Linux Audio

Check our new training course

Loading...
v3.15
   1/*
 
   2 *    Time of day based timer functions.
   3 *
   4 *  S390 version
   5 *    Copyright IBM Corp. 1999, 2008
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   8 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   9 *
  10 *  Derived from "arch/i386/kernel/time.c"
  11 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  12 */
  13
  14#define KMSG_COMPONENT "time"
  15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  16
  17#include <linux/kernel_stat.h>
  18#include <linux/errno.h>
  19#include <linux/module.h>
  20#include <linux/sched.h>
  21#include <linux/kernel.h>
  22#include <linux/param.h>
  23#include <linux/string.h>
  24#include <linux/mm.h>
  25#include <linux/interrupt.h>
  26#include <linux/cpu.h>
  27#include <linux/stop_machine.h>
  28#include <linux/time.h>
  29#include <linux/device.h>
  30#include <linux/delay.h>
  31#include <linux/init.h>
  32#include <linux/smp.h>
  33#include <linux/types.h>
  34#include <linux/profile.h>
  35#include <linux/timex.h>
  36#include <linux/notifier.h>
  37#include <linux/timekeeper_internal.h>
  38#include <linux/clockchips.h>
  39#include <linux/gfp.h>
  40#include <linux/kprobes.h>
  41#include <asm/uaccess.h>
  42#include <asm/delay.h>
  43#include <asm/div64.h>
  44#include <asm/vdso.h>
  45#include <asm/irq.h>
  46#include <asm/irq_regs.h>
  47#include <asm/vtimer.h>
  48#include <asm/etr.h>
  49#include <asm/cio.h>
  50#include "entry.h"
  51
  52/* change this if you have some constant time drift */
  53#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
  54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
  55
  56u64 sched_clock_base_cc = -1;	/* Force to data section. */
  57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
  58
  59static DEFINE_PER_CPU(struct clock_event_device, comparators);
  60
  61/*
  62 * Scheduler clock - returns current time in nanosec units.
  63 */
  64unsigned long long notrace __kprobes sched_clock(void)
  65{
  66	return tod_to_ns(get_tod_clock_monotonic());
  67}
  68
  69/*
  70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
  71 */
  72unsigned long long monotonic_clock(void)
  73{
  74	return sched_clock();
  75}
  76EXPORT_SYMBOL(monotonic_clock);
  77
  78void tod_to_timeval(__u64 todval, struct timespec *xt)
  79{
  80	unsigned long long sec;
  81
  82	sec = todval >> 12;
  83	do_div(sec, 1000000);
  84	xt->tv_sec = sec;
  85	todval -= (sec * 1000000) << 12;
  86	xt->tv_nsec = ((todval * 1000) >> 12);
  87}
  88EXPORT_SYMBOL(tod_to_timeval);
  89
  90void clock_comparator_work(void)
  91{
  92	struct clock_event_device *cd;
  93
  94	S390_lowcore.clock_comparator = -1ULL;
 
  95	cd = &__get_cpu_var(comparators);
  96	cd->event_handler(cd);
  97}
  98
  99/*
 100 * Fixup the clock comparator.
 101 */
 102static void fixup_clock_comparator(unsigned long long delta)
 103{
 104	/* If nobody is waiting there's nothing to fix. */
 105	if (S390_lowcore.clock_comparator == -1ULL)
 106		return;
 107	S390_lowcore.clock_comparator += delta;
 108	set_clock_comparator(S390_lowcore.clock_comparator);
 109}
 110
 111static int s390_next_event(unsigned long delta,
 112			   struct clock_event_device *evt)
 113{
 114	S390_lowcore.clock_comparator = get_tod_clock() + delta;
 115	set_clock_comparator(S390_lowcore.clock_comparator);
 116	return 0;
 117}
 118
 119static void s390_set_mode(enum clock_event_mode mode,
 120			  struct clock_event_device *evt)
 121{
 122}
 123
 124/*
 125 * Set up lowcore and control register of the current cpu to
 126 * enable TOD clock and clock comparator interrupts.
 127 */
 128void init_cpu_timer(void)
 129{
 130	struct clock_event_device *cd;
 131	int cpu;
 132
 133	S390_lowcore.clock_comparator = -1ULL;
 134	set_clock_comparator(S390_lowcore.clock_comparator);
 135
 136	cpu = smp_processor_id();
 137	cd = &per_cpu(comparators, cpu);
 138	cd->name		= "comparator";
 139	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
 140	cd->mult		= 16777;
 141	cd->shift		= 12;
 142	cd->min_delta_ns	= 1;
 143	cd->max_delta_ns	= LONG_MAX;
 144	cd->rating		= 400;
 145	cd->cpumask		= cpumask_of(cpu);
 146	cd->set_next_event	= s390_next_event;
 147	cd->set_mode		= s390_set_mode;
 148
 149	clockevents_register_device(cd);
 150
 151	/* Enable clock comparator timer interrupt. */
 152	__ctl_set_bit(0,11);
 153
 154	/* Always allow the timing alert external interrupt. */
 155	__ctl_set_bit(0, 4);
 156}
 157
 158static void clock_comparator_interrupt(struct ext_code ext_code,
 159				       unsigned int param32,
 160				       unsigned long param64)
 161{
 162	inc_irq_stat(IRQEXT_CLK);
 163	if (S390_lowcore.clock_comparator == -1ULL)
 164		set_clock_comparator(S390_lowcore.clock_comparator);
 165}
 166
 167static void etr_timing_alert(struct etr_irq_parm *);
 168static void stp_timing_alert(struct stp_irq_parm *);
 169
 170static void timing_alert_interrupt(struct ext_code ext_code,
 171				   unsigned int param32, unsigned long param64)
 172{
 173	inc_irq_stat(IRQEXT_TLA);
 174	if (param32 & 0x00c40000)
 175		etr_timing_alert((struct etr_irq_parm *) &param32);
 176	if (param32 & 0x00038000)
 177		stp_timing_alert((struct stp_irq_parm *) &param32);
 178}
 179
 180static void etr_reset(void);
 181static void stp_reset(void);
 182
 183void read_persistent_clock(struct timespec *ts)
 184{
 185	tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
 186}
 187
 188void read_boot_clock(struct timespec *ts)
 189{
 190	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
 191}
 192
 193static cycle_t read_tod_clock(struct clocksource *cs)
 194{
 195	return get_tod_clock();
 196}
 197
 198static struct clocksource clocksource_tod = {
 199	.name		= "tod",
 200	.rating		= 400,
 201	.read		= read_tod_clock,
 202	.mask		= -1ULL,
 203	.mult		= 1000,
 204	.shift		= 12,
 205	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 206};
 207
 208struct clocksource * __init clocksource_default_clock(void)
 209{
 210	return &clocksource_tod;
 211}
 212
 213void update_vsyscall(struct timekeeper *tk)
 
 214{
 215	u64 nsecps;
 216
 217	if (tk->clock != &clocksource_tod)
 218		return;
 219
 220	/* Make userspace gettimeofday spin until we're done. */
 221	++vdso_data->tb_update_count;
 222	smp_wmb();
 223	vdso_data->xtime_tod_stamp = tk->clock->cycle_last;
 224	vdso_data->xtime_clock_sec = tk->xtime_sec;
 225	vdso_data->xtime_clock_nsec = tk->xtime_nsec;
 226	vdso_data->wtom_clock_sec =
 227		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
 228	vdso_data->wtom_clock_nsec = tk->xtime_nsec +
 229		+ (tk->wall_to_monotonic.tv_nsec << tk->shift);
 230	nsecps = (u64) NSEC_PER_SEC << tk->shift;
 231	while (vdso_data->wtom_clock_nsec >= nsecps) {
 232		vdso_data->wtom_clock_nsec -= nsecps;
 233		vdso_data->wtom_clock_sec++;
 234	}
 235	vdso_data->tk_mult = tk->mult;
 236	vdso_data->tk_shift = tk->shift;
 237	smp_wmb();
 238	++vdso_data->tb_update_count;
 239}
 240
 241extern struct timezone sys_tz;
 242
 243void update_vsyscall_tz(void)
 244{
 245	/* Make userspace gettimeofday spin until we're done. */
 246	++vdso_data->tb_update_count;
 247	smp_wmb();
 248	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 249	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 250	smp_wmb();
 251	++vdso_data->tb_update_count;
 252}
 253
 254/*
 255 * Initialize the TOD clock and the CPU timer of
 256 * the boot cpu.
 257 */
 258void __init time_init(void)
 259{
 260	/* Reset time synchronization interfaces. */
 261	etr_reset();
 262	stp_reset();
 263
 264	/* request the clock comparator external interrupt */
 265	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
 266		panic("Couldn't request external interrupt 0x1004");
 267
 268	/* request the timing alert external interrupt */
 269	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
 270		panic("Couldn't request external interrupt 0x1406");
 271
 272	if (clocksource_register(&clocksource_tod) != 0)
 273		panic("Could not register TOD clock source");
 274
 275	/* Enable TOD clock interrupts on the boot cpu. */
 276	init_cpu_timer();
 277
 278	/* Enable cpu timer interrupts on the boot cpu. */
 279	vtime_init();
 280}
 281
 282/*
 283 * The time is "clock". old is what we think the time is.
 284 * Adjust the value by a multiple of jiffies and add the delta to ntp.
 285 * "delay" is an approximation how long the synchronization took. If
 286 * the time correction is positive, then "delay" is subtracted from
 287 * the time difference and only the remaining part is passed to ntp.
 288 */
 289static unsigned long long adjust_time(unsigned long long old,
 290				      unsigned long long clock,
 291				      unsigned long long delay)
 292{
 293	unsigned long long delta, ticks;
 294	struct timex adjust;
 295
 296	if (clock > old) {
 297		/* It is later than we thought. */
 298		delta = ticks = clock - old;
 299		delta = ticks = (delta < delay) ? 0 : delta - delay;
 300		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 301		adjust.offset = ticks * (1000000 / HZ);
 302	} else {
 303		/* It is earlier than we thought. */
 304		delta = ticks = old - clock;
 305		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 306		delta = -delta;
 307		adjust.offset = -ticks * (1000000 / HZ);
 308	}
 309	sched_clock_base_cc += delta;
 310	if (adjust.offset != 0) {
 311		pr_notice("The ETR interface has adjusted the clock "
 312			  "by %li microseconds\n", adjust.offset);
 313		adjust.modes = ADJ_OFFSET_SINGLESHOT;
 314		do_adjtimex(&adjust);
 315	}
 316	return delta;
 317}
 318
 319static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 320static DEFINE_MUTEX(clock_sync_mutex);
 321static unsigned long clock_sync_flags;
 322
 323#define CLOCK_SYNC_HAS_ETR	0
 324#define CLOCK_SYNC_HAS_STP	1
 325#define CLOCK_SYNC_ETR		2
 326#define CLOCK_SYNC_STP		3
 327
 328/*
 329 * The synchronous get_clock function. It will write the current clock
 330 * value to the clock pointer and return 0 if the clock is in sync with
 331 * the external time source. If the clock mode is local it will return
 332 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
 333 * reference.
 334 */
 335int get_sync_clock(unsigned long long *clock)
 336{
 337	atomic_t *sw_ptr;
 338	unsigned int sw0, sw1;
 339
 340	sw_ptr = &get_cpu_var(clock_sync_word);
 341	sw0 = atomic_read(sw_ptr);
 342	*clock = get_tod_clock();
 343	sw1 = atomic_read(sw_ptr);
 344	put_cpu_var(clock_sync_word);
 345	if (sw0 == sw1 && (sw0 & 0x80000000U))
 346		/* Success: time is in sync. */
 347		return 0;
 348	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
 349	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 350		return -EOPNOTSUPP;
 351	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
 352	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 353		return -EACCES;
 354	return -EAGAIN;
 355}
 356EXPORT_SYMBOL(get_sync_clock);
 357
 358/*
 359 * Make get_sync_clock return -EAGAIN.
 360 */
 361static void disable_sync_clock(void *dummy)
 362{
 363	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 364	/*
 365	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
 366	 * fail until the sync bit is turned back on. In addition
 367	 * increase the "sequence" counter to avoid the race of an
 368	 * etr event and the complete recovery against get_sync_clock.
 369	 */
 370	atomic_clear_mask(0x80000000, sw_ptr);
 371	atomic_inc(sw_ptr);
 372}
 373
 374/*
 375 * Make get_sync_clock return 0 again.
 376 * Needs to be called from a context disabled for preemption.
 377 */
 378static void enable_sync_clock(void)
 379{
 380	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 381	atomic_set_mask(0x80000000, sw_ptr);
 382}
 383
 384/*
 385 * Function to check if the clock is in sync.
 386 */
 387static inline int check_sync_clock(void)
 388{
 389	atomic_t *sw_ptr;
 390	int rc;
 391
 392	sw_ptr = &get_cpu_var(clock_sync_word);
 393	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 394	put_cpu_var(clock_sync_word);
 395	return rc;
 396}
 397
 398/* Single threaded workqueue used for etr and stp sync events */
 399static struct workqueue_struct *time_sync_wq;
 400
 401static void __init time_init_wq(void)
 402{
 403	if (time_sync_wq)
 404		return;
 405	time_sync_wq = create_singlethread_workqueue("timesync");
 406}
 407
 408/*
 409 * External Time Reference (ETR) code.
 410 */
 411static int etr_port0_online;
 412static int etr_port1_online;
 413static int etr_steai_available;
 414
 415static int __init early_parse_etr(char *p)
 416{
 417	if (strncmp(p, "off", 3) == 0)
 418		etr_port0_online = etr_port1_online = 0;
 419	else if (strncmp(p, "port0", 5) == 0)
 420		etr_port0_online = 1;
 421	else if (strncmp(p, "port1", 5) == 0)
 422		etr_port1_online = 1;
 423	else if (strncmp(p, "on", 2) == 0)
 424		etr_port0_online = etr_port1_online = 1;
 425	return 0;
 426}
 427early_param("etr", early_parse_etr);
 428
 429enum etr_event {
 430	ETR_EVENT_PORT0_CHANGE,
 431	ETR_EVENT_PORT1_CHANGE,
 432	ETR_EVENT_PORT_ALERT,
 433	ETR_EVENT_SYNC_CHECK,
 434	ETR_EVENT_SWITCH_LOCAL,
 435	ETR_EVENT_UPDATE,
 436};
 437
 438/*
 439 * Valid bit combinations of the eacr register are (x = don't care):
 440 * e0 e1 dp p0 p1 ea es sl
 441 *  0  0  x  0	0  0  0  0  initial, disabled state
 442 *  0  0  x  0	1  1  0  0  port 1 online
 443 *  0  0  x  1	0  1  0  0  port 0 online
 444 *  0  0  x  1	1  1  0  0  both ports online
 445 *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
 446 *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
 447 *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
 448 *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
 449 *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
 450 *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
 451 *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
 452 *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
 453 *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
 454 *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
 455 *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
 456 *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
 457 *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
 458 *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
 459 *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
 460 *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
 461 */
 462static struct etr_eacr etr_eacr;
 463static u64 etr_tolec;			/* time of last eacr update */
 464static struct etr_aib etr_port0;
 465static int etr_port0_uptodate;
 466static struct etr_aib etr_port1;
 467static int etr_port1_uptodate;
 468static unsigned long etr_events;
 469static struct timer_list etr_timer;
 470
 471static void etr_timeout(unsigned long dummy);
 472static void etr_work_fn(struct work_struct *work);
 473static DEFINE_MUTEX(etr_work_mutex);
 474static DECLARE_WORK(etr_work, etr_work_fn);
 475
 476/*
 477 * Reset ETR attachment.
 478 */
 479static void etr_reset(void)
 480{
 481	etr_eacr =  (struct etr_eacr) {
 482		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
 483		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
 484		.es = 0, .sl = 0 };
 485	if (etr_setr(&etr_eacr) == 0) {
 486		etr_tolec = get_tod_clock();
 487		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
 488		if (etr_port0_online && etr_port1_online)
 489			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
 490	} else if (etr_port0_online || etr_port1_online) {
 491		pr_warning("The real or virtual hardware system does "
 492			   "not provide an ETR interface\n");
 493		etr_port0_online = etr_port1_online = 0;
 494	}
 495}
 496
 497static int __init etr_init(void)
 498{
 499	struct etr_aib aib;
 500
 501	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
 502		return 0;
 503	time_init_wq();
 504	/* Check if this machine has the steai instruction. */
 505	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
 506		etr_steai_available = 1;
 507	setup_timer(&etr_timer, etr_timeout, 0UL);
 508	if (etr_port0_online) {
 509		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 510		queue_work(time_sync_wq, &etr_work);
 511	}
 512	if (etr_port1_online) {
 513		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 514		queue_work(time_sync_wq, &etr_work);
 515	}
 516	return 0;
 517}
 518
 519arch_initcall(etr_init);
 520
 521/*
 522 * Two sorts of ETR machine checks. The architecture reads:
 523 * "When a machine-check niterruption occurs and if a switch-to-local or
 524 *  ETR-sync-check interrupt request is pending but disabled, this pending
 525 *  disabled interruption request is indicated and is cleared".
 526 * Which means that we can get etr_switch_to_local events from the machine
 527 * check handler although the interruption condition is disabled. Lovely..
 528 */
 529
 530/*
 531 * Switch to local machine check. This is called when the last usable
 532 * ETR port goes inactive. After switch to local the clock is not in sync.
 533 */
 534void etr_switch_to_local(void)
 535{
 536	if (!etr_eacr.sl)
 537		return;
 538	disable_sync_clock(NULL);
 539	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
 540		etr_eacr.es = etr_eacr.sl = 0;
 541		etr_setr(&etr_eacr);
 542		queue_work(time_sync_wq, &etr_work);
 543	}
 544}
 545
 546/*
 547 * ETR sync check machine check. This is called when the ETR OTE and the
 548 * local clock OTE are farther apart than the ETR sync check tolerance.
 549 * After a ETR sync check the clock is not in sync. The machine check
 550 * is broadcasted to all cpus at the same time.
 551 */
 552void etr_sync_check(void)
 553{
 554	if (!etr_eacr.es)
 555		return;
 556	disable_sync_clock(NULL);
 557	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
 558		etr_eacr.es = 0;
 559		etr_setr(&etr_eacr);
 560		queue_work(time_sync_wq, &etr_work);
 561	}
 562}
 563
 564/*
 565 * ETR timing alert. There are two causes:
 566 * 1) port state change, check the usability of the port
 567 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
 568 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
 569 *    or ETR-data word 4 (edf4) has changed.
 570 */
 571static void etr_timing_alert(struct etr_irq_parm *intparm)
 572{
 573	if (intparm->pc0)
 574		/* ETR port 0 state change. */
 575		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 576	if (intparm->pc1)
 577		/* ETR port 1 state change. */
 578		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 579	if (intparm->eai)
 580		/*
 581		 * ETR port alert on either port 0, 1 or both.
 582		 * Both ports are not up-to-date now.
 583		 */
 584		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
 585	queue_work(time_sync_wq, &etr_work);
 586}
 587
 588static void etr_timeout(unsigned long dummy)
 589{
 590	set_bit(ETR_EVENT_UPDATE, &etr_events);
 591	queue_work(time_sync_wq, &etr_work);
 592}
 593
 594/*
 595 * Check if the etr mode is pss.
 596 */
 597static inline int etr_mode_is_pps(struct etr_eacr eacr)
 598{
 599	return eacr.es && !eacr.sl;
 600}
 601
 602/*
 603 * Check if the etr mode is etr.
 604 */
 605static inline int etr_mode_is_etr(struct etr_eacr eacr)
 606{
 607	return eacr.es && eacr.sl;
 608}
 609
 610/*
 611 * Check if the port can be used for TOD synchronization.
 612 * For PPS mode the port has to receive OTEs. For ETR mode
 613 * the port has to receive OTEs, the ETR stepping bit has to
 614 * be zero and the validity bits for data frame 1, 2, and 3
 615 * have to be 1.
 616 */
 617static int etr_port_valid(struct etr_aib *aib, int port)
 618{
 619	unsigned int psc;
 620
 621	/* Check that this port is receiving OTEs. */
 622	if (aib->tsp == 0)
 623		return 0;
 624
 625	psc = port ? aib->esw.psc1 : aib->esw.psc0;
 626	if (psc == etr_lpsc_pps_mode)
 627		return 1;
 628	if (psc == etr_lpsc_operational_step)
 629		return !aib->esw.y && aib->slsw.v1 &&
 630			aib->slsw.v2 && aib->slsw.v3;
 631	return 0;
 632}
 633
 634/*
 635 * Check if two ports are on the same network.
 636 */
 637static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
 638{
 639	// FIXME: any other fields we have to compare?
 640	return aib1->edf1.net_id == aib2->edf1.net_id;
 641}
 642
 643/*
 644 * Wrapper for etr_stei that converts physical port states
 645 * to logical port states to be consistent with the output
 646 * of stetr (see etr_psc vs. etr_lpsc).
 647 */
 648static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
 649{
 650	BUG_ON(etr_steai(aib, func) != 0);
 651	/* Convert port state to logical port state. */
 652	if (aib->esw.psc0 == 1)
 653		aib->esw.psc0 = 2;
 654	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
 655		aib->esw.psc0 = 1;
 656	if (aib->esw.psc1 == 1)
 657		aib->esw.psc1 = 2;
 658	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
 659		aib->esw.psc1 = 1;
 660}
 661
 662/*
 663 * Check if the aib a2 is still connected to the same attachment as
 664 * aib a1, the etv values differ by one and a2 is valid.
 665 */
 666static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
 667{
 668	int state_a1, state_a2;
 669
 670	/* Paranoia check: e0/e1 should better be the same. */
 671	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
 672	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
 673		return 0;
 674
 675	/* Still connected to the same etr ? */
 676	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
 677	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
 678	if (state_a1 == etr_lpsc_operational_step) {
 679		if (state_a2 != etr_lpsc_operational_step ||
 680		    a1->edf1.net_id != a2->edf1.net_id ||
 681		    a1->edf1.etr_id != a2->edf1.etr_id ||
 682		    a1->edf1.etr_pn != a2->edf1.etr_pn)
 683			return 0;
 684	} else if (state_a2 != etr_lpsc_pps_mode)
 685		return 0;
 686
 687	/* The ETV value of a2 needs to be ETV of a1 + 1. */
 688	if (a1->edf2.etv + 1 != a2->edf2.etv)
 689		return 0;
 690
 691	if (!etr_port_valid(a2, p))
 692		return 0;
 693
 694	return 1;
 695}
 696
 697struct clock_sync_data {
 698	atomic_t cpus;
 699	int in_sync;
 700	unsigned long long fixup_cc;
 701	int etr_port;
 702	struct etr_aib *etr_aib;
 703};
 704
 705static void clock_sync_cpu(struct clock_sync_data *sync)
 706{
 707	atomic_dec(&sync->cpus);
 708	enable_sync_clock();
 709	/*
 710	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
 711	 * is called on all other cpus while the TOD clocks is stopped.
 712	 * __udelay will stop the cpu on an enabled wait psw until the
 713	 * TOD is running again.
 714	 */
 715	while (sync->in_sync == 0) {
 716		__udelay(1);
 717		/*
 718		 * A different cpu changes *in_sync. Therefore use
 719		 * barrier() to force memory access.
 720		 */
 721		barrier();
 722	}
 723	if (sync->in_sync != 1)
 724		/* Didn't work. Clear per-cpu in sync bit again. */
 725		disable_sync_clock(NULL);
 726	/*
 727	 * This round of TOD syncing is done. Set the clock comparator
 728	 * to the next tick and let the processor continue.
 729	 */
 730	fixup_clock_comparator(sync->fixup_cc);
 731}
 732
 733/*
 734 * Sync the TOD clock using the port referred to by aibp. This port
 735 * has to be enabled and the other port has to be disabled. The
 736 * last eacr update has to be more than 1.6 seconds in the past.
 737 */
 738static int etr_sync_clock(void *data)
 739{
 740	static int first;
 741	unsigned long long clock, old_clock, delay, delta;
 742	struct clock_sync_data *etr_sync;
 743	struct etr_aib *sync_port, *aib;
 744	int port;
 745	int rc;
 746
 747	etr_sync = data;
 748
 749	if (xchg(&first, 1) == 1) {
 750		/* Slave */
 751		clock_sync_cpu(etr_sync);
 752		return 0;
 753	}
 754
 755	/* Wait until all other cpus entered the sync function. */
 756	while (atomic_read(&etr_sync->cpus) != 0)
 757		cpu_relax();
 758
 759	port = etr_sync->etr_port;
 760	aib = etr_sync->etr_aib;
 761	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 762	enable_sync_clock();
 763
 764	/* Set clock to next OTE. */
 765	__ctl_set_bit(14, 21);
 766	__ctl_set_bit(0, 29);
 767	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
 768	old_clock = get_tod_clock();
 769	if (set_tod_clock(clock) == 0) {
 770		__udelay(1);	/* Wait for the clock to start. */
 771		__ctl_clear_bit(0, 29);
 772		__ctl_clear_bit(14, 21);
 773		etr_stetr(aib);
 774		/* Adjust Linux timing variables. */
 775		delay = (unsigned long long)
 776			(aib->edf2.etv - sync_port->edf2.etv) << 32;
 777		delta = adjust_time(old_clock, clock, delay);
 778		etr_sync->fixup_cc = delta;
 779		fixup_clock_comparator(delta);
 780		/* Verify that the clock is properly set. */
 781		if (!etr_aib_follows(sync_port, aib, port)) {
 782			/* Didn't work. */
 783			disable_sync_clock(NULL);
 784			etr_sync->in_sync = -EAGAIN;
 785			rc = -EAGAIN;
 786		} else {
 787			etr_sync->in_sync = 1;
 788			rc = 0;
 789		}
 790	} else {
 791		/* Could not set the clock ?!? */
 792		__ctl_clear_bit(0, 29);
 793		__ctl_clear_bit(14, 21);
 794		disable_sync_clock(NULL);
 795		etr_sync->in_sync = -EAGAIN;
 796		rc = -EAGAIN;
 797	}
 798	xchg(&first, 0);
 799	return rc;
 800}
 801
 802static int etr_sync_clock_stop(struct etr_aib *aib, int port)
 803{
 804	struct clock_sync_data etr_sync;
 805	struct etr_aib *sync_port;
 806	int follows;
 807	int rc;
 808
 809	/* Check if the current aib is adjacent to the sync port aib. */
 810	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 811	follows = etr_aib_follows(sync_port, aib, port);
 812	memcpy(sync_port, aib, sizeof(*aib));
 813	if (!follows)
 814		return -EAGAIN;
 815	memset(&etr_sync, 0, sizeof(etr_sync));
 816	etr_sync.etr_aib = aib;
 817	etr_sync.etr_port = port;
 818	get_online_cpus();
 819	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
 820	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
 821	put_online_cpus();
 822	return rc;
 823}
 824
 825/*
 826 * Handle the immediate effects of the different events.
 827 * The port change event is used for online/offline changes.
 828 */
 829static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
 830{
 831	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
 832		eacr.es = 0;
 833	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
 834		eacr.es = eacr.sl = 0;
 835	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
 836		etr_port0_uptodate = etr_port1_uptodate = 0;
 837
 838	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
 839		if (eacr.e0)
 840			/*
 841			 * Port change of an enabled port. We have to
 842			 * assume that this can have caused an stepping
 843			 * port switch.
 844			 */
 845			etr_tolec = get_tod_clock();
 846		eacr.p0 = etr_port0_online;
 847		if (!eacr.p0)
 848			eacr.e0 = 0;
 849		etr_port0_uptodate = 0;
 850	}
 851	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
 852		if (eacr.e1)
 853			/*
 854			 * Port change of an enabled port. We have to
 855			 * assume that this can have caused an stepping
 856			 * port switch.
 857			 */
 858			etr_tolec = get_tod_clock();
 859		eacr.p1 = etr_port1_online;
 860		if (!eacr.p1)
 861			eacr.e1 = 0;
 862		etr_port1_uptodate = 0;
 863	}
 864	clear_bit(ETR_EVENT_UPDATE, &etr_events);
 865	return eacr;
 866}
 867
 868/*
 869 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
 870 * one of the ports needs an update.
 871 */
 872static void etr_set_tolec_timeout(unsigned long long now)
 873{
 874	unsigned long micros;
 875
 876	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
 877	    (!etr_eacr.p1 || etr_port1_uptodate))
 878		return;
 879	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
 880	micros = (micros > 1600000) ? 0 : 1600000 - micros;
 881	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
 882}
 883
 884/*
 885 * Set up a time that expires after 1/2 second.
 886 */
 887static void etr_set_sync_timeout(void)
 888{
 889	mod_timer(&etr_timer, jiffies + HZ/2);
 890}
 891
 892/*
 893 * Update the aib information for one or both ports.
 894 */
 895static struct etr_eacr etr_handle_update(struct etr_aib *aib,
 896					 struct etr_eacr eacr)
 897{
 898	/* With both ports disabled the aib information is useless. */
 899	if (!eacr.e0 && !eacr.e1)
 900		return eacr;
 901
 902	/* Update port0 or port1 with aib stored in etr_work_fn. */
 903	if (aib->esw.q == 0) {
 904		/* Information for port 0 stored. */
 905		if (eacr.p0 && !etr_port0_uptodate) {
 906			etr_port0 = *aib;
 907			if (etr_port0_online)
 908				etr_port0_uptodate = 1;
 909		}
 910	} else {
 911		/* Information for port 1 stored. */
 912		if (eacr.p1 && !etr_port1_uptodate) {
 913			etr_port1 = *aib;
 914			if (etr_port0_online)
 915				etr_port1_uptodate = 1;
 916		}
 917	}
 918
 919	/*
 920	 * Do not try to get the alternate port aib if the clock
 921	 * is not in sync yet.
 922	 */
 923	if (!eacr.es || !check_sync_clock())
 924		return eacr;
 925
 926	/*
 927	 * If steai is available we can get the information about
 928	 * the other port immediately. If only stetr is available the
 929	 * data-port bit toggle has to be used.
 930	 */
 931	if (etr_steai_available) {
 932		if (eacr.p0 && !etr_port0_uptodate) {
 933			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
 934			etr_port0_uptodate = 1;
 935		}
 936		if (eacr.p1 && !etr_port1_uptodate) {
 937			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
 938			etr_port1_uptodate = 1;
 939		}
 940	} else {
 941		/*
 942		 * One port was updated above, if the other
 943		 * port is not uptodate toggle dp bit.
 944		 */
 945		if ((eacr.p0 && !etr_port0_uptodate) ||
 946		    (eacr.p1 && !etr_port1_uptodate))
 947			eacr.dp ^= 1;
 948		else
 949			eacr.dp = 0;
 950	}
 951	return eacr;
 952}
 953
 954/*
 955 * Write new etr control register if it differs from the current one.
 956 * Return 1 if etr_tolec has been updated as well.
 957 */
 958static void etr_update_eacr(struct etr_eacr eacr)
 959{
 960	int dp_changed;
 961
 962	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
 963		/* No change, return. */
 964		return;
 965	/*
 966	 * The disable of an active port of the change of the data port
 967	 * bit can/will cause a change in the data port.
 968	 */
 969	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
 970		(etr_eacr.dp ^ eacr.dp) != 0;
 971	etr_eacr = eacr;
 972	etr_setr(&etr_eacr);
 973	if (dp_changed)
 974		etr_tolec = get_tod_clock();
 975}
 976
 977/*
 978 * ETR work. In this function you'll find the main logic. In
 979 * particular this is the only function that calls etr_update_eacr(),
 980 * it "controls" the etr control register.
 981 */
 982static void etr_work_fn(struct work_struct *work)
 983{
 984	unsigned long long now;
 985	struct etr_eacr eacr;
 986	struct etr_aib aib;
 987	int sync_port;
 988
 989	/* prevent multiple execution. */
 990	mutex_lock(&etr_work_mutex);
 991
 992	/* Create working copy of etr_eacr. */
 993	eacr = etr_eacr;
 994
 995	/* Check for the different events and their immediate effects. */
 996	eacr = etr_handle_events(eacr);
 997
 998	/* Check if ETR is supposed to be active. */
 999	eacr.ea = eacr.p0 || eacr.p1;
1000	if (!eacr.ea) {
1001		/* Both ports offline. Reset everything. */
1002		eacr.dp = eacr.es = eacr.sl = 0;
1003		on_each_cpu(disable_sync_clock, NULL, 1);
1004		del_timer_sync(&etr_timer);
1005		etr_update_eacr(eacr);
1006		goto out_unlock;
1007	}
1008
1009	/* Store aib to get the current ETR status word. */
1010	BUG_ON(etr_stetr(&aib) != 0);
1011	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1012	now = get_tod_clock();
1013
1014	/*
1015	 * Update the port information if the last stepping port change
1016	 * or data port change is older than 1.6 seconds.
1017	 */
1018	if (now >= etr_tolec + (1600000 << 12))
1019		eacr = etr_handle_update(&aib, eacr);
1020
1021	/*
1022	 * Select ports to enable. The preferred synchronization mode is PPS.
1023	 * If a port can be enabled depends on a number of things:
1024	 * 1) The port needs to be online and uptodate. A port is not
1025	 *    disabled just because it is not uptodate, but it is only
1026	 *    enabled if it is uptodate.
1027	 * 2) The port needs to have the same mode (pps / etr).
1028	 * 3) The port needs to be usable -> etr_port_valid() == 1
1029	 * 4) To enable the second port the clock needs to be in sync.
1030	 * 5) If both ports are useable and are ETR ports, the network id
1031	 *    has to be the same.
1032	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1033	 */
1034	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1035		eacr.sl = 0;
1036		eacr.e0 = 1;
1037		if (!etr_mode_is_pps(etr_eacr))
1038			eacr.es = 0;
1039		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1040			eacr.e1 = 0;
1041		// FIXME: uptodate checks ?
1042		else if (etr_port0_uptodate && etr_port1_uptodate)
1043			eacr.e1 = 1;
1044		sync_port = (etr_port0_uptodate &&
1045			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1046	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1047		eacr.sl = 0;
1048		eacr.e0 = 0;
1049		eacr.e1 = 1;
1050		if (!etr_mode_is_pps(etr_eacr))
1051			eacr.es = 0;
1052		sync_port = (etr_port1_uptodate &&
1053			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1054	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1055		eacr.sl = 1;
1056		eacr.e0 = 1;
1057		if (!etr_mode_is_etr(etr_eacr))
1058			eacr.es = 0;
1059		if (!eacr.es || !eacr.p1 ||
1060		    aib.esw.psc1 != etr_lpsc_operational_alt)
1061			eacr.e1 = 0;
1062		else if (etr_port0_uptodate && etr_port1_uptodate &&
1063			 etr_compare_network(&etr_port0, &etr_port1))
1064			eacr.e1 = 1;
1065		sync_port = (etr_port0_uptodate &&
1066			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1067	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1068		eacr.sl = 1;
1069		eacr.e0 = 0;
1070		eacr.e1 = 1;
1071		if (!etr_mode_is_etr(etr_eacr))
1072			eacr.es = 0;
1073		sync_port = (etr_port1_uptodate &&
1074			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1075	} else {
1076		/* Both ports not usable. */
1077		eacr.es = eacr.sl = 0;
1078		sync_port = -1;
1079	}
1080
1081	/*
1082	 * If the clock is in sync just update the eacr and return.
1083	 * If there is no valid sync port wait for a port update.
1084	 */
1085	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1086		etr_update_eacr(eacr);
1087		etr_set_tolec_timeout(now);
1088		goto out_unlock;
1089	}
1090
1091	/*
1092	 * Prepare control register for clock syncing
1093	 * (reset data port bit, set sync check control.
1094	 */
1095	eacr.dp = 0;
1096	eacr.es = 1;
1097
1098	/*
1099	 * Update eacr and try to synchronize the clock. If the update
1100	 * of eacr caused a stepping port switch (or if we have to
1101	 * assume that a stepping port switch has occurred) or the
1102	 * clock syncing failed, reset the sync check control bit
1103	 * and set up a timer to try again after 0.5 seconds
1104	 */
1105	etr_update_eacr(eacr);
1106	if (now < etr_tolec + (1600000 << 12) ||
1107	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1108		/* Sync failed. Try again in 1/2 second. */
1109		eacr.es = 0;
1110		etr_update_eacr(eacr);
1111		etr_set_sync_timeout();
1112	} else
1113		etr_set_tolec_timeout(now);
1114out_unlock:
1115	mutex_unlock(&etr_work_mutex);
1116}
1117
1118/*
1119 * Sysfs interface functions
1120 */
1121static struct bus_type etr_subsys = {
1122	.name		= "etr",
1123	.dev_name	= "etr",
1124};
1125
1126static struct device etr_port0_dev = {
1127	.id	= 0,
1128	.bus	= &etr_subsys,
1129};
1130
1131static struct device etr_port1_dev = {
1132	.id	= 1,
1133	.bus	= &etr_subsys,
1134};
1135
1136/*
1137 * ETR subsys attributes
1138 */
1139static ssize_t etr_stepping_port_show(struct device *dev,
1140					struct device_attribute *attr,
1141					char *buf)
1142{
1143	return sprintf(buf, "%i\n", etr_port0.esw.p);
1144}
1145
1146static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1147
1148static ssize_t etr_stepping_mode_show(struct device *dev,
1149					struct device_attribute *attr,
1150					char *buf)
1151{
1152	char *mode_str;
1153
1154	if (etr_mode_is_pps(etr_eacr))
1155		mode_str = "pps";
1156	else if (etr_mode_is_etr(etr_eacr))
1157		mode_str = "etr";
1158	else
1159		mode_str = "local";
1160	return sprintf(buf, "%s\n", mode_str);
1161}
1162
1163static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1164
1165/*
1166 * ETR port attributes
1167 */
1168static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1169{
1170	if (dev == &etr_port0_dev)
1171		return etr_port0_online ? &etr_port0 : NULL;
1172	else
1173		return etr_port1_online ? &etr_port1 : NULL;
1174}
1175
1176static ssize_t etr_online_show(struct device *dev,
1177				struct device_attribute *attr,
1178				char *buf)
1179{
1180	unsigned int online;
1181
1182	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1183	return sprintf(buf, "%i\n", online);
1184}
1185
1186static ssize_t etr_online_store(struct device *dev,
1187				struct device_attribute *attr,
1188				const char *buf, size_t count)
1189{
1190	unsigned int value;
1191
1192	value = simple_strtoul(buf, NULL, 0);
1193	if (value != 0 && value != 1)
1194		return -EINVAL;
1195	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1196		return -EOPNOTSUPP;
1197	mutex_lock(&clock_sync_mutex);
1198	if (dev == &etr_port0_dev) {
1199		if (etr_port0_online == value)
1200			goto out;	/* Nothing to do. */
1201		etr_port0_online = value;
1202		if (etr_port0_online && etr_port1_online)
1203			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1204		else
1205			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1206		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1207		queue_work(time_sync_wq, &etr_work);
1208	} else {
1209		if (etr_port1_online == value)
1210			goto out;	/* Nothing to do. */
1211		etr_port1_online = value;
1212		if (etr_port0_online && etr_port1_online)
1213			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1214		else
1215			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1216		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1217		queue_work(time_sync_wq, &etr_work);
1218	}
1219out:
1220	mutex_unlock(&clock_sync_mutex);
1221	return count;
1222}
1223
1224static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1225
1226static ssize_t etr_stepping_control_show(struct device *dev,
1227					struct device_attribute *attr,
1228					char *buf)
1229{
1230	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1231		       etr_eacr.e0 : etr_eacr.e1);
1232}
1233
1234static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1235
1236static ssize_t etr_mode_code_show(struct device *dev,
1237				struct device_attribute *attr, char *buf)
1238{
1239	if (!etr_port0_online && !etr_port1_online)
1240		/* Status word is not uptodate if both ports are offline. */
1241		return -ENODATA;
1242	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1243		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1244}
1245
1246static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1247
1248static ssize_t etr_untuned_show(struct device *dev,
1249				struct device_attribute *attr, char *buf)
1250{
1251	struct etr_aib *aib = etr_aib_from_dev(dev);
1252
1253	if (!aib || !aib->slsw.v1)
1254		return -ENODATA;
1255	return sprintf(buf, "%i\n", aib->edf1.u);
1256}
1257
1258static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1259
1260static ssize_t etr_network_id_show(struct device *dev,
1261				struct device_attribute *attr, char *buf)
1262{
1263	struct etr_aib *aib = etr_aib_from_dev(dev);
1264
1265	if (!aib || !aib->slsw.v1)
1266		return -ENODATA;
1267	return sprintf(buf, "%i\n", aib->edf1.net_id);
1268}
1269
1270static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1271
1272static ssize_t etr_id_show(struct device *dev,
1273			struct device_attribute *attr, char *buf)
1274{
1275	struct etr_aib *aib = etr_aib_from_dev(dev);
1276
1277	if (!aib || !aib->slsw.v1)
1278		return -ENODATA;
1279	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1280}
1281
1282static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1283
1284static ssize_t etr_port_number_show(struct device *dev,
1285			struct device_attribute *attr, char *buf)
1286{
1287	struct etr_aib *aib = etr_aib_from_dev(dev);
1288
1289	if (!aib || !aib->slsw.v1)
1290		return -ENODATA;
1291	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1292}
1293
1294static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1295
1296static ssize_t etr_coupled_show(struct device *dev,
1297			struct device_attribute *attr, char *buf)
1298{
1299	struct etr_aib *aib = etr_aib_from_dev(dev);
1300
1301	if (!aib || !aib->slsw.v3)
1302		return -ENODATA;
1303	return sprintf(buf, "%i\n", aib->edf3.c);
1304}
1305
1306static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1307
1308static ssize_t etr_local_time_show(struct device *dev,
1309			struct device_attribute *attr, char *buf)
1310{
1311	struct etr_aib *aib = etr_aib_from_dev(dev);
1312
1313	if (!aib || !aib->slsw.v3)
1314		return -ENODATA;
1315	return sprintf(buf, "%i\n", aib->edf3.blto);
1316}
1317
1318static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1319
1320static ssize_t etr_utc_offset_show(struct device *dev,
1321			struct device_attribute *attr, char *buf)
1322{
1323	struct etr_aib *aib = etr_aib_from_dev(dev);
1324
1325	if (!aib || !aib->slsw.v3)
1326		return -ENODATA;
1327	return sprintf(buf, "%i\n", aib->edf3.buo);
1328}
1329
1330static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1331
1332static struct device_attribute *etr_port_attributes[] = {
1333	&dev_attr_online,
1334	&dev_attr_stepping_control,
1335	&dev_attr_state_code,
1336	&dev_attr_untuned,
1337	&dev_attr_network,
1338	&dev_attr_id,
1339	&dev_attr_port,
1340	&dev_attr_coupled,
1341	&dev_attr_local_time,
1342	&dev_attr_utc_offset,
1343	NULL
1344};
1345
1346static int __init etr_register_port(struct device *dev)
1347{
1348	struct device_attribute **attr;
1349	int rc;
1350
1351	rc = device_register(dev);
1352	if (rc)
1353		goto out;
1354	for (attr = etr_port_attributes; *attr; attr++) {
1355		rc = device_create_file(dev, *attr);
1356		if (rc)
1357			goto out_unreg;
1358	}
1359	return 0;
1360out_unreg:
1361	for (; attr >= etr_port_attributes; attr--)
1362		device_remove_file(dev, *attr);
1363	device_unregister(dev);
1364out:
1365	return rc;
1366}
1367
1368static void __init etr_unregister_port(struct device *dev)
1369{
1370	struct device_attribute **attr;
1371
1372	for (attr = etr_port_attributes; *attr; attr++)
1373		device_remove_file(dev, *attr);
1374	device_unregister(dev);
1375}
1376
1377static int __init etr_init_sysfs(void)
1378{
1379	int rc;
1380
1381	rc = subsys_system_register(&etr_subsys, NULL);
1382	if (rc)
1383		goto out;
1384	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1385	if (rc)
1386		goto out_unreg_subsys;
1387	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1388	if (rc)
1389		goto out_remove_stepping_port;
1390	rc = etr_register_port(&etr_port0_dev);
1391	if (rc)
1392		goto out_remove_stepping_mode;
1393	rc = etr_register_port(&etr_port1_dev);
1394	if (rc)
1395		goto out_remove_port0;
1396	return 0;
1397
1398out_remove_port0:
1399	etr_unregister_port(&etr_port0_dev);
1400out_remove_stepping_mode:
1401	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402out_remove_stepping_port:
1403	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1404out_unreg_subsys:
1405	bus_unregister(&etr_subsys);
1406out:
1407	return rc;
1408}
1409
1410device_initcall(etr_init_sysfs);
1411
1412/*
1413 * Server Time Protocol (STP) code.
1414 */
1415static int stp_online;
1416static struct stp_sstpi stp_info;
1417static void *stp_page;
1418
1419static void stp_work_fn(struct work_struct *work);
1420static DEFINE_MUTEX(stp_work_mutex);
1421static DECLARE_WORK(stp_work, stp_work_fn);
1422static struct timer_list stp_timer;
1423
1424static int __init early_parse_stp(char *p)
1425{
1426	if (strncmp(p, "off", 3) == 0)
1427		stp_online = 0;
1428	else if (strncmp(p, "on", 2) == 0)
1429		stp_online = 1;
1430	return 0;
1431}
1432early_param("stp", early_parse_stp);
1433
1434/*
1435 * Reset STP attachment.
1436 */
1437static void __init stp_reset(void)
1438{
1439	int rc;
1440
1441	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1442	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1443	if (rc == 0)
1444		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1445	else if (stp_online) {
1446		pr_warning("The real or virtual hardware system does "
1447			   "not provide an STP interface\n");
1448		free_page((unsigned long) stp_page);
1449		stp_page = NULL;
1450		stp_online = 0;
1451	}
1452}
1453
1454static void stp_timeout(unsigned long dummy)
1455{
1456	queue_work(time_sync_wq, &stp_work);
1457}
1458
1459static int __init stp_init(void)
1460{
1461	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1462		return 0;
1463	setup_timer(&stp_timer, stp_timeout, 0UL);
1464	time_init_wq();
1465	if (!stp_online)
1466		return 0;
1467	queue_work(time_sync_wq, &stp_work);
1468	return 0;
1469}
1470
1471arch_initcall(stp_init);
1472
1473/*
1474 * STP timing alert. There are three causes:
1475 * 1) timing status change
1476 * 2) link availability change
1477 * 3) time control parameter change
1478 * In all three cases we are only interested in the clock source state.
1479 * If a STP clock source is now available use it.
1480 */
1481static void stp_timing_alert(struct stp_irq_parm *intparm)
1482{
1483	if (intparm->tsc || intparm->lac || intparm->tcpc)
1484		queue_work(time_sync_wq, &stp_work);
1485}
1486
1487/*
1488 * STP sync check machine check. This is called when the timing state
1489 * changes from the synchronized state to the unsynchronized state.
1490 * After a STP sync check the clock is not in sync. The machine check
1491 * is broadcasted to all cpus at the same time.
1492 */
1493void stp_sync_check(void)
1494{
1495	disable_sync_clock(NULL);
1496	queue_work(time_sync_wq, &stp_work);
1497}
1498
1499/*
1500 * STP island condition machine check. This is called when an attached
1501 * server  attempts to communicate over an STP link and the servers
1502 * have matching CTN ids and have a valid stratum-1 configuration
1503 * but the configurations do not match.
1504 */
1505void stp_island_check(void)
1506{
1507	disable_sync_clock(NULL);
1508	queue_work(time_sync_wq, &stp_work);
1509}
1510
1511
1512static int stp_sync_clock(void *data)
1513{
1514	static int first;
1515	unsigned long long old_clock, delta;
1516	struct clock_sync_data *stp_sync;
1517	int rc;
1518
1519	stp_sync = data;
1520
1521	if (xchg(&first, 1) == 1) {
1522		/* Slave */
1523		clock_sync_cpu(stp_sync);
1524		return 0;
1525	}
1526
1527	/* Wait until all other cpus entered the sync function. */
1528	while (atomic_read(&stp_sync->cpus) != 0)
1529		cpu_relax();
1530
1531	enable_sync_clock();
1532
1533	rc = 0;
1534	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1535	    stp_info.todoff[2] || stp_info.todoff[3] ||
1536	    stp_info.tmd != 2) {
1537		old_clock = get_tod_clock();
1538		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1539		if (rc == 0) {
1540			delta = adjust_time(old_clock, get_tod_clock(), 0);
1541			fixup_clock_comparator(delta);
1542			rc = chsc_sstpi(stp_page, &stp_info,
1543					sizeof(struct stp_sstpi));
1544			if (rc == 0 && stp_info.tmd != 2)
1545				rc = -EAGAIN;
1546		}
1547	}
1548	if (rc) {
1549		disable_sync_clock(NULL);
1550		stp_sync->in_sync = -EAGAIN;
1551	} else
1552		stp_sync->in_sync = 1;
1553	xchg(&first, 0);
1554	return 0;
1555}
1556
1557/*
1558 * STP work. Check for the STP state and take over the clock
1559 * synchronization if the STP clock source is usable.
1560 */
1561static void stp_work_fn(struct work_struct *work)
1562{
1563	struct clock_sync_data stp_sync;
1564	int rc;
1565
1566	/* prevent multiple execution. */
1567	mutex_lock(&stp_work_mutex);
1568
1569	if (!stp_online) {
1570		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1571		del_timer_sync(&stp_timer);
1572		goto out_unlock;
1573	}
1574
1575	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1576	if (rc)
1577		goto out_unlock;
1578
1579	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1580	if (rc || stp_info.c == 0)
1581		goto out_unlock;
1582
1583	/* Skip synchronization if the clock is already in sync. */
1584	if (check_sync_clock())
1585		goto out_unlock;
1586
1587	memset(&stp_sync, 0, sizeof(stp_sync));
1588	get_online_cpus();
1589	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1590	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1591	put_online_cpus();
1592
1593	if (!check_sync_clock())
1594		/*
1595		 * There is a usable clock but the synchonization failed.
1596		 * Retry after a second.
1597		 */
1598		mod_timer(&stp_timer, jiffies + HZ);
1599
1600out_unlock:
1601	mutex_unlock(&stp_work_mutex);
1602}
1603
1604/*
1605 * STP subsys sysfs interface functions
1606 */
1607static struct bus_type stp_subsys = {
1608	.name		= "stp",
1609	.dev_name	= "stp",
1610};
1611
1612static ssize_t stp_ctn_id_show(struct device *dev,
1613				struct device_attribute *attr,
1614				char *buf)
1615{
1616	if (!stp_online)
1617		return -ENODATA;
1618	return sprintf(buf, "%016llx\n",
1619		       *(unsigned long long *) stp_info.ctnid);
1620}
1621
1622static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1623
1624static ssize_t stp_ctn_type_show(struct device *dev,
1625				struct device_attribute *attr,
1626				char *buf)
1627{
1628	if (!stp_online)
1629		return -ENODATA;
1630	return sprintf(buf, "%i\n", stp_info.ctn);
1631}
1632
1633static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1634
1635static ssize_t stp_dst_offset_show(struct device *dev,
1636				   struct device_attribute *attr,
1637				   char *buf)
1638{
1639	if (!stp_online || !(stp_info.vbits & 0x2000))
1640		return -ENODATA;
1641	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1642}
1643
1644static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1645
1646static ssize_t stp_leap_seconds_show(struct device *dev,
1647					struct device_attribute *attr,
1648					char *buf)
1649{
1650	if (!stp_online || !(stp_info.vbits & 0x8000))
1651		return -ENODATA;
1652	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1653}
1654
1655static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1656
1657static ssize_t stp_stratum_show(struct device *dev,
1658				struct device_attribute *attr,
1659				char *buf)
1660{
1661	if (!stp_online)
1662		return -ENODATA;
1663	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1664}
1665
1666static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1667
1668static ssize_t stp_time_offset_show(struct device *dev,
1669				struct device_attribute *attr,
1670				char *buf)
1671{
1672	if (!stp_online || !(stp_info.vbits & 0x0800))
1673		return -ENODATA;
1674	return sprintf(buf, "%i\n", (int) stp_info.tto);
1675}
1676
1677static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1678
1679static ssize_t stp_time_zone_offset_show(struct device *dev,
1680				struct device_attribute *attr,
1681				char *buf)
1682{
1683	if (!stp_online || !(stp_info.vbits & 0x4000))
1684		return -ENODATA;
1685	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1686}
1687
1688static DEVICE_ATTR(time_zone_offset, 0400,
1689			 stp_time_zone_offset_show, NULL);
1690
1691static ssize_t stp_timing_mode_show(struct device *dev,
1692				struct device_attribute *attr,
1693				char *buf)
1694{
1695	if (!stp_online)
1696		return -ENODATA;
1697	return sprintf(buf, "%i\n", stp_info.tmd);
1698}
1699
1700static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1701
1702static ssize_t stp_timing_state_show(struct device *dev,
1703				struct device_attribute *attr,
1704				char *buf)
1705{
1706	if (!stp_online)
1707		return -ENODATA;
1708	return sprintf(buf, "%i\n", stp_info.tst);
1709}
1710
1711static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1712
1713static ssize_t stp_online_show(struct device *dev,
1714				struct device_attribute *attr,
1715				char *buf)
1716{
1717	return sprintf(buf, "%i\n", stp_online);
1718}
1719
1720static ssize_t stp_online_store(struct device *dev,
1721				struct device_attribute *attr,
1722				const char *buf, size_t count)
1723{
1724	unsigned int value;
1725
1726	value = simple_strtoul(buf, NULL, 0);
1727	if (value != 0 && value != 1)
1728		return -EINVAL;
1729	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1730		return -EOPNOTSUPP;
1731	mutex_lock(&clock_sync_mutex);
1732	stp_online = value;
1733	if (stp_online)
1734		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1735	else
1736		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1737	queue_work(time_sync_wq, &stp_work);
1738	mutex_unlock(&clock_sync_mutex);
1739	return count;
1740}
1741
1742/*
1743 * Can't use DEVICE_ATTR because the attribute should be named
1744 * stp/online but dev_attr_online already exists in this file ..
1745 */
1746static struct device_attribute dev_attr_stp_online = {
1747	.attr = { .name = "online", .mode = 0600 },
1748	.show	= stp_online_show,
1749	.store	= stp_online_store,
1750};
1751
1752static struct device_attribute *stp_attributes[] = {
1753	&dev_attr_ctn_id,
1754	&dev_attr_ctn_type,
1755	&dev_attr_dst_offset,
1756	&dev_attr_leap_seconds,
1757	&dev_attr_stp_online,
1758	&dev_attr_stratum,
1759	&dev_attr_time_offset,
1760	&dev_attr_time_zone_offset,
1761	&dev_attr_timing_mode,
1762	&dev_attr_timing_state,
1763	NULL
1764};
1765
1766static int __init stp_init_sysfs(void)
1767{
1768	struct device_attribute **attr;
1769	int rc;
1770
1771	rc = subsys_system_register(&stp_subsys, NULL);
1772	if (rc)
1773		goto out;
1774	for (attr = stp_attributes; *attr; attr++) {
1775		rc = device_create_file(stp_subsys.dev_root, *attr);
1776		if (rc)
1777			goto out_unreg;
1778	}
1779	return 0;
1780out_unreg:
1781	for (; attr >= stp_attributes; attr--)
1782		device_remove_file(stp_subsys.dev_root, *attr);
1783	bus_unregister(&stp_subsys);
1784out:
1785	return rc;
1786}
1787
1788device_initcall(stp_init_sysfs);
v3.1
   1/*
   2 *  arch/s390/kernel/time.c
   3 *    Time of day based timer functions.
   4 *
   5 *  S390 version
   6 *    Copyright IBM Corp. 1999, 2008
   7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
  10 *
  11 *  Derived from "arch/i386/kernel/time.c"
  12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  13 */
  14
  15#define KMSG_COMPONENT "time"
  16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  17
  18#include <linux/kernel_stat.h>
  19#include <linux/errno.h>
  20#include <linux/module.h>
  21#include <linux/sched.h>
  22#include <linux/kernel.h>
  23#include <linux/param.h>
  24#include <linux/string.h>
  25#include <linux/mm.h>
  26#include <linux/interrupt.h>
  27#include <linux/cpu.h>
  28#include <linux/stop_machine.h>
  29#include <linux/time.h>
  30#include <linux/sysdev.h>
  31#include <linux/delay.h>
  32#include <linux/init.h>
  33#include <linux/smp.h>
  34#include <linux/types.h>
  35#include <linux/profile.h>
  36#include <linux/timex.h>
  37#include <linux/notifier.h>
  38#include <linux/clocksource.h>
  39#include <linux/clockchips.h>
  40#include <linux/gfp.h>
  41#include <linux/kprobes.h>
  42#include <asm/uaccess.h>
  43#include <asm/delay.h>
  44#include <asm/div64.h>
  45#include <asm/vdso.h>
  46#include <asm/irq.h>
  47#include <asm/irq_regs.h>
  48#include <asm/timer.h>
  49#include <asm/etr.h>
  50#include <asm/cio.h>
 
  51
  52/* change this if you have some constant time drift */
  53#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
  54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
  55
  56u64 sched_clock_base_cc = -1;	/* Force to data section. */
  57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
  58
  59static DEFINE_PER_CPU(struct clock_event_device, comparators);
  60
  61/*
  62 * Scheduler clock - returns current time in nanosec units.
  63 */
  64unsigned long long notrace __kprobes sched_clock(void)
  65{
  66	return (get_clock_monotonic() * 125) >> 9;
  67}
  68
  69/*
  70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
  71 */
  72unsigned long long monotonic_clock(void)
  73{
  74	return sched_clock();
  75}
  76EXPORT_SYMBOL(monotonic_clock);
  77
  78void tod_to_timeval(__u64 todval, struct timespec *xt)
  79{
  80	unsigned long long sec;
  81
  82	sec = todval >> 12;
  83	do_div(sec, 1000000);
  84	xt->tv_sec = sec;
  85	todval -= (sec * 1000000) << 12;
  86	xt->tv_nsec = ((todval * 1000) >> 12);
  87}
  88EXPORT_SYMBOL(tod_to_timeval);
  89
  90void clock_comparator_work(void)
  91{
  92	struct clock_event_device *cd;
  93
  94	S390_lowcore.clock_comparator = -1ULL;
  95	set_clock_comparator(S390_lowcore.clock_comparator);
  96	cd = &__get_cpu_var(comparators);
  97	cd->event_handler(cd);
  98}
  99
 100/*
 101 * Fixup the clock comparator.
 102 */
 103static void fixup_clock_comparator(unsigned long long delta)
 104{
 105	/* If nobody is waiting there's nothing to fix. */
 106	if (S390_lowcore.clock_comparator == -1ULL)
 107		return;
 108	S390_lowcore.clock_comparator += delta;
 109	set_clock_comparator(S390_lowcore.clock_comparator);
 110}
 111
 112static int s390_next_event(unsigned long delta,
 113			   struct clock_event_device *evt)
 114{
 115	S390_lowcore.clock_comparator = get_clock() + delta;
 116	set_clock_comparator(S390_lowcore.clock_comparator);
 117	return 0;
 118}
 119
 120static void s390_set_mode(enum clock_event_mode mode,
 121			  struct clock_event_device *evt)
 122{
 123}
 124
 125/*
 126 * Set up lowcore and control register of the current cpu to
 127 * enable TOD clock and clock comparator interrupts.
 128 */
 129void init_cpu_timer(void)
 130{
 131	struct clock_event_device *cd;
 132	int cpu;
 133
 134	S390_lowcore.clock_comparator = -1ULL;
 135	set_clock_comparator(S390_lowcore.clock_comparator);
 136
 137	cpu = smp_processor_id();
 138	cd = &per_cpu(comparators, cpu);
 139	cd->name		= "comparator";
 140	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
 141	cd->mult		= 16777;
 142	cd->shift		= 12;
 143	cd->min_delta_ns	= 1;
 144	cd->max_delta_ns	= LONG_MAX;
 145	cd->rating		= 400;
 146	cd->cpumask		= cpumask_of(cpu);
 147	cd->set_next_event	= s390_next_event;
 148	cd->set_mode		= s390_set_mode;
 149
 150	clockevents_register_device(cd);
 151
 152	/* Enable clock comparator timer interrupt. */
 153	__ctl_set_bit(0,11);
 154
 155	/* Always allow the timing alert external interrupt. */
 156	__ctl_set_bit(0, 4);
 157}
 158
 159static void clock_comparator_interrupt(unsigned int ext_int_code,
 160				       unsigned int param32,
 161				       unsigned long param64)
 162{
 163	kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
 164	if (S390_lowcore.clock_comparator == -1ULL)
 165		set_clock_comparator(S390_lowcore.clock_comparator);
 166}
 167
 168static void etr_timing_alert(struct etr_irq_parm *);
 169static void stp_timing_alert(struct stp_irq_parm *);
 170
 171static void timing_alert_interrupt(unsigned int ext_int_code,
 172				   unsigned int param32, unsigned long param64)
 173{
 174	kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
 175	if (param32 & 0x00c40000)
 176		etr_timing_alert((struct etr_irq_parm *) &param32);
 177	if (param32 & 0x00038000)
 178		stp_timing_alert((struct stp_irq_parm *) &param32);
 179}
 180
 181static void etr_reset(void);
 182static void stp_reset(void);
 183
 184void read_persistent_clock(struct timespec *ts)
 185{
 186	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
 187}
 188
 189void read_boot_clock(struct timespec *ts)
 190{
 191	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
 192}
 193
 194static cycle_t read_tod_clock(struct clocksource *cs)
 195{
 196	return get_clock();
 197}
 198
 199static struct clocksource clocksource_tod = {
 200	.name		= "tod",
 201	.rating		= 400,
 202	.read		= read_tod_clock,
 203	.mask		= -1ULL,
 204	.mult		= 1000,
 205	.shift		= 12,
 206	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 207};
 208
 209struct clocksource * __init clocksource_default_clock(void)
 210{
 211	return &clocksource_tod;
 212}
 213
 214void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 215			struct clocksource *clock, u32 mult)
 216{
 217	if (clock != &clocksource_tod)
 
 
 218		return;
 219
 220	/* Make userspace gettimeofday spin until we're done. */
 221	++vdso_data->tb_update_count;
 222	smp_wmb();
 223	vdso_data->xtime_tod_stamp = clock->cycle_last;
 224	vdso_data->xtime_clock_sec = wall_time->tv_sec;
 225	vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
 226	vdso_data->wtom_clock_sec = wtm->tv_sec;
 227	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 228	vdso_data->ntp_mult = mult;
 
 
 
 
 
 
 
 
 229	smp_wmb();
 230	++vdso_data->tb_update_count;
 231}
 232
 233extern struct timezone sys_tz;
 234
 235void update_vsyscall_tz(void)
 236{
 237	/* Make userspace gettimeofday spin until we're done. */
 238	++vdso_data->tb_update_count;
 239	smp_wmb();
 240	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 241	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 242	smp_wmb();
 243	++vdso_data->tb_update_count;
 244}
 245
 246/*
 247 * Initialize the TOD clock and the CPU timer of
 248 * the boot cpu.
 249 */
 250void __init time_init(void)
 251{
 252	/* Reset time synchronization interfaces. */
 253	etr_reset();
 254	stp_reset();
 255
 256	/* request the clock comparator external interrupt */
 257	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
 258                panic("Couldn't request external interrupt 0x1004");
 259
 260	/* request the timing alert external interrupt */
 261	if (register_external_interrupt(0x1406, timing_alert_interrupt))
 262		panic("Couldn't request external interrupt 0x1406");
 263
 264	if (clocksource_register(&clocksource_tod) != 0)
 265		panic("Could not register TOD clock source");
 266
 267	/* Enable TOD clock interrupts on the boot cpu. */
 268	init_cpu_timer();
 269
 270	/* Enable cpu timer interrupts on the boot cpu. */
 271	vtime_init();
 272}
 273
 274/*
 275 * The time is "clock". old is what we think the time is.
 276 * Adjust the value by a multiple of jiffies and add the delta to ntp.
 277 * "delay" is an approximation how long the synchronization took. If
 278 * the time correction is positive, then "delay" is subtracted from
 279 * the time difference and only the remaining part is passed to ntp.
 280 */
 281static unsigned long long adjust_time(unsigned long long old,
 282				      unsigned long long clock,
 283				      unsigned long long delay)
 284{
 285	unsigned long long delta, ticks;
 286	struct timex adjust;
 287
 288	if (clock > old) {
 289		/* It is later than we thought. */
 290		delta = ticks = clock - old;
 291		delta = ticks = (delta < delay) ? 0 : delta - delay;
 292		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 293		adjust.offset = ticks * (1000000 / HZ);
 294	} else {
 295		/* It is earlier than we thought. */
 296		delta = ticks = old - clock;
 297		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 298		delta = -delta;
 299		adjust.offset = -ticks * (1000000 / HZ);
 300	}
 301	sched_clock_base_cc += delta;
 302	if (adjust.offset != 0) {
 303		pr_notice("The ETR interface has adjusted the clock "
 304			  "by %li microseconds\n", adjust.offset);
 305		adjust.modes = ADJ_OFFSET_SINGLESHOT;
 306		do_adjtimex(&adjust);
 307	}
 308	return delta;
 309}
 310
 311static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 312static DEFINE_MUTEX(clock_sync_mutex);
 313static unsigned long clock_sync_flags;
 314
 315#define CLOCK_SYNC_HAS_ETR	0
 316#define CLOCK_SYNC_HAS_STP	1
 317#define CLOCK_SYNC_ETR		2
 318#define CLOCK_SYNC_STP		3
 319
 320/*
 321 * The synchronous get_clock function. It will write the current clock
 322 * value to the clock pointer and return 0 if the clock is in sync with
 323 * the external time source. If the clock mode is local it will return
 324 * -ENOSYS and -EAGAIN if the clock is not in sync with the external
 325 * reference.
 326 */
 327int get_sync_clock(unsigned long long *clock)
 328{
 329	atomic_t *sw_ptr;
 330	unsigned int sw0, sw1;
 331
 332	sw_ptr = &get_cpu_var(clock_sync_word);
 333	sw0 = atomic_read(sw_ptr);
 334	*clock = get_clock();
 335	sw1 = atomic_read(sw_ptr);
 336	put_cpu_var(clock_sync_word);
 337	if (sw0 == sw1 && (sw0 & 0x80000000U))
 338		/* Success: time is in sync. */
 339		return 0;
 340	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
 341	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 342		return -ENOSYS;
 343	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
 344	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 345		return -EACCES;
 346	return -EAGAIN;
 347}
 348EXPORT_SYMBOL(get_sync_clock);
 349
 350/*
 351 * Make get_sync_clock return -EAGAIN.
 352 */
 353static void disable_sync_clock(void *dummy)
 354{
 355	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 356	/*
 357	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
 358	 * fail until the sync bit is turned back on. In addition
 359	 * increase the "sequence" counter to avoid the race of an
 360	 * etr event and the complete recovery against get_sync_clock.
 361	 */
 362	atomic_clear_mask(0x80000000, sw_ptr);
 363	atomic_inc(sw_ptr);
 364}
 365
 366/*
 367 * Make get_sync_clock return 0 again.
 368 * Needs to be called from a context disabled for preemption.
 369 */
 370static void enable_sync_clock(void)
 371{
 372	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 373	atomic_set_mask(0x80000000, sw_ptr);
 374}
 375
 376/*
 377 * Function to check if the clock is in sync.
 378 */
 379static inline int check_sync_clock(void)
 380{
 381	atomic_t *sw_ptr;
 382	int rc;
 383
 384	sw_ptr = &get_cpu_var(clock_sync_word);
 385	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 386	put_cpu_var(clock_sync_word);
 387	return rc;
 388}
 389
 390/* Single threaded workqueue used for etr and stp sync events */
 391static struct workqueue_struct *time_sync_wq;
 392
 393static void __init time_init_wq(void)
 394{
 395	if (time_sync_wq)
 396		return;
 397	time_sync_wq = create_singlethread_workqueue("timesync");
 398}
 399
 400/*
 401 * External Time Reference (ETR) code.
 402 */
 403static int etr_port0_online;
 404static int etr_port1_online;
 405static int etr_steai_available;
 406
 407static int __init early_parse_etr(char *p)
 408{
 409	if (strncmp(p, "off", 3) == 0)
 410		etr_port0_online = etr_port1_online = 0;
 411	else if (strncmp(p, "port0", 5) == 0)
 412		etr_port0_online = 1;
 413	else if (strncmp(p, "port1", 5) == 0)
 414		etr_port1_online = 1;
 415	else if (strncmp(p, "on", 2) == 0)
 416		etr_port0_online = etr_port1_online = 1;
 417	return 0;
 418}
 419early_param("etr", early_parse_etr);
 420
 421enum etr_event {
 422	ETR_EVENT_PORT0_CHANGE,
 423	ETR_EVENT_PORT1_CHANGE,
 424	ETR_EVENT_PORT_ALERT,
 425	ETR_EVENT_SYNC_CHECK,
 426	ETR_EVENT_SWITCH_LOCAL,
 427	ETR_EVENT_UPDATE,
 428};
 429
 430/*
 431 * Valid bit combinations of the eacr register are (x = don't care):
 432 * e0 e1 dp p0 p1 ea es sl
 433 *  0  0  x  0	0  0  0  0  initial, disabled state
 434 *  0  0  x  0	1  1  0  0  port 1 online
 435 *  0  0  x  1	0  1  0  0  port 0 online
 436 *  0  0  x  1	1  1  0  0  both ports online
 437 *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
 438 *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
 439 *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
 440 *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
 441 *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
 442 *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
 443 *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
 444 *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
 445 *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
 446 *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
 447 *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
 448 *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
 449 *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
 450 *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
 451 *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
 452 *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
 453 */
 454static struct etr_eacr etr_eacr;
 455static u64 etr_tolec;			/* time of last eacr update */
 456static struct etr_aib etr_port0;
 457static int etr_port0_uptodate;
 458static struct etr_aib etr_port1;
 459static int etr_port1_uptodate;
 460static unsigned long etr_events;
 461static struct timer_list etr_timer;
 462
 463static void etr_timeout(unsigned long dummy);
 464static void etr_work_fn(struct work_struct *work);
 465static DEFINE_MUTEX(etr_work_mutex);
 466static DECLARE_WORK(etr_work, etr_work_fn);
 467
 468/*
 469 * Reset ETR attachment.
 470 */
 471static void etr_reset(void)
 472{
 473	etr_eacr =  (struct etr_eacr) {
 474		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
 475		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
 476		.es = 0, .sl = 0 };
 477	if (etr_setr(&etr_eacr) == 0) {
 478		etr_tolec = get_clock();
 479		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
 480		if (etr_port0_online && etr_port1_online)
 481			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
 482	} else if (etr_port0_online || etr_port1_online) {
 483		pr_warning("The real or virtual hardware system does "
 484			   "not provide an ETR interface\n");
 485		etr_port0_online = etr_port1_online = 0;
 486	}
 487}
 488
 489static int __init etr_init(void)
 490{
 491	struct etr_aib aib;
 492
 493	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
 494		return 0;
 495	time_init_wq();
 496	/* Check if this machine has the steai instruction. */
 497	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
 498		etr_steai_available = 1;
 499	setup_timer(&etr_timer, etr_timeout, 0UL);
 500	if (etr_port0_online) {
 501		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 502		queue_work(time_sync_wq, &etr_work);
 503	}
 504	if (etr_port1_online) {
 505		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 506		queue_work(time_sync_wq, &etr_work);
 507	}
 508	return 0;
 509}
 510
 511arch_initcall(etr_init);
 512
 513/*
 514 * Two sorts of ETR machine checks. The architecture reads:
 515 * "When a machine-check niterruption occurs and if a switch-to-local or
 516 *  ETR-sync-check interrupt request is pending but disabled, this pending
 517 *  disabled interruption request is indicated and is cleared".
 518 * Which means that we can get etr_switch_to_local events from the machine
 519 * check handler although the interruption condition is disabled. Lovely..
 520 */
 521
 522/*
 523 * Switch to local machine check. This is called when the last usable
 524 * ETR port goes inactive. After switch to local the clock is not in sync.
 525 */
 526void etr_switch_to_local(void)
 527{
 528	if (!etr_eacr.sl)
 529		return;
 530	disable_sync_clock(NULL);
 531	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
 532		etr_eacr.es = etr_eacr.sl = 0;
 533		etr_setr(&etr_eacr);
 534		queue_work(time_sync_wq, &etr_work);
 535	}
 536}
 537
 538/*
 539 * ETR sync check machine check. This is called when the ETR OTE and the
 540 * local clock OTE are farther apart than the ETR sync check tolerance.
 541 * After a ETR sync check the clock is not in sync. The machine check
 542 * is broadcasted to all cpus at the same time.
 543 */
 544void etr_sync_check(void)
 545{
 546	if (!etr_eacr.es)
 547		return;
 548	disable_sync_clock(NULL);
 549	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
 550		etr_eacr.es = 0;
 551		etr_setr(&etr_eacr);
 552		queue_work(time_sync_wq, &etr_work);
 553	}
 554}
 555
 556/*
 557 * ETR timing alert. There are two causes:
 558 * 1) port state change, check the usability of the port
 559 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
 560 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
 561 *    or ETR-data word 4 (edf4) has changed.
 562 */
 563static void etr_timing_alert(struct etr_irq_parm *intparm)
 564{
 565	if (intparm->pc0)
 566		/* ETR port 0 state change. */
 567		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 568	if (intparm->pc1)
 569		/* ETR port 1 state change. */
 570		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 571	if (intparm->eai)
 572		/*
 573		 * ETR port alert on either port 0, 1 or both.
 574		 * Both ports are not up-to-date now.
 575		 */
 576		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
 577	queue_work(time_sync_wq, &etr_work);
 578}
 579
 580static void etr_timeout(unsigned long dummy)
 581{
 582	set_bit(ETR_EVENT_UPDATE, &etr_events);
 583	queue_work(time_sync_wq, &etr_work);
 584}
 585
 586/*
 587 * Check if the etr mode is pss.
 588 */
 589static inline int etr_mode_is_pps(struct etr_eacr eacr)
 590{
 591	return eacr.es && !eacr.sl;
 592}
 593
 594/*
 595 * Check if the etr mode is etr.
 596 */
 597static inline int etr_mode_is_etr(struct etr_eacr eacr)
 598{
 599	return eacr.es && eacr.sl;
 600}
 601
 602/*
 603 * Check if the port can be used for TOD synchronization.
 604 * For PPS mode the port has to receive OTEs. For ETR mode
 605 * the port has to receive OTEs, the ETR stepping bit has to
 606 * be zero and the validity bits for data frame 1, 2, and 3
 607 * have to be 1.
 608 */
 609static int etr_port_valid(struct etr_aib *aib, int port)
 610{
 611	unsigned int psc;
 612
 613	/* Check that this port is receiving OTEs. */
 614	if (aib->tsp == 0)
 615		return 0;
 616
 617	psc = port ? aib->esw.psc1 : aib->esw.psc0;
 618	if (psc == etr_lpsc_pps_mode)
 619		return 1;
 620	if (psc == etr_lpsc_operational_step)
 621		return !aib->esw.y && aib->slsw.v1 &&
 622			aib->slsw.v2 && aib->slsw.v3;
 623	return 0;
 624}
 625
 626/*
 627 * Check if two ports are on the same network.
 628 */
 629static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
 630{
 631	// FIXME: any other fields we have to compare?
 632	return aib1->edf1.net_id == aib2->edf1.net_id;
 633}
 634
 635/*
 636 * Wrapper for etr_stei that converts physical port states
 637 * to logical port states to be consistent with the output
 638 * of stetr (see etr_psc vs. etr_lpsc).
 639 */
 640static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
 641{
 642	BUG_ON(etr_steai(aib, func) != 0);
 643	/* Convert port state to logical port state. */
 644	if (aib->esw.psc0 == 1)
 645		aib->esw.psc0 = 2;
 646	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
 647		aib->esw.psc0 = 1;
 648	if (aib->esw.psc1 == 1)
 649		aib->esw.psc1 = 2;
 650	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
 651		aib->esw.psc1 = 1;
 652}
 653
 654/*
 655 * Check if the aib a2 is still connected to the same attachment as
 656 * aib a1, the etv values differ by one and a2 is valid.
 657 */
 658static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
 659{
 660	int state_a1, state_a2;
 661
 662	/* Paranoia check: e0/e1 should better be the same. */
 663	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
 664	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
 665		return 0;
 666
 667	/* Still connected to the same etr ? */
 668	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
 669	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
 670	if (state_a1 == etr_lpsc_operational_step) {
 671		if (state_a2 != etr_lpsc_operational_step ||
 672		    a1->edf1.net_id != a2->edf1.net_id ||
 673		    a1->edf1.etr_id != a2->edf1.etr_id ||
 674		    a1->edf1.etr_pn != a2->edf1.etr_pn)
 675			return 0;
 676	} else if (state_a2 != etr_lpsc_pps_mode)
 677		return 0;
 678
 679	/* The ETV value of a2 needs to be ETV of a1 + 1. */
 680	if (a1->edf2.etv + 1 != a2->edf2.etv)
 681		return 0;
 682
 683	if (!etr_port_valid(a2, p))
 684		return 0;
 685
 686	return 1;
 687}
 688
 689struct clock_sync_data {
 690	atomic_t cpus;
 691	int in_sync;
 692	unsigned long long fixup_cc;
 693	int etr_port;
 694	struct etr_aib *etr_aib;
 695};
 696
 697static void clock_sync_cpu(struct clock_sync_data *sync)
 698{
 699	atomic_dec(&sync->cpus);
 700	enable_sync_clock();
 701	/*
 702	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
 703	 * is called on all other cpus while the TOD clocks is stopped.
 704	 * __udelay will stop the cpu on an enabled wait psw until the
 705	 * TOD is running again.
 706	 */
 707	while (sync->in_sync == 0) {
 708		__udelay(1);
 709		/*
 710		 * A different cpu changes *in_sync. Therefore use
 711		 * barrier() to force memory access.
 712		 */
 713		barrier();
 714	}
 715	if (sync->in_sync != 1)
 716		/* Didn't work. Clear per-cpu in sync bit again. */
 717		disable_sync_clock(NULL);
 718	/*
 719	 * This round of TOD syncing is done. Set the clock comparator
 720	 * to the next tick and let the processor continue.
 721	 */
 722	fixup_clock_comparator(sync->fixup_cc);
 723}
 724
 725/*
 726 * Sync the TOD clock using the port referred to by aibp. This port
 727 * has to be enabled and the other port has to be disabled. The
 728 * last eacr update has to be more than 1.6 seconds in the past.
 729 */
 730static int etr_sync_clock(void *data)
 731{
 732	static int first;
 733	unsigned long long clock, old_clock, delay, delta;
 734	struct clock_sync_data *etr_sync;
 735	struct etr_aib *sync_port, *aib;
 736	int port;
 737	int rc;
 738
 739	etr_sync = data;
 740
 741	if (xchg(&first, 1) == 1) {
 742		/* Slave */
 743		clock_sync_cpu(etr_sync);
 744		return 0;
 745	}
 746
 747	/* Wait until all other cpus entered the sync function. */
 748	while (atomic_read(&etr_sync->cpus) != 0)
 749		cpu_relax();
 750
 751	port = etr_sync->etr_port;
 752	aib = etr_sync->etr_aib;
 753	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 754	enable_sync_clock();
 755
 756	/* Set clock to next OTE. */
 757	__ctl_set_bit(14, 21);
 758	__ctl_set_bit(0, 29);
 759	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
 760	old_clock = get_clock();
 761	if (set_clock(clock) == 0) {
 762		__udelay(1);	/* Wait for the clock to start. */
 763		__ctl_clear_bit(0, 29);
 764		__ctl_clear_bit(14, 21);
 765		etr_stetr(aib);
 766		/* Adjust Linux timing variables. */
 767		delay = (unsigned long long)
 768			(aib->edf2.etv - sync_port->edf2.etv) << 32;
 769		delta = adjust_time(old_clock, clock, delay);
 770		etr_sync->fixup_cc = delta;
 771		fixup_clock_comparator(delta);
 772		/* Verify that the clock is properly set. */
 773		if (!etr_aib_follows(sync_port, aib, port)) {
 774			/* Didn't work. */
 775			disable_sync_clock(NULL);
 776			etr_sync->in_sync = -EAGAIN;
 777			rc = -EAGAIN;
 778		} else {
 779			etr_sync->in_sync = 1;
 780			rc = 0;
 781		}
 782	} else {
 783		/* Could not set the clock ?!? */
 784		__ctl_clear_bit(0, 29);
 785		__ctl_clear_bit(14, 21);
 786		disable_sync_clock(NULL);
 787		etr_sync->in_sync = -EAGAIN;
 788		rc = -EAGAIN;
 789	}
 790	xchg(&first, 0);
 791	return rc;
 792}
 793
 794static int etr_sync_clock_stop(struct etr_aib *aib, int port)
 795{
 796	struct clock_sync_data etr_sync;
 797	struct etr_aib *sync_port;
 798	int follows;
 799	int rc;
 800
 801	/* Check if the current aib is adjacent to the sync port aib. */
 802	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 803	follows = etr_aib_follows(sync_port, aib, port);
 804	memcpy(sync_port, aib, sizeof(*aib));
 805	if (!follows)
 806		return -EAGAIN;
 807	memset(&etr_sync, 0, sizeof(etr_sync));
 808	etr_sync.etr_aib = aib;
 809	etr_sync.etr_port = port;
 810	get_online_cpus();
 811	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
 812	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
 813	put_online_cpus();
 814	return rc;
 815}
 816
 817/*
 818 * Handle the immediate effects of the different events.
 819 * The port change event is used for online/offline changes.
 820 */
 821static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
 822{
 823	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
 824		eacr.es = 0;
 825	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
 826		eacr.es = eacr.sl = 0;
 827	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
 828		etr_port0_uptodate = etr_port1_uptodate = 0;
 829
 830	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
 831		if (eacr.e0)
 832			/*
 833			 * Port change of an enabled port. We have to
 834			 * assume that this can have caused an stepping
 835			 * port switch.
 836			 */
 837			etr_tolec = get_clock();
 838		eacr.p0 = etr_port0_online;
 839		if (!eacr.p0)
 840			eacr.e0 = 0;
 841		etr_port0_uptodate = 0;
 842	}
 843	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
 844		if (eacr.e1)
 845			/*
 846			 * Port change of an enabled port. We have to
 847			 * assume that this can have caused an stepping
 848			 * port switch.
 849			 */
 850			etr_tolec = get_clock();
 851		eacr.p1 = etr_port1_online;
 852		if (!eacr.p1)
 853			eacr.e1 = 0;
 854		etr_port1_uptodate = 0;
 855	}
 856	clear_bit(ETR_EVENT_UPDATE, &etr_events);
 857	return eacr;
 858}
 859
 860/*
 861 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
 862 * one of the ports needs an update.
 863 */
 864static void etr_set_tolec_timeout(unsigned long long now)
 865{
 866	unsigned long micros;
 867
 868	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
 869	    (!etr_eacr.p1 || etr_port1_uptodate))
 870		return;
 871	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
 872	micros = (micros > 1600000) ? 0 : 1600000 - micros;
 873	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
 874}
 875
 876/*
 877 * Set up a time that expires after 1/2 second.
 878 */
 879static void etr_set_sync_timeout(void)
 880{
 881	mod_timer(&etr_timer, jiffies + HZ/2);
 882}
 883
 884/*
 885 * Update the aib information for one or both ports.
 886 */
 887static struct etr_eacr etr_handle_update(struct etr_aib *aib,
 888					 struct etr_eacr eacr)
 889{
 890	/* With both ports disabled the aib information is useless. */
 891	if (!eacr.e0 && !eacr.e1)
 892		return eacr;
 893
 894	/* Update port0 or port1 with aib stored in etr_work_fn. */
 895	if (aib->esw.q == 0) {
 896		/* Information for port 0 stored. */
 897		if (eacr.p0 && !etr_port0_uptodate) {
 898			etr_port0 = *aib;
 899			if (etr_port0_online)
 900				etr_port0_uptodate = 1;
 901		}
 902	} else {
 903		/* Information for port 1 stored. */
 904		if (eacr.p1 && !etr_port1_uptodate) {
 905			etr_port1 = *aib;
 906			if (etr_port0_online)
 907				etr_port1_uptodate = 1;
 908		}
 909	}
 910
 911	/*
 912	 * Do not try to get the alternate port aib if the clock
 913	 * is not in sync yet.
 914	 */
 915	if (!eacr.es || !check_sync_clock())
 916		return eacr;
 917
 918	/*
 919	 * If steai is available we can get the information about
 920	 * the other port immediately. If only stetr is available the
 921	 * data-port bit toggle has to be used.
 922	 */
 923	if (etr_steai_available) {
 924		if (eacr.p0 && !etr_port0_uptodate) {
 925			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
 926			etr_port0_uptodate = 1;
 927		}
 928		if (eacr.p1 && !etr_port1_uptodate) {
 929			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
 930			etr_port1_uptodate = 1;
 931		}
 932	} else {
 933		/*
 934		 * One port was updated above, if the other
 935		 * port is not uptodate toggle dp bit.
 936		 */
 937		if ((eacr.p0 && !etr_port0_uptodate) ||
 938		    (eacr.p1 && !etr_port1_uptodate))
 939			eacr.dp ^= 1;
 940		else
 941			eacr.dp = 0;
 942	}
 943	return eacr;
 944}
 945
 946/*
 947 * Write new etr control register if it differs from the current one.
 948 * Return 1 if etr_tolec has been updated as well.
 949 */
 950static void etr_update_eacr(struct etr_eacr eacr)
 951{
 952	int dp_changed;
 953
 954	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
 955		/* No change, return. */
 956		return;
 957	/*
 958	 * The disable of an active port of the change of the data port
 959	 * bit can/will cause a change in the data port.
 960	 */
 961	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
 962		(etr_eacr.dp ^ eacr.dp) != 0;
 963	etr_eacr = eacr;
 964	etr_setr(&etr_eacr);
 965	if (dp_changed)
 966		etr_tolec = get_clock();
 967}
 968
 969/*
 970 * ETR work. In this function you'll find the main logic. In
 971 * particular this is the only function that calls etr_update_eacr(),
 972 * it "controls" the etr control register.
 973 */
 974static void etr_work_fn(struct work_struct *work)
 975{
 976	unsigned long long now;
 977	struct etr_eacr eacr;
 978	struct etr_aib aib;
 979	int sync_port;
 980
 981	/* prevent multiple execution. */
 982	mutex_lock(&etr_work_mutex);
 983
 984	/* Create working copy of etr_eacr. */
 985	eacr = etr_eacr;
 986
 987	/* Check for the different events and their immediate effects. */
 988	eacr = etr_handle_events(eacr);
 989
 990	/* Check if ETR is supposed to be active. */
 991	eacr.ea = eacr.p0 || eacr.p1;
 992	if (!eacr.ea) {
 993		/* Both ports offline. Reset everything. */
 994		eacr.dp = eacr.es = eacr.sl = 0;
 995		on_each_cpu(disable_sync_clock, NULL, 1);
 996		del_timer_sync(&etr_timer);
 997		etr_update_eacr(eacr);
 998		goto out_unlock;
 999	}
1000
1001	/* Store aib to get the current ETR status word. */
1002	BUG_ON(etr_stetr(&aib) != 0);
1003	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1004	now = get_clock();
1005
1006	/*
1007	 * Update the port information if the last stepping port change
1008	 * or data port change is older than 1.6 seconds.
1009	 */
1010	if (now >= etr_tolec + (1600000 << 12))
1011		eacr = etr_handle_update(&aib, eacr);
1012
1013	/*
1014	 * Select ports to enable. The preferred synchronization mode is PPS.
1015	 * If a port can be enabled depends on a number of things:
1016	 * 1) The port needs to be online and uptodate. A port is not
1017	 *    disabled just because it is not uptodate, but it is only
1018	 *    enabled if it is uptodate.
1019	 * 2) The port needs to have the same mode (pps / etr).
1020	 * 3) The port needs to be usable -> etr_port_valid() == 1
1021	 * 4) To enable the second port the clock needs to be in sync.
1022	 * 5) If both ports are useable and are ETR ports, the network id
1023	 *    has to be the same.
1024	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1025	 */
1026	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1027		eacr.sl = 0;
1028		eacr.e0 = 1;
1029		if (!etr_mode_is_pps(etr_eacr))
1030			eacr.es = 0;
1031		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1032			eacr.e1 = 0;
1033		// FIXME: uptodate checks ?
1034		else if (etr_port0_uptodate && etr_port1_uptodate)
1035			eacr.e1 = 1;
1036		sync_port = (etr_port0_uptodate &&
1037			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1038	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1039		eacr.sl = 0;
1040		eacr.e0 = 0;
1041		eacr.e1 = 1;
1042		if (!etr_mode_is_pps(etr_eacr))
1043			eacr.es = 0;
1044		sync_port = (etr_port1_uptodate &&
1045			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1046	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1047		eacr.sl = 1;
1048		eacr.e0 = 1;
1049		if (!etr_mode_is_etr(etr_eacr))
1050			eacr.es = 0;
1051		if (!eacr.es || !eacr.p1 ||
1052		    aib.esw.psc1 != etr_lpsc_operational_alt)
1053			eacr.e1 = 0;
1054		else if (etr_port0_uptodate && etr_port1_uptodate &&
1055			 etr_compare_network(&etr_port0, &etr_port1))
1056			eacr.e1 = 1;
1057		sync_port = (etr_port0_uptodate &&
1058			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1059	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1060		eacr.sl = 1;
1061		eacr.e0 = 0;
1062		eacr.e1 = 1;
1063		if (!etr_mode_is_etr(etr_eacr))
1064			eacr.es = 0;
1065		sync_port = (etr_port1_uptodate &&
1066			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1067	} else {
1068		/* Both ports not usable. */
1069		eacr.es = eacr.sl = 0;
1070		sync_port = -1;
1071	}
1072
1073	/*
1074	 * If the clock is in sync just update the eacr and return.
1075	 * If there is no valid sync port wait for a port update.
1076	 */
1077	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1078		etr_update_eacr(eacr);
1079		etr_set_tolec_timeout(now);
1080		goto out_unlock;
1081	}
1082
1083	/*
1084	 * Prepare control register for clock syncing
1085	 * (reset data port bit, set sync check control.
1086	 */
1087	eacr.dp = 0;
1088	eacr.es = 1;
1089
1090	/*
1091	 * Update eacr and try to synchronize the clock. If the update
1092	 * of eacr caused a stepping port switch (or if we have to
1093	 * assume that a stepping port switch has occurred) or the
1094	 * clock syncing failed, reset the sync check control bit
1095	 * and set up a timer to try again after 0.5 seconds
1096	 */
1097	etr_update_eacr(eacr);
1098	if (now < etr_tolec + (1600000 << 12) ||
1099	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1100		/* Sync failed. Try again in 1/2 second. */
1101		eacr.es = 0;
1102		etr_update_eacr(eacr);
1103		etr_set_sync_timeout();
1104	} else
1105		etr_set_tolec_timeout(now);
1106out_unlock:
1107	mutex_unlock(&etr_work_mutex);
1108}
1109
1110/*
1111 * Sysfs interface functions
1112 */
1113static struct sysdev_class etr_sysclass = {
1114	.name	= "etr",
 
1115};
1116
1117static struct sys_device etr_port0_dev = {
1118	.id	= 0,
1119	.cls	= &etr_sysclass,
1120};
1121
1122static struct sys_device etr_port1_dev = {
1123	.id	= 1,
1124	.cls	= &etr_sysclass,
1125};
1126
1127/*
1128 * ETR class attributes
1129 */
1130static ssize_t etr_stepping_port_show(struct sysdev_class *class,
1131					struct sysdev_class_attribute *attr,
1132					char *buf)
1133{
1134	return sprintf(buf, "%i\n", etr_port0.esw.p);
1135}
1136
1137static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1138
1139static ssize_t etr_stepping_mode_show(struct sysdev_class *class,
1140				      	struct sysdev_class_attribute *attr,
1141					char *buf)
1142{
1143	char *mode_str;
1144
1145	if (etr_mode_is_pps(etr_eacr))
1146		mode_str = "pps";
1147	else if (etr_mode_is_etr(etr_eacr))
1148		mode_str = "etr";
1149	else
1150		mode_str = "local";
1151	return sprintf(buf, "%s\n", mode_str);
1152}
1153
1154static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1155
1156/*
1157 * ETR port attributes
1158 */
1159static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1160{
1161	if (dev == &etr_port0_dev)
1162		return etr_port0_online ? &etr_port0 : NULL;
1163	else
1164		return etr_port1_online ? &etr_port1 : NULL;
1165}
1166
1167static ssize_t etr_online_show(struct sys_device *dev,
1168				struct sysdev_attribute *attr,
1169				char *buf)
1170{
1171	unsigned int online;
1172
1173	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1174	return sprintf(buf, "%i\n", online);
1175}
1176
1177static ssize_t etr_online_store(struct sys_device *dev,
1178				struct sysdev_attribute *attr,
1179				const char *buf, size_t count)
1180{
1181	unsigned int value;
1182
1183	value = simple_strtoul(buf, NULL, 0);
1184	if (value != 0 && value != 1)
1185		return -EINVAL;
1186	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1187		return -EOPNOTSUPP;
1188	mutex_lock(&clock_sync_mutex);
1189	if (dev == &etr_port0_dev) {
1190		if (etr_port0_online == value)
1191			goto out;	/* Nothing to do. */
1192		etr_port0_online = value;
1193		if (etr_port0_online && etr_port1_online)
1194			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1195		else
1196			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1197		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1198		queue_work(time_sync_wq, &etr_work);
1199	} else {
1200		if (etr_port1_online == value)
1201			goto out;	/* Nothing to do. */
1202		etr_port1_online = value;
1203		if (etr_port0_online && etr_port1_online)
1204			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1205		else
1206			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1207		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1208		queue_work(time_sync_wq, &etr_work);
1209	}
1210out:
1211	mutex_unlock(&clock_sync_mutex);
1212	return count;
1213}
1214
1215static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1216
1217static ssize_t etr_stepping_control_show(struct sys_device *dev,
1218					struct sysdev_attribute *attr,
1219					char *buf)
1220{
1221	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1222		       etr_eacr.e0 : etr_eacr.e1);
1223}
1224
1225static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1226
1227static ssize_t etr_mode_code_show(struct sys_device *dev,
1228				struct sysdev_attribute *attr, char *buf)
1229{
1230	if (!etr_port0_online && !etr_port1_online)
1231		/* Status word is not uptodate if both ports are offline. */
1232		return -ENODATA;
1233	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1234		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1235}
1236
1237static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1238
1239static ssize_t etr_untuned_show(struct sys_device *dev,
1240				struct sysdev_attribute *attr, char *buf)
1241{
1242	struct etr_aib *aib = etr_aib_from_dev(dev);
1243
1244	if (!aib || !aib->slsw.v1)
1245		return -ENODATA;
1246	return sprintf(buf, "%i\n", aib->edf1.u);
1247}
1248
1249static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1250
1251static ssize_t etr_network_id_show(struct sys_device *dev,
1252				struct sysdev_attribute *attr, char *buf)
1253{
1254	struct etr_aib *aib = etr_aib_from_dev(dev);
1255
1256	if (!aib || !aib->slsw.v1)
1257		return -ENODATA;
1258	return sprintf(buf, "%i\n", aib->edf1.net_id);
1259}
1260
1261static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1262
1263static ssize_t etr_id_show(struct sys_device *dev,
1264			struct sysdev_attribute *attr, char *buf)
1265{
1266	struct etr_aib *aib = etr_aib_from_dev(dev);
1267
1268	if (!aib || !aib->slsw.v1)
1269		return -ENODATA;
1270	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1271}
1272
1273static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1274
1275static ssize_t etr_port_number_show(struct sys_device *dev,
1276			struct sysdev_attribute *attr, char *buf)
1277{
1278	struct etr_aib *aib = etr_aib_from_dev(dev);
1279
1280	if (!aib || !aib->slsw.v1)
1281		return -ENODATA;
1282	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1283}
1284
1285static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1286
1287static ssize_t etr_coupled_show(struct sys_device *dev,
1288			struct sysdev_attribute *attr, char *buf)
1289{
1290	struct etr_aib *aib = etr_aib_from_dev(dev);
1291
1292	if (!aib || !aib->slsw.v3)
1293		return -ENODATA;
1294	return sprintf(buf, "%i\n", aib->edf3.c);
1295}
1296
1297static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1298
1299static ssize_t etr_local_time_show(struct sys_device *dev,
1300			struct sysdev_attribute *attr, char *buf)
1301{
1302	struct etr_aib *aib = etr_aib_from_dev(dev);
1303
1304	if (!aib || !aib->slsw.v3)
1305		return -ENODATA;
1306	return sprintf(buf, "%i\n", aib->edf3.blto);
1307}
1308
1309static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1310
1311static ssize_t etr_utc_offset_show(struct sys_device *dev,
1312			struct sysdev_attribute *attr, char *buf)
1313{
1314	struct etr_aib *aib = etr_aib_from_dev(dev);
1315
1316	if (!aib || !aib->slsw.v3)
1317		return -ENODATA;
1318	return sprintf(buf, "%i\n", aib->edf3.buo);
1319}
1320
1321static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1322
1323static struct sysdev_attribute *etr_port_attributes[] = {
1324	&attr_online,
1325	&attr_stepping_control,
1326	&attr_state_code,
1327	&attr_untuned,
1328	&attr_network,
1329	&attr_id,
1330	&attr_port,
1331	&attr_coupled,
1332	&attr_local_time,
1333	&attr_utc_offset,
1334	NULL
1335};
1336
1337static int __init etr_register_port(struct sys_device *dev)
1338{
1339	struct sysdev_attribute **attr;
1340	int rc;
1341
1342	rc = sysdev_register(dev);
1343	if (rc)
1344		goto out;
1345	for (attr = etr_port_attributes; *attr; attr++) {
1346		rc = sysdev_create_file(dev, *attr);
1347		if (rc)
1348			goto out_unreg;
1349	}
1350	return 0;
1351out_unreg:
1352	for (; attr >= etr_port_attributes; attr--)
1353		sysdev_remove_file(dev, *attr);
1354	sysdev_unregister(dev);
1355out:
1356	return rc;
1357}
1358
1359static void __init etr_unregister_port(struct sys_device *dev)
1360{
1361	struct sysdev_attribute **attr;
1362
1363	for (attr = etr_port_attributes; *attr; attr++)
1364		sysdev_remove_file(dev, *attr);
1365	sysdev_unregister(dev);
1366}
1367
1368static int __init etr_init_sysfs(void)
1369{
1370	int rc;
1371
1372	rc = sysdev_class_register(&etr_sysclass);
1373	if (rc)
1374		goto out;
1375	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1376	if (rc)
1377		goto out_unreg_class;
1378	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1379	if (rc)
1380		goto out_remove_stepping_port;
1381	rc = etr_register_port(&etr_port0_dev);
1382	if (rc)
1383		goto out_remove_stepping_mode;
1384	rc = etr_register_port(&etr_port1_dev);
1385	if (rc)
1386		goto out_remove_port0;
1387	return 0;
1388
1389out_remove_port0:
1390	etr_unregister_port(&etr_port0_dev);
1391out_remove_stepping_mode:
1392	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1393out_remove_stepping_port:
1394	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1395out_unreg_class:
1396	sysdev_class_unregister(&etr_sysclass);
1397out:
1398	return rc;
1399}
1400
1401device_initcall(etr_init_sysfs);
1402
1403/*
1404 * Server Time Protocol (STP) code.
1405 */
1406static int stp_online;
1407static struct stp_sstpi stp_info;
1408static void *stp_page;
1409
1410static void stp_work_fn(struct work_struct *work);
1411static DEFINE_MUTEX(stp_work_mutex);
1412static DECLARE_WORK(stp_work, stp_work_fn);
1413static struct timer_list stp_timer;
1414
1415static int __init early_parse_stp(char *p)
1416{
1417	if (strncmp(p, "off", 3) == 0)
1418		stp_online = 0;
1419	else if (strncmp(p, "on", 2) == 0)
1420		stp_online = 1;
1421	return 0;
1422}
1423early_param("stp", early_parse_stp);
1424
1425/*
1426 * Reset STP attachment.
1427 */
1428static void __init stp_reset(void)
1429{
1430	int rc;
1431
1432	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1433	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1434	if (rc == 0)
1435		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1436	else if (stp_online) {
1437		pr_warning("The real or virtual hardware system does "
1438			   "not provide an STP interface\n");
1439		free_page((unsigned long) stp_page);
1440		stp_page = NULL;
1441		stp_online = 0;
1442	}
1443}
1444
1445static void stp_timeout(unsigned long dummy)
1446{
1447	queue_work(time_sync_wq, &stp_work);
1448}
1449
1450static int __init stp_init(void)
1451{
1452	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1453		return 0;
1454	setup_timer(&stp_timer, stp_timeout, 0UL);
1455	time_init_wq();
1456	if (!stp_online)
1457		return 0;
1458	queue_work(time_sync_wq, &stp_work);
1459	return 0;
1460}
1461
1462arch_initcall(stp_init);
1463
1464/*
1465 * STP timing alert. There are three causes:
1466 * 1) timing status change
1467 * 2) link availability change
1468 * 3) time control parameter change
1469 * In all three cases we are only interested in the clock source state.
1470 * If a STP clock source is now available use it.
1471 */
1472static void stp_timing_alert(struct stp_irq_parm *intparm)
1473{
1474	if (intparm->tsc || intparm->lac || intparm->tcpc)
1475		queue_work(time_sync_wq, &stp_work);
1476}
1477
1478/*
1479 * STP sync check machine check. This is called when the timing state
1480 * changes from the synchronized state to the unsynchronized state.
1481 * After a STP sync check the clock is not in sync. The machine check
1482 * is broadcasted to all cpus at the same time.
1483 */
1484void stp_sync_check(void)
1485{
1486	disable_sync_clock(NULL);
1487	queue_work(time_sync_wq, &stp_work);
1488}
1489
1490/*
1491 * STP island condition machine check. This is called when an attached
1492 * server  attempts to communicate over an STP link and the servers
1493 * have matching CTN ids and have a valid stratum-1 configuration
1494 * but the configurations do not match.
1495 */
1496void stp_island_check(void)
1497{
1498	disable_sync_clock(NULL);
1499	queue_work(time_sync_wq, &stp_work);
1500}
1501
1502
1503static int stp_sync_clock(void *data)
1504{
1505	static int first;
1506	unsigned long long old_clock, delta;
1507	struct clock_sync_data *stp_sync;
1508	int rc;
1509
1510	stp_sync = data;
1511
1512	if (xchg(&first, 1) == 1) {
1513		/* Slave */
1514		clock_sync_cpu(stp_sync);
1515		return 0;
1516	}
1517
1518	/* Wait until all other cpus entered the sync function. */
1519	while (atomic_read(&stp_sync->cpus) != 0)
1520		cpu_relax();
1521
1522	enable_sync_clock();
1523
1524	rc = 0;
1525	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1526	    stp_info.todoff[2] || stp_info.todoff[3] ||
1527	    stp_info.tmd != 2) {
1528		old_clock = get_clock();
1529		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1530		if (rc == 0) {
1531			delta = adjust_time(old_clock, get_clock(), 0);
1532			fixup_clock_comparator(delta);
1533			rc = chsc_sstpi(stp_page, &stp_info,
1534					sizeof(struct stp_sstpi));
1535			if (rc == 0 && stp_info.tmd != 2)
1536				rc = -EAGAIN;
1537		}
1538	}
1539	if (rc) {
1540		disable_sync_clock(NULL);
1541		stp_sync->in_sync = -EAGAIN;
1542	} else
1543		stp_sync->in_sync = 1;
1544	xchg(&first, 0);
1545	return 0;
1546}
1547
1548/*
1549 * STP work. Check for the STP state and take over the clock
1550 * synchronization if the STP clock source is usable.
1551 */
1552static void stp_work_fn(struct work_struct *work)
1553{
1554	struct clock_sync_data stp_sync;
1555	int rc;
1556
1557	/* prevent multiple execution. */
1558	mutex_lock(&stp_work_mutex);
1559
1560	if (!stp_online) {
1561		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1562		del_timer_sync(&stp_timer);
1563		goto out_unlock;
1564	}
1565
1566	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1567	if (rc)
1568		goto out_unlock;
1569
1570	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1571	if (rc || stp_info.c == 0)
1572		goto out_unlock;
1573
1574	/* Skip synchronization if the clock is already in sync. */
1575	if (check_sync_clock())
1576		goto out_unlock;
1577
1578	memset(&stp_sync, 0, sizeof(stp_sync));
1579	get_online_cpus();
1580	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1581	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1582	put_online_cpus();
1583
1584	if (!check_sync_clock())
1585		/*
1586		 * There is a usable clock but the synchonization failed.
1587		 * Retry after a second.
1588		 */
1589		mod_timer(&stp_timer, jiffies + HZ);
1590
1591out_unlock:
1592	mutex_unlock(&stp_work_mutex);
1593}
1594
1595/*
1596 * STP class sysfs interface functions
1597 */
1598static struct sysdev_class stp_sysclass = {
1599	.name	= "stp",
 
1600};
1601
1602static ssize_t stp_ctn_id_show(struct sysdev_class *class,
1603				struct sysdev_class_attribute *attr,
1604				char *buf)
1605{
1606	if (!stp_online)
1607		return -ENODATA;
1608	return sprintf(buf, "%016llx\n",
1609		       *(unsigned long long *) stp_info.ctnid);
1610}
1611
1612static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1613
1614static ssize_t stp_ctn_type_show(struct sysdev_class *class,
1615				struct sysdev_class_attribute *attr,
1616				char *buf)
1617{
1618	if (!stp_online)
1619		return -ENODATA;
1620	return sprintf(buf, "%i\n", stp_info.ctn);
1621}
1622
1623static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1624
1625static ssize_t stp_dst_offset_show(struct sysdev_class *class,
1626				   struct sysdev_class_attribute *attr,
1627				   char *buf)
1628{
1629	if (!stp_online || !(stp_info.vbits & 0x2000))
1630		return -ENODATA;
1631	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1632}
1633
1634static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1635
1636static ssize_t stp_leap_seconds_show(struct sysdev_class *class,
1637					struct sysdev_class_attribute *attr,
1638					char *buf)
1639{
1640	if (!stp_online || !(stp_info.vbits & 0x8000))
1641		return -ENODATA;
1642	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1643}
1644
1645static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1646
1647static ssize_t stp_stratum_show(struct sysdev_class *class,
1648				struct sysdev_class_attribute *attr,
1649				char *buf)
1650{
1651	if (!stp_online)
1652		return -ENODATA;
1653	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1654}
1655
1656static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1657
1658static ssize_t stp_time_offset_show(struct sysdev_class *class,
1659				struct sysdev_class_attribute *attr,
1660				char *buf)
1661{
1662	if (!stp_online || !(stp_info.vbits & 0x0800))
1663		return -ENODATA;
1664	return sprintf(buf, "%i\n", (int) stp_info.tto);
1665}
1666
1667static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1668
1669static ssize_t stp_time_zone_offset_show(struct sysdev_class *class,
1670				struct sysdev_class_attribute *attr,
1671				char *buf)
1672{
1673	if (!stp_online || !(stp_info.vbits & 0x4000))
1674		return -ENODATA;
1675	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1676}
1677
1678static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1679			 stp_time_zone_offset_show, NULL);
1680
1681static ssize_t stp_timing_mode_show(struct sysdev_class *class,
1682				struct sysdev_class_attribute *attr,
1683				char *buf)
1684{
1685	if (!stp_online)
1686		return -ENODATA;
1687	return sprintf(buf, "%i\n", stp_info.tmd);
1688}
1689
1690static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1691
1692static ssize_t stp_timing_state_show(struct sysdev_class *class,
1693				struct sysdev_class_attribute *attr,
1694				char *buf)
1695{
1696	if (!stp_online)
1697		return -ENODATA;
1698	return sprintf(buf, "%i\n", stp_info.tst);
1699}
1700
1701static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1702
1703static ssize_t stp_online_show(struct sysdev_class *class,
1704				struct sysdev_class_attribute *attr,
1705				char *buf)
1706{
1707	return sprintf(buf, "%i\n", stp_online);
1708}
1709
1710static ssize_t stp_online_store(struct sysdev_class *class,
1711				struct sysdev_class_attribute *attr,
1712				const char *buf, size_t count)
1713{
1714	unsigned int value;
1715
1716	value = simple_strtoul(buf, NULL, 0);
1717	if (value != 0 && value != 1)
1718		return -EINVAL;
1719	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1720		return -EOPNOTSUPP;
1721	mutex_lock(&clock_sync_mutex);
1722	stp_online = value;
1723	if (stp_online)
1724		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1725	else
1726		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1727	queue_work(time_sync_wq, &stp_work);
1728	mutex_unlock(&clock_sync_mutex);
1729	return count;
1730}
1731
1732/*
1733 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1734 * stp/online but attr_online already exists in this file ..
1735 */
1736static struct sysdev_class_attribute attr_stp_online = {
1737	.attr = { .name = "online", .mode = 0600 },
1738	.show	= stp_online_show,
1739	.store	= stp_online_store,
1740};
1741
1742static struct sysdev_class_attribute *stp_attributes[] = {
1743	&attr_ctn_id,
1744	&attr_ctn_type,
1745	&attr_dst_offset,
1746	&attr_leap_seconds,
1747	&attr_stp_online,
1748	&attr_stratum,
1749	&attr_time_offset,
1750	&attr_time_zone_offset,
1751	&attr_timing_mode,
1752	&attr_timing_state,
1753	NULL
1754};
1755
1756static int __init stp_init_sysfs(void)
1757{
1758	struct sysdev_class_attribute **attr;
1759	int rc;
1760
1761	rc = sysdev_class_register(&stp_sysclass);
1762	if (rc)
1763		goto out;
1764	for (attr = stp_attributes; *attr; attr++) {
1765		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1766		if (rc)
1767			goto out_unreg;
1768	}
1769	return 0;
1770out_unreg:
1771	for (; attr >= stp_attributes; attr--)
1772		sysdev_class_remove_file(&stp_sysclass, *attr);
1773	sysdev_class_unregister(&stp_sysclass);
1774out:
1775	return rc;
1776}
1777
1778device_initcall(stp_init_sysfs);