Loading...
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, see <http://www.gnu.org/licenses/>.
32 *
33 *
34 *
35 * Your platform definition file should specify something like:
36 *
37 * static struct mcp251x_platform_data mcp251x_info = {
38 * .oscillator_frequency = 8000000,
39 * };
40 *
41 * static struct spi_board_info spi_board_info[] = {
42 * {
43 * .modalias = "mcp2510",
44 * // or "mcp2515" depending on your controller
45 * .platform_data = &mcp251x_info,
46 * .irq = IRQ_EINT13,
47 * .max_speed_hz = 2*1000*1000,
48 * .chip_select = 2,
49 * },
50 * };
51 *
52 * Please see mcp251x.h for a description of the fields in
53 * struct mcp251x_platform_data.
54 *
55 */
56
57#include <linux/can/core.h>
58#include <linux/can/dev.h>
59#include <linux/can/led.h>
60#include <linux/can/platform/mcp251x.h>
61#include <linux/clk.h>
62#include <linux/completion.h>
63#include <linux/delay.h>
64#include <linux/device.h>
65#include <linux/dma-mapping.h>
66#include <linux/freezer.h>
67#include <linux/interrupt.h>
68#include <linux/io.h>
69#include <linux/kernel.h>
70#include <linux/module.h>
71#include <linux/netdevice.h>
72#include <linux/of.h>
73#include <linux/of_device.h>
74#include <linux/platform_device.h>
75#include <linux/slab.h>
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
78#include <linux/regulator/consumer.h>
79
80/* SPI interface instruction set */
81#define INSTRUCTION_WRITE 0x02
82#define INSTRUCTION_READ 0x03
83#define INSTRUCTION_BIT_MODIFY 0x05
84#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
85#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
86#define INSTRUCTION_RESET 0xC0
87#define RTS_TXB0 0x01
88#define RTS_TXB1 0x02
89#define RTS_TXB2 0x04
90#define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
91
92
93/* MPC251x registers */
94#define CANSTAT 0x0e
95#define CANCTRL 0x0f
96# define CANCTRL_REQOP_MASK 0xe0
97# define CANCTRL_REQOP_CONF 0x80
98# define CANCTRL_REQOP_LISTEN_ONLY 0x60
99# define CANCTRL_REQOP_LOOPBACK 0x40
100# define CANCTRL_REQOP_SLEEP 0x20
101# define CANCTRL_REQOP_NORMAL 0x00
102# define CANCTRL_OSM 0x08
103# define CANCTRL_ABAT 0x10
104#define TEC 0x1c
105#define REC 0x1d
106#define CNF1 0x2a
107# define CNF1_SJW_SHIFT 6
108#define CNF2 0x29
109# define CNF2_BTLMODE 0x80
110# define CNF2_SAM 0x40
111# define CNF2_PS1_SHIFT 3
112#define CNF3 0x28
113# define CNF3_SOF 0x08
114# define CNF3_WAKFIL 0x04
115# define CNF3_PHSEG2_MASK 0x07
116#define CANINTE 0x2b
117# define CANINTE_MERRE 0x80
118# define CANINTE_WAKIE 0x40
119# define CANINTE_ERRIE 0x20
120# define CANINTE_TX2IE 0x10
121# define CANINTE_TX1IE 0x08
122# define CANINTE_TX0IE 0x04
123# define CANINTE_RX1IE 0x02
124# define CANINTE_RX0IE 0x01
125#define CANINTF 0x2c
126# define CANINTF_MERRF 0x80
127# define CANINTF_WAKIF 0x40
128# define CANINTF_ERRIF 0x20
129# define CANINTF_TX2IF 0x10
130# define CANINTF_TX1IF 0x08
131# define CANINTF_TX0IF 0x04
132# define CANINTF_RX1IF 0x02
133# define CANINTF_RX0IF 0x01
134# define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
135# define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
136# define CANINTF_ERR (CANINTF_ERRIF)
137#define EFLG 0x2d
138# define EFLG_EWARN 0x01
139# define EFLG_RXWAR 0x02
140# define EFLG_TXWAR 0x04
141# define EFLG_RXEP 0x08
142# define EFLG_TXEP 0x10
143# define EFLG_TXBO 0x20
144# define EFLG_RX0OVR 0x40
145# define EFLG_RX1OVR 0x80
146#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
147# define TXBCTRL_ABTF 0x40
148# define TXBCTRL_MLOA 0x20
149# define TXBCTRL_TXERR 0x10
150# define TXBCTRL_TXREQ 0x08
151#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
152# define SIDH_SHIFT 3
153#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
154# define SIDL_SID_MASK 7
155# define SIDL_SID_SHIFT 5
156# define SIDL_EXIDE_SHIFT 3
157# define SIDL_EID_SHIFT 16
158# define SIDL_EID_MASK 3
159#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
160#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
161#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
162# define DLC_RTR_SHIFT 6
163#define TXBCTRL_OFF 0
164#define TXBSIDH_OFF 1
165#define TXBSIDL_OFF 2
166#define TXBEID8_OFF 3
167#define TXBEID0_OFF 4
168#define TXBDLC_OFF 5
169#define TXBDAT_OFF 6
170#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
171# define RXBCTRL_BUKT 0x04
172# define RXBCTRL_RXM0 0x20
173# define RXBCTRL_RXM1 0x40
174#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
175# define RXBSIDH_SHIFT 3
176#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
177# define RXBSIDL_IDE 0x08
178# define RXBSIDL_SRR 0x10
179# define RXBSIDL_EID 3
180# define RXBSIDL_SHIFT 5
181#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
182#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
183#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
184# define RXBDLC_LEN_MASK 0x0f
185# define RXBDLC_RTR 0x40
186#define RXBCTRL_OFF 0
187#define RXBSIDH_OFF 1
188#define RXBSIDL_OFF 2
189#define RXBEID8_OFF 3
190#define RXBEID0_OFF 4
191#define RXBDLC_OFF 5
192#define RXBDAT_OFF 6
193#define RXFSIDH(n) ((n) * 4)
194#define RXFSIDL(n) ((n) * 4 + 1)
195#define RXFEID8(n) ((n) * 4 + 2)
196#define RXFEID0(n) ((n) * 4 + 3)
197#define RXMSIDH(n) ((n) * 4 + 0x20)
198#define RXMSIDL(n) ((n) * 4 + 0x21)
199#define RXMEID8(n) ((n) * 4 + 0x22)
200#define RXMEID0(n) ((n) * 4 + 0x23)
201
202#define GET_BYTE(val, byte) \
203 (((val) >> ((byte) * 8)) & 0xff)
204#define SET_BYTE(val, byte) \
205 (((val) & 0xff) << ((byte) * 8))
206
207/*
208 * Buffer size required for the largest SPI transfer (i.e., reading a
209 * frame)
210 */
211#define CAN_FRAME_MAX_DATA_LEN 8
212#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
213#define CAN_FRAME_MAX_BITS 128
214
215#define TX_ECHO_SKB_MAX 1
216
217#define DEVICE_NAME "mcp251x"
218
219static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
220module_param(mcp251x_enable_dma, int, S_IRUGO);
221MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
222
223static const struct can_bittiming_const mcp251x_bittiming_const = {
224 .name = DEVICE_NAME,
225 .tseg1_min = 3,
226 .tseg1_max = 16,
227 .tseg2_min = 2,
228 .tseg2_max = 8,
229 .sjw_max = 4,
230 .brp_min = 1,
231 .brp_max = 64,
232 .brp_inc = 1,
233};
234
235enum mcp251x_model {
236 CAN_MCP251X_MCP2510 = 0x2510,
237 CAN_MCP251X_MCP2515 = 0x2515,
238};
239
240struct mcp251x_priv {
241 struct can_priv can;
242 struct net_device *net;
243 struct spi_device *spi;
244 enum mcp251x_model model;
245
246 struct mutex mcp_lock; /* SPI device lock */
247
248 u8 *spi_tx_buf;
249 u8 *spi_rx_buf;
250 dma_addr_t spi_tx_dma;
251 dma_addr_t spi_rx_dma;
252
253 struct sk_buff *tx_skb;
254 int tx_len;
255
256 struct workqueue_struct *wq;
257 struct work_struct tx_work;
258 struct work_struct restart_work;
259
260 int force_quit;
261 int after_suspend;
262#define AFTER_SUSPEND_UP 1
263#define AFTER_SUSPEND_DOWN 2
264#define AFTER_SUSPEND_POWER 4
265#define AFTER_SUSPEND_RESTART 8
266 int restart_tx;
267 struct regulator *power;
268 struct regulator *transceiver;
269 struct clk *clk;
270};
271
272#define MCP251X_IS(_model) \
273static inline int mcp251x_is_##_model(struct spi_device *spi) \
274{ \
275 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
276 return priv->model == CAN_MCP251X_MCP##_model; \
277}
278
279MCP251X_IS(2510);
280MCP251X_IS(2515);
281
282static void mcp251x_clean(struct net_device *net)
283{
284 struct mcp251x_priv *priv = netdev_priv(net);
285
286 if (priv->tx_skb || priv->tx_len)
287 net->stats.tx_errors++;
288 if (priv->tx_skb)
289 dev_kfree_skb(priv->tx_skb);
290 if (priv->tx_len)
291 can_free_echo_skb(priv->net, 0);
292 priv->tx_skb = NULL;
293 priv->tx_len = 0;
294}
295
296/*
297 * Note about handling of error return of mcp251x_spi_trans: accessing
298 * registers via SPI is not really different conceptually than using
299 * normal I/O assembler instructions, although it's much more
300 * complicated from a practical POV. So it's not advisable to always
301 * check the return value of this function. Imagine that every
302 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
303 * error();", it would be a great mess (well there are some situation
304 * when exception handling C++ like could be useful after all). So we
305 * just check that transfers are OK at the beginning of our
306 * conversation with the chip and to avoid doing really nasty things
307 * (like injecting bogus packets in the network stack).
308 */
309static int mcp251x_spi_trans(struct spi_device *spi, int len)
310{
311 struct mcp251x_priv *priv = spi_get_drvdata(spi);
312 struct spi_transfer t = {
313 .tx_buf = priv->spi_tx_buf,
314 .rx_buf = priv->spi_rx_buf,
315 .len = len,
316 .cs_change = 0,
317 };
318 struct spi_message m;
319 int ret;
320
321 spi_message_init(&m);
322
323 if (mcp251x_enable_dma) {
324 t.tx_dma = priv->spi_tx_dma;
325 t.rx_dma = priv->spi_rx_dma;
326 m.is_dma_mapped = 1;
327 }
328
329 spi_message_add_tail(&t, &m);
330
331 ret = spi_sync(spi, &m);
332 if (ret)
333 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
334 return ret;
335}
336
337static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
338{
339 struct mcp251x_priv *priv = spi_get_drvdata(spi);
340 u8 val = 0;
341
342 priv->spi_tx_buf[0] = INSTRUCTION_READ;
343 priv->spi_tx_buf[1] = reg;
344
345 mcp251x_spi_trans(spi, 3);
346 val = priv->spi_rx_buf[2];
347
348 return val;
349}
350
351static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
352 uint8_t *v1, uint8_t *v2)
353{
354 struct mcp251x_priv *priv = spi_get_drvdata(spi);
355
356 priv->spi_tx_buf[0] = INSTRUCTION_READ;
357 priv->spi_tx_buf[1] = reg;
358
359 mcp251x_spi_trans(spi, 4);
360
361 *v1 = priv->spi_rx_buf[2];
362 *v2 = priv->spi_rx_buf[3];
363}
364
365static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
366{
367 struct mcp251x_priv *priv = spi_get_drvdata(spi);
368
369 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
370 priv->spi_tx_buf[1] = reg;
371 priv->spi_tx_buf[2] = val;
372
373 mcp251x_spi_trans(spi, 3);
374}
375
376static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
377 u8 mask, uint8_t val)
378{
379 struct mcp251x_priv *priv = spi_get_drvdata(spi);
380
381 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
382 priv->spi_tx_buf[1] = reg;
383 priv->spi_tx_buf[2] = mask;
384 priv->spi_tx_buf[3] = val;
385
386 mcp251x_spi_trans(spi, 4);
387}
388
389static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
390 int len, int tx_buf_idx)
391{
392 struct mcp251x_priv *priv = spi_get_drvdata(spi);
393
394 if (mcp251x_is_2510(spi)) {
395 int i;
396
397 for (i = 1; i < TXBDAT_OFF + len; i++)
398 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
399 buf[i]);
400 } else {
401 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
402 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
403 }
404}
405
406static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
407 int tx_buf_idx)
408{
409 struct mcp251x_priv *priv = spi_get_drvdata(spi);
410 u32 sid, eid, exide, rtr;
411 u8 buf[SPI_TRANSFER_BUF_LEN];
412
413 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
414 if (exide)
415 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
416 else
417 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
418 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
419 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
420
421 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
422 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
423 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
424 (exide << SIDL_EXIDE_SHIFT) |
425 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
426 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
427 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
428 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
429 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
430 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
431
432 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
433 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
434 mcp251x_spi_trans(priv->spi, 1);
435}
436
437static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
438 int buf_idx)
439{
440 struct mcp251x_priv *priv = spi_get_drvdata(spi);
441
442 if (mcp251x_is_2510(spi)) {
443 int i, len;
444
445 for (i = 1; i < RXBDAT_OFF; i++)
446 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
447
448 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
449 for (; i < (RXBDAT_OFF + len); i++)
450 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
451 } else {
452 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
453 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
454 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
455 }
456}
457
458static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
459{
460 struct mcp251x_priv *priv = spi_get_drvdata(spi);
461 struct sk_buff *skb;
462 struct can_frame *frame;
463 u8 buf[SPI_TRANSFER_BUF_LEN];
464
465 skb = alloc_can_skb(priv->net, &frame);
466 if (!skb) {
467 dev_err(&spi->dev, "cannot allocate RX skb\n");
468 priv->net->stats.rx_dropped++;
469 return;
470 }
471
472 mcp251x_hw_rx_frame(spi, buf, buf_idx);
473 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
474 /* Extended ID format */
475 frame->can_id = CAN_EFF_FLAG;
476 frame->can_id |=
477 /* Extended ID part */
478 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
479 SET_BYTE(buf[RXBEID8_OFF], 1) |
480 SET_BYTE(buf[RXBEID0_OFF], 0) |
481 /* Standard ID part */
482 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
483 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
484 /* Remote transmission request */
485 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
486 frame->can_id |= CAN_RTR_FLAG;
487 } else {
488 /* Standard ID format */
489 frame->can_id =
490 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
491 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
492 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
493 frame->can_id |= CAN_RTR_FLAG;
494 }
495 /* Data length */
496 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
497 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
498
499 priv->net->stats.rx_packets++;
500 priv->net->stats.rx_bytes += frame->can_dlc;
501
502 can_led_event(priv->net, CAN_LED_EVENT_RX);
503
504 netif_rx_ni(skb);
505}
506
507static void mcp251x_hw_sleep(struct spi_device *spi)
508{
509 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
510}
511
512static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
513 struct net_device *net)
514{
515 struct mcp251x_priv *priv = netdev_priv(net);
516 struct spi_device *spi = priv->spi;
517
518 if (priv->tx_skb || priv->tx_len) {
519 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
520 return NETDEV_TX_BUSY;
521 }
522
523 if (can_dropped_invalid_skb(net, skb))
524 return NETDEV_TX_OK;
525
526 netif_stop_queue(net);
527 priv->tx_skb = skb;
528 queue_work(priv->wq, &priv->tx_work);
529
530 return NETDEV_TX_OK;
531}
532
533static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
534{
535 struct mcp251x_priv *priv = netdev_priv(net);
536
537 switch (mode) {
538 case CAN_MODE_START:
539 mcp251x_clean(net);
540 /* We have to delay work since SPI I/O may sleep */
541 priv->can.state = CAN_STATE_ERROR_ACTIVE;
542 priv->restart_tx = 1;
543 if (priv->can.restart_ms == 0)
544 priv->after_suspend = AFTER_SUSPEND_RESTART;
545 queue_work(priv->wq, &priv->restart_work);
546 break;
547 default:
548 return -EOPNOTSUPP;
549 }
550
551 return 0;
552}
553
554static int mcp251x_set_normal_mode(struct spi_device *spi)
555{
556 struct mcp251x_priv *priv = spi_get_drvdata(spi);
557 unsigned long timeout;
558
559 /* Enable interrupts */
560 mcp251x_write_reg(spi, CANINTE,
561 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
562 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
563
564 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
565 /* Put device into loopback mode */
566 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
567 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
568 /* Put device into listen-only mode */
569 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
570 } else {
571 /* Put device into normal mode */
572 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
573
574 /* Wait for the device to enter normal mode */
575 timeout = jiffies + HZ;
576 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
577 schedule();
578 if (time_after(jiffies, timeout)) {
579 dev_err(&spi->dev, "MCP251x didn't"
580 " enter in normal mode\n");
581 return -EBUSY;
582 }
583 }
584 }
585 priv->can.state = CAN_STATE_ERROR_ACTIVE;
586 return 0;
587}
588
589static int mcp251x_do_set_bittiming(struct net_device *net)
590{
591 struct mcp251x_priv *priv = netdev_priv(net);
592 struct can_bittiming *bt = &priv->can.bittiming;
593 struct spi_device *spi = priv->spi;
594
595 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
596 (bt->brp - 1));
597 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
598 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
599 CNF2_SAM : 0) |
600 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
601 (bt->prop_seg - 1));
602 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
603 (bt->phase_seg2 - 1));
604 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
605 mcp251x_read_reg(spi, CNF1),
606 mcp251x_read_reg(spi, CNF2),
607 mcp251x_read_reg(spi, CNF3));
608
609 return 0;
610}
611
612static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
613 struct spi_device *spi)
614{
615 mcp251x_do_set_bittiming(net);
616
617 mcp251x_write_reg(spi, RXBCTRL(0),
618 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
619 mcp251x_write_reg(spi, RXBCTRL(1),
620 RXBCTRL_RXM0 | RXBCTRL_RXM1);
621 return 0;
622}
623
624static int mcp251x_hw_reset(struct spi_device *spi)
625{
626 struct mcp251x_priv *priv = spi_get_drvdata(spi);
627 int ret;
628 unsigned long timeout;
629
630 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
631 ret = spi_write(spi, priv->spi_tx_buf, 1);
632 if (ret) {
633 dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
634 return -EIO;
635 }
636
637 /* Wait for reset to finish */
638 timeout = jiffies + HZ;
639 mdelay(10);
640 while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
641 != CANCTRL_REQOP_CONF) {
642 schedule();
643 if (time_after(jiffies, timeout)) {
644 dev_err(&spi->dev, "MCP251x didn't"
645 " enter in conf mode after reset\n");
646 return -EBUSY;
647 }
648 }
649 return 0;
650}
651
652static int mcp251x_hw_probe(struct spi_device *spi)
653{
654 int st1, st2;
655
656 mcp251x_hw_reset(spi);
657
658 /*
659 * Please note that these are "magic values" based on after
660 * reset defaults taken from data sheet which allows us to see
661 * if we really have a chip on the bus (we avoid common all
662 * zeroes or all ones situations)
663 */
664 st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
665 st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
666
667 dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
668
669 /* Check for power up default values */
670 return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
671}
672
673static int mcp251x_power_enable(struct regulator *reg, int enable)
674{
675 if (IS_ERR_OR_NULL(reg))
676 return 0;
677
678 if (enable)
679 return regulator_enable(reg);
680 else
681 return regulator_disable(reg);
682}
683
684static void mcp251x_open_clean(struct net_device *net)
685{
686 struct mcp251x_priv *priv = netdev_priv(net);
687 struct spi_device *spi = priv->spi;
688
689 free_irq(spi->irq, priv);
690 mcp251x_hw_sleep(spi);
691 mcp251x_power_enable(priv->transceiver, 0);
692 close_candev(net);
693}
694
695static int mcp251x_stop(struct net_device *net)
696{
697 struct mcp251x_priv *priv = netdev_priv(net);
698 struct spi_device *spi = priv->spi;
699
700 close_candev(net);
701
702 priv->force_quit = 1;
703 free_irq(spi->irq, priv);
704 destroy_workqueue(priv->wq);
705 priv->wq = NULL;
706
707 mutex_lock(&priv->mcp_lock);
708
709 /* Disable and clear pending interrupts */
710 mcp251x_write_reg(spi, CANINTE, 0x00);
711 mcp251x_write_reg(spi, CANINTF, 0x00);
712
713 mcp251x_write_reg(spi, TXBCTRL(0), 0);
714 mcp251x_clean(net);
715
716 mcp251x_hw_sleep(spi);
717
718 mcp251x_power_enable(priv->transceiver, 0);
719
720 priv->can.state = CAN_STATE_STOPPED;
721
722 mutex_unlock(&priv->mcp_lock);
723
724 can_led_event(net, CAN_LED_EVENT_STOP);
725
726 return 0;
727}
728
729static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
730{
731 struct sk_buff *skb;
732 struct can_frame *frame;
733
734 skb = alloc_can_err_skb(net, &frame);
735 if (skb) {
736 frame->can_id |= can_id;
737 frame->data[1] = data1;
738 netif_rx_ni(skb);
739 } else {
740 netdev_err(net, "cannot allocate error skb\n");
741 }
742}
743
744static void mcp251x_tx_work_handler(struct work_struct *ws)
745{
746 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
747 tx_work);
748 struct spi_device *spi = priv->spi;
749 struct net_device *net = priv->net;
750 struct can_frame *frame;
751
752 mutex_lock(&priv->mcp_lock);
753 if (priv->tx_skb) {
754 if (priv->can.state == CAN_STATE_BUS_OFF) {
755 mcp251x_clean(net);
756 } else {
757 frame = (struct can_frame *)priv->tx_skb->data;
758
759 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
760 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
761 mcp251x_hw_tx(spi, frame, 0);
762 priv->tx_len = 1 + frame->can_dlc;
763 can_put_echo_skb(priv->tx_skb, net, 0);
764 priv->tx_skb = NULL;
765 }
766 }
767 mutex_unlock(&priv->mcp_lock);
768}
769
770static void mcp251x_restart_work_handler(struct work_struct *ws)
771{
772 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
773 restart_work);
774 struct spi_device *spi = priv->spi;
775 struct net_device *net = priv->net;
776
777 mutex_lock(&priv->mcp_lock);
778 if (priv->after_suspend) {
779 mdelay(10);
780 mcp251x_hw_reset(spi);
781 mcp251x_setup(net, priv, spi);
782 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
783 mcp251x_set_normal_mode(spi);
784 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
785 netif_device_attach(net);
786 mcp251x_clean(net);
787 mcp251x_set_normal_mode(spi);
788 netif_wake_queue(net);
789 } else {
790 mcp251x_hw_sleep(spi);
791 }
792 priv->after_suspend = 0;
793 priv->force_quit = 0;
794 }
795
796 if (priv->restart_tx) {
797 priv->restart_tx = 0;
798 mcp251x_write_reg(spi, TXBCTRL(0), 0);
799 mcp251x_clean(net);
800 netif_wake_queue(net);
801 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
802 }
803 mutex_unlock(&priv->mcp_lock);
804}
805
806static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
807{
808 struct mcp251x_priv *priv = dev_id;
809 struct spi_device *spi = priv->spi;
810 struct net_device *net = priv->net;
811
812 mutex_lock(&priv->mcp_lock);
813 while (!priv->force_quit) {
814 enum can_state new_state;
815 u8 intf, eflag;
816 u8 clear_intf = 0;
817 int can_id = 0, data1 = 0;
818
819 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
820
821 /* mask out flags we don't care about */
822 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
823
824 /* receive buffer 0 */
825 if (intf & CANINTF_RX0IF) {
826 mcp251x_hw_rx(spi, 0);
827 /*
828 * Free one buffer ASAP
829 * (The MCP2515 does this automatically.)
830 */
831 if (mcp251x_is_2510(spi))
832 mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
833 }
834
835 /* receive buffer 1 */
836 if (intf & CANINTF_RX1IF) {
837 mcp251x_hw_rx(spi, 1);
838 /* the MCP2515 does this automatically */
839 if (mcp251x_is_2510(spi))
840 clear_intf |= CANINTF_RX1IF;
841 }
842
843 /* any error or tx interrupt we need to clear? */
844 if (intf & (CANINTF_ERR | CANINTF_TX))
845 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
846 if (clear_intf)
847 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
848
849 if (eflag)
850 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
851
852 /* Update can state */
853 if (eflag & EFLG_TXBO) {
854 new_state = CAN_STATE_BUS_OFF;
855 can_id |= CAN_ERR_BUSOFF;
856 } else if (eflag & EFLG_TXEP) {
857 new_state = CAN_STATE_ERROR_PASSIVE;
858 can_id |= CAN_ERR_CRTL;
859 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
860 } else if (eflag & EFLG_RXEP) {
861 new_state = CAN_STATE_ERROR_PASSIVE;
862 can_id |= CAN_ERR_CRTL;
863 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
864 } else if (eflag & EFLG_TXWAR) {
865 new_state = CAN_STATE_ERROR_WARNING;
866 can_id |= CAN_ERR_CRTL;
867 data1 |= CAN_ERR_CRTL_TX_WARNING;
868 } else if (eflag & EFLG_RXWAR) {
869 new_state = CAN_STATE_ERROR_WARNING;
870 can_id |= CAN_ERR_CRTL;
871 data1 |= CAN_ERR_CRTL_RX_WARNING;
872 } else {
873 new_state = CAN_STATE_ERROR_ACTIVE;
874 }
875
876 /* Update can state statistics */
877 switch (priv->can.state) {
878 case CAN_STATE_ERROR_ACTIVE:
879 if (new_state >= CAN_STATE_ERROR_WARNING &&
880 new_state <= CAN_STATE_BUS_OFF)
881 priv->can.can_stats.error_warning++;
882 case CAN_STATE_ERROR_WARNING: /* fallthrough */
883 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
884 new_state <= CAN_STATE_BUS_OFF)
885 priv->can.can_stats.error_passive++;
886 break;
887 default:
888 break;
889 }
890 priv->can.state = new_state;
891
892 if (intf & CANINTF_ERRIF) {
893 /* Handle overflow counters */
894 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
895 if (eflag & EFLG_RX0OVR) {
896 net->stats.rx_over_errors++;
897 net->stats.rx_errors++;
898 }
899 if (eflag & EFLG_RX1OVR) {
900 net->stats.rx_over_errors++;
901 net->stats.rx_errors++;
902 }
903 can_id |= CAN_ERR_CRTL;
904 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
905 }
906 mcp251x_error_skb(net, can_id, data1);
907 }
908
909 if (priv->can.state == CAN_STATE_BUS_OFF) {
910 if (priv->can.restart_ms == 0) {
911 priv->force_quit = 1;
912 can_bus_off(net);
913 mcp251x_hw_sleep(spi);
914 break;
915 }
916 }
917
918 if (intf == 0)
919 break;
920
921 if (intf & CANINTF_TX) {
922 net->stats.tx_packets++;
923 net->stats.tx_bytes += priv->tx_len - 1;
924 can_led_event(net, CAN_LED_EVENT_TX);
925 if (priv->tx_len) {
926 can_get_echo_skb(net, 0);
927 priv->tx_len = 0;
928 }
929 netif_wake_queue(net);
930 }
931
932 }
933 mutex_unlock(&priv->mcp_lock);
934 return IRQ_HANDLED;
935}
936
937static int mcp251x_open(struct net_device *net)
938{
939 struct mcp251x_priv *priv = netdev_priv(net);
940 struct spi_device *spi = priv->spi;
941 unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
942 int ret;
943
944 ret = open_candev(net);
945 if (ret) {
946 dev_err(&spi->dev, "unable to set initial baudrate!\n");
947 return ret;
948 }
949
950 mutex_lock(&priv->mcp_lock);
951 mcp251x_power_enable(priv->transceiver, 1);
952
953 priv->force_quit = 0;
954 priv->tx_skb = NULL;
955 priv->tx_len = 0;
956
957 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
958 flags, DEVICE_NAME, priv);
959 if (ret) {
960 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
961 mcp251x_power_enable(priv->transceiver, 0);
962 close_candev(net);
963 goto open_unlock;
964 }
965
966 priv->wq = create_freezable_workqueue("mcp251x_wq");
967 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
968 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
969
970 ret = mcp251x_hw_reset(spi);
971 if (ret) {
972 mcp251x_open_clean(net);
973 goto open_unlock;
974 }
975 ret = mcp251x_setup(net, priv, spi);
976 if (ret) {
977 mcp251x_open_clean(net);
978 goto open_unlock;
979 }
980 ret = mcp251x_set_normal_mode(spi);
981 if (ret) {
982 mcp251x_open_clean(net);
983 goto open_unlock;
984 }
985
986 can_led_event(net, CAN_LED_EVENT_OPEN);
987
988 netif_wake_queue(net);
989
990open_unlock:
991 mutex_unlock(&priv->mcp_lock);
992 return ret;
993}
994
995static const struct net_device_ops mcp251x_netdev_ops = {
996 .ndo_open = mcp251x_open,
997 .ndo_stop = mcp251x_stop,
998 .ndo_start_xmit = mcp251x_hard_start_xmit,
999 .ndo_change_mtu = can_change_mtu,
1000};
1001
1002static const struct of_device_id mcp251x_of_match[] = {
1003 {
1004 .compatible = "microchip,mcp2510",
1005 .data = (void *)CAN_MCP251X_MCP2510,
1006 },
1007 {
1008 .compatible = "microchip,mcp2515",
1009 .data = (void *)CAN_MCP251X_MCP2515,
1010 },
1011 { }
1012};
1013MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1014
1015static const struct spi_device_id mcp251x_id_table[] = {
1016 {
1017 .name = "mcp2510",
1018 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1019 },
1020 {
1021 .name = "mcp2515",
1022 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1023 },
1024 { }
1025};
1026MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1027
1028static int mcp251x_can_probe(struct spi_device *spi)
1029{
1030 const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1031 &spi->dev);
1032 struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1033 struct net_device *net;
1034 struct mcp251x_priv *priv;
1035 int freq, ret = -ENODEV;
1036 struct clk *clk;
1037
1038 clk = devm_clk_get(&spi->dev, NULL);
1039 if (IS_ERR(clk)) {
1040 if (pdata)
1041 freq = pdata->oscillator_frequency;
1042 else
1043 return PTR_ERR(clk);
1044 } else {
1045 freq = clk_get_rate(clk);
1046 }
1047
1048 /* Sanity check */
1049 if (freq < 1000000 || freq > 25000000)
1050 return -ERANGE;
1051
1052 /* Allocate can/net device */
1053 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1054 if (!net)
1055 return -ENOMEM;
1056
1057 if (!IS_ERR(clk)) {
1058 ret = clk_prepare_enable(clk);
1059 if (ret)
1060 goto out_free;
1061 }
1062
1063 net->netdev_ops = &mcp251x_netdev_ops;
1064 net->flags |= IFF_ECHO;
1065
1066 priv = netdev_priv(net);
1067 priv->can.bittiming_const = &mcp251x_bittiming_const;
1068 priv->can.do_set_mode = mcp251x_do_set_mode;
1069 priv->can.clock.freq = freq / 2;
1070 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1071 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1072 if (of_id)
1073 priv->model = (enum mcp251x_model)of_id->data;
1074 else
1075 priv->model = spi_get_device_id(spi)->driver_data;
1076 priv->net = net;
1077 priv->clk = clk;
1078
1079 priv->power = devm_regulator_get(&spi->dev, "vdd");
1080 priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
1081 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1082 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1083 ret = -EPROBE_DEFER;
1084 goto out_clk;
1085 }
1086
1087 ret = mcp251x_power_enable(priv->power, 1);
1088 if (ret)
1089 goto out_clk;
1090
1091 spi_set_drvdata(spi, priv);
1092
1093 priv->spi = spi;
1094 mutex_init(&priv->mcp_lock);
1095
1096 /* If requested, allocate DMA buffers */
1097 if (mcp251x_enable_dma) {
1098 spi->dev.coherent_dma_mask = ~0;
1099
1100 /*
1101 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1102 * that much and share it between Tx and Rx DMA buffers.
1103 */
1104 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1105 PAGE_SIZE,
1106 &priv->spi_tx_dma,
1107 GFP_DMA);
1108
1109 if (priv->spi_tx_buf) {
1110 priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1111 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1112 (PAGE_SIZE / 2));
1113 } else {
1114 /* Fall back to non-DMA */
1115 mcp251x_enable_dma = 0;
1116 }
1117 }
1118
1119 /* Allocate non-DMA buffers */
1120 if (!mcp251x_enable_dma) {
1121 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1122 GFP_KERNEL);
1123 if (!priv->spi_tx_buf) {
1124 ret = -ENOMEM;
1125 goto error_probe;
1126 }
1127 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1128 GFP_KERNEL);
1129 if (!priv->spi_rx_buf) {
1130 ret = -ENOMEM;
1131 goto error_probe;
1132 }
1133 }
1134
1135 SET_NETDEV_DEV(net, &spi->dev);
1136
1137 /* Configure the SPI bus */
1138 spi->mode = spi->mode ? : SPI_MODE_0;
1139 if (mcp251x_is_2510(spi))
1140 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1141 else
1142 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1143 spi->bits_per_word = 8;
1144 spi_setup(spi);
1145
1146 /* Here is OK to not lock the MCP, no one knows about it yet */
1147 if (!mcp251x_hw_probe(spi)) {
1148 ret = -ENODEV;
1149 goto error_probe;
1150 }
1151 mcp251x_hw_sleep(spi);
1152
1153 ret = register_candev(net);
1154 if (ret)
1155 goto error_probe;
1156
1157 devm_can_led_init(net);
1158
1159 return ret;
1160
1161error_probe:
1162 if (mcp251x_enable_dma)
1163 dma_free_coherent(&spi->dev, PAGE_SIZE,
1164 priv->spi_tx_buf, priv->spi_tx_dma);
1165 mcp251x_power_enable(priv->power, 0);
1166
1167out_clk:
1168 if (!IS_ERR(clk))
1169 clk_disable_unprepare(clk);
1170
1171out_free:
1172 free_candev(net);
1173
1174 return ret;
1175}
1176
1177static int mcp251x_can_remove(struct spi_device *spi)
1178{
1179 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1180 struct net_device *net = priv->net;
1181
1182 unregister_candev(net);
1183
1184 if (mcp251x_enable_dma) {
1185 dma_free_coherent(&spi->dev, PAGE_SIZE,
1186 priv->spi_tx_buf, priv->spi_tx_dma);
1187 }
1188
1189 mcp251x_power_enable(priv->power, 0);
1190
1191 if (!IS_ERR(priv->clk))
1192 clk_disable_unprepare(priv->clk);
1193
1194 free_candev(net);
1195
1196 return 0;
1197}
1198
1199static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1200{
1201 struct spi_device *spi = to_spi_device(dev);
1202 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1203 struct net_device *net = priv->net;
1204
1205 priv->force_quit = 1;
1206 disable_irq(spi->irq);
1207 /*
1208 * Note: at this point neither IST nor workqueues are running.
1209 * open/stop cannot be called anyway so locking is not needed
1210 */
1211 if (netif_running(net)) {
1212 netif_device_detach(net);
1213
1214 mcp251x_hw_sleep(spi);
1215 mcp251x_power_enable(priv->transceiver, 0);
1216 priv->after_suspend = AFTER_SUSPEND_UP;
1217 } else {
1218 priv->after_suspend = AFTER_SUSPEND_DOWN;
1219 }
1220
1221 if (!IS_ERR_OR_NULL(priv->power)) {
1222 regulator_disable(priv->power);
1223 priv->after_suspend |= AFTER_SUSPEND_POWER;
1224 }
1225
1226 return 0;
1227}
1228
1229static int __maybe_unused mcp251x_can_resume(struct device *dev)
1230{
1231 struct spi_device *spi = to_spi_device(dev);
1232 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1233
1234 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1235 mcp251x_power_enable(priv->power, 1);
1236 queue_work(priv->wq, &priv->restart_work);
1237 } else {
1238 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1239 mcp251x_power_enable(priv->transceiver, 1);
1240 queue_work(priv->wq, &priv->restart_work);
1241 } else {
1242 priv->after_suspend = 0;
1243 }
1244 }
1245 priv->force_quit = 0;
1246 enable_irq(spi->irq);
1247 return 0;
1248}
1249
1250static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1251 mcp251x_can_resume);
1252
1253static struct spi_driver mcp251x_can_driver = {
1254 .driver = {
1255 .name = DEVICE_NAME,
1256 .owner = THIS_MODULE,
1257 .of_match_table = mcp251x_of_match,
1258 .pm = &mcp251x_can_pm_ops,
1259 },
1260 .id_table = mcp251x_id_table,
1261 .probe = mcp251x_can_probe,
1262 .remove = mcp251x_can_remove,
1263};
1264module_spi_driver(mcp251x_can_driver);
1265
1266MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1267 "Christian Pellegrin <chripell@evolware.org>");
1268MODULE_DESCRIPTION("Microchip 251x CAN driver");
1269MODULE_LICENSE("GPL v2");
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 *
34 *
35 *
36 * Your platform definition file should specify something like:
37 *
38 * static struct mcp251x_platform_data mcp251x_info = {
39 * .oscillator_frequency = 8000000,
40 * .board_specific_setup = &mcp251x_setup,
41 * .power_enable = mcp251x_power_enable,
42 * .transceiver_enable = NULL,
43 * };
44 *
45 * static struct spi_board_info spi_board_info[] = {
46 * {
47 * .modalias = "mcp2510",
48 * // or "mcp2515" depending on your controller
49 * .platform_data = &mcp251x_info,
50 * .irq = IRQ_EINT13,
51 * .max_speed_hz = 2*1000*1000,
52 * .chip_select = 2,
53 * },
54 * };
55 *
56 * Please see mcp251x.h for a description of the fields in
57 * struct mcp251x_platform_data.
58 *
59 */
60
61#include <linux/can/core.h>
62#include <linux/can/dev.h>
63#include <linux/can/platform/mcp251x.h>
64#include <linux/completion.h>
65#include <linux/delay.h>
66#include <linux/device.h>
67#include <linux/dma-mapping.h>
68#include <linux/freezer.h>
69#include <linux/interrupt.h>
70#include <linux/io.h>
71#include <linux/kernel.h>
72#include <linux/module.h>
73#include <linux/netdevice.h>
74#include <linux/platform_device.h>
75#include <linux/slab.h>
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
78
79/* SPI interface instruction set */
80#define INSTRUCTION_WRITE 0x02
81#define INSTRUCTION_READ 0x03
82#define INSTRUCTION_BIT_MODIFY 0x05
83#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
84#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
85#define INSTRUCTION_RESET 0xC0
86
87/* MPC251x registers */
88#define CANSTAT 0x0e
89#define CANCTRL 0x0f
90# define CANCTRL_REQOP_MASK 0xe0
91# define CANCTRL_REQOP_CONF 0x80
92# define CANCTRL_REQOP_LISTEN_ONLY 0x60
93# define CANCTRL_REQOP_LOOPBACK 0x40
94# define CANCTRL_REQOP_SLEEP 0x20
95# define CANCTRL_REQOP_NORMAL 0x00
96# define CANCTRL_OSM 0x08
97# define CANCTRL_ABAT 0x10
98#define TEC 0x1c
99#define REC 0x1d
100#define CNF1 0x2a
101# define CNF1_SJW_SHIFT 6
102#define CNF2 0x29
103# define CNF2_BTLMODE 0x80
104# define CNF2_SAM 0x40
105# define CNF2_PS1_SHIFT 3
106#define CNF3 0x28
107# define CNF3_SOF 0x08
108# define CNF3_WAKFIL 0x04
109# define CNF3_PHSEG2_MASK 0x07
110#define CANINTE 0x2b
111# define CANINTE_MERRE 0x80
112# define CANINTE_WAKIE 0x40
113# define CANINTE_ERRIE 0x20
114# define CANINTE_TX2IE 0x10
115# define CANINTE_TX1IE 0x08
116# define CANINTE_TX0IE 0x04
117# define CANINTE_RX1IE 0x02
118# define CANINTE_RX0IE 0x01
119#define CANINTF 0x2c
120# define CANINTF_MERRF 0x80
121# define CANINTF_WAKIF 0x40
122# define CANINTF_ERRIF 0x20
123# define CANINTF_TX2IF 0x10
124# define CANINTF_TX1IF 0x08
125# define CANINTF_TX0IF 0x04
126# define CANINTF_RX1IF 0x02
127# define CANINTF_RX0IF 0x01
128# define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
129# define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
130# define CANINTF_ERR (CANINTF_ERRIF)
131#define EFLG 0x2d
132# define EFLG_EWARN 0x01
133# define EFLG_RXWAR 0x02
134# define EFLG_TXWAR 0x04
135# define EFLG_RXEP 0x08
136# define EFLG_TXEP 0x10
137# define EFLG_TXBO 0x20
138# define EFLG_RX0OVR 0x40
139# define EFLG_RX1OVR 0x80
140#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
141# define TXBCTRL_ABTF 0x40
142# define TXBCTRL_MLOA 0x20
143# define TXBCTRL_TXERR 0x10
144# define TXBCTRL_TXREQ 0x08
145#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
146# define SIDH_SHIFT 3
147#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
148# define SIDL_SID_MASK 7
149# define SIDL_SID_SHIFT 5
150# define SIDL_EXIDE_SHIFT 3
151# define SIDL_EID_SHIFT 16
152# define SIDL_EID_MASK 3
153#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
154#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
155#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
156# define DLC_RTR_SHIFT 6
157#define TXBCTRL_OFF 0
158#define TXBSIDH_OFF 1
159#define TXBSIDL_OFF 2
160#define TXBEID8_OFF 3
161#define TXBEID0_OFF 4
162#define TXBDLC_OFF 5
163#define TXBDAT_OFF 6
164#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
165# define RXBCTRL_BUKT 0x04
166# define RXBCTRL_RXM0 0x20
167# define RXBCTRL_RXM1 0x40
168#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
169# define RXBSIDH_SHIFT 3
170#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
171# define RXBSIDL_IDE 0x08
172# define RXBSIDL_SRR 0x10
173# define RXBSIDL_EID 3
174# define RXBSIDL_SHIFT 5
175#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
176#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
177#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
178# define RXBDLC_LEN_MASK 0x0f
179# define RXBDLC_RTR 0x40
180#define RXBCTRL_OFF 0
181#define RXBSIDH_OFF 1
182#define RXBSIDL_OFF 2
183#define RXBEID8_OFF 3
184#define RXBEID0_OFF 4
185#define RXBDLC_OFF 5
186#define RXBDAT_OFF 6
187#define RXFSIDH(n) ((n) * 4)
188#define RXFSIDL(n) ((n) * 4 + 1)
189#define RXFEID8(n) ((n) * 4 + 2)
190#define RXFEID0(n) ((n) * 4 + 3)
191#define RXMSIDH(n) ((n) * 4 + 0x20)
192#define RXMSIDL(n) ((n) * 4 + 0x21)
193#define RXMEID8(n) ((n) * 4 + 0x22)
194#define RXMEID0(n) ((n) * 4 + 0x23)
195
196#define GET_BYTE(val, byte) \
197 (((val) >> ((byte) * 8)) & 0xff)
198#define SET_BYTE(val, byte) \
199 (((val) & 0xff) << ((byte) * 8))
200
201/*
202 * Buffer size required for the largest SPI transfer (i.e., reading a
203 * frame)
204 */
205#define CAN_FRAME_MAX_DATA_LEN 8
206#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
207#define CAN_FRAME_MAX_BITS 128
208
209#define TX_ECHO_SKB_MAX 1
210
211#define DEVICE_NAME "mcp251x"
212
213static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
214module_param(mcp251x_enable_dma, int, S_IRUGO);
215MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
216
217static struct can_bittiming_const mcp251x_bittiming_const = {
218 .name = DEVICE_NAME,
219 .tseg1_min = 3,
220 .tseg1_max = 16,
221 .tseg2_min = 2,
222 .tseg2_max = 8,
223 .sjw_max = 4,
224 .brp_min = 1,
225 .brp_max = 64,
226 .brp_inc = 1,
227};
228
229enum mcp251x_model {
230 CAN_MCP251X_MCP2510 = 0x2510,
231 CAN_MCP251X_MCP2515 = 0x2515,
232};
233
234struct mcp251x_priv {
235 struct can_priv can;
236 struct net_device *net;
237 struct spi_device *spi;
238 enum mcp251x_model model;
239
240 struct mutex mcp_lock; /* SPI device lock */
241
242 u8 *spi_tx_buf;
243 u8 *spi_rx_buf;
244 dma_addr_t spi_tx_dma;
245 dma_addr_t spi_rx_dma;
246
247 struct sk_buff *tx_skb;
248 int tx_len;
249
250 struct workqueue_struct *wq;
251 struct work_struct tx_work;
252 struct work_struct restart_work;
253
254 int force_quit;
255 int after_suspend;
256#define AFTER_SUSPEND_UP 1
257#define AFTER_SUSPEND_DOWN 2
258#define AFTER_SUSPEND_POWER 4
259#define AFTER_SUSPEND_RESTART 8
260 int restart_tx;
261};
262
263#define MCP251X_IS(_model) \
264static inline int mcp251x_is_##_model(struct spi_device *spi) \
265{ \
266 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
267 return priv->model == CAN_MCP251X_MCP##_model; \
268}
269
270MCP251X_IS(2510);
271MCP251X_IS(2515);
272
273static void mcp251x_clean(struct net_device *net)
274{
275 struct mcp251x_priv *priv = netdev_priv(net);
276
277 if (priv->tx_skb || priv->tx_len)
278 net->stats.tx_errors++;
279 if (priv->tx_skb)
280 dev_kfree_skb(priv->tx_skb);
281 if (priv->tx_len)
282 can_free_echo_skb(priv->net, 0);
283 priv->tx_skb = NULL;
284 priv->tx_len = 0;
285}
286
287/*
288 * Note about handling of error return of mcp251x_spi_trans: accessing
289 * registers via SPI is not really different conceptually than using
290 * normal I/O assembler instructions, although it's much more
291 * complicated from a practical POV. So it's not advisable to always
292 * check the return value of this function. Imagine that every
293 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
294 * error();", it would be a great mess (well there are some situation
295 * when exception handling C++ like could be useful after all). So we
296 * just check that transfers are OK at the beginning of our
297 * conversation with the chip and to avoid doing really nasty things
298 * (like injecting bogus packets in the network stack).
299 */
300static int mcp251x_spi_trans(struct spi_device *spi, int len)
301{
302 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
303 struct spi_transfer t = {
304 .tx_buf = priv->spi_tx_buf,
305 .rx_buf = priv->spi_rx_buf,
306 .len = len,
307 .cs_change = 0,
308 };
309 struct spi_message m;
310 int ret;
311
312 spi_message_init(&m);
313
314 if (mcp251x_enable_dma) {
315 t.tx_dma = priv->spi_tx_dma;
316 t.rx_dma = priv->spi_rx_dma;
317 m.is_dma_mapped = 1;
318 }
319
320 spi_message_add_tail(&t, &m);
321
322 ret = spi_sync(spi, &m);
323 if (ret)
324 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
325 return ret;
326}
327
328static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
329{
330 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
331 u8 val = 0;
332
333 priv->spi_tx_buf[0] = INSTRUCTION_READ;
334 priv->spi_tx_buf[1] = reg;
335
336 mcp251x_spi_trans(spi, 3);
337 val = priv->spi_rx_buf[2];
338
339 return val;
340}
341
342static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
343 uint8_t *v1, uint8_t *v2)
344{
345 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
346
347 priv->spi_tx_buf[0] = INSTRUCTION_READ;
348 priv->spi_tx_buf[1] = reg;
349
350 mcp251x_spi_trans(spi, 4);
351
352 *v1 = priv->spi_rx_buf[2];
353 *v2 = priv->spi_rx_buf[3];
354}
355
356static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
357{
358 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
359
360 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
361 priv->spi_tx_buf[1] = reg;
362 priv->spi_tx_buf[2] = val;
363
364 mcp251x_spi_trans(spi, 3);
365}
366
367static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
368 u8 mask, uint8_t val)
369{
370 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
371
372 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
373 priv->spi_tx_buf[1] = reg;
374 priv->spi_tx_buf[2] = mask;
375 priv->spi_tx_buf[3] = val;
376
377 mcp251x_spi_trans(spi, 4);
378}
379
380static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
381 int len, int tx_buf_idx)
382{
383 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
384
385 if (mcp251x_is_2510(spi)) {
386 int i;
387
388 for (i = 1; i < TXBDAT_OFF + len; i++)
389 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
390 buf[i]);
391 } else {
392 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
393 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
394 }
395}
396
397static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
398 int tx_buf_idx)
399{
400 u32 sid, eid, exide, rtr;
401 u8 buf[SPI_TRANSFER_BUF_LEN];
402
403 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
404 if (exide)
405 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
406 else
407 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
408 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
409 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
410
411 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
412 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
413 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
414 (exide << SIDL_EXIDE_SHIFT) |
415 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
416 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
417 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
418 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
419 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
420 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
421 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
422}
423
424static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
425 int buf_idx)
426{
427 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
428
429 if (mcp251x_is_2510(spi)) {
430 int i, len;
431
432 for (i = 1; i < RXBDAT_OFF; i++)
433 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
434
435 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
436 for (; i < (RXBDAT_OFF + len); i++)
437 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
438 } else {
439 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
440 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
441 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
442 }
443}
444
445static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
446{
447 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
448 struct sk_buff *skb;
449 struct can_frame *frame;
450 u8 buf[SPI_TRANSFER_BUF_LEN];
451
452 skb = alloc_can_skb(priv->net, &frame);
453 if (!skb) {
454 dev_err(&spi->dev, "cannot allocate RX skb\n");
455 priv->net->stats.rx_dropped++;
456 return;
457 }
458
459 mcp251x_hw_rx_frame(spi, buf, buf_idx);
460 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
461 /* Extended ID format */
462 frame->can_id = CAN_EFF_FLAG;
463 frame->can_id |=
464 /* Extended ID part */
465 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
466 SET_BYTE(buf[RXBEID8_OFF], 1) |
467 SET_BYTE(buf[RXBEID0_OFF], 0) |
468 /* Standard ID part */
469 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
470 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
471 /* Remote transmission request */
472 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
473 frame->can_id |= CAN_RTR_FLAG;
474 } else {
475 /* Standard ID format */
476 frame->can_id =
477 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
478 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
479 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
480 frame->can_id |= CAN_RTR_FLAG;
481 }
482 /* Data length */
483 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
484 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
485
486 priv->net->stats.rx_packets++;
487 priv->net->stats.rx_bytes += frame->can_dlc;
488 netif_rx_ni(skb);
489}
490
491static void mcp251x_hw_sleep(struct spi_device *spi)
492{
493 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
494}
495
496static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
497 struct net_device *net)
498{
499 struct mcp251x_priv *priv = netdev_priv(net);
500 struct spi_device *spi = priv->spi;
501
502 if (priv->tx_skb || priv->tx_len) {
503 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
504 return NETDEV_TX_BUSY;
505 }
506
507 if (can_dropped_invalid_skb(net, skb))
508 return NETDEV_TX_OK;
509
510 netif_stop_queue(net);
511 priv->tx_skb = skb;
512 queue_work(priv->wq, &priv->tx_work);
513
514 return NETDEV_TX_OK;
515}
516
517static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
518{
519 struct mcp251x_priv *priv = netdev_priv(net);
520
521 switch (mode) {
522 case CAN_MODE_START:
523 mcp251x_clean(net);
524 /* We have to delay work since SPI I/O may sleep */
525 priv->can.state = CAN_STATE_ERROR_ACTIVE;
526 priv->restart_tx = 1;
527 if (priv->can.restart_ms == 0)
528 priv->after_suspend = AFTER_SUSPEND_RESTART;
529 queue_work(priv->wq, &priv->restart_work);
530 break;
531 default:
532 return -EOPNOTSUPP;
533 }
534
535 return 0;
536}
537
538static int mcp251x_set_normal_mode(struct spi_device *spi)
539{
540 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
541 unsigned long timeout;
542
543 /* Enable interrupts */
544 mcp251x_write_reg(spi, CANINTE,
545 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
546 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
547
548 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
549 /* Put device into loopback mode */
550 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
551 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
552 /* Put device into listen-only mode */
553 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
554 } else {
555 /* Put device into normal mode */
556 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
557
558 /* Wait for the device to enter normal mode */
559 timeout = jiffies + HZ;
560 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
561 schedule();
562 if (time_after(jiffies, timeout)) {
563 dev_err(&spi->dev, "MCP251x didn't"
564 " enter in normal mode\n");
565 return -EBUSY;
566 }
567 }
568 }
569 priv->can.state = CAN_STATE_ERROR_ACTIVE;
570 return 0;
571}
572
573static int mcp251x_do_set_bittiming(struct net_device *net)
574{
575 struct mcp251x_priv *priv = netdev_priv(net);
576 struct can_bittiming *bt = &priv->can.bittiming;
577 struct spi_device *spi = priv->spi;
578
579 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
580 (bt->brp - 1));
581 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
582 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
583 CNF2_SAM : 0) |
584 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
585 (bt->prop_seg - 1));
586 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
587 (bt->phase_seg2 - 1));
588 dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
589 mcp251x_read_reg(spi, CNF1),
590 mcp251x_read_reg(spi, CNF2),
591 mcp251x_read_reg(spi, CNF3));
592
593 return 0;
594}
595
596static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
597 struct spi_device *spi)
598{
599 mcp251x_do_set_bittiming(net);
600
601 mcp251x_write_reg(spi, RXBCTRL(0),
602 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
603 mcp251x_write_reg(spi, RXBCTRL(1),
604 RXBCTRL_RXM0 | RXBCTRL_RXM1);
605 return 0;
606}
607
608static int mcp251x_hw_reset(struct spi_device *spi)
609{
610 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
611 int ret;
612 unsigned long timeout;
613
614 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
615 ret = spi_write(spi, priv->spi_tx_buf, 1);
616 if (ret) {
617 dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
618 return -EIO;
619 }
620
621 /* Wait for reset to finish */
622 timeout = jiffies + HZ;
623 mdelay(10);
624 while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
625 != CANCTRL_REQOP_CONF) {
626 schedule();
627 if (time_after(jiffies, timeout)) {
628 dev_err(&spi->dev, "MCP251x didn't"
629 " enter in conf mode after reset\n");
630 return -EBUSY;
631 }
632 }
633 return 0;
634}
635
636static int mcp251x_hw_probe(struct spi_device *spi)
637{
638 int st1, st2;
639
640 mcp251x_hw_reset(spi);
641
642 /*
643 * Please note that these are "magic values" based on after
644 * reset defaults taken from data sheet which allows us to see
645 * if we really have a chip on the bus (we avoid common all
646 * zeroes or all ones situations)
647 */
648 st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
649 st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
650
651 dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
652
653 /* Check for power up default values */
654 return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
655}
656
657static void mcp251x_open_clean(struct net_device *net)
658{
659 struct mcp251x_priv *priv = netdev_priv(net);
660 struct spi_device *spi = priv->spi;
661 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
662
663 free_irq(spi->irq, priv);
664 mcp251x_hw_sleep(spi);
665 if (pdata->transceiver_enable)
666 pdata->transceiver_enable(0);
667 close_candev(net);
668}
669
670static int mcp251x_stop(struct net_device *net)
671{
672 struct mcp251x_priv *priv = netdev_priv(net);
673 struct spi_device *spi = priv->spi;
674 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
675
676 close_candev(net);
677
678 priv->force_quit = 1;
679 free_irq(spi->irq, priv);
680 destroy_workqueue(priv->wq);
681 priv->wq = NULL;
682
683 mutex_lock(&priv->mcp_lock);
684
685 /* Disable and clear pending interrupts */
686 mcp251x_write_reg(spi, CANINTE, 0x00);
687 mcp251x_write_reg(spi, CANINTF, 0x00);
688
689 mcp251x_write_reg(spi, TXBCTRL(0), 0);
690 mcp251x_clean(net);
691
692 mcp251x_hw_sleep(spi);
693
694 if (pdata->transceiver_enable)
695 pdata->transceiver_enable(0);
696
697 priv->can.state = CAN_STATE_STOPPED;
698
699 mutex_unlock(&priv->mcp_lock);
700
701 return 0;
702}
703
704static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
705{
706 struct sk_buff *skb;
707 struct can_frame *frame;
708
709 skb = alloc_can_err_skb(net, &frame);
710 if (skb) {
711 frame->can_id |= can_id;
712 frame->data[1] = data1;
713 netif_rx_ni(skb);
714 } else {
715 dev_err(&net->dev,
716 "cannot allocate error skb\n");
717 }
718}
719
720static void mcp251x_tx_work_handler(struct work_struct *ws)
721{
722 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
723 tx_work);
724 struct spi_device *spi = priv->spi;
725 struct net_device *net = priv->net;
726 struct can_frame *frame;
727
728 mutex_lock(&priv->mcp_lock);
729 if (priv->tx_skb) {
730 if (priv->can.state == CAN_STATE_BUS_OFF) {
731 mcp251x_clean(net);
732 } else {
733 frame = (struct can_frame *)priv->tx_skb->data;
734
735 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
736 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
737 mcp251x_hw_tx(spi, frame, 0);
738 priv->tx_len = 1 + frame->can_dlc;
739 can_put_echo_skb(priv->tx_skb, net, 0);
740 priv->tx_skb = NULL;
741 }
742 }
743 mutex_unlock(&priv->mcp_lock);
744}
745
746static void mcp251x_restart_work_handler(struct work_struct *ws)
747{
748 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
749 restart_work);
750 struct spi_device *spi = priv->spi;
751 struct net_device *net = priv->net;
752
753 mutex_lock(&priv->mcp_lock);
754 if (priv->after_suspend) {
755 mdelay(10);
756 mcp251x_hw_reset(spi);
757 mcp251x_setup(net, priv, spi);
758 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
759 mcp251x_set_normal_mode(spi);
760 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
761 netif_device_attach(net);
762 mcp251x_clean(net);
763 mcp251x_set_normal_mode(spi);
764 netif_wake_queue(net);
765 } else {
766 mcp251x_hw_sleep(spi);
767 }
768 priv->after_suspend = 0;
769 priv->force_quit = 0;
770 }
771
772 if (priv->restart_tx) {
773 priv->restart_tx = 0;
774 mcp251x_write_reg(spi, TXBCTRL(0), 0);
775 mcp251x_clean(net);
776 netif_wake_queue(net);
777 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
778 }
779 mutex_unlock(&priv->mcp_lock);
780}
781
782static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
783{
784 struct mcp251x_priv *priv = dev_id;
785 struct spi_device *spi = priv->spi;
786 struct net_device *net = priv->net;
787
788 mutex_lock(&priv->mcp_lock);
789 while (!priv->force_quit) {
790 enum can_state new_state;
791 u8 intf, eflag;
792 u8 clear_intf = 0;
793 int can_id = 0, data1 = 0;
794
795 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
796
797 /* mask out flags we don't care about */
798 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
799
800 /* receive buffer 0 */
801 if (intf & CANINTF_RX0IF) {
802 mcp251x_hw_rx(spi, 0);
803 /*
804 * Free one buffer ASAP
805 * (The MCP2515 does this automatically.)
806 */
807 if (mcp251x_is_2510(spi))
808 mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
809 }
810
811 /* receive buffer 1 */
812 if (intf & CANINTF_RX1IF) {
813 mcp251x_hw_rx(spi, 1);
814 /* the MCP2515 does this automatically */
815 if (mcp251x_is_2510(spi))
816 clear_intf |= CANINTF_RX1IF;
817 }
818
819 /* any error or tx interrupt we need to clear? */
820 if (intf & (CANINTF_ERR | CANINTF_TX))
821 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
822 if (clear_intf)
823 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
824
825 if (eflag)
826 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
827
828 /* Update can state */
829 if (eflag & EFLG_TXBO) {
830 new_state = CAN_STATE_BUS_OFF;
831 can_id |= CAN_ERR_BUSOFF;
832 } else if (eflag & EFLG_TXEP) {
833 new_state = CAN_STATE_ERROR_PASSIVE;
834 can_id |= CAN_ERR_CRTL;
835 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
836 } else if (eflag & EFLG_RXEP) {
837 new_state = CAN_STATE_ERROR_PASSIVE;
838 can_id |= CAN_ERR_CRTL;
839 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
840 } else if (eflag & EFLG_TXWAR) {
841 new_state = CAN_STATE_ERROR_WARNING;
842 can_id |= CAN_ERR_CRTL;
843 data1 |= CAN_ERR_CRTL_TX_WARNING;
844 } else if (eflag & EFLG_RXWAR) {
845 new_state = CAN_STATE_ERROR_WARNING;
846 can_id |= CAN_ERR_CRTL;
847 data1 |= CAN_ERR_CRTL_RX_WARNING;
848 } else {
849 new_state = CAN_STATE_ERROR_ACTIVE;
850 }
851
852 /* Update can state statistics */
853 switch (priv->can.state) {
854 case CAN_STATE_ERROR_ACTIVE:
855 if (new_state >= CAN_STATE_ERROR_WARNING &&
856 new_state <= CAN_STATE_BUS_OFF)
857 priv->can.can_stats.error_warning++;
858 case CAN_STATE_ERROR_WARNING: /* fallthrough */
859 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
860 new_state <= CAN_STATE_BUS_OFF)
861 priv->can.can_stats.error_passive++;
862 break;
863 default:
864 break;
865 }
866 priv->can.state = new_state;
867
868 if (intf & CANINTF_ERRIF) {
869 /* Handle overflow counters */
870 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
871 if (eflag & EFLG_RX0OVR) {
872 net->stats.rx_over_errors++;
873 net->stats.rx_errors++;
874 }
875 if (eflag & EFLG_RX1OVR) {
876 net->stats.rx_over_errors++;
877 net->stats.rx_errors++;
878 }
879 can_id |= CAN_ERR_CRTL;
880 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
881 }
882 mcp251x_error_skb(net, can_id, data1);
883 }
884
885 if (priv->can.state == CAN_STATE_BUS_OFF) {
886 if (priv->can.restart_ms == 0) {
887 priv->force_quit = 1;
888 can_bus_off(net);
889 mcp251x_hw_sleep(spi);
890 break;
891 }
892 }
893
894 if (intf == 0)
895 break;
896
897 if (intf & CANINTF_TX) {
898 net->stats.tx_packets++;
899 net->stats.tx_bytes += priv->tx_len - 1;
900 if (priv->tx_len) {
901 can_get_echo_skb(net, 0);
902 priv->tx_len = 0;
903 }
904 netif_wake_queue(net);
905 }
906
907 }
908 mutex_unlock(&priv->mcp_lock);
909 return IRQ_HANDLED;
910}
911
912static int mcp251x_open(struct net_device *net)
913{
914 struct mcp251x_priv *priv = netdev_priv(net);
915 struct spi_device *spi = priv->spi;
916 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
917 int ret;
918
919 ret = open_candev(net);
920 if (ret) {
921 dev_err(&spi->dev, "unable to set initial baudrate!\n");
922 return ret;
923 }
924
925 mutex_lock(&priv->mcp_lock);
926 if (pdata->transceiver_enable)
927 pdata->transceiver_enable(1);
928
929 priv->force_quit = 0;
930 priv->tx_skb = NULL;
931 priv->tx_len = 0;
932
933 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
934 pdata->irq_flags ? pdata->irq_flags : IRQF_TRIGGER_FALLING,
935 DEVICE_NAME, priv);
936 if (ret) {
937 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
938 if (pdata->transceiver_enable)
939 pdata->transceiver_enable(0);
940 close_candev(net);
941 goto open_unlock;
942 }
943
944 priv->wq = create_freezable_workqueue("mcp251x_wq");
945 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
946 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
947
948 ret = mcp251x_hw_reset(spi);
949 if (ret) {
950 mcp251x_open_clean(net);
951 goto open_unlock;
952 }
953 ret = mcp251x_setup(net, priv, spi);
954 if (ret) {
955 mcp251x_open_clean(net);
956 goto open_unlock;
957 }
958 ret = mcp251x_set_normal_mode(spi);
959 if (ret) {
960 mcp251x_open_clean(net);
961 goto open_unlock;
962 }
963 netif_wake_queue(net);
964
965open_unlock:
966 mutex_unlock(&priv->mcp_lock);
967 return ret;
968}
969
970static const struct net_device_ops mcp251x_netdev_ops = {
971 .ndo_open = mcp251x_open,
972 .ndo_stop = mcp251x_stop,
973 .ndo_start_xmit = mcp251x_hard_start_xmit,
974};
975
976static int __devinit mcp251x_can_probe(struct spi_device *spi)
977{
978 struct net_device *net;
979 struct mcp251x_priv *priv;
980 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
981 int ret = -ENODEV;
982
983 if (!pdata)
984 /* Platform data is required for osc freq */
985 goto error_out;
986
987 /* Allocate can/net device */
988 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
989 if (!net) {
990 ret = -ENOMEM;
991 goto error_alloc;
992 }
993
994 net->netdev_ops = &mcp251x_netdev_ops;
995 net->flags |= IFF_ECHO;
996
997 priv = netdev_priv(net);
998 priv->can.bittiming_const = &mcp251x_bittiming_const;
999 priv->can.do_set_mode = mcp251x_do_set_mode;
1000 priv->can.clock.freq = pdata->oscillator_frequency / 2;
1001 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1002 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1003 priv->model = spi_get_device_id(spi)->driver_data;
1004 priv->net = net;
1005 dev_set_drvdata(&spi->dev, priv);
1006
1007 priv->spi = spi;
1008 mutex_init(&priv->mcp_lock);
1009
1010 /* If requested, allocate DMA buffers */
1011 if (mcp251x_enable_dma) {
1012 spi->dev.coherent_dma_mask = ~0;
1013
1014 /*
1015 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1016 * that much and share it between Tx and Rx DMA buffers.
1017 */
1018 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1019 PAGE_SIZE,
1020 &priv->spi_tx_dma,
1021 GFP_DMA);
1022
1023 if (priv->spi_tx_buf) {
1024 priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
1025 (PAGE_SIZE / 2));
1026 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1027 (PAGE_SIZE / 2));
1028 } else {
1029 /* Fall back to non-DMA */
1030 mcp251x_enable_dma = 0;
1031 }
1032 }
1033
1034 /* Allocate non-DMA buffers */
1035 if (!mcp251x_enable_dma) {
1036 priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1037 if (!priv->spi_tx_buf) {
1038 ret = -ENOMEM;
1039 goto error_tx_buf;
1040 }
1041 priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1042 if (!priv->spi_rx_buf) {
1043 ret = -ENOMEM;
1044 goto error_rx_buf;
1045 }
1046 }
1047
1048 if (pdata->power_enable)
1049 pdata->power_enable(1);
1050
1051 /* Call out to platform specific setup */
1052 if (pdata->board_specific_setup)
1053 pdata->board_specific_setup(spi);
1054
1055 SET_NETDEV_DEV(net, &spi->dev);
1056
1057 /* Configure the SPI bus */
1058 spi->mode = SPI_MODE_0;
1059 spi->bits_per_word = 8;
1060 spi_setup(spi);
1061
1062 /* Here is OK to not lock the MCP, no one knows about it yet */
1063 if (!mcp251x_hw_probe(spi)) {
1064 dev_info(&spi->dev, "Probe failed\n");
1065 goto error_probe;
1066 }
1067 mcp251x_hw_sleep(spi);
1068
1069 if (pdata->transceiver_enable)
1070 pdata->transceiver_enable(0);
1071
1072 ret = register_candev(net);
1073 if (!ret) {
1074 dev_info(&spi->dev, "probed\n");
1075 return ret;
1076 }
1077error_probe:
1078 if (!mcp251x_enable_dma)
1079 kfree(priv->spi_rx_buf);
1080error_rx_buf:
1081 if (!mcp251x_enable_dma)
1082 kfree(priv->spi_tx_buf);
1083error_tx_buf:
1084 free_candev(net);
1085 if (mcp251x_enable_dma)
1086 dma_free_coherent(&spi->dev, PAGE_SIZE,
1087 priv->spi_tx_buf, priv->spi_tx_dma);
1088error_alloc:
1089 if (pdata->power_enable)
1090 pdata->power_enable(0);
1091 dev_err(&spi->dev, "probe failed\n");
1092error_out:
1093 return ret;
1094}
1095
1096static int __devexit mcp251x_can_remove(struct spi_device *spi)
1097{
1098 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1099 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1100 struct net_device *net = priv->net;
1101
1102 unregister_candev(net);
1103 free_candev(net);
1104
1105 if (mcp251x_enable_dma) {
1106 dma_free_coherent(&spi->dev, PAGE_SIZE,
1107 priv->spi_tx_buf, priv->spi_tx_dma);
1108 } else {
1109 kfree(priv->spi_tx_buf);
1110 kfree(priv->spi_rx_buf);
1111 }
1112
1113 if (pdata->power_enable)
1114 pdata->power_enable(0);
1115
1116 return 0;
1117}
1118
1119#ifdef CONFIG_PM
1120static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1121{
1122 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1123 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1124 struct net_device *net = priv->net;
1125
1126 priv->force_quit = 1;
1127 disable_irq(spi->irq);
1128 /*
1129 * Note: at this point neither IST nor workqueues are running.
1130 * open/stop cannot be called anyway so locking is not needed
1131 */
1132 if (netif_running(net)) {
1133 netif_device_detach(net);
1134
1135 mcp251x_hw_sleep(spi);
1136 if (pdata->transceiver_enable)
1137 pdata->transceiver_enable(0);
1138 priv->after_suspend = AFTER_SUSPEND_UP;
1139 } else {
1140 priv->after_suspend = AFTER_SUSPEND_DOWN;
1141 }
1142
1143 if (pdata->power_enable) {
1144 pdata->power_enable(0);
1145 priv->after_suspend |= AFTER_SUSPEND_POWER;
1146 }
1147
1148 return 0;
1149}
1150
1151static int mcp251x_can_resume(struct spi_device *spi)
1152{
1153 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1154 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1155
1156 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1157 pdata->power_enable(1);
1158 queue_work(priv->wq, &priv->restart_work);
1159 } else {
1160 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1161 if (pdata->transceiver_enable)
1162 pdata->transceiver_enable(1);
1163 queue_work(priv->wq, &priv->restart_work);
1164 } else {
1165 priv->after_suspend = 0;
1166 }
1167 }
1168 priv->force_quit = 0;
1169 enable_irq(spi->irq);
1170 return 0;
1171}
1172#else
1173#define mcp251x_can_suspend NULL
1174#define mcp251x_can_resume NULL
1175#endif
1176
1177static const struct spi_device_id mcp251x_id_table[] = {
1178 { "mcp2510", CAN_MCP251X_MCP2510 },
1179 { "mcp2515", CAN_MCP251X_MCP2515 },
1180 { },
1181};
1182
1183MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1184
1185static struct spi_driver mcp251x_can_driver = {
1186 .driver = {
1187 .name = DEVICE_NAME,
1188 .bus = &spi_bus_type,
1189 .owner = THIS_MODULE,
1190 },
1191
1192 .id_table = mcp251x_id_table,
1193 .probe = mcp251x_can_probe,
1194 .remove = __devexit_p(mcp251x_can_remove),
1195 .suspend = mcp251x_can_suspend,
1196 .resume = mcp251x_can_resume,
1197};
1198
1199static int __init mcp251x_can_init(void)
1200{
1201 return spi_register_driver(&mcp251x_can_driver);
1202}
1203
1204static void __exit mcp251x_can_exit(void)
1205{
1206 spi_unregister_driver(&mcp251x_can_driver);
1207}
1208
1209module_init(mcp251x_can_init);
1210module_exit(mcp251x_can_exit);
1211
1212MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1213 "Christian Pellegrin <chripell@evolware.org>");
1214MODULE_DESCRIPTION("Microchip 251x CAN driver");
1215MODULE_LICENSE("GPL v2");