Linux Audio

Check our new training course

Loading...
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 20
 21#include "mm_internal.h"
 
 
 22
 23static unsigned long __initdata pgt_buf_start;
 24static unsigned long __initdata pgt_buf_end;
 25static unsigned long __initdata pgt_buf_top;
 26
 27static unsigned long min_pfn_mapped;
 28
 29static bool __initdata can_use_brk_pgt = true;
 
 
 
 
 30
 31/*
 32 * Pages returned are already directly mapped.
 33 *
 34 * Changing that is likely to break Xen, see commit:
 35 *
 36 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 37 *
 38 * for detailed information.
 39 */
 40__ref void *alloc_low_pages(unsigned int num)
 41{
 42	unsigned long pfn;
 43	int i;
 44
 45	if (after_bootmem) {
 46		unsigned int order;
 47
 48		order = get_order((unsigned long)num << PAGE_SHIFT);
 49		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 50						__GFP_ZERO, order);
 51	}
 52
 53	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 54		unsigned long ret;
 55		if (min_pfn_mapped >= max_pfn_mapped)
 56			panic("alloc_low_pages: ran out of memory");
 57		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
 58					max_pfn_mapped << PAGE_SHIFT,
 59					PAGE_SIZE * num , PAGE_SIZE);
 60		if (!ret)
 61			panic("alloc_low_pages: can not alloc memory");
 62		memblock_reserve(ret, PAGE_SIZE * num);
 63		pfn = ret >> PAGE_SHIFT;
 64	} else {
 65		pfn = pgt_buf_end;
 66		pgt_buf_end += num;
 67		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 68			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 69	}
 70
 71	for (i = 0; i < num; i++) {
 72		void *adr;
 73
 74		adr = __va((pfn + i) << PAGE_SHIFT);
 75		clear_page(adr);
 76	}
 77
 78	return __va(pfn << PAGE_SHIFT);
 79}
 
 
 
 
 
 80
 81/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
 82#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
 83RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 84void  __init early_alloc_pgt_buf(void)
 85{
 86	unsigned long tables = INIT_PGT_BUF_SIZE;
 87	phys_addr_t base;
 88
 89	base = __pa(extend_brk(tables, PAGE_SIZE));
 
 
 90
 91	pgt_buf_start = base >> PAGE_SHIFT;
 92	pgt_buf_end = pgt_buf_start;
 93	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 94}
 95
 96int after_bootmem;
 97
 98int direct_gbpages
 99#ifdef CONFIG_DIRECT_GBPAGES
100				= 1
101#endif
102;
103
104static void __init init_gbpages(void)
105{
106#ifdef CONFIG_X86_64
107	if (direct_gbpages && cpu_has_gbpages)
108		printk(KERN_INFO "Using GB pages for direct mapping\n");
109	else
110		direct_gbpages = 0;
111#endif
112}
113
114struct map_range {
115	unsigned long start;
116	unsigned long end;
117	unsigned page_size_mask;
118};
119
120static int page_size_mask;
121
122static void __init probe_page_size_mask(void)
123{
124	init_gbpages();
125
126#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
127	/*
128	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
129	 * This will simplify cpa(), which otherwise needs to support splitting
130	 * large pages into small in interrupt context, etc.
131	 */
132	if (direct_gbpages)
133		page_size_mask |= 1 << PG_LEVEL_1G;
134	if (cpu_has_pse)
135		page_size_mask |= 1 << PG_LEVEL_2M;
136#endif
137
138	/* Enable PSE if available */
139	if (cpu_has_pse)
140		set_in_cr4(X86_CR4_PSE);
141
142	/* Enable PGE if available */
143	if (cpu_has_pge) {
144		set_in_cr4(X86_CR4_PGE);
145		__supported_pte_mask |= _PAGE_GLOBAL;
146	}
147}
148
149#ifdef CONFIG_X86_32
150#define NR_RANGE_MR 3
151#else /* CONFIG_X86_64 */
152#define NR_RANGE_MR 5
153#endif
154
155static int __meminit save_mr(struct map_range *mr, int nr_range,
156			     unsigned long start_pfn, unsigned long end_pfn,
157			     unsigned long page_size_mask)
158{
159	if (start_pfn < end_pfn) {
160		if (nr_range >= NR_RANGE_MR)
161			panic("run out of range for init_memory_mapping\n");
162		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
163		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
164		mr[nr_range].page_size_mask = page_size_mask;
165		nr_range++;
166	}
167
168	return nr_range;
169}
170
171/*
172 * adjust the page_size_mask for small range to go with
173 *	big page size instead small one if nearby are ram too.
 
174 */
175static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
176							 int nr_range)
177{
178	int i;
 
 
 
179
180	for (i = 0; i < nr_range; i++) {
181		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
182		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
183			unsigned long start = round_down(mr[i].start, PMD_SIZE);
184			unsigned long end = round_up(mr[i].end, PMD_SIZE);
185
186#ifdef CONFIG_X86_32
187			if ((end >> PAGE_SHIFT) > max_low_pfn)
188				continue;
 
 
 
 
 
 
 
 
 
189#endif
190
191			if (memblock_is_region_memory(start, end - start))
192				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
193		}
194		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
195		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
196			unsigned long start = round_down(mr[i].start, PUD_SIZE);
197			unsigned long end = round_up(mr[i].end, PUD_SIZE);
198
199			if (memblock_is_region_memory(start, end - start))
200				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
201		}
202	}
203}
204
205static int __meminit split_mem_range(struct map_range *mr, int nr_range,
206				     unsigned long start,
207				     unsigned long end)
208{
209	unsigned long start_pfn, end_pfn, limit_pfn;
210	unsigned long pfn;
211	int i;
212
213	limit_pfn = PFN_DOWN(end);
 
214
215	/* head if not big page alignment ? */
216	pfn = start_pfn = PFN_DOWN(start);
 
217#ifdef CONFIG_X86_32
218	/*
219	 * Don't use a large page for the first 2/4MB of memory
220	 * because there are often fixed size MTRRs in there
221	 * and overlapping MTRRs into large pages can cause
222	 * slowdowns.
223	 */
224	if (pfn == 0)
225		end_pfn = PFN_DOWN(PMD_SIZE);
226	else
227		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
228#else /* CONFIG_X86_64 */
229	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
230#endif
231	if (end_pfn > limit_pfn)
232		end_pfn = limit_pfn;
233	if (start_pfn < end_pfn) {
234		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
235		pfn = end_pfn;
236	}
237
238	/* big page (2M) range */
239	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
240#ifdef CONFIG_X86_32
241	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
242#else /* CONFIG_X86_64 */
243	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
244	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
245		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 
246#endif
247
248	if (start_pfn < end_pfn) {
249		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
250				page_size_mask & (1<<PG_LEVEL_2M));
251		pfn = end_pfn;
252	}
253
254#ifdef CONFIG_X86_64
255	/* big page (1G) range */
256	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
257	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 
258	if (start_pfn < end_pfn) {
259		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
260				page_size_mask &
261				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
262		pfn = end_pfn;
263	}
264
265	/* tail is not big page (1G) alignment */
266	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
267	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 
268	if (start_pfn < end_pfn) {
269		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
270				page_size_mask & (1<<PG_LEVEL_2M));
271		pfn = end_pfn;
272	}
273#endif
274
275	/* tail is not big page (2M) alignment */
276	start_pfn = pfn;
277	end_pfn = limit_pfn;
278	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
279
280	if (!after_bootmem)
281		adjust_range_page_size_mask(mr, nr_range);
282
283	/* try to merge same page size and continuous */
284	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
285		unsigned long old_start;
286		if (mr[i].end != mr[i+1].start ||
287		    mr[i].page_size_mask != mr[i+1].page_size_mask)
288			continue;
289		/* move it */
290		old_start = mr[i].start;
291		memmove(&mr[i], &mr[i+1],
292			(nr_range - 1 - i) * sizeof(struct map_range));
293		mr[i--].start = old_start;
294		nr_range--;
295	}
296
297	for (i = 0; i < nr_range; i++)
298		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
299				mr[i].start, mr[i].end - 1,
300			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
301			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
302
303	return nr_range;
304}
305
306struct range pfn_mapped[E820_X_MAX];
307int nr_pfn_mapped;
308
309static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
310{
311	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
312					     nr_pfn_mapped, start_pfn, end_pfn);
313	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
314
315	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
316
317	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
318		max_low_pfn_mapped = max(max_low_pfn_mapped,
319					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
320}
321
322bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
323{
324	int i;
325
326	for (i = 0; i < nr_pfn_mapped; i++)
327		if ((start_pfn >= pfn_mapped[i].start) &&
328		    (end_pfn <= pfn_mapped[i].end))
329			return true;
330
331	return false;
332}
333
334/*
335 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
336 * This runs before bootmem is initialized and gets pages directly from
337 * the physical memory. To access them they are temporarily mapped.
338 */
339unsigned long __init_refok init_memory_mapping(unsigned long start,
340					       unsigned long end)
341{
342	struct map_range mr[NR_RANGE_MR];
343	unsigned long ret = 0;
344	int nr_range, i;
345
346	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
347	       start, end - 1);
348
349	memset(mr, 0, sizeof(mr));
350	nr_range = split_mem_range(mr, 0, start, end);
351
352	for (i = 0; i < nr_range; i++)
353		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
354						   mr[i].page_size_mask);
355
356	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
357
358	return ret >> PAGE_SHIFT;
359}
360
361/*
362 * We need to iterate through the E820 memory map and create direct mappings
363 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
364 * create direct mappings for all pfns from [0 to max_low_pfn) and
365 * [4GB to max_pfn) because of possible memory holes in high addresses
366 * that cannot be marked as UC by fixed/variable range MTRRs.
367 * Depending on the alignment of E820 ranges, this may possibly result
368 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
369 *
370 * init_mem_mapping() calls init_range_memory_mapping() with big range.
371 * That range would have hole in the middle or ends, and only ram parts
372 * will be mapped in init_range_memory_mapping().
373 */
374static unsigned long __init init_range_memory_mapping(
375					   unsigned long r_start,
376					   unsigned long r_end)
377{
378	unsigned long start_pfn, end_pfn;
379	unsigned long mapped_ram_size = 0;
380	int i;
381
382	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
383		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
384		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
385		if (start >= end)
386			continue;
387
388		/*
389		 * if it is overlapping with brk pgt, we need to
390		 * alloc pgt buf from memblock instead.
391		 */
392		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
393				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
394		init_memory_mapping(start, end);
395		mapped_ram_size += end - start;
396		can_use_brk_pgt = true;
397	}
398
399	return mapped_ram_size;
400}
401
402static unsigned long __init get_new_step_size(unsigned long step_size)
403{
404	/*
405	 * Explain why we shift by 5 and why we don't have to worry about
406	 * 'step_size << 5' overflowing:
 
407	 *
408	 * initial mapped size is PMD_SIZE (2M).
409	 * We can not set step_size to be PUD_SIZE (1G) yet.
410	 * In worse case, when we cross the 1G boundary, and
411	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
412	 * to map 1G range with PTE. Use 5 as shift for now.
413	 *
414	 * Don't need to worry about overflow, on 32bit, when step_size
415	 * is 0, round_down() returns 0 for start, and that turns it
416	 * into 0x100000000ULL.
 
 
417	 */
418	return step_size << 5;
419}
420
421/**
422 * memory_map_top_down - Map [map_start, map_end) top down
423 * @map_start: start address of the target memory range
424 * @map_end: end address of the target memory range
425 *
426 * This function will setup direct mapping for memory range
427 * [map_start, map_end) in top-down. That said, the page tables
428 * will be allocated at the end of the memory, and we map the
429 * memory in top-down.
430 */
431static void __init memory_map_top_down(unsigned long map_start,
432				       unsigned long map_end)
433{
434	unsigned long real_end, start, last_start;
435	unsigned long step_size;
436	unsigned long addr;
437	unsigned long mapped_ram_size = 0;
438	unsigned long new_mapped_ram_size;
439
440	/* xen has big range in reserved near end of ram, skip it at first.*/
441	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
442	real_end = addr + PMD_SIZE;
443
444	/* step_size need to be small so pgt_buf from BRK could cover it */
445	step_size = PMD_SIZE;
446	max_pfn_mapped = 0; /* will get exact value next */
447	min_pfn_mapped = real_end >> PAGE_SHIFT;
448	last_start = start = real_end;
449
450	/*
451	 * We start from the top (end of memory) and go to the bottom.
452	 * The memblock_find_in_range() gets us a block of RAM from the
453	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
454	 * for page table.
455	 */
456	while (last_start > map_start) {
457		if (last_start > step_size) {
458			start = round_down(last_start - 1, step_size);
459			if (start < map_start)
460				start = map_start;
461		} else
462			start = map_start;
463		new_mapped_ram_size = init_range_memory_mapping(start,
464							last_start);
465		last_start = start;
466		min_pfn_mapped = last_start >> PAGE_SHIFT;
467		/* only increase step_size after big range get mapped */
468		if (new_mapped_ram_size > mapped_ram_size)
469			step_size = get_new_step_size(step_size);
470		mapped_ram_size += new_mapped_ram_size;
471	}
472
473	if (real_end < map_end)
474		init_range_memory_mapping(real_end, map_end);
475}
476
477/**
478 * memory_map_bottom_up - Map [map_start, map_end) bottom up
479 * @map_start: start address of the target memory range
480 * @map_end: end address of the target memory range
481 *
482 * This function will setup direct mapping for memory range
483 * [map_start, map_end) in bottom-up. Since we have limited the
484 * bottom-up allocation above the kernel, the page tables will
485 * be allocated just above the kernel and we map the memory
486 * in [map_start, map_end) in bottom-up.
487 */
488static void __init memory_map_bottom_up(unsigned long map_start,
489					unsigned long map_end)
490{
491	unsigned long next, new_mapped_ram_size, start;
492	unsigned long mapped_ram_size = 0;
493	/* step_size need to be small so pgt_buf from BRK could cover it */
494	unsigned long step_size = PMD_SIZE;
495
496	start = map_start;
497	min_pfn_mapped = start >> PAGE_SHIFT;
498
499	/*
500	 * We start from the bottom (@map_start) and go to the top (@map_end).
501	 * The memblock_find_in_range() gets us a block of RAM from the
502	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
503	 * for page table.
504	 */
505	while (start < map_end) {
506		if (map_end - start > step_size) {
507			next = round_up(start + 1, step_size);
508			if (next > map_end)
509				next = map_end;
510		} else
511			next = map_end;
512
513		new_mapped_ram_size = init_range_memory_mapping(start, next);
514		start = next;
515
516		if (new_mapped_ram_size > mapped_ram_size)
517			step_size = get_new_step_size(step_size);
518		mapped_ram_size += new_mapped_ram_size;
519	}
520}
521
522void __init init_mem_mapping(void)
523{
524	unsigned long end;
525
526	probe_page_size_mask();
527
528#ifdef CONFIG_X86_64
529	end = max_pfn << PAGE_SHIFT;
530#else
531	end = max_low_pfn << PAGE_SHIFT;
532#endif
533
534	/* the ISA range is always mapped regardless of memory holes */
535	init_memory_mapping(0, ISA_END_ADDRESS);
536
537	/*
538	 * If the allocation is in bottom-up direction, we setup direct mapping
539	 * in bottom-up, otherwise we setup direct mapping in top-down.
540	 */
541	if (memblock_bottom_up()) {
542		unsigned long kernel_end = __pa_symbol(_end);
543
544		/*
545		 * we need two separate calls here. This is because we want to
546		 * allocate page tables above the kernel. So we first map
547		 * [kernel_end, end) to make memory above the kernel be mapped
548		 * as soon as possible. And then use page tables allocated above
549		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
550		 */
551		memory_map_bottom_up(kernel_end, end);
552		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
553	} else {
554		memory_map_top_down(ISA_END_ADDRESS, end);
555	}
556
557#ifdef CONFIG_X86_64
558	if (max_pfn > max_low_pfn) {
559		/* can we preseve max_low_pfn ?*/
560		max_low_pfn = max_pfn;
561	}
562#else
563	early_ioremap_page_table_range_init();
564#endif
565
566	load_cr3(swapper_pg_dir);
567	__flush_tlb_all();
568
569	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
570}
571
572/*
573 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
574 * is valid. The argument is a physical page number.
575 *
576 *
577 * On x86, access has to be given to the first megabyte of ram because that area
578 * contains bios code and data regions used by X and dosemu and similar apps.
579 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
580 * mmio resources as well as potential bios/acpi data regions.
581 */
582int devmem_is_allowed(unsigned long pagenr)
583{
584	if (pagenr < 256)
585		return 1;
586	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
587		return 0;
588	if (!page_is_ram(pagenr))
589		return 1;
590	return 0;
591}
592
593void free_init_pages(char *what, unsigned long begin, unsigned long end)
594{
 
595	unsigned long begin_aligned, end_aligned;
596
597	/* Make sure boundaries are page aligned */
598	begin_aligned = PAGE_ALIGN(begin);
599	end_aligned   = end & PAGE_MASK;
600
601	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
602		begin = begin_aligned;
603		end   = end_aligned;
604	}
605
606	if (begin >= end)
607		return;
608
 
 
609	/*
610	 * If debugging page accesses then do not free this memory but
611	 * mark them not present - any buggy init-section access will
612	 * create a kernel page fault:
613	 */
614#ifdef CONFIG_DEBUG_PAGEALLOC
615	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
616		begin, end - 1);
617	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
618#else
619	/*
620	 * We just marked the kernel text read only above, now that
621	 * we are going to free part of that, we need to make that
622	 * writeable and non-executable first.
623	 */
624	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
625	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
626
627	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
 
 
 
 
 
 
 
 
628#endif
629}
630
631void free_initmem(void)
632{
633	free_init_pages("unused kernel",
634			(unsigned long)(&__init_begin),
635			(unsigned long)(&__init_end));
636}
637
638#ifdef CONFIG_BLK_DEV_INITRD
639void __init free_initrd_mem(unsigned long start, unsigned long end)
640{
641#ifdef CONFIG_MICROCODE_EARLY
642	/*
643	 * Remember, initrd memory may contain microcode or other useful things.
644	 * Before we lose initrd mem, we need to find a place to hold them
645	 * now that normal virtual memory is enabled.
646	 */
647	save_microcode_in_initrd();
648#endif
649
650	/*
651	 * end could be not aligned, and We can not align that,
652	 * decompresser could be confused by aligned initrd_end
653	 * We already reserve the end partial page before in
654	 *   - i386_start_kernel()
655	 *   - x86_64_start_kernel()
656	 *   - relocate_initrd()
657	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
658	 */
659	free_init_pages("initrd", start, PAGE_ALIGN(end));
660}
661#endif
662
663void __init zone_sizes_init(void)
664{
665	unsigned long max_zone_pfns[MAX_NR_ZONES];
666
667	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
668
669#ifdef CONFIG_ZONE_DMA
670	max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN;
671#endif
672#ifdef CONFIG_ZONE_DMA32
673	max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN;
674#endif
675	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
676#ifdef CONFIG_HIGHMEM
677	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
678#endif
679
680	free_area_init_nodes(max_zone_pfns);
681}
682
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
 
  6
  7#include <asm/cacheflush.h>
  8#include <asm/e820.h>
  9#include <asm/init.h>
 10#include <asm/page.h>
 11#include <asm/page_types.h>
 12#include <asm/sections.h>
 13#include <asm/setup.h>
 14#include <asm/system.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 
 
 18
 19unsigned long __initdata pgt_buf_start;
 20unsigned long __meminitdata pgt_buf_end;
 21unsigned long __meminitdata pgt_buf_top;
 22
 23int after_bootmem;
 
 
 
 
 24
 25int direct_gbpages
 26#ifdef CONFIG_DIRECT_GBPAGES
 27				= 1
 28#endif
 29;
 30
 31static void __init find_early_table_space(unsigned long end, int use_pse,
 32					  int use_gbpages)
 
 
 
 
 
 
 
 
 33{
 34	unsigned long puds, pmds, ptes, tables, start = 0, good_end = end;
 35	phys_addr_t base;
 36
 37	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
 38	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
 39
 40	if (use_gbpages) {
 41		unsigned long extra;
 
 
 42
 43		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
 44		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
 45	} else
 46		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 48	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
 
 49
 50	if (use_pse) {
 51		unsigned long extra;
 
 52
 53		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
 54#ifdef CONFIG_X86_32
 55		extra += PMD_SIZE;
 56#endif
 57		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
 58	} else
 59		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 60
 61	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
 62
 63#ifdef CONFIG_X86_32
 64	/* for fixmap */
 65	tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
 66#endif
 67	good_end = max_pfn_mapped << PAGE_SHIFT;
 68
 69	base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
 70	if (base == MEMBLOCK_ERROR)
 71		panic("Cannot find space for the kernel page tables");
 72
 73	pgt_buf_start = base >> PAGE_SHIFT;
 74	pgt_buf_end = pgt_buf_start;
 75	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 
 
 
 76
 77	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
 78		end, pgt_buf_start << PAGE_SHIFT, pgt_buf_top << PAGE_SHIFT);
 79}
 
 
 80
 81void __init native_pagetable_reserve(u64 start, u64 end)
 82{
 83	memblock_x86_reserve_range(start, end, "PGTABLE");
 
 
 
 
 
 84}
 85
 86struct map_range {
 87	unsigned long start;
 88	unsigned long end;
 89	unsigned page_size_mask;
 90};
 91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92#ifdef CONFIG_X86_32
 93#define NR_RANGE_MR 3
 94#else /* CONFIG_X86_64 */
 95#define NR_RANGE_MR 5
 96#endif
 97
 98static int __meminit save_mr(struct map_range *mr, int nr_range,
 99			     unsigned long start_pfn, unsigned long end_pfn,
100			     unsigned long page_size_mask)
101{
102	if (start_pfn < end_pfn) {
103		if (nr_range >= NR_RANGE_MR)
104			panic("run out of range for init_memory_mapping\n");
105		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
106		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
107		mr[nr_range].page_size_mask = page_size_mask;
108		nr_range++;
109	}
110
111	return nr_range;
112}
113
114/*
115 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
116 * This runs before bootmem is initialized and gets pages directly from
117 * the physical memory. To access them they are temporarily mapped.
118 */
119unsigned long __init_refok init_memory_mapping(unsigned long start,
120					       unsigned long end)
121{
122	unsigned long page_size_mask = 0;
123	unsigned long start_pfn, end_pfn;
124	unsigned long ret = 0;
125	unsigned long pos;
126
127	struct map_range mr[NR_RANGE_MR];
128	int nr_range, i;
129	int use_pse, use_gbpages;
 
 
130
131	printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
132
133#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
134	/*
135	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
136	 * This will simplify cpa(), which otherwise needs to support splitting
137	 * large pages into small in interrupt context, etc.
138	 */
139	use_pse = use_gbpages = 0;
140#else
141	use_pse = cpu_has_pse;
142	use_gbpages = direct_gbpages;
143#endif
144
145	/* Enable PSE if available */
146	if (cpu_has_pse)
147		set_in_cr4(X86_CR4_PSE);
148
149	/* Enable PGE if available */
150	if (cpu_has_pge) {
151		set_in_cr4(X86_CR4_PGE);
152		__supported_pte_mask |= _PAGE_GLOBAL;
 
 
 
153	}
 
154
155	if (use_gbpages)
156		page_size_mask |= 1 << PG_LEVEL_1G;
157	if (use_pse)
158		page_size_mask |= 1 << PG_LEVEL_2M;
 
 
 
159
160	memset(mr, 0, sizeof(mr));
161	nr_range = 0;
162
163	/* head if not big page alignment ? */
164	start_pfn = start >> PAGE_SHIFT;
165	pos = start_pfn << PAGE_SHIFT;
166#ifdef CONFIG_X86_32
167	/*
168	 * Don't use a large page for the first 2/4MB of memory
169	 * because there are often fixed size MTRRs in there
170	 * and overlapping MTRRs into large pages can cause
171	 * slowdowns.
172	 */
173	if (pos == 0)
174		end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
175	else
176		end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
177				 << (PMD_SHIFT - PAGE_SHIFT);
178#else /* CONFIG_X86_64 */
179	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
180			<< (PMD_SHIFT - PAGE_SHIFT);
181#endif
182	if (end_pfn > (end >> PAGE_SHIFT))
183		end_pfn = end >> PAGE_SHIFT;
184	if (start_pfn < end_pfn) {
185		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
186		pos = end_pfn << PAGE_SHIFT;
187	}
188
189	/* big page (2M) range */
190	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
191			 << (PMD_SHIFT - PAGE_SHIFT);
192#ifdef CONFIG_X86_32
193	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
194#else /* CONFIG_X86_64 */
195	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
196			 << (PUD_SHIFT - PAGE_SHIFT);
197	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
198		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
199#endif
200
201	if (start_pfn < end_pfn) {
202		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
203				page_size_mask & (1<<PG_LEVEL_2M));
204		pos = end_pfn << PAGE_SHIFT;
205	}
206
207#ifdef CONFIG_X86_64
208	/* big page (1G) range */
209	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
210			 << (PUD_SHIFT - PAGE_SHIFT);
211	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
212	if (start_pfn < end_pfn) {
213		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
214				page_size_mask &
215				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
216		pos = end_pfn << PAGE_SHIFT;
217	}
218
219	/* tail is not big page (1G) alignment */
220	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
221			 << (PMD_SHIFT - PAGE_SHIFT);
222	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
223	if (start_pfn < end_pfn) {
224		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
225				page_size_mask & (1<<PG_LEVEL_2M));
226		pos = end_pfn << PAGE_SHIFT;
227	}
228#endif
229
230	/* tail is not big page (2M) alignment */
231	start_pfn = pos>>PAGE_SHIFT;
232	end_pfn = end>>PAGE_SHIFT;
233	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
234
 
 
 
235	/* try to merge same page size and continuous */
236	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
237		unsigned long old_start;
238		if (mr[i].end != mr[i+1].start ||
239		    mr[i].page_size_mask != mr[i+1].page_size_mask)
240			continue;
241		/* move it */
242		old_start = mr[i].start;
243		memmove(&mr[i], &mr[i+1],
244			(nr_range - 1 - i) * sizeof(struct map_range));
245		mr[i--].start = old_start;
246		nr_range--;
247	}
248
249	for (i = 0; i < nr_range; i++)
250		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
251				mr[i].start, mr[i].end,
252			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
253			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
254
255	/*
256	 * Find space for the kernel direct mapping tables.
257	 *
258	 * Later we should allocate these tables in the local node of the
259	 * memory mapped. Unfortunately this is done currently before the
260	 * nodes are discovered.
261	 */
262	if (!after_bootmem)
263		find_early_table_space(end, use_pse, use_gbpages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
265	for (i = 0; i < nr_range; i++)
266		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
267						   mr[i].page_size_mask);
268
269#ifdef CONFIG_X86_32
270	early_ioremap_page_table_range_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271
272	load_cr3(swapper_pg_dir);
273#endif
 
 
 
 
 
 
 
 
274
275	__flush_tlb_all();
 
276
 
 
277	/*
278	 * Reserve the kernel pagetable pages we used (pgt_buf_start -
279	 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
280	 * so that they can be reused for other purposes.
281	 *
282	 * On native it just means calling memblock_x86_reserve_range, on Xen it
283	 * also means marking RW the pagetable pages that we allocated before
284	 * but that haven't been used.
 
 
285	 *
286	 * In fact on xen we mark RO the whole range pgt_buf_start -
287	 * pgt_buf_top, because we have to make sure that when
288	 * init_memory_mapping reaches the pagetable pages area, it maps
289	 * RO all the pagetable pages, including the ones that are beyond
290	 * pgt_buf_end at that time.
291	 */
292	if (!after_bootmem && pgt_buf_end > pgt_buf_start)
293		x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
294				PFN_PHYS(pgt_buf_end));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
296	if (!after_bootmem)
297		early_memtest(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
299	return ret >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300}
301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
303/*
304 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
305 * is valid. The argument is a physical page number.
306 *
307 *
308 * On x86, access has to be given to the first megabyte of ram because that area
309 * contains bios code and data regions used by X and dosemu and similar apps.
310 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
311 * mmio resources as well as potential bios/acpi data regions.
312 */
313int devmem_is_allowed(unsigned long pagenr)
314{
315	if (pagenr <= 256)
316		return 1;
317	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
318		return 0;
319	if (!page_is_ram(pagenr))
320		return 1;
321	return 0;
322}
323
324void free_init_pages(char *what, unsigned long begin, unsigned long end)
325{
326	unsigned long addr;
327	unsigned long begin_aligned, end_aligned;
328
329	/* Make sure boundaries are page aligned */
330	begin_aligned = PAGE_ALIGN(begin);
331	end_aligned   = end & PAGE_MASK;
332
333	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
334		begin = begin_aligned;
335		end   = end_aligned;
336	}
337
338	if (begin >= end)
339		return;
340
341	addr = begin;
342
343	/*
344	 * If debugging page accesses then do not free this memory but
345	 * mark them not present - any buggy init-section access will
346	 * create a kernel page fault:
347	 */
348#ifdef CONFIG_DEBUG_PAGEALLOC
349	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
350		begin, end);
351	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
352#else
353	/*
354	 * We just marked the kernel text read only above, now that
355	 * we are going to free part of that, we need to make that
356	 * writeable and non-executable first.
357	 */
358	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
359	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
360
361	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
362
363	for (; addr < end; addr += PAGE_SIZE) {
364		ClearPageReserved(virt_to_page(addr));
365		init_page_count(virt_to_page(addr));
366		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
367		free_page(addr);
368		totalram_pages++;
369	}
370#endif
371}
372
373void free_initmem(void)
374{
375	free_init_pages("unused kernel memory",
376			(unsigned long)(&__init_begin),
377			(unsigned long)(&__init_end));
378}
379
380#ifdef CONFIG_BLK_DEV_INITRD
381void free_initrd_mem(unsigned long start, unsigned long end)
382{
 
 
 
 
 
 
 
 
 
383	/*
384	 * end could be not aligned, and We can not align that,
385	 * decompresser could be confused by aligned initrd_end
386	 * We already reserve the end partial page before in
387	 *   - i386_start_kernel()
388	 *   - x86_64_start_kernel()
389	 *   - relocate_initrd()
390	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
391	 */
392	free_init_pages("initrd memory", start, PAGE_ALIGN(end));
393}
394#endif