer does not yet have a buf log item associated with it,
 73 * then allocate one for it.  Then add the buf item to the transaction.
 74 */
 75STATIC void
 76_xfs_trans_bjoin(
 77	struct xfs_trans	*tp,
 78	struct xfs_buf		*bp,
 79	int			reset_recur)
 80{
 81	struct xfs_buf_log_item	*bip;
 82
 83	ASSERT(bp->b_transp == NULL);
 84
 85	/*
 86	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
 87	 * it doesn't have one yet, then allocate one and initialize it.
 88	 * The checks to see if one is there are in xfs_buf_item_init().
 89	 */
 90	xfs_buf_item_init(bp, tp->t_mountp);
 91	bip = bp->b_fspriv;
 92	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 93	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
 94	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 95	if (reset_recur)
 96		bip->bli_recur = 0;
 97
 98	/*
 99	 * Take a reference for this transaction on the buf item.
100	 */
101	atomic_inc(&bip->bli_refcount);
102
103	/*
104	 * Get a log_item_desc to point at the new item.
105	 */
106	xfs_trans_add_item(tp, &bip->bli_item);
107
108	/*
109	 * Initialize b_fsprivate2 so we can find it with incore_match()
110	 * in xfs_trans_get_buf() and friends above.
111	 */
112	bp->b_transp = tp;
113
114}
115
116void
117xfs_trans_bjoin(
118	struct xfs_trans	*tp,
119	struct xfs_buf		*bp)
120{
121	_xfs_trans_bjoin(tp, bp, 0);
122	trace_xfs_trans_bjoin(bp->b_fspriv);
123}
124
125/*
126 * Get and lock the buffer for the caller if it is not already
127 * locked within the given transaction.  If it is already locked
128 * within the transaction, just increment its lock recursion count
129 * and return a pointer to it.
130 *
131 * If the transaction pointer is NULL, make this just a normal
132 * get_buf() call.
133 */
134xfs_buf_t *
135xfs_trans_get_buf(xfs_trans_t	*tp,
136		  xfs_buftarg_t	*target_dev,
137		  xfs_daddr_t	blkno,
138		  int		len,
139		  uint		flags)
 
140{
141	xfs_buf_t		*bp;
142	xfs_buf_log_item_t	*bip;
143
144	if (flags == 0)
145		flags = XBF_LOCK | XBF_MAPPED;
146
147	/*
148	 * Default to a normal get_buf() call if the tp is NULL.
149	 */
150	if (tp == NULL)
151		return xfs_buf_get(target_dev, blkno, len,
152				   flags | XBF_DONT_BLOCK);
153
154	/*
155	 * If we find the buffer in the cache with this transaction
156	 * pointer in its b_fsprivate2 field, then we know we already
157	 * have it locked.  In this case we just increment the lock
158	 * recursion count and return the buffer to the caller.
159	 */
160	bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
161	if (bp != NULL) {
162		ASSERT(xfs_buf_islocked(bp));
163		if (XFS_FORCED_SHUTDOWN(tp->t_mountp))
164			XFS_BUF_SUPER_STALE(bp);
165
166		/*
167		 * If the buffer is stale then it was binval'ed
168		 * since last read.  This doesn't matter since the
169		 * caller isn't allowed to use the data anyway.
170		 */
171		else if (XFS_BUF_ISSTALE(bp))
172			ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
173
174		ASSERT(bp->b_transp == tp);
175		bip = bp->b_fspriv;
176		ASSERT(bip != NULL);
177		ASSERT(atomic_read(&bip->bli_refcount) > 0);
178		bip->bli_recur++;
179		trace_xfs_trans_get_buf_recur(bip);
180		return (bp);
181	}
182
183	/*
184	 * We always specify the XBF_DONT_BLOCK flag within a transaction
185	 * so that get_buf does not try to push out a delayed write buffer
186	 * which might cause another transaction to take place (if the
187	 * buffer was delayed alloc).  Such recursive transactions can
188	 * easily deadlock with our current transaction as well as cause
189	 * us to run out of stack space.
190	 */
191	bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK);
192	if (bp == NULL) {
193		return NULL;
194	}
195
196	ASSERT(!bp->b_error);
197
198	_xfs_trans_bjoin(tp, bp, 1);
199	trace_xfs_trans_get_buf(bp->b_fspriv);
200	return (bp);
201}
202
203/*
204 * Get and lock the superblock buffer of this file system for the
205 * given transaction.
206 *
207 * We don't need to use incore_match() here, because the superblock
208 * buffer is a private buffer which we keep a pointer to in the
209 * mount structure.
210 */
211xfs_buf_t *
212xfs_trans_getsb(xfs_trans_t	*tp,
213		struct xfs_mount *mp,
214		int		flags)
215{
216	xfs_buf_t		*bp;
217	xfs_buf_log_item_t	*bip;
218
219	/*
220	 * Default to just trying to lock the superblock buffer
221	 * if tp is NULL.
222	 */
223	if (tp == NULL) {
224		return (xfs_getsb(mp, flags));
225	}
226
227	/*
228	 * If the superblock buffer already has this transaction
229	 * pointer in its b_fsprivate2 field, then we know we already
230	 * have it locked.  In this case we just increment the lock
231	 * recursion count and return the buffer to the caller.
232	 */
233	bp = mp->m_sb_bp;
234	if (bp->b_transp == tp) {
235		bip = bp->b_fspriv;
236		ASSERT(bip != NULL);
237		ASSERT(atomic_read(&bip->bli_refcount) > 0);
238		bip->bli_recur++;
239		trace_xfs_trans_getsb_recur(bip);
240		return (bp);
241	}
242
243	bp = xfs_getsb(mp, flags);
244	if (bp == NULL)
245		return NULL;
246
247	_xfs_trans_bjoin(tp, bp, 1);
248	trace_xfs_trans_getsb(bp->b_fspriv);
249	return (bp);
250}
251
252#ifdef DEBUG
253xfs_buftarg_t *xfs_error_target;
254int	xfs_do_error;
255int	xfs_req_num;
256int	xfs_error_mod = 33;
257#endif
258
259/*
260 * Get and lock the buffer for the caller if it is not already
261 * locked within the given transaction.  If it has not yet been
262 * read in, read it from disk. If it is already locked
263 * within the transaction and already read in, just increment its
264 * lock recursion count and return a pointer to it.
265 *
266 * If the transaction pointer is NULL, make this just a normal
267 * read_buf() call.
268 */
269int
270xfs_trans_read_buf(
271	xfs_mount_t	*mp,
272	xfs_trans_t	*tp,
273	xfs_buftarg_t	*target,
274	xfs_daddr_t	blkno,
275	int		len,
276	uint		flags,
277	xfs_buf_t	**bpp)
 
278{
279	xfs_buf_t		*bp;
280	xfs_buf_log_item_t	*bip;
281	int			error;
282
283	if (flags == 0)
284		flags = XBF_LOCK | XBF_MAPPED;
285
286	/*
287	 * Default to a normal get_buf() call if the tp is NULL.
288	 */
289	if (tp == NULL) {
290		bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
291		if (!bp)
292			return (flags & XBF_TRYLOCK) ?
293					EAGAIN : XFS_ERROR(ENOMEM);
294
295		if (bp->b_error) {
296			error = bp->b_error;
297			xfs_ioerror_alert("xfs_trans_read_buf", mp,
298					  bp, blkno);
 
299			xfs_buf_relse(bp);
 
 
 
 
300			return error;
301		}
302#ifdef DEBUG
303		if (xfs_do_error) {
304			if (xfs_error_target == target) {
305				if (((xfs_req_num++) % xfs_error_mod) == 0) {
306					xfs_buf_relse(bp);
307					xfs_debug(mp, "Returning error!");
308					return XFS_ERROR(EIO);
309				}
310			}
311		}
312#endif
313		if (XFS_FORCED_SHUTDOWN(mp))
314			goto shutdown_abort;
315		*bpp = bp;
316		return 0;
317	}
318
319	/*
320	 * If we find the buffer in the cache with this transaction
321	 * pointer in its b_fsprivate2 field, then we know we already
322	 * have it locked.  If it is already read in we just increment
323	 * the lock recursion count and return the buffer to the caller.
324	 * If the buffer is not yet read in, then we read it in, increment
325	 * the lock recursion count, and return it to the caller.
326	 */
327	bp = xfs_trans_buf_item_match(tp, target, blkno, len);
328	if (bp != NULL) {
329		ASSERT(xfs_buf_islocked(bp));
330		ASSERT(bp->b_transp == tp);
331		ASSERT(bp->b_fspriv != NULL);
332		ASSERT(!bp->b_error);
333		if (!(XFS_BUF_ISDONE(bp))) {
334			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
335			ASSERT(!XFS_BUF_ISASYNC(bp));
 
336			XFS_BUF_READ(bp);
337			xfsbdstrat(tp->t_mountp, bp);
 
 
 
 
 
 
 
 
 
 
 
 
338			error = xfs_buf_iowait(bp);
339			if (error) {
340				xfs_ioerror_alert("xfs_trans_read_buf", mp,
341						  bp, blkno);
342				xfs_buf_relse(bp);
343				/*
344				 * We can gracefully recover from most read
345				 * errors. Ones we can't are those that happen
346				 * after the transaction's already dirty.
347				 */
348				if (tp->t_flags & XFS_TRANS_DIRTY)
349					xfs_force_shutdown(tp->t_mountp,
350							SHUTDOWN_META_IO_ERROR);
 
 
 
351				return error;
352			}
353		}
354		/*
355		 * We never locked this buf ourselves, so we shouldn't
356		 * brelse it either. Just get out.
357		 */
358		if (XFS_FORCED_SHUTDOWN(mp)) {
359			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
360			*bpp = NULL;
361			return XFS_ERROR(EIO);
362		}
363
364
365		bip = bp->b_fspriv;
366		bip->bli_recur++;
367
368		ASSERT(atomic_read(&bip->bli_refcount) > 0);
369		trace_xfs_trans_read_buf_recur(bip);
370		*bpp = bp;
371		return 0;
372	}
373
374	/*
375	 * We always specify the XBF_DONT_BLOCK flag within a transaction
376	 * so that get_buf does not try to push out a delayed write buffer
377	 * which might cause another transaction to take place (if the
378	 * buffer was delayed alloc).  Such recursive transactions can
379	 * easily deadlock with our current transaction as well as cause
380	 * us to run out of stack space.
381	 */
382	bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
383	if (bp == NULL) {
384		*bpp = NULL;
385		return (flags & XBF_TRYLOCK) ?
386					0 : XFS_ERROR(ENOMEM);
387	}
388	if (bp->b_error) {
389		error = bp->b_error;
390		XFS_BUF_SUPER_STALE(bp);
391		xfs_ioerror_alert("xfs_trans_read_buf", mp,
392				  bp, blkno);
393		if (tp->t_flags & XFS_TRANS_DIRTY)
394			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
395		xfs_buf_relse(bp);
 
 
 
 
396		return error;
397	}
398#ifdef DEBUG
399	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
400		if (xfs_error_target == target) {
401			if (((xfs_req_num++) % xfs_error_mod) == 0) {
402				xfs_force_shutdown(tp->t_mountp,
403						   SHUTDOWN_META_IO_ERROR);
404				xfs_buf_relse(bp);
405				xfs_debug(mp, "Returning trans error!");
406				return XFS_ERROR(EIO);
407			}
408		}
409	}
410#endif
411	if (XFS_FORCED_SHUTDOWN(mp))
412		goto shutdown_abort;
413
414	_xfs_trans_bjoin(tp, bp, 1);
415	trace_xfs_trans_read_buf(bp->b_fspriv);
416
417	*bpp = bp;
418	return 0;
419
420shutdown_abort:
421	/*
422	 * the theory here is that buffer is good but we're
423	 * bailing out because the filesystem is being forcibly
424	 * shut down.  So we should leave the b_flags alone since
425	 * the buffer's not staled and just get out.
426	 */
427#if defined(DEBUG)
428	if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
429		xfs_notice(mp, "about to pop assert, bp == 0x%p", bp);
430#endif
431	ASSERT((bp->b_flags & (XBF_STALE|XBF_DELWRI)) !=
432				     (XBF_STALE|XBF_DELWRI));
433
434	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
435	xfs_buf_relse(bp);
436	*bpp = NULL;
437	return XFS_ERROR(EIO);
438}
439
440
441/*
442 * Release the buffer bp which was previously acquired with one of the
443 * xfs_trans_... buffer allocation routines if the buffer has not
444 * been modified within this transaction.  If the buffer is modified
445 * within this transaction, do decrement the recursion count but do
446 * not release the buffer even if the count goes to 0.  If the buffer is not
447 * modified within the transaction, decrement the recursion count and
448 * release the buffer if the recursion count goes to 0.
449 *
450 * If the buffer is to be released and it was not modified before
451 * this transaction began, then free the buf_log_item associated with it.
452 *
453 * If the transaction pointer is NULL, make this just a normal
454 * brelse() call.
455 */
456void
457xfs_trans_brelse(xfs_trans_t	*tp,
458		 xfs_buf_t	*bp)
459{
460	xfs_buf_log_item_t	*bip;
461
462	/*
463	 * Default to a normal brelse() call if the tp is NULL.
464	 */
465	if (tp == NULL) {
466		struct xfs_log_item	*lip = bp->b_fspriv;
467
468		ASSERT(bp->b_transp == NULL);
469
470		/*
471		 * If there's a buf log item attached to the buffer,
472		 * then let the AIL know that the buffer is being
473		 * unlocked.
474		 */
475		if (lip != NULL && lip->li_type == XFS_LI_BUF) {
476			bip = bp->b_fspriv;
477			xfs_trans_unlocked_item(bip->bli_item.li_ailp, lip);
478		}
479		xfs_buf_relse(bp);
480		return;
481	}
482
483	ASSERT(bp->b_transp == tp);
484	bip = bp->b_fspriv;
485	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
486	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
487	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
488	ASSERT(atomic_read(&bip->bli_refcount) > 0);
489
490	trace_xfs_trans_brelse(bip);
491
492	/*
493	 * If the release is just for a recursive lock,
494	 * then decrement the count and return.
495	 */
496	if (bip->bli_recur > 0) {
497		bip->bli_recur--;
498		return;
499	}
500
501	/*
502	 * If the buffer is dirty within this transaction, we can't
503	 * release it until we commit.
504	 */
505	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
506		return;
507
508	/*
509	 * If the buffer has been invalidated, then we can't release
510	 * it until the transaction commits to disk unless it is re-dirtied
511	 * as part of this transaction.  This prevents us from pulling
512	 * the item from the AIL before we should.
513	 */
514	if (bip->bli_flags & XFS_BLI_STALE)
515		return;
516
517	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
518
519	/*
520	 * Free up the log item descriptor tracking the released item.
521	 */
522	xfs_trans_del_item(&bip->bli_item);
523
524	/*
525	 * Clear the hold flag in the buf log item if it is set.
526	 * We wouldn't want the next user of the buffer to
527	 * get confused.
528	 */
529	if (bip->bli_flags & XFS_BLI_HOLD) {
530		bip->bli_flags &= ~XFS_BLI_HOLD;
531	}
532
533	/*
534	 * Drop our reference to the buf log item.
535	 */
536	atomic_dec(&bip->bli_refcount);
537
538	/*
539	 * If the buf item is not tracking data in the log, then
540	 * we must free it before releasing the buffer back to the
541	 * free pool.  Before releasing the buffer to the free pool,
542	 * clear the transaction pointer in b_fsprivate2 to dissolve
543	 * its relation to this transaction.
544	 */
545	if (!xfs_buf_item_dirty(bip)) {
546/***
547		ASSERT(bp->b_pincount == 0);
548***/
549		ASSERT(atomic_read(&bip->bli_refcount) == 0);
550		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
551		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
552		xfs_buf_item_relse(bp);
553		bip = NULL;
554	}
 
555	bp->b_transp = NULL;
556
557	/*
558	 * If we've still got a buf log item on the buffer, then
559	 * tell the AIL that the buffer is being unlocked.
560	 */
561	if (bip != NULL) {
562		xfs_trans_unlocked_item(bip->bli_item.li_ailp,
563					(xfs_log_item_t*)bip);
564	}
565
566	xfs_buf_relse(bp);
567	return;
568}
569
570/*
571 * Mark the buffer as not needing to be unlocked when the buf item's
572 * IOP_UNLOCK() routine is called.  The buffer must already be locked
573 * and associated with the given transaction.
574 */
575/* ARGSUSED */
576void
577xfs_trans_bhold(xfs_trans_t	*tp,
578		xfs_buf_t	*bp)
579{
580	xfs_buf_log_item_t	*bip = bp->b_fspriv;
581
582	ASSERT(bp->b_transp == tp);
583	ASSERT(bip != NULL);
584	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
585	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
586	ASSERT(atomic_read(&bip->bli_refcount) > 0);
587
588	bip->bli_flags |= XFS_BLI_HOLD;
589	trace_xfs_trans_bhold(bip);
590}
591
592/*
593 * Cancel the previous buffer hold request made on this buffer
594 * for this transaction.
595 */
596void
597xfs_trans_bhold_release(xfs_trans_t	*tp,
598			xfs_buf_t	*bp)
599{
600	xfs_buf_log_item_t	*bip = bp->b_fspriv;
601
602	ASSERT(bp->b_transp == tp);
603	ASSERT(bip != NULL);
604	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
605	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
606	ASSERT(atomic_read(&bip->bli_refcount) > 0);
607	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
608
609	bip->bli_flags &= ~XFS_BLI_HOLD;
610	trace_xfs_trans_bhold_release(bip);
611}
612
613/*
614 * This is called to mark bytes first through last inclusive of the given
615 * buffer as needing to be logged when the transaction is committed.
616 * The buffer must already be associated with the given transaction.
617 *
618 * First and last are numbers relative to the beginning of this buffer,
619 * so the first byte in the buffer is numbered 0 regardless of the
620 * value of b_blkno.
621 */
622void
623xfs_trans_log_buf(xfs_trans_t	*tp,
624		  xfs_buf_t	*bp,
625		  uint		first,
626		  uint		last)
627{
628	xfs_buf_log_item_t	*bip = bp->b_fspriv;
629
630	ASSERT(bp->b_transp == tp);
631	ASSERT(bip != NULL);
632	ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
633	ASSERT(bp->b_iodone == NULL ||
634	       bp->b_iodone == xfs_buf_iodone_callbacks);
635
636	/*
637	 * Mark the buffer as needing to be written out eventually,
638	 * and set its iodone function to remove the buffer's buf log
639	 * item from the AIL and free it when the buffer is flushed
640	 * to disk.  See xfs_buf_attach_iodone() for more details
641	 * on li_cb and xfs_buf_iodone_callbacks().
642	 * If we end up aborting this transaction, we trap this buffer
643	 * inside the b_bdstrat callback so that this won't get written to
644	 * disk.
645	 */
646	XFS_BUF_DELAYWRITE(bp);
647	XFS_BUF_DONE(bp);
648
649	ASSERT(atomic_read(&bip->bli_refcount) > 0);
650	bp->b_iodone = xfs_buf_iodone_callbacks;
651	bip->bli_item.li_cb = xfs_buf_iodone;
652
653	trace_xfs_trans_log_buf(bip);
654
655	/*
656	 * If we invalidated the buffer within this transaction, then
657	 * cancel the invalidation now that we're dirtying the buffer
658	 * again.  There are no races with the code in xfs_buf_item_unpin(),
659	 * because we have a reference to the buffer this entire time.
660	 */
661	if (bip->bli_flags & XFS_BLI_STALE) {
662		bip->bli_flags &= ~XFS_BLI_STALE;
663		ASSERT(XFS_BUF_ISSTALE(bp));
664		XFS_BUF_UNSTALE(bp);
665		bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
666	}
667
668	tp->t_flags |= XFS_TRANS_DIRTY;
669	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
670	bip->bli_flags |= XFS_BLI_LOGGED;
671	xfs_buf_item_log(bip, first, last);
 
 
 
 
 
 
672}
673
674
675/*
676 * This called to invalidate a buffer that is being used within
677 * a transaction.  Typically this is because the blocks in the
678 * buffer are being freed, so we need to prevent it from being
679 * written out when we're done.  Allowing it to be written again
680 * might overwrite data in the free blocks if they are reallocated
681 * to a file.
682 *
683 * We prevent the buffer from being written out by clearing the
684 * B_DELWRI flag.  We can't always
685 * get rid of the buf log item at this point, though, because
686 * the buffer may still be pinned by another transaction.  If that
687 * is the case, then we'll wait until the buffer is committed to
688 * disk for the last time (we can tell by the ref count) and
689 * free it in xfs_buf_item_unpin().  Until it is cleaned up we
690 * will keep the buffer locked so that the buffer and buf log item
691 * are not reused.
 
 
 
 
 
 
 
 
 
 
 
692 */
693void
694xfs_trans_binval(
695	xfs_trans_t	*tp,
696	xfs_buf_t	*bp)
697{
698	xfs_buf_log_item_t	*bip = bp->b_fspriv;
 
699
700	ASSERT(bp->b_transp == tp);
701	ASSERT(bip != NULL);
702	ASSERT(atomic_read(&bip->bli_refcount) > 0);
703
704	trace_xfs_trans_binval(bip);
705
706	if (bip->bli_flags & XFS_BLI_STALE) {
707		/*
708		 * If the buffer is already invalidated, then
709		 * just return.
710		 */
711		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
712		ASSERT(XFS_BUF_ISSTALE(bp));
713		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
714		ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
715		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
 
716		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
717		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
718		return;
719	}
720
721	/*
722	 * Clear the dirty bit in the buffer and set the STALE flag
723	 * in the buf log item.  The STALE flag will be used in
724	 * xfs_buf_item_unpin() to determine if it should clean up
725	 * when the last reference to the buf item is given up.
726	 * We set the XFS_BLF_CANCEL flag in the buf log format structure
727	 * and log the buf item.  This will be used at recovery time
728	 * to determine that copies of the buffer in the log before
729	 * this should not be replayed.
730	 * We mark the item descriptor and the transaction dirty so
731	 * that we'll hold the buffer until after the commit.
732	 *
733	 * Since we're invalidating the buffer, we also clear the state
734	 * about which parts of the buffer have been logged.  We also
735	 * clear the flag indicating that this is an inode buffer since
736	 * the data in the buffer will no longer be valid.
737	 *
738	 * We set the stale bit in the buffer as well since we're getting
739	 * rid of it.
740	 */
741	XFS_BUF_UNDELAYWRITE(bp);
742	XFS_BUF_STALE(bp);
743	bip->bli_flags |= XFS_BLI_STALE;
744	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
745	bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
746	bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
747	memset((char *)(bip->bli_format.blf_data_map), 0,
748	      (bip->bli_format.blf_map_size * sizeof(uint)));
 
 
 
749	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
750	tp->t_flags |= XFS_TRANS_DIRTY;
751}
752
753/*
754 * This call is used to indicate that the buffer contains on-disk inodes which
755 * must be handled specially during recovery.  They require special handling
756 * because only the di_next_unlinked from the inodes in the buffer should be
757 * recovered.  The rest of the data in the buffer is logged via the inodes
758 * themselves.
759 *
760 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
761 * transferred to the buffer's log format structure so that we'll know what to
762 * do at recovery time.
763 */
764void
765xfs_trans_inode_buf(
766	xfs_trans_t	*tp,
767	xfs_buf_t	*bp)
768{
769	xfs_buf_log_item_t	*bip = bp->b_fspriv;
770
771	ASSERT(bp->b_transp == tp);
772	ASSERT(bip != NULL);
773	ASSERT(atomic_read(&bip->bli_refcount) > 0);
774
775	bip->bli_flags |= XFS_BLI_INODE_BUF;
 
776}
777
778/*
779 * This call is used to indicate that the buffer is going to
780 * be staled and was an inode buffer. This means it gets
781 * special processing during unpin - where any inodes 
782 * associated with the buffer should be removed from ail.
783 * There is also special processing during recovery,
784 * any replay of the inodes in the buffer needs to be
785 * prevented as the buffer may have been reused.
786 */
787void
788xfs_trans_stale_inode_buf(
789	xfs_trans_t	*tp,
790	xfs_buf_t	*bp)
791{
792	xfs_buf_log_item_t	*bip = bp->b_fspriv;
793
794	ASSERT(bp->b_transp == tp);
795	ASSERT(bip != NULL);
796	ASSERT(atomic_read(&bip->bli_refcount) > 0);
797
798	bip->bli_flags |= XFS_BLI_STALE_INODE;
799	bip->bli_item.li_cb = xfs_buf_iodone;
 
800}
801
802/*
803 * Mark the buffer as being one which contains newly allocated
804 * inodes.  We need to make sure that even if this buffer is
805 * relogged as an 'inode buf' we still recover all of the inode
806 * images in the face of a crash.  This works in coordination with
807 * xfs_buf_item_committed() to ensure that the buffer remains in the
808 * AIL at its original location even after it has been relogged.
809 */
810/* ARGSUSED */
811void
812xfs_trans_inode_alloc_buf(
813	xfs_trans_t	*tp,
814	xfs_buf_t	*bp)
815{
816	xfs_buf_log_item_t	*bip = bp->b_fspriv;
817
818	ASSERT(bp->b_transp == tp);
819	ASSERT(bip != NULL);
820	ASSERT(atomic_read(&bip->bli_refcount) > 0);
821
822	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823}
824
 
 
 
 
 
 
 
 
 
 
 
 
825
826/*
827 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
828 * dquots. However, unlike in inode buffer recovery, dquot buffers get
829 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
830 * The only thing that makes dquot buffers different from regular
831 * buffers is that we must not replay dquot bufs when recovering
832 * if a _corresponding_ quotaoff has happened. We also have to distinguish
833 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
834 * can be turned off independently.
835 */
836/* ARGSUSED */
837void
838xfs_trans_dquot_buf(
839	xfs_trans_t	*tp,
840	xfs_buf_t	*bp,
841	uint		type)
842{
843	xfs_buf_log_item_t	*bip = bp->b_fspriv;
844
845	ASSERT(bp->b_transp == tp);
846	ASSERT(bip != NULL);
847	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
848	       type == XFS_BLF_PDQUOT_BUF ||
849	       type == XFS_BLF_GDQUOT_BUF);
850	ASSERT(atomic_read(&bip->bli_refcount) > 0);
851
852	bip->bli_format.blf_flags |= type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853}