Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * linux/fs/jbd/revoke.c
  3 *
  4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5 *
  6 * Copyright 2000 Red Hat corp --- All Rights Reserved
  7 *
  8 * This file is part of the Linux kernel and is made available under
  9 * the terms of the GNU General Public License, version 2, or at your
 10 * option, any later version, incorporated herein by reference.
 11 *
 12 * Journal revoke routines for the generic filesystem journaling code;
 13 * part of the ext2fs journaling system.
 14 *
 15 * Revoke is the mechanism used to prevent old log records for deleted
 16 * metadata from being replayed on top of newer data using the same
 17 * blocks.  The revoke mechanism is used in two separate places:
 18 *
 19 * + Commit: during commit we write the entire list of the current
 20 *   transaction's revoked blocks to the journal
 21 *
 22 * + Recovery: during recovery we record the transaction ID of all
 23 *   revoked blocks.  If there are multiple revoke records in the log
 24 *   for a single block, only the last one counts, and if there is a log
 25 *   entry for a block beyond the last revoke, then that log entry still
 26 *   gets replayed.
 27 *
 28 * We can get interactions between revokes and new log data within a
 29 * single transaction:
 30 *
 31 * Block is revoked and then journaled:
 32 *   The desired end result is the journaling of the new block, so we
 33 *   cancel the revoke before the transaction commits.
 34 *
 35 * Block is journaled and then revoked:
 36 *   The revoke must take precedence over the write of the block, so we
 37 *   need either to cancel the journal entry or to write the revoke
 38 *   later in the log than the log block.  In this case, we choose the
 39 *   latter: journaling a block cancels any revoke record for that block
 40 *   in the current transaction, so any revoke for that block in the
 41 *   transaction must have happened after the block was journaled and so
 42 *   the revoke must take precedence.
 43 *
 44 * Block is revoked and then written as data:
 45 *   The data write is allowed to succeed, but the revoke is _not_
 46 *   cancelled.  We still need to prevent old log records from
 47 *   overwriting the new data.  We don't even need to clear the revoke
 48 *   bit here.
 49 *
 50 * We cache revoke status of a buffer in the current transaction in b_states
 51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 52 * status of a buffer is valid and we can rely on the cached status.
 53 *
 54 * Revoke information on buffers is a tri-state value:
 55 *
 56 * RevokeValid clear:	no cached revoke status, need to look it up
 57 * RevokeValid set, Revoked clear:
 58 *			buffer has not been revoked, and cancel_revoke
 59 *			need do nothing.
 60 * RevokeValid set, Revoked set:
 61 *			buffer has been revoked.
 62 *
 63 * Locking rules:
 64 * We keep two hash tables of revoke records. One hashtable belongs to the
 65 * running transaction (is pointed to by journal->j_revoke), the other one
 66 * belongs to the committing transaction. Accesses to the second hash table
 67 * happen only from the kjournald and no other thread touches this table.  Also
 68 * journal_switch_revoke_table() which switches which hashtable belongs to the
 69 * running and which to the committing transaction is called only from
 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 71 * to the committing transaction.
 72 *
 73 * All users operating on the hash table belonging to the running transaction
 74 * have a handle to the transaction. Therefore they are safe from kjournald
 75 * switching hash tables under them. For operations on the lists of entries in
 76 * the hash table j_revoke_lock is used.
 77 *
 78 * Finally, also replay code uses the hash tables but at this moment no one else
 79 * can touch them (filesystem isn't mounted yet) and hence no locking is
 80 * needed.
 81 */
 82
 83#ifndef __KERNEL__
 84#include "jfs_user.h"
 85#else
 86#include <linux/time.h>
 87#include <linux/fs.h>
 88#include <linux/jbd.h>
 89#include <linux/errno.h>
 90#include <linux/slab.h>
 91#include <linux/list.h>
 92#include <linux/init.h>
 93#include <linux/bio.h>
 94#endif
 95#include <linux/log2.h>
 96
 97static struct kmem_cache *revoke_record_cache;
 98static struct kmem_cache *revoke_table_cache;
 99
100/* Each revoke record represents one single revoked block.  During
101   journal replay, this involves recording the transaction ID of the
102   last transaction to revoke this block. */
103
104struct jbd_revoke_record_s
105{
106	struct list_head  hash;
107	tid_t		  sequence;	/* Used for recovery only */
108	unsigned int	  blocknr;
109};
110
111
112/* The revoke table is just a simple hash table of revoke records. */
113struct jbd_revoke_table_s
114{
115	/* It is conceivable that we might want a larger hash table
116	 * for recovery.  Must be a power of two. */
117	int		  hash_size;
118	int		  hash_shift;
119	struct list_head *hash_table;
120};
121
122
123#ifdef __KERNEL__
124static void write_one_revoke_record(journal_t *, transaction_t *,
125				    struct journal_head **, int *,
126				    struct jbd_revoke_record_s *, int);
127static void flush_descriptor(journal_t *, struct journal_head *, int, int);
128#endif
129
130/* Utility functions to maintain the revoke table */
131
132/* Borrowed from buffer.c: this is a tried and tested block hash function */
133static inline int hash(journal_t *journal, unsigned int block)
134{
135	struct jbd_revoke_table_s *table = journal->j_revoke;
136	int hash_shift = table->hash_shift;
137
138	return ((block << (hash_shift - 6)) ^
139		(block >> 13) ^
140		(block << (hash_shift - 12))) & (table->hash_size - 1);
141}
142
143static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
144			      tid_t seq)
145{
146	struct list_head *hash_list;
147	struct jbd_revoke_record_s *record;
148
149repeat:
150	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
151	if (!record)
152		goto oom;
153
154	record->sequence = seq;
155	record->blocknr = blocknr;
156	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
157	spin_lock(&journal->j_revoke_lock);
158	list_add(&record->hash, hash_list);
159	spin_unlock(&journal->j_revoke_lock);
160	return 0;
161
162oom:
163	if (!journal_oom_retry)
164		return -ENOMEM;
165	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
166	yield();
167	goto repeat;
168}
169
170/* Find a revoke record in the journal's hash table. */
171
172static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
173						      unsigned int blocknr)
174{
175	struct list_head *hash_list;
176	struct jbd_revoke_record_s *record;
177
178	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
179
180	spin_lock(&journal->j_revoke_lock);
181	record = (struct jbd_revoke_record_s *) hash_list->next;
182	while (&(record->hash) != hash_list) {
183		if (record->blocknr == blocknr) {
184			spin_unlock(&journal->j_revoke_lock);
185			return record;
186		}
187		record = (struct jbd_revoke_record_s *) record->hash.next;
188	}
189	spin_unlock(&journal->j_revoke_lock);
190	return NULL;
191}
192
193void journal_destroy_revoke_caches(void)
194{
195	if (revoke_record_cache) {
196		kmem_cache_destroy(revoke_record_cache);
197		revoke_record_cache = NULL;
198	}
199	if (revoke_table_cache) {
200		kmem_cache_destroy(revoke_table_cache);
201		revoke_table_cache = NULL;
202	}
203}
204
205int __init journal_init_revoke_caches(void)
206{
207	J_ASSERT(!revoke_record_cache);
208	J_ASSERT(!revoke_table_cache);
209
210	revoke_record_cache = kmem_cache_create("revoke_record",
211					   sizeof(struct jbd_revoke_record_s),
212					   0,
213					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
214					   NULL);
215	if (!revoke_record_cache)
216		goto record_cache_failure;
217
218	revoke_table_cache = kmem_cache_create("revoke_table",
219					   sizeof(struct jbd_revoke_table_s),
220					   0, SLAB_TEMPORARY, NULL);
221	if (!revoke_table_cache)
222		goto table_cache_failure;
223
224	return 0;
225
226table_cache_failure:
227	journal_destroy_revoke_caches();
228record_cache_failure:
229	return -ENOMEM;
230}
231
232static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
233{
234	int shift = 0;
235	int tmp = hash_size;
236	struct jbd_revoke_table_s *table;
237
238	table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
239	if (!table)
240		goto out;
241
242	while((tmp >>= 1UL) != 0UL)
243		shift++;
244
245	table->hash_size = hash_size;
246	table->hash_shift = shift;
247	table->hash_table =
248		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
249	if (!table->hash_table) {
250		kmem_cache_free(revoke_table_cache, table);
251		table = NULL;
252		goto out;
253	}
254
255	for (tmp = 0; tmp < hash_size; tmp++)
256		INIT_LIST_HEAD(&table->hash_table[tmp]);
257
258out:
259	return table;
260}
261
262static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
263{
264	int i;
265	struct list_head *hash_list;
266
267	for (i = 0; i < table->hash_size; i++) {
268		hash_list = &table->hash_table[i];
269		J_ASSERT(list_empty(hash_list));
270	}
271
272	kfree(table->hash_table);
273	kmem_cache_free(revoke_table_cache, table);
274}
275
276/* Initialise the revoke table for a given journal to a given size. */
277int journal_init_revoke(journal_t *journal, int hash_size)
278{
279	J_ASSERT(journal->j_revoke_table[0] == NULL);
280	J_ASSERT(is_power_of_2(hash_size));
281
282	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
283	if (!journal->j_revoke_table[0])
284		goto fail0;
285
286	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
287	if (!journal->j_revoke_table[1])
288		goto fail1;
289
290	journal->j_revoke = journal->j_revoke_table[1];
291
292	spin_lock_init(&journal->j_revoke_lock);
293
294	return 0;
295
296fail1:
297	journal_destroy_revoke_table(journal->j_revoke_table[0]);
298fail0:
299	return -ENOMEM;
300}
301
302/* Destroy a journal's revoke table.  The table must already be empty! */
303void journal_destroy_revoke(journal_t *journal)
304{
305	journal->j_revoke = NULL;
306	if (journal->j_revoke_table[0])
307		journal_destroy_revoke_table(journal->j_revoke_table[0]);
308	if (journal->j_revoke_table[1])
309		journal_destroy_revoke_table(journal->j_revoke_table[1]);
310}
311
312
313#ifdef __KERNEL__
314
315/*
316 * journal_revoke: revoke a given buffer_head from the journal.  This
317 * prevents the block from being replayed during recovery if we take a
318 * crash after this current transaction commits.  Any subsequent
319 * metadata writes of the buffer in this transaction cancel the
320 * revoke.
321 *
322 * Note that this call may block --- it is up to the caller to make
323 * sure that there are no further calls to journal_write_metadata
324 * before the revoke is complete.  In ext3, this implies calling the
325 * revoke before clearing the block bitmap when we are deleting
326 * metadata.
327 *
328 * Revoke performs a journal_forget on any buffer_head passed in as a
329 * parameter, but does _not_ forget the buffer_head if the bh was only
330 * found implicitly.
331 *
332 * bh_in may not be a journalled buffer - it may have come off
333 * the hash tables without an attached journal_head.
334 *
335 * If bh_in is non-zero, journal_revoke() will decrement its b_count
336 * by one.
337 */
338
339int journal_revoke(handle_t *handle, unsigned int blocknr,
340		   struct buffer_head *bh_in)
341{
342	struct buffer_head *bh = NULL;
343	journal_t *journal;
344	struct block_device *bdev;
345	int err;
346
347	might_sleep();
348	if (bh_in)
349		BUFFER_TRACE(bh_in, "enter");
350
351	journal = handle->h_transaction->t_journal;
352	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
353		J_ASSERT (!"Cannot set revoke feature!");
354		return -EINVAL;
355	}
356
357	bdev = journal->j_fs_dev;
358	bh = bh_in;
359
360	if (!bh) {
361		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
362		if (bh)
363			BUFFER_TRACE(bh, "found on hash");
364	}
365#ifdef JBD_EXPENSIVE_CHECKING
366	else {
367		struct buffer_head *bh2;
368
369		/* If there is a different buffer_head lying around in
370		 * memory anywhere... */
371		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
372		if (bh2) {
373			/* ... and it has RevokeValid status... */
374			if (bh2 != bh && buffer_revokevalid(bh2))
375				/* ...then it better be revoked too,
376				 * since it's illegal to create a revoke
377				 * record against a buffer_head which is
378				 * not marked revoked --- that would
379				 * risk missing a subsequent revoke
380				 * cancel. */
381				J_ASSERT_BH(bh2, buffer_revoked(bh2));
382			put_bh(bh2);
383		}
384	}
385#endif
386
387	/* We really ought not ever to revoke twice in a row without
388           first having the revoke cancelled: it's illegal to free a
389           block twice without allocating it in between! */
390	if (bh) {
391		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
392				 "inconsistent data on disk")) {
393			if (!bh_in)
394				brelse(bh);
395			return -EIO;
396		}
397		set_buffer_revoked(bh);
398		set_buffer_revokevalid(bh);
399		if (bh_in) {
400			BUFFER_TRACE(bh_in, "call journal_forget");
401			journal_forget(handle, bh_in);
402		} else {
403			BUFFER_TRACE(bh, "call brelse");
404			__brelse(bh);
405		}
406	}
407
408	jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
409	err = insert_revoke_hash(journal, blocknr,
410				handle->h_transaction->t_tid);
411	BUFFER_TRACE(bh_in, "exit");
412	return err;
413}
414
415/*
416 * Cancel an outstanding revoke.  For use only internally by the
417 * journaling code (called from journal_get_write_access).
418 *
419 * We trust buffer_revoked() on the buffer if the buffer is already
420 * being journaled: if there is no revoke pending on the buffer, then we
421 * don't do anything here.
422 *
423 * This would break if it were possible for a buffer to be revoked and
424 * discarded, and then reallocated within the same transaction.  In such
425 * a case we would have lost the revoked bit, but when we arrived here
426 * the second time we would still have a pending revoke to cancel.  So,
427 * do not trust the Revoked bit on buffers unless RevokeValid is also
428 * set.
429 */
430int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
431{
432	struct jbd_revoke_record_s *record;
433	journal_t *journal = handle->h_transaction->t_journal;
434	int need_cancel;
435	int did_revoke = 0;	/* akpm: debug */
436	struct buffer_head *bh = jh2bh(jh);
437
438	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
439
440	/* Is the existing Revoke bit valid?  If so, we trust it, and
441	 * only perform the full cancel if the revoke bit is set.  If
442	 * not, we can't trust the revoke bit, and we need to do the
443	 * full search for a revoke record. */
444	if (test_set_buffer_revokevalid(bh)) {
445		need_cancel = test_clear_buffer_revoked(bh);
446	} else {
447		need_cancel = 1;
448		clear_buffer_revoked(bh);
449	}
450
451	if (need_cancel) {
452		record = find_revoke_record(journal, bh->b_blocknr);
453		if (record) {
454			jbd_debug(4, "cancelled existing revoke on "
455				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
456			spin_lock(&journal->j_revoke_lock);
457			list_del(&record->hash);
458			spin_unlock(&journal->j_revoke_lock);
459			kmem_cache_free(revoke_record_cache, record);
460			did_revoke = 1;
461		}
462	}
463
464#ifdef JBD_EXPENSIVE_CHECKING
465	/* There better not be one left behind by now! */
466	record = find_revoke_record(journal, bh->b_blocknr);
467	J_ASSERT_JH(jh, record == NULL);
468#endif
469
470	/* Finally, have we just cleared revoke on an unhashed
471	 * buffer_head?  If so, we'd better make sure we clear the
472	 * revoked status on any hashed alias too, otherwise the revoke
473	 * state machine will get very upset later on. */
474	if (need_cancel) {
475		struct buffer_head *bh2;
476		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
477		if (bh2) {
478			if (bh2 != bh)
479				clear_buffer_revoked(bh2);
480			__brelse(bh2);
481		}
482	}
483	return did_revoke;
484}
485
486/*
487 * journal_clear_revoked_flags clears revoked flag of buffers in
488 * revoke table to reflect there is no revoked buffer in the next
489 * transaction which is going to be started.
490 */
491void journal_clear_buffer_revoked_flags(journal_t *journal)
492{
493	struct jbd_revoke_table_s *revoke = journal->j_revoke;
494	int i = 0;
495
496	for (i = 0; i < revoke->hash_size; i++) {
497		struct list_head *hash_list;
498		struct list_head *list_entry;
499		hash_list = &revoke->hash_table[i];
500
501		list_for_each(list_entry, hash_list) {
502			struct jbd_revoke_record_s *record;
503			struct buffer_head *bh;
504			record = (struct jbd_revoke_record_s *)list_entry;
505			bh = __find_get_block(journal->j_fs_dev,
506					      record->blocknr,
507					      journal->j_blocksize);
508			if (bh) {
509				clear_buffer_revoked(bh);
510				__brelse(bh);
511			}
512		}
513	}
514}
515
516/* journal_switch_revoke table select j_revoke for next transaction
517 * we do not want to suspend any processing until all revokes are
518 * written -bzzz
519 */
520void journal_switch_revoke_table(journal_t *journal)
521{
522	int i;
523
524	if (journal->j_revoke == journal->j_revoke_table[0])
525		journal->j_revoke = journal->j_revoke_table[1];
526	else
527		journal->j_revoke = journal->j_revoke_table[0];
528
529	for (i = 0; i < journal->j_revoke->hash_size; i++)
530		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
531}
532
533/*
534 * Write revoke records to the journal for all entries in the current
535 * revoke hash, deleting the entries as we go.
536 */
537void journal_write_revoke_records(journal_t *journal,
538				  transaction_t *transaction, int write_op)
539{
540	struct journal_head *descriptor;
541	struct jbd_revoke_record_s *record;
542	struct jbd_revoke_table_s *revoke;
543	struct list_head *hash_list;
544	int i, offset, count;
545
546	descriptor = NULL;
547	offset = 0;
548	count = 0;
549
550	/* select revoke table for committing transaction */
551	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
552		journal->j_revoke_table[1] : journal->j_revoke_table[0];
553
554	for (i = 0; i < revoke->hash_size; i++) {
555		hash_list = &revoke->hash_table[i];
556
557		while (!list_empty(hash_list)) {
558			record = (struct jbd_revoke_record_s *)
559				hash_list->next;
560			write_one_revoke_record(journal, transaction,
561						&descriptor, &offset,
562						record, write_op);
563			count++;
564			list_del(&record->hash);
565			kmem_cache_free(revoke_record_cache, record);
566		}
567	}
568	if (descriptor)
569		flush_descriptor(journal, descriptor, offset, write_op);
570	jbd_debug(1, "Wrote %d revoke records\n", count);
571}
572
573/*
574 * Write out one revoke record.  We need to create a new descriptor
575 * block if the old one is full or if we have not already created one.
576 */
577
578static void write_one_revoke_record(journal_t *journal,
579				    transaction_t *transaction,
580				    struct journal_head **descriptorp,
581				    int *offsetp,
582				    struct jbd_revoke_record_s *record,
583				    int write_op)
584{
585	struct journal_head *descriptor;
586	int offset;
587	journal_header_t *header;
588
589	/* If we are already aborting, this all becomes a noop.  We
590           still need to go round the loop in
591           journal_write_revoke_records in order to free all of the
592           revoke records: only the IO to the journal is omitted. */
593	if (is_journal_aborted(journal))
594		return;
595
596	descriptor = *descriptorp;
597	offset = *offsetp;
598
599	/* Make sure we have a descriptor with space left for the record */
600	if (descriptor) {
601		if (offset == journal->j_blocksize) {
602			flush_descriptor(journal, descriptor, offset, write_op);
603			descriptor = NULL;
604		}
605	}
606
607	if (!descriptor) {
608		descriptor = journal_get_descriptor_buffer(journal);
609		if (!descriptor)
610			return;
611		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
612		header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
613		header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
614		header->h_sequence  = cpu_to_be32(transaction->t_tid);
615
616		/* Record it so that we can wait for IO completion later */
617		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
618		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
619
620		offset = sizeof(journal_revoke_header_t);
621		*descriptorp = descriptor;
622	}
623
624	* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
625		cpu_to_be32(record->blocknr);
626	offset += 4;
627	*offsetp = offset;
628}
629
630/*
631 * Flush a revoke descriptor out to the journal.  If we are aborting,
632 * this is a noop; otherwise we are generating a buffer which needs to
633 * be waited for during commit, so it has to go onto the appropriate
634 * journal buffer list.
635 */
636
637static void flush_descriptor(journal_t *journal,
638			     struct journal_head *descriptor,
639			     int offset, int write_op)
640{
641	journal_revoke_header_t *header;
642	struct buffer_head *bh = jh2bh(descriptor);
643
644	if (is_journal_aborted(journal)) {
645		put_bh(bh);
646		return;
647	}
648
649	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
650	header->r_count = cpu_to_be32(offset);
651	set_buffer_jwrite(bh);
652	BUFFER_TRACE(bh, "write");
653	set_buffer_dirty(bh);
654	write_dirty_buffer(bh, write_op);
655}
656#endif
657
658/*
659 * Revoke support for recovery.
660 *
661 * Recovery needs to be able to:
662 *
663 *  record all revoke records, including the tid of the latest instance
664 *  of each revoke in the journal
665 *
666 *  check whether a given block in a given transaction should be replayed
667 *  (ie. has not been revoked by a revoke record in that or a subsequent
668 *  transaction)
669 *
670 *  empty the revoke table after recovery.
671 */
672
673/*
674 * First, setting revoke records.  We create a new revoke record for
675 * every block ever revoked in the log as we scan it for recovery, and
676 * we update the existing records if we find multiple revokes for a
677 * single block.
678 */
679
680int journal_set_revoke(journal_t *journal,
681		       unsigned int blocknr,
682		       tid_t sequence)
683{
684	struct jbd_revoke_record_s *record;
685
686	record = find_revoke_record(journal, blocknr);
687	if (record) {
688		/* If we have multiple occurrences, only record the
689		 * latest sequence number in the hashed record */
690		if (tid_gt(sequence, record->sequence))
691			record->sequence = sequence;
692		return 0;
693	}
694	return insert_revoke_hash(journal, blocknr, sequence);
695}
696
697/*
698 * Test revoke records.  For a given block referenced in the log, has
699 * that block been revoked?  A revoke record with a given transaction
700 * sequence number revokes all blocks in that transaction and earlier
701 * ones, but later transactions still need replayed.
702 */
703
704int journal_test_revoke(journal_t *journal,
705			unsigned int blocknr,
706			tid_t sequence)
707{
708	struct jbd_revoke_record_s *record;
709
710	record = find_revoke_record(journal, blocknr);
711	if (!record)
712		return 0;
713	if (tid_gt(sequence, record->sequence))
714		return 0;
715	return 1;
716}
717
718/*
719 * Finally, once recovery is over, we need to clear the revoke table so
720 * that it can be reused by the running filesystem.
721 */
722
723void journal_clear_revoke(journal_t *journal)
724{
725	int i;
726	struct list_head *hash_list;
727	struct jbd_revoke_record_s *record;
728	struct jbd_revoke_table_s *revoke;
729
730	revoke = journal->j_revoke;
731
732	for (i = 0; i < revoke->hash_size; i++) {
733		hash_list = &revoke->hash_table[i];
734		while (!list_empty(hash_list)) {
735			record = (struct jbd_revoke_record_s*) hash_list->next;
736			list_del(&record->hash);
737			kmem_cache_free(revoke_record_cache, record);
738		}
739	}
740}
v3.1
  1/*
  2 * linux/fs/jbd/revoke.c
  3 *
  4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5 *
  6 * Copyright 2000 Red Hat corp --- All Rights Reserved
  7 *
  8 * This file is part of the Linux kernel and is made available under
  9 * the terms of the GNU General Public License, version 2, or at your
 10 * option, any later version, incorporated herein by reference.
 11 *
 12 * Journal revoke routines for the generic filesystem journaling code;
 13 * part of the ext2fs journaling system.
 14 *
 15 * Revoke is the mechanism used to prevent old log records for deleted
 16 * metadata from being replayed on top of newer data using the same
 17 * blocks.  The revoke mechanism is used in two separate places:
 18 *
 19 * + Commit: during commit we write the entire list of the current
 20 *   transaction's revoked blocks to the journal
 21 *
 22 * + Recovery: during recovery we record the transaction ID of all
 23 *   revoked blocks.  If there are multiple revoke records in the log
 24 *   for a single block, only the last one counts, and if there is a log
 25 *   entry for a block beyond the last revoke, then that log entry still
 26 *   gets replayed.
 27 *
 28 * We can get interactions between revokes and new log data within a
 29 * single transaction:
 30 *
 31 * Block is revoked and then journaled:
 32 *   The desired end result is the journaling of the new block, so we
 33 *   cancel the revoke before the transaction commits.
 34 *
 35 * Block is journaled and then revoked:
 36 *   The revoke must take precedence over the write of the block, so we
 37 *   need either to cancel the journal entry or to write the revoke
 38 *   later in the log than the log block.  In this case, we choose the
 39 *   latter: journaling a block cancels any revoke record for that block
 40 *   in the current transaction, so any revoke for that block in the
 41 *   transaction must have happened after the block was journaled and so
 42 *   the revoke must take precedence.
 43 *
 44 * Block is revoked and then written as data:
 45 *   The data write is allowed to succeed, but the revoke is _not_
 46 *   cancelled.  We still need to prevent old log records from
 47 *   overwriting the new data.  We don't even need to clear the revoke
 48 *   bit here.
 49 *
 
 
 
 
 50 * Revoke information on buffers is a tri-state value:
 51 *
 52 * RevokeValid clear:	no cached revoke status, need to look it up
 53 * RevokeValid set, Revoked clear:
 54 *			buffer has not been revoked, and cancel_revoke
 55 *			need do nothing.
 56 * RevokeValid set, Revoked set:
 57 *			buffer has been revoked.
 58 *
 59 * Locking rules:
 60 * We keep two hash tables of revoke records. One hashtable belongs to the
 61 * running transaction (is pointed to by journal->j_revoke), the other one
 62 * belongs to the committing transaction. Accesses to the second hash table
 63 * happen only from the kjournald and no other thread touches this table.  Also
 64 * journal_switch_revoke_table() which switches which hashtable belongs to the
 65 * running and which to the committing transaction is called only from
 66 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 67 * to the committing transaction.
 68 *
 69 * All users operating on the hash table belonging to the running transaction
 70 * have a handle to the transaction. Therefore they are safe from kjournald
 71 * switching hash tables under them. For operations on the lists of entries in
 72 * the hash table j_revoke_lock is used.
 73 *
 74 * Finally, also replay code uses the hash tables but at this moment no one else
 75 * can touch them (filesystem isn't mounted yet) and hence no locking is
 76 * needed.
 77 */
 78
 79#ifndef __KERNEL__
 80#include "jfs_user.h"
 81#else
 82#include <linux/time.h>
 83#include <linux/fs.h>
 84#include <linux/jbd.h>
 85#include <linux/errno.h>
 86#include <linux/slab.h>
 87#include <linux/list.h>
 88#include <linux/init.h>
 89#include <linux/bio.h>
 90#endif
 91#include <linux/log2.h>
 92
 93static struct kmem_cache *revoke_record_cache;
 94static struct kmem_cache *revoke_table_cache;
 95
 96/* Each revoke record represents one single revoked block.  During
 97   journal replay, this involves recording the transaction ID of the
 98   last transaction to revoke this block. */
 99
100struct jbd_revoke_record_s
101{
102	struct list_head  hash;
103	tid_t		  sequence;	/* Used for recovery only */
104	unsigned int	  blocknr;
105};
106
107
108/* The revoke table is just a simple hash table of revoke records. */
109struct jbd_revoke_table_s
110{
111	/* It is conceivable that we might want a larger hash table
112	 * for recovery.  Must be a power of two. */
113	int		  hash_size;
114	int		  hash_shift;
115	struct list_head *hash_table;
116};
117
118
119#ifdef __KERNEL__
120static void write_one_revoke_record(journal_t *, transaction_t *,
121				    struct journal_head **, int *,
122				    struct jbd_revoke_record_s *, int);
123static void flush_descriptor(journal_t *, struct journal_head *, int, int);
124#endif
125
126/* Utility functions to maintain the revoke table */
127
128/* Borrowed from buffer.c: this is a tried and tested block hash function */
129static inline int hash(journal_t *journal, unsigned int block)
130{
131	struct jbd_revoke_table_s *table = journal->j_revoke;
132	int hash_shift = table->hash_shift;
133
134	return ((block << (hash_shift - 6)) ^
135		(block >> 13) ^
136		(block << (hash_shift - 12))) & (table->hash_size - 1);
137}
138
139static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
140			      tid_t seq)
141{
142	struct list_head *hash_list;
143	struct jbd_revoke_record_s *record;
144
145repeat:
146	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
147	if (!record)
148		goto oom;
149
150	record->sequence = seq;
151	record->blocknr = blocknr;
152	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
153	spin_lock(&journal->j_revoke_lock);
154	list_add(&record->hash, hash_list);
155	spin_unlock(&journal->j_revoke_lock);
156	return 0;
157
158oom:
159	if (!journal_oom_retry)
160		return -ENOMEM;
161	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
162	yield();
163	goto repeat;
164}
165
166/* Find a revoke record in the journal's hash table. */
167
168static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
169						      unsigned int blocknr)
170{
171	struct list_head *hash_list;
172	struct jbd_revoke_record_s *record;
173
174	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
175
176	spin_lock(&journal->j_revoke_lock);
177	record = (struct jbd_revoke_record_s *) hash_list->next;
178	while (&(record->hash) != hash_list) {
179		if (record->blocknr == blocknr) {
180			spin_unlock(&journal->j_revoke_lock);
181			return record;
182		}
183		record = (struct jbd_revoke_record_s *) record->hash.next;
184	}
185	spin_unlock(&journal->j_revoke_lock);
186	return NULL;
187}
188
189void journal_destroy_revoke_caches(void)
190{
191	if (revoke_record_cache) {
192		kmem_cache_destroy(revoke_record_cache);
193		revoke_record_cache = NULL;
194	}
195	if (revoke_table_cache) {
196		kmem_cache_destroy(revoke_table_cache);
197		revoke_table_cache = NULL;
198	}
199}
200
201int __init journal_init_revoke_caches(void)
202{
203	J_ASSERT(!revoke_record_cache);
204	J_ASSERT(!revoke_table_cache);
205
206	revoke_record_cache = kmem_cache_create("revoke_record",
207					   sizeof(struct jbd_revoke_record_s),
208					   0,
209					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
210					   NULL);
211	if (!revoke_record_cache)
212		goto record_cache_failure;
213
214	revoke_table_cache = kmem_cache_create("revoke_table",
215					   sizeof(struct jbd_revoke_table_s),
216					   0, SLAB_TEMPORARY, NULL);
217	if (!revoke_table_cache)
218		goto table_cache_failure;
219
220	return 0;
221
222table_cache_failure:
223	journal_destroy_revoke_caches();
224record_cache_failure:
225	return -ENOMEM;
226}
227
228static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
229{
230	int shift = 0;
231	int tmp = hash_size;
232	struct jbd_revoke_table_s *table;
233
234	table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
235	if (!table)
236		goto out;
237
238	while((tmp >>= 1UL) != 0UL)
239		shift++;
240
241	table->hash_size = hash_size;
242	table->hash_shift = shift;
243	table->hash_table =
244		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
245	if (!table->hash_table) {
246		kmem_cache_free(revoke_table_cache, table);
247		table = NULL;
248		goto out;
249	}
250
251	for (tmp = 0; tmp < hash_size; tmp++)
252		INIT_LIST_HEAD(&table->hash_table[tmp]);
253
254out:
255	return table;
256}
257
258static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
259{
260	int i;
261	struct list_head *hash_list;
262
263	for (i = 0; i < table->hash_size; i++) {
264		hash_list = &table->hash_table[i];
265		J_ASSERT(list_empty(hash_list));
266	}
267
268	kfree(table->hash_table);
269	kmem_cache_free(revoke_table_cache, table);
270}
271
272/* Initialise the revoke table for a given journal to a given size. */
273int journal_init_revoke(journal_t *journal, int hash_size)
274{
275	J_ASSERT(journal->j_revoke_table[0] == NULL);
276	J_ASSERT(is_power_of_2(hash_size));
277
278	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
279	if (!journal->j_revoke_table[0])
280		goto fail0;
281
282	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
283	if (!journal->j_revoke_table[1])
284		goto fail1;
285
286	journal->j_revoke = journal->j_revoke_table[1];
287
288	spin_lock_init(&journal->j_revoke_lock);
289
290	return 0;
291
292fail1:
293	journal_destroy_revoke_table(journal->j_revoke_table[0]);
294fail0:
295	return -ENOMEM;
296}
297
298/* Destroy a journal's revoke table.  The table must already be empty! */
299void journal_destroy_revoke(journal_t *journal)
300{
301	journal->j_revoke = NULL;
302	if (journal->j_revoke_table[0])
303		journal_destroy_revoke_table(journal->j_revoke_table[0]);
304	if (journal->j_revoke_table[1])
305		journal_destroy_revoke_table(journal->j_revoke_table[1]);
306}
307
308
309#ifdef __KERNEL__
310
311/*
312 * journal_revoke: revoke a given buffer_head from the journal.  This
313 * prevents the block from being replayed during recovery if we take a
314 * crash after this current transaction commits.  Any subsequent
315 * metadata writes of the buffer in this transaction cancel the
316 * revoke.
317 *
318 * Note that this call may block --- it is up to the caller to make
319 * sure that there are no further calls to journal_write_metadata
320 * before the revoke is complete.  In ext3, this implies calling the
321 * revoke before clearing the block bitmap when we are deleting
322 * metadata.
323 *
324 * Revoke performs a journal_forget on any buffer_head passed in as a
325 * parameter, but does _not_ forget the buffer_head if the bh was only
326 * found implicitly.
327 *
328 * bh_in may not be a journalled buffer - it may have come off
329 * the hash tables without an attached journal_head.
330 *
331 * If bh_in is non-zero, journal_revoke() will decrement its b_count
332 * by one.
333 */
334
335int journal_revoke(handle_t *handle, unsigned int blocknr,
336		   struct buffer_head *bh_in)
337{
338	struct buffer_head *bh = NULL;
339	journal_t *journal;
340	struct block_device *bdev;
341	int err;
342
343	might_sleep();
344	if (bh_in)
345		BUFFER_TRACE(bh_in, "enter");
346
347	journal = handle->h_transaction->t_journal;
348	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
349		J_ASSERT (!"Cannot set revoke feature!");
350		return -EINVAL;
351	}
352
353	bdev = journal->j_fs_dev;
354	bh = bh_in;
355
356	if (!bh) {
357		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
358		if (bh)
359			BUFFER_TRACE(bh, "found on hash");
360	}
361#ifdef JBD_EXPENSIVE_CHECKING
362	else {
363		struct buffer_head *bh2;
364
365		/* If there is a different buffer_head lying around in
366		 * memory anywhere... */
367		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
368		if (bh2) {
369			/* ... and it has RevokeValid status... */
370			if (bh2 != bh && buffer_revokevalid(bh2))
371				/* ...then it better be revoked too,
372				 * since it's illegal to create a revoke
373				 * record against a buffer_head which is
374				 * not marked revoked --- that would
375				 * risk missing a subsequent revoke
376				 * cancel. */
377				J_ASSERT_BH(bh2, buffer_revoked(bh2));
378			put_bh(bh2);
379		}
380	}
381#endif
382
383	/* We really ought not ever to revoke twice in a row without
384           first having the revoke cancelled: it's illegal to free a
385           block twice without allocating it in between! */
386	if (bh) {
387		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
388				 "inconsistent data on disk")) {
389			if (!bh_in)
390				brelse(bh);
391			return -EIO;
392		}
393		set_buffer_revoked(bh);
394		set_buffer_revokevalid(bh);
395		if (bh_in) {
396			BUFFER_TRACE(bh_in, "call journal_forget");
397			journal_forget(handle, bh_in);
398		} else {
399			BUFFER_TRACE(bh, "call brelse");
400			__brelse(bh);
401		}
402	}
403
404	jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
405	err = insert_revoke_hash(journal, blocknr,
406				handle->h_transaction->t_tid);
407	BUFFER_TRACE(bh_in, "exit");
408	return err;
409}
410
411/*
412 * Cancel an outstanding revoke.  For use only internally by the
413 * journaling code (called from journal_get_write_access).
414 *
415 * We trust buffer_revoked() on the buffer if the buffer is already
416 * being journaled: if there is no revoke pending on the buffer, then we
417 * don't do anything here.
418 *
419 * This would break if it were possible for a buffer to be revoked and
420 * discarded, and then reallocated within the same transaction.  In such
421 * a case we would have lost the revoked bit, but when we arrived here
422 * the second time we would still have a pending revoke to cancel.  So,
423 * do not trust the Revoked bit on buffers unless RevokeValid is also
424 * set.
425 */
426int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
427{
428	struct jbd_revoke_record_s *record;
429	journal_t *journal = handle->h_transaction->t_journal;
430	int need_cancel;
431	int did_revoke = 0;	/* akpm: debug */
432	struct buffer_head *bh = jh2bh(jh);
433
434	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
435
436	/* Is the existing Revoke bit valid?  If so, we trust it, and
437	 * only perform the full cancel if the revoke bit is set.  If
438	 * not, we can't trust the revoke bit, and we need to do the
439	 * full search for a revoke record. */
440	if (test_set_buffer_revokevalid(bh)) {
441		need_cancel = test_clear_buffer_revoked(bh);
442	} else {
443		need_cancel = 1;
444		clear_buffer_revoked(bh);
445	}
446
447	if (need_cancel) {
448		record = find_revoke_record(journal, bh->b_blocknr);
449		if (record) {
450			jbd_debug(4, "cancelled existing revoke on "
451				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
452			spin_lock(&journal->j_revoke_lock);
453			list_del(&record->hash);
454			spin_unlock(&journal->j_revoke_lock);
455			kmem_cache_free(revoke_record_cache, record);
456			did_revoke = 1;
457		}
458	}
459
460#ifdef JBD_EXPENSIVE_CHECKING
461	/* There better not be one left behind by now! */
462	record = find_revoke_record(journal, bh->b_blocknr);
463	J_ASSERT_JH(jh, record == NULL);
464#endif
465
466	/* Finally, have we just cleared revoke on an unhashed
467	 * buffer_head?  If so, we'd better make sure we clear the
468	 * revoked status on any hashed alias too, otherwise the revoke
469	 * state machine will get very upset later on. */
470	if (need_cancel) {
471		struct buffer_head *bh2;
472		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
473		if (bh2) {
474			if (bh2 != bh)
475				clear_buffer_revoked(bh2);
476			__brelse(bh2);
477		}
478	}
479	return did_revoke;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480}
481
482/* journal_switch_revoke table select j_revoke for next transaction
483 * we do not want to suspend any processing until all revokes are
484 * written -bzzz
485 */
486void journal_switch_revoke_table(journal_t *journal)
487{
488	int i;
489
490	if (journal->j_revoke == journal->j_revoke_table[0])
491		journal->j_revoke = journal->j_revoke_table[1];
492	else
493		journal->j_revoke = journal->j_revoke_table[0];
494
495	for (i = 0; i < journal->j_revoke->hash_size; i++)
496		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
497}
498
499/*
500 * Write revoke records to the journal for all entries in the current
501 * revoke hash, deleting the entries as we go.
502 */
503void journal_write_revoke_records(journal_t *journal,
504				  transaction_t *transaction, int write_op)
505{
506	struct journal_head *descriptor;
507	struct jbd_revoke_record_s *record;
508	struct jbd_revoke_table_s *revoke;
509	struct list_head *hash_list;
510	int i, offset, count;
511
512	descriptor = NULL;
513	offset = 0;
514	count = 0;
515
516	/* select revoke table for committing transaction */
517	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
518		journal->j_revoke_table[1] : journal->j_revoke_table[0];
519
520	for (i = 0; i < revoke->hash_size; i++) {
521		hash_list = &revoke->hash_table[i];
522
523		while (!list_empty(hash_list)) {
524			record = (struct jbd_revoke_record_s *)
525				hash_list->next;
526			write_one_revoke_record(journal, transaction,
527						&descriptor, &offset,
528						record, write_op);
529			count++;
530			list_del(&record->hash);
531			kmem_cache_free(revoke_record_cache, record);
532		}
533	}
534	if (descriptor)
535		flush_descriptor(journal, descriptor, offset, write_op);
536	jbd_debug(1, "Wrote %d revoke records\n", count);
537}
538
539/*
540 * Write out one revoke record.  We need to create a new descriptor
541 * block if the old one is full or if we have not already created one.
542 */
543
544static void write_one_revoke_record(journal_t *journal,
545				    transaction_t *transaction,
546				    struct journal_head **descriptorp,
547				    int *offsetp,
548				    struct jbd_revoke_record_s *record,
549				    int write_op)
550{
551	struct journal_head *descriptor;
552	int offset;
553	journal_header_t *header;
554
555	/* If we are already aborting, this all becomes a noop.  We
556           still need to go round the loop in
557           journal_write_revoke_records in order to free all of the
558           revoke records: only the IO to the journal is omitted. */
559	if (is_journal_aborted(journal))
560		return;
561
562	descriptor = *descriptorp;
563	offset = *offsetp;
564
565	/* Make sure we have a descriptor with space left for the record */
566	if (descriptor) {
567		if (offset == journal->j_blocksize) {
568			flush_descriptor(journal, descriptor, offset, write_op);
569			descriptor = NULL;
570		}
571	}
572
573	if (!descriptor) {
574		descriptor = journal_get_descriptor_buffer(journal);
575		if (!descriptor)
576			return;
577		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
578		header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
579		header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
580		header->h_sequence  = cpu_to_be32(transaction->t_tid);
581
582		/* Record it so that we can wait for IO completion later */
583		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
584		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
585
586		offset = sizeof(journal_revoke_header_t);
587		*descriptorp = descriptor;
588	}
589
590	* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
591		cpu_to_be32(record->blocknr);
592	offset += 4;
593	*offsetp = offset;
594}
595
596/*
597 * Flush a revoke descriptor out to the journal.  If we are aborting,
598 * this is a noop; otherwise we are generating a buffer which needs to
599 * be waited for during commit, so it has to go onto the appropriate
600 * journal buffer list.
601 */
602
603static void flush_descriptor(journal_t *journal,
604			     struct journal_head *descriptor,
605			     int offset, int write_op)
606{
607	journal_revoke_header_t *header;
608	struct buffer_head *bh = jh2bh(descriptor);
609
610	if (is_journal_aborted(journal)) {
611		put_bh(bh);
612		return;
613	}
614
615	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
616	header->r_count = cpu_to_be32(offset);
617	set_buffer_jwrite(bh);
618	BUFFER_TRACE(bh, "write");
619	set_buffer_dirty(bh);
620	write_dirty_buffer(bh, write_op);
621}
622#endif
623
624/*
625 * Revoke support for recovery.
626 *
627 * Recovery needs to be able to:
628 *
629 *  record all revoke records, including the tid of the latest instance
630 *  of each revoke in the journal
631 *
632 *  check whether a given block in a given transaction should be replayed
633 *  (ie. has not been revoked by a revoke record in that or a subsequent
634 *  transaction)
635 *
636 *  empty the revoke table after recovery.
637 */
638
639/*
640 * First, setting revoke records.  We create a new revoke record for
641 * every block ever revoked in the log as we scan it for recovery, and
642 * we update the existing records if we find multiple revokes for a
643 * single block.
644 */
645
646int journal_set_revoke(journal_t *journal,
647		       unsigned int blocknr,
648		       tid_t sequence)
649{
650	struct jbd_revoke_record_s *record;
651
652	record = find_revoke_record(journal, blocknr);
653	if (record) {
654		/* If we have multiple occurrences, only record the
655		 * latest sequence number in the hashed record */
656		if (tid_gt(sequence, record->sequence))
657			record->sequence = sequence;
658		return 0;
659	}
660	return insert_revoke_hash(journal, blocknr, sequence);
661}
662
663/*
664 * Test revoke records.  For a given block referenced in the log, has
665 * that block been revoked?  A revoke record with a given transaction
666 * sequence number revokes all blocks in that transaction and earlier
667 * ones, but later transactions still need replayed.
668 */
669
670int journal_test_revoke(journal_t *journal,
671			unsigned int blocknr,
672			tid_t sequence)
673{
674	struct jbd_revoke_record_s *record;
675
676	record = find_revoke_record(journal, blocknr);
677	if (!record)
678		return 0;
679	if (tid_gt(sequence, record->sequence))
680		return 0;
681	return 1;
682}
683
684/*
685 * Finally, once recovery is over, we need to clear the revoke table so
686 * that it can be reused by the running filesystem.
687 */
688
689void journal_clear_revoke(journal_t *journal)
690{
691	int i;
692	struct list_head *hash_list;
693	struct jbd_revoke_record_s *record;
694	struct jbd_revoke_table_s *revoke;
695
696	revoke = journal->j_revoke;
697
698	for (i = 0; i < revoke->hash_size; i++) {
699		hash_list = &revoke->hash_table[i];
700		while (!list_empty(hash_list)) {
701			record = (struct jbd_revoke_record_s*) hash_list->next;
702			list_del(&record->hash);
703			kmem_cache_free(revoke_record_cache, record);
704		}
705	}
706}