Loading...
1/*
2 * Time of day based timer functions.
3 *
4 * S390 version
5 * Copyright IBM Corp. 1999, 2008
6 * Author(s): Hartmut Penner (hp@de.ibm.com),
7 * Martin Schwidefsky (schwidefsky@de.ibm.com),
8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9 *
10 * Derived from "arch/i386/kernel/time.c"
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
12 */
13
14#define KMSG_COMPONENT "time"
15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17#include <linux/kernel_stat.h>
18#include <linux/errno.h>
19#include <linux/module.h>
20#include <linux/sched.h>
21#include <linux/kernel.h>
22#include <linux/param.h>
23#include <linux/string.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/cpu.h>
27#include <linux/stop_machine.h>
28#include <linux/time.h>
29#include <linux/device.h>
30#include <linux/delay.h>
31#include <linux/init.h>
32#include <linux/smp.h>
33#include <linux/types.h>
34#include <linux/profile.h>
35#include <linux/timex.h>
36#include <linux/notifier.h>
37#include <linux/timekeeper_internal.h>
38#include <linux/clockchips.h>
39#include <linux/gfp.h>
40#include <linux/kprobes.h>
41#include <asm/uaccess.h>
42#include <asm/delay.h>
43#include <asm/div64.h>
44#include <asm/vdso.h>
45#include <asm/irq.h>
46#include <asm/irq_regs.h>
47#include <asm/vtimer.h>
48#include <asm/etr.h>
49#include <asm/cio.h>
50#include "entry.h"
51
52/* change this if you have some constant time drift */
53#define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55
56u64 sched_clock_base_cc = -1; /* Force to data section. */
57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58
59static DEFINE_PER_CPU(struct clock_event_device, comparators);
60
61/*
62 * Scheduler clock - returns current time in nanosec units.
63 */
64unsigned long long notrace __kprobes sched_clock(void)
65{
66 return tod_to_ns(get_tod_clock_monotonic());
67}
68
69/*
70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
71 */
72unsigned long long monotonic_clock(void)
73{
74 return sched_clock();
75}
76EXPORT_SYMBOL(monotonic_clock);
77
78void tod_to_timeval(__u64 todval, struct timespec *xt)
79{
80 unsigned long long sec;
81
82 sec = todval >> 12;
83 do_div(sec, 1000000);
84 xt->tv_sec = sec;
85 todval -= (sec * 1000000) << 12;
86 xt->tv_nsec = ((todval * 1000) >> 12);
87}
88EXPORT_SYMBOL(tod_to_timeval);
89
90void clock_comparator_work(void)
91{
92 struct clock_event_device *cd;
93
94 S390_lowcore.clock_comparator = -1ULL;
95 cd = &__get_cpu_var(comparators);
96 cd->event_handler(cd);
97}
98
99/*
100 * Fixup the clock comparator.
101 */
102static void fixup_clock_comparator(unsigned long long delta)
103{
104 /* If nobody is waiting there's nothing to fix. */
105 if (S390_lowcore.clock_comparator == -1ULL)
106 return;
107 S390_lowcore.clock_comparator += delta;
108 set_clock_comparator(S390_lowcore.clock_comparator);
109}
110
111static int s390_next_event(unsigned long delta,
112 struct clock_event_device *evt)
113{
114 S390_lowcore.clock_comparator = get_tod_clock() + delta;
115 set_clock_comparator(S390_lowcore.clock_comparator);
116 return 0;
117}
118
119static void s390_set_mode(enum clock_event_mode mode,
120 struct clock_event_device *evt)
121{
122}
123
124/*
125 * Set up lowcore and control register of the current cpu to
126 * enable TOD clock and clock comparator interrupts.
127 */
128void init_cpu_timer(void)
129{
130 struct clock_event_device *cd;
131 int cpu;
132
133 S390_lowcore.clock_comparator = -1ULL;
134 set_clock_comparator(S390_lowcore.clock_comparator);
135
136 cpu = smp_processor_id();
137 cd = &per_cpu(comparators, cpu);
138 cd->name = "comparator";
139 cd->features = CLOCK_EVT_FEAT_ONESHOT;
140 cd->mult = 16777;
141 cd->shift = 12;
142 cd->min_delta_ns = 1;
143 cd->max_delta_ns = LONG_MAX;
144 cd->rating = 400;
145 cd->cpumask = cpumask_of(cpu);
146 cd->set_next_event = s390_next_event;
147 cd->set_mode = s390_set_mode;
148
149 clockevents_register_device(cd);
150
151 /* Enable clock comparator timer interrupt. */
152 __ctl_set_bit(0,11);
153
154 /* Always allow the timing alert external interrupt. */
155 __ctl_set_bit(0, 4);
156}
157
158static void clock_comparator_interrupt(struct ext_code ext_code,
159 unsigned int param32,
160 unsigned long param64)
161{
162 inc_irq_stat(IRQEXT_CLK);
163 if (S390_lowcore.clock_comparator == -1ULL)
164 set_clock_comparator(S390_lowcore.clock_comparator);
165}
166
167static void etr_timing_alert(struct etr_irq_parm *);
168static void stp_timing_alert(struct stp_irq_parm *);
169
170static void timing_alert_interrupt(struct ext_code ext_code,
171 unsigned int param32, unsigned long param64)
172{
173 inc_irq_stat(IRQEXT_TLA);
174 if (param32 & 0x00c40000)
175 etr_timing_alert((struct etr_irq_parm *) ¶m32);
176 if (param32 & 0x00038000)
177 stp_timing_alert((struct stp_irq_parm *) ¶m32);
178}
179
180static void etr_reset(void);
181static void stp_reset(void);
182
183void read_persistent_clock(struct timespec *ts)
184{
185 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
186}
187
188void read_boot_clock(struct timespec *ts)
189{
190 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
191}
192
193static cycle_t read_tod_clock(struct clocksource *cs)
194{
195 return get_tod_clock();
196}
197
198static struct clocksource clocksource_tod = {
199 .name = "tod",
200 .rating = 400,
201 .read = read_tod_clock,
202 .mask = -1ULL,
203 .mult = 1000,
204 .shift = 12,
205 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
206};
207
208struct clocksource * __init clocksource_default_clock(void)
209{
210 return &clocksource_tod;
211}
212
213void update_vsyscall(struct timekeeper *tk)
214{
215 u64 nsecps;
216
217 if (tk->clock != &clocksource_tod)
218 return;
219
220 /* Make userspace gettimeofday spin until we're done. */
221 ++vdso_data->tb_update_count;
222 smp_wmb();
223 vdso_data->xtime_tod_stamp = tk->clock->cycle_last;
224 vdso_data->xtime_clock_sec = tk->xtime_sec;
225 vdso_data->xtime_clock_nsec = tk->xtime_nsec;
226 vdso_data->wtom_clock_sec =
227 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
228 vdso_data->wtom_clock_nsec = tk->xtime_nsec +
229 + (tk->wall_to_monotonic.tv_nsec << tk->shift);
230 nsecps = (u64) NSEC_PER_SEC << tk->shift;
231 while (vdso_data->wtom_clock_nsec >= nsecps) {
232 vdso_data->wtom_clock_nsec -= nsecps;
233 vdso_data->wtom_clock_sec++;
234 }
235 vdso_data->tk_mult = tk->mult;
236 vdso_data->tk_shift = tk->shift;
237 smp_wmb();
238 ++vdso_data->tb_update_count;
239}
240
241extern struct timezone sys_tz;
242
243void update_vsyscall_tz(void)
244{
245 /* Make userspace gettimeofday spin until we're done. */
246 ++vdso_data->tb_update_count;
247 smp_wmb();
248 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
249 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
250 smp_wmb();
251 ++vdso_data->tb_update_count;
252}
253
254/*
255 * Initialize the TOD clock and the CPU timer of
256 * the boot cpu.
257 */
258void __init time_init(void)
259{
260 /* Reset time synchronization interfaces. */
261 etr_reset();
262 stp_reset();
263
264 /* request the clock comparator external interrupt */
265 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
266 panic("Couldn't request external interrupt 0x1004");
267
268 /* request the timing alert external interrupt */
269 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
270 panic("Couldn't request external interrupt 0x1406");
271
272 if (clocksource_register(&clocksource_tod) != 0)
273 panic("Could not register TOD clock source");
274
275 /* Enable TOD clock interrupts on the boot cpu. */
276 init_cpu_timer();
277
278 /* Enable cpu timer interrupts on the boot cpu. */
279 vtime_init();
280}
281
282/*
283 * The time is "clock". old is what we think the time is.
284 * Adjust the value by a multiple of jiffies and add the delta to ntp.
285 * "delay" is an approximation how long the synchronization took. If
286 * the time correction is positive, then "delay" is subtracted from
287 * the time difference and only the remaining part is passed to ntp.
288 */
289static unsigned long long adjust_time(unsigned long long old,
290 unsigned long long clock,
291 unsigned long long delay)
292{
293 unsigned long long delta, ticks;
294 struct timex adjust;
295
296 if (clock > old) {
297 /* It is later than we thought. */
298 delta = ticks = clock - old;
299 delta = ticks = (delta < delay) ? 0 : delta - delay;
300 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
301 adjust.offset = ticks * (1000000 / HZ);
302 } else {
303 /* It is earlier than we thought. */
304 delta = ticks = old - clock;
305 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
306 delta = -delta;
307 adjust.offset = -ticks * (1000000 / HZ);
308 }
309 sched_clock_base_cc += delta;
310 if (adjust.offset != 0) {
311 pr_notice("The ETR interface has adjusted the clock "
312 "by %li microseconds\n", adjust.offset);
313 adjust.modes = ADJ_OFFSET_SINGLESHOT;
314 do_adjtimex(&adjust);
315 }
316 return delta;
317}
318
319static DEFINE_PER_CPU(atomic_t, clock_sync_word);
320static DEFINE_MUTEX(clock_sync_mutex);
321static unsigned long clock_sync_flags;
322
323#define CLOCK_SYNC_HAS_ETR 0
324#define CLOCK_SYNC_HAS_STP 1
325#define CLOCK_SYNC_ETR 2
326#define CLOCK_SYNC_STP 3
327
328/*
329 * The synchronous get_clock function. It will write the current clock
330 * value to the clock pointer and return 0 if the clock is in sync with
331 * the external time source. If the clock mode is local it will return
332 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
333 * reference.
334 */
335int get_sync_clock(unsigned long long *clock)
336{
337 atomic_t *sw_ptr;
338 unsigned int sw0, sw1;
339
340 sw_ptr = &get_cpu_var(clock_sync_word);
341 sw0 = atomic_read(sw_ptr);
342 *clock = get_tod_clock();
343 sw1 = atomic_read(sw_ptr);
344 put_cpu_var(clock_sync_word);
345 if (sw0 == sw1 && (sw0 & 0x80000000U))
346 /* Success: time is in sync. */
347 return 0;
348 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
349 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
350 return -EOPNOTSUPP;
351 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
352 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
353 return -EACCES;
354 return -EAGAIN;
355}
356EXPORT_SYMBOL(get_sync_clock);
357
358/*
359 * Make get_sync_clock return -EAGAIN.
360 */
361static void disable_sync_clock(void *dummy)
362{
363 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
364 /*
365 * Clear the in-sync bit 2^31. All get_sync_clock calls will
366 * fail until the sync bit is turned back on. In addition
367 * increase the "sequence" counter to avoid the race of an
368 * etr event and the complete recovery against get_sync_clock.
369 */
370 atomic_clear_mask(0x80000000, sw_ptr);
371 atomic_inc(sw_ptr);
372}
373
374/*
375 * Make get_sync_clock return 0 again.
376 * Needs to be called from a context disabled for preemption.
377 */
378static void enable_sync_clock(void)
379{
380 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
381 atomic_set_mask(0x80000000, sw_ptr);
382}
383
384/*
385 * Function to check if the clock is in sync.
386 */
387static inline int check_sync_clock(void)
388{
389 atomic_t *sw_ptr;
390 int rc;
391
392 sw_ptr = &get_cpu_var(clock_sync_word);
393 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
394 put_cpu_var(clock_sync_word);
395 return rc;
396}
397
398/* Single threaded workqueue used for etr and stp sync events */
399static struct workqueue_struct *time_sync_wq;
400
401static void __init time_init_wq(void)
402{
403 if (time_sync_wq)
404 return;
405 time_sync_wq = create_singlethread_workqueue("timesync");
406}
407
408/*
409 * External Time Reference (ETR) code.
410 */
411static int etr_port0_online;
412static int etr_port1_online;
413static int etr_steai_available;
414
415static int __init early_parse_etr(char *p)
416{
417 if (strncmp(p, "off", 3) == 0)
418 etr_port0_online = etr_port1_online = 0;
419 else if (strncmp(p, "port0", 5) == 0)
420 etr_port0_online = 1;
421 else if (strncmp(p, "port1", 5) == 0)
422 etr_port1_online = 1;
423 else if (strncmp(p, "on", 2) == 0)
424 etr_port0_online = etr_port1_online = 1;
425 return 0;
426}
427early_param("etr", early_parse_etr);
428
429enum etr_event {
430 ETR_EVENT_PORT0_CHANGE,
431 ETR_EVENT_PORT1_CHANGE,
432 ETR_EVENT_PORT_ALERT,
433 ETR_EVENT_SYNC_CHECK,
434 ETR_EVENT_SWITCH_LOCAL,
435 ETR_EVENT_UPDATE,
436};
437
438/*
439 * Valid bit combinations of the eacr register are (x = don't care):
440 * e0 e1 dp p0 p1 ea es sl
441 * 0 0 x 0 0 0 0 0 initial, disabled state
442 * 0 0 x 0 1 1 0 0 port 1 online
443 * 0 0 x 1 0 1 0 0 port 0 online
444 * 0 0 x 1 1 1 0 0 both ports online
445 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
446 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
447 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
448 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
449 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
450 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
451 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
452 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
453 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
454 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
455 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
456 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
457 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
458 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
459 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
460 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
461 */
462static struct etr_eacr etr_eacr;
463static u64 etr_tolec; /* time of last eacr update */
464static struct etr_aib etr_port0;
465static int etr_port0_uptodate;
466static struct etr_aib etr_port1;
467static int etr_port1_uptodate;
468static unsigned long etr_events;
469static struct timer_list etr_timer;
470
471static void etr_timeout(unsigned long dummy);
472static void etr_work_fn(struct work_struct *work);
473static DEFINE_MUTEX(etr_work_mutex);
474static DECLARE_WORK(etr_work, etr_work_fn);
475
476/*
477 * Reset ETR attachment.
478 */
479static void etr_reset(void)
480{
481 etr_eacr = (struct etr_eacr) {
482 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
483 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
484 .es = 0, .sl = 0 };
485 if (etr_setr(&etr_eacr) == 0) {
486 etr_tolec = get_tod_clock();
487 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
488 if (etr_port0_online && etr_port1_online)
489 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
490 } else if (etr_port0_online || etr_port1_online) {
491 pr_warning("The real or virtual hardware system does "
492 "not provide an ETR interface\n");
493 etr_port0_online = etr_port1_online = 0;
494 }
495}
496
497static int __init etr_init(void)
498{
499 struct etr_aib aib;
500
501 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
502 return 0;
503 time_init_wq();
504 /* Check if this machine has the steai instruction. */
505 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
506 etr_steai_available = 1;
507 setup_timer(&etr_timer, etr_timeout, 0UL);
508 if (etr_port0_online) {
509 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
510 queue_work(time_sync_wq, &etr_work);
511 }
512 if (etr_port1_online) {
513 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
514 queue_work(time_sync_wq, &etr_work);
515 }
516 return 0;
517}
518
519arch_initcall(etr_init);
520
521/*
522 * Two sorts of ETR machine checks. The architecture reads:
523 * "When a machine-check niterruption occurs and if a switch-to-local or
524 * ETR-sync-check interrupt request is pending but disabled, this pending
525 * disabled interruption request is indicated and is cleared".
526 * Which means that we can get etr_switch_to_local events from the machine
527 * check handler although the interruption condition is disabled. Lovely..
528 */
529
530/*
531 * Switch to local machine check. This is called when the last usable
532 * ETR port goes inactive. After switch to local the clock is not in sync.
533 */
534void etr_switch_to_local(void)
535{
536 if (!etr_eacr.sl)
537 return;
538 disable_sync_clock(NULL);
539 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
540 etr_eacr.es = etr_eacr.sl = 0;
541 etr_setr(&etr_eacr);
542 queue_work(time_sync_wq, &etr_work);
543 }
544}
545
546/*
547 * ETR sync check machine check. This is called when the ETR OTE and the
548 * local clock OTE are farther apart than the ETR sync check tolerance.
549 * After a ETR sync check the clock is not in sync. The machine check
550 * is broadcasted to all cpus at the same time.
551 */
552void etr_sync_check(void)
553{
554 if (!etr_eacr.es)
555 return;
556 disable_sync_clock(NULL);
557 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
558 etr_eacr.es = 0;
559 etr_setr(&etr_eacr);
560 queue_work(time_sync_wq, &etr_work);
561 }
562}
563
564/*
565 * ETR timing alert. There are two causes:
566 * 1) port state change, check the usability of the port
567 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
568 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
569 * or ETR-data word 4 (edf4) has changed.
570 */
571static void etr_timing_alert(struct etr_irq_parm *intparm)
572{
573 if (intparm->pc0)
574 /* ETR port 0 state change. */
575 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
576 if (intparm->pc1)
577 /* ETR port 1 state change. */
578 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
579 if (intparm->eai)
580 /*
581 * ETR port alert on either port 0, 1 or both.
582 * Both ports are not up-to-date now.
583 */
584 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
585 queue_work(time_sync_wq, &etr_work);
586}
587
588static void etr_timeout(unsigned long dummy)
589{
590 set_bit(ETR_EVENT_UPDATE, &etr_events);
591 queue_work(time_sync_wq, &etr_work);
592}
593
594/*
595 * Check if the etr mode is pss.
596 */
597static inline int etr_mode_is_pps(struct etr_eacr eacr)
598{
599 return eacr.es && !eacr.sl;
600}
601
602/*
603 * Check if the etr mode is etr.
604 */
605static inline int etr_mode_is_etr(struct etr_eacr eacr)
606{
607 return eacr.es && eacr.sl;
608}
609
610/*
611 * Check if the port can be used for TOD synchronization.
612 * For PPS mode the port has to receive OTEs. For ETR mode
613 * the port has to receive OTEs, the ETR stepping bit has to
614 * be zero and the validity bits for data frame 1, 2, and 3
615 * have to be 1.
616 */
617static int etr_port_valid(struct etr_aib *aib, int port)
618{
619 unsigned int psc;
620
621 /* Check that this port is receiving OTEs. */
622 if (aib->tsp == 0)
623 return 0;
624
625 psc = port ? aib->esw.psc1 : aib->esw.psc0;
626 if (psc == etr_lpsc_pps_mode)
627 return 1;
628 if (psc == etr_lpsc_operational_step)
629 return !aib->esw.y && aib->slsw.v1 &&
630 aib->slsw.v2 && aib->slsw.v3;
631 return 0;
632}
633
634/*
635 * Check if two ports are on the same network.
636 */
637static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
638{
639 // FIXME: any other fields we have to compare?
640 return aib1->edf1.net_id == aib2->edf1.net_id;
641}
642
643/*
644 * Wrapper for etr_stei that converts physical port states
645 * to logical port states to be consistent with the output
646 * of stetr (see etr_psc vs. etr_lpsc).
647 */
648static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
649{
650 BUG_ON(etr_steai(aib, func) != 0);
651 /* Convert port state to logical port state. */
652 if (aib->esw.psc0 == 1)
653 aib->esw.psc0 = 2;
654 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
655 aib->esw.psc0 = 1;
656 if (aib->esw.psc1 == 1)
657 aib->esw.psc1 = 2;
658 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
659 aib->esw.psc1 = 1;
660}
661
662/*
663 * Check if the aib a2 is still connected to the same attachment as
664 * aib a1, the etv values differ by one and a2 is valid.
665 */
666static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
667{
668 int state_a1, state_a2;
669
670 /* Paranoia check: e0/e1 should better be the same. */
671 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
672 a1->esw.eacr.e1 != a2->esw.eacr.e1)
673 return 0;
674
675 /* Still connected to the same etr ? */
676 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
677 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
678 if (state_a1 == etr_lpsc_operational_step) {
679 if (state_a2 != etr_lpsc_operational_step ||
680 a1->edf1.net_id != a2->edf1.net_id ||
681 a1->edf1.etr_id != a2->edf1.etr_id ||
682 a1->edf1.etr_pn != a2->edf1.etr_pn)
683 return 0;
684 } else if (state_a2 != etr_lpsc_pps_mode)
685 return 0;
686
687 /* The ETV value of a2 needs to be ETV of a1 + 1. */
688 if (a1->edf2.etv + 1 != a2->edf2.etv)
689 return 0;
690
691 if (!etr_port_valid(a2, p))
692 return 0;
693
694 return 1;
695}
696
697struct clock_sync_data {
698 atomic_t cpus;
699 int in_sync;
700 unsigned long long fixup_cc;
701 int etr_port;
702 struct etr_aib *etr_aib;
703};
704
705static void clock_sync_cpu(struct clock_sync_data *sync)
706{
707 atomic_dec(&sync->cpus);
708 enable_sync_clock();
709 /*
710 * This looks like a busy wait loop but it isn't. etr_sync_cpus
711 * is called on all other cpus while the TOD clocks is stopped.
712 * __udelay will stop the cpu on an enabled wait psw until the
713 * TOD is running again.
714 */
715 while (sync->in_sync == 0) {
716 __udelay(1);
717 /*
718 * A different cpu changes *in_sync. Therefore use
719 * barrier() to force memory access.
720 */
721 barrier();
722 }
723 if (sync->in_sync != 1)
724 /* Didn't work. Clear per-cpu in sync bit again. */
725 disable_sync_clock(NULL);
726 /*
727 * This round of TOD syncing is done. Set the clock comparator
728 * to the next tick and let the processor continue.
729 */
730 fixup_clock_comparator(sync->fixup_cc);
731}
732
733/*
734 * Sync the TOD clock using the port referred to by aibp. This port
735 * has to be enabled and the other port has to be disabled. The
736 * last eacr update has to be more than 1.6 seconds in the past.
737 */
738static int etr_sync_clock(void *data)
739{
740 static int first;
741 unsigned long long clock, old_clock, delay, delta;
742 struct clock_sync_data *etr_sync;
743 struct etr_aib *sync_port, *aib;
744 int port;
745 int rc;
746
747 etr_sync = data;
748
749 if (xchg(&first, 1) == 1) {
750 /* Slave */
751 clock_sync_cpu(etr_sync);
752 return 0;
753 }
754
755 /* Wait until all other cpus entered the sync function. */
756 while (atomic_read(&etr_sync->cpus) != 0)
757 cpu_relax();
758
759 port = etr_sync->etr_port;
760 aib = etr_sync->etr_aib;
761 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
762 enable_sync_clock();
763
764 /* Set clock to next OTE. */
765 __ctl_set_bit(14, 21);
766 __ctl_set_bit(0, 29);
767 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
768 old_clock = get_tod_clock();
769 if (set_tod_clock(clock) == 0) {
770 __udelay(1); /* Wait for the clock to start. */
771 __ctl_clear_bit(0, 29);
772 __ctl_clear_bit(14, 21);
773 etr_stetr(aib);
774 /* Adjust Linux timing variables. */
775 delay = (unsigned long long)
776 (aib->edf2.etv - sync_port->edf2.etv) << 32;
777 delta = adjust_time(old_clock, clock, delay);
778 etr_sync->fixup_cc = delta;
779 fixup_clock_comparator(delta);
780 /* Verify that the clock is properly set. */
781 if (!etr_aib_follows(sync_port, aib, port)) {
782 /* Didn't work. */
783 disable_sync_clock(NULL);
784 etr_sync->in_sync = -EAGAIN;
785 rc = -EAGAIN;
786 } else {
787 etr_sync->in_sync = 1;
788 rc = 0;
789 }
790 } else {
791 /* Could not set the clock ?!? */
792 __ctl_clear_bit(0, 29);
793 __ctl_clear_bit(14, 21);
794 disable_sync_clock(NULL);
795 etr_sync->in_sync = -EAGAIN;
796 rc = -EAGAIN;
797 }
798 xchg(&first, 0);
799 return rc;
800}
801
802static int etr_sync_clock_stop(struct etr_aib *aib, int port)
803{
804 struct clock_sync_data etr_sync;
805 struct etr_aib *sync_port;
806 int follows;
807 int rc;
808
809 /* Check if the current aib is adjacent to the sync port aib. */
810 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
811 follows = etr_aib_follows(sync_port, aib, port);
812 memcpy(sync_port, aib, sizeof(*aib));
813 if (!follows)
814 return -EAGAIN;
815 memset(&etr_sync, 0, sizeof(etr_sync));
816 etr_sync.etr_aib = aib;
817 etr_sync.etr_port = port;
818 get_online_cpus();
819 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
820 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
821 put_online_cpus();
822 return rc;
823}
824
825/*
826 * Handle the immediate effects of the different events.
827 * The port change event is used for online/offline changes.
828 */
829static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
830{
831 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
832 eacr.es = 0;
833 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
834 eacr.es = eacr.sl = 0;
835 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
836 etr_port0_uptodate = etr_port1_uptodate = 0;
837
838 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
839 if (eacr.e0)
840 /*
841 * Port change of an enabled port. We have to
842 * assume that this can have caused an stepping
843 * port switch.
844 */
845 etr_tolec = get_tod_clock();
846 eacr.p0 = etr_port0_online;
847 if (!eacr.p0)
848 eacr.e0 = 0;
849 etr_port0_uptodate = 0;
850 }
851 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
852 if (eacr.e1)
853 /*
854 * Port change of an enabled port. We have to
855 * assume that this can have caused an stepping
856 * port switch.
857 */
858 etr_tolec = get_tod_clock();
859 eacr.p1 = etr_port1_online;
860 if (!eacr.p1)
861 eacr.e1 = 0;
862 etr_port1_uptodate = 0;
863 }
864 clear_bit(ETR_EVENT_UPDATE, &etr_events);
865 return eacr;
866}
867
868/*
869 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
870 * one of the ports needs an update.
871 */
872static void etr_set_tolec_timeout(unsigned long long now)
873{
874 unsigned long micros;
875
876 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
877 (!etr_eacr.p1 || etr_port1_uptodate))
878 return;
879 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
880 micros = (micros > 1600000) ? 0 : 1600000 - micros;
881 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
882}
883
884/*
885 * Set up a time that expires after 1/2 second.
886 */
887static void etr_set_sync_timeout(void)
888{
889 mod_timer(&etr_timer, jiffies + HZ/2);
890}
891
892/*
893 * Update the aib information for one or both ports.
894 */
895static struct etr_eacr etr_handle_update(struct etr_aib *aib,
896 struct etr_eacr eacr)
897{
898 /* With both ports disabled the aib information is useless. */
899 if (!eacr.e0 && !eacr.e1)
900 return eacr;
901
902 /* Update port0 or port1 with aib stored in etr_work_fn. */
903 if (aib->esw.q == 0) {
904 /* Information for port 0 stored. */
905 if (eacr.p0 && !etr_port0_uptodate) {
906 etr_port0 = *aib;
907 if (etr_port0_online)
908 etr_port0_uptodate = 1;
909 }
910 } else {
911 /* Information for port 1 stored. */
912 if (eacr.p1 && !etr_port1_uptodate) {
913 etr_port1 = *aib;
914 if (etr_port0_online)
915 etr_port1_uptodate = 1;
916 }
917 }
918
919 /*
920 * Do not try to get the alternate port aib if the clock
921 * is not in sync yet.
922 */
923 if (!eacr.es || !check_sync_clock())
924 return eacr;
925
926 /*
927 * If steai is available we can get the information about
928 * the other port immediately. If only stetr is available the
929 * data-port bit toggle has to be used.
930 */
931 if (etr_steai_available) {
932 if (eacr.p0 && !etr_port0_uptodate) {
933 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
934 etr_port0_uptodate = 1;
935 }
936 if (eacr.p1 && !etr_port1_uptodate) {
937 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
938 etr_port1_uptodate = 1;
939 }
940 } else {
941 /*
942 * One port was updated above, if the other
943 * port is not uptodate toggle dp bit.
944 */
945 if ((eacr.p0 && !etr_port0_uptodate) ||
946 (eacr.p1 && !etr_port1_uptodate))
947 eacr.dp ^= 1;
948 else
949 eacr.dp = 0;
950 }
951 return eacr;
952}
953
954/*
955 * Write new etr control register if it differs from the current one.
956 * Return 1 if etr_tolec has been updated as well.
957 */
958static void etr_update_eacr(struct etr_eacr eacr)
959{
960 int dp_changed;
961
962 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
963 /* No change, return. */
964 return;
965 /*
966 * The disable of an active port of the change of the data port
967 * bit can/will cause a change in the data port.
968 */
969 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
970 (etr_eacr.dp ^ eacr.dp) != 0;
971 etr_eacr = eacr;
972 etr_setr(&etr_eacr);
973 if (dp_changed)
974 etr_tolec = get_tod_clock();
975}
976
977/*
978 * ETR work. In this function you'll find the main logic. In
979 * particular this is the only function that calls etr_update_eacr(),
980 * it "controls" the etr control register.
981 */
982static void etr_work_fn(struct work_struct *work)
983{
984 unsigned long long now;
985 struct etr_eacr eacr;
986 struct etr_aib aib;
987 int sync_port;
988
989 /* prevent multiple execution. */
990 mutex_lock(&etr_work_mutex);
991
992 /* Create working copy of etr_eacr. */
993 eacr = etr_eacr;
994
995 /* Check for the different events and their immediate effects. */
996 eacr = etr_handle_events(eacr);
997
998 /* Check if ETR is supposed to be active. */
999 eacr.ea = eacr.p0 || eacr.p1;
1000 if (!eacr.ea) {
1001 /* Both ports offline. Reset everything. */
1002 eacr.dp = eacr.es = eacr.sl = 0;
1003 on_each_cpu(disable_sync_clock, NULL, 1);
1004 del_timer_sync(&etr_timer);
1005 etr_update_eacr(eacr);
1006 goto out_unlock;
1007 }
1008
1009 /* Store aib to get the current ETR status word. */
1010 BUG_ON(etr_stetr(&aib) != 0);
1011 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1012 now = get_tod_clock();
1013
1014 /*
1015 * Update the port information if the last stepping port change
1016 * or data port change is older than 1.6 seconds.
1017 */
1018 if (now >= etr_tolec + (1600000 << 12))
1019 eacr = etr_handle_update(&aib, eacr);
1020
1021 /*
1022 * Select ports to enable. The preferred synchronization mode is PPS.
1023 * If a port can be enabled depends on a number of things:
1024 * 1) The port needs to be online and uptodate. A port is not
1025 * disabled just because it is not uptodate, but it is only
1026 * enabled if it is uptodate.
1027 * 2) The port needs to have the same mode (pps / etr).
1028 * 3) The port needs to be usable -> etr_port_valid() == 1
1029 * 4) To enable the second port the clock needs to be in sync.
1030 * 5) If both ports are useable and are ETR ports, the network id
1031 * has to be the same.
1032 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1033 */
1034 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1035 eacr.sl = 0;
1036 eacr.e0 = 1;
1037 if (!etr_mode_is_pps(etr_eacr))
1038 eacr.es = 0;
1039 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1040 eacr.e1 = 0;
1041 // FIXME: uptodate checks ?
1042 else if (etr_port0_uptodate && etr_port1_uptodate)
1043 eacr.e1 = 1;
1044 sync_port = (etr_port0_uptodate &&
1045 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1046 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1047 eacr.sl = 0;
1048 eacr.e0 = 0;
1049 eacr.e1 = 1;
1050 if (!etr_mode_is_pps(etr_eacr))
1051 eacr.es = 0;
1052 sync_port = (etr_port1_uptodate &&
1053 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1054 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1055 eacr.sl = 1;
1056 eacr.e0 = 1;
1057 if (!etr_mode_is_etr(etr_eacr))
1058 eacr.es = 0;
1059 if (!eacr.es || !eacr.p1 ||
1060 aib.esw.psc1 != etr_lpsc_operational_alt)
1061 eacr.e1 = 0;
1062 else if (etr_port0_uptodate && etr_port1_uptodate &&
1063 etr_compare_network(&etr_port0, &etr_port1))
1064 eacr.e1 = 1;
1065 sync_port = (etr_port0_uptodate &&
1066 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1067 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1068 eacr.sl = 1;
1069 eacr.e0 = 0;
1070 eacr.e1 = 1;
1071 if (!etr_mode_is_etr(etr_eacr))
1072 eacr.es = 0;
1073 sync_port = (etr_port1_uptodate &&
1074 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1075 } else {
1076 /* Both ports not usable. */
1077 eacr.es = eacr.sl = 0;
1078 sync_port = -1;
1079 }
1080
1081 /*
1082 * If the clock is in sync just update the eacr and return.
1083 * If there is no valid sync port wait for a port update.
1084 */
1085 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1086 etr_update_eacr(eacr);
1087 etr_set_tolec_timeout(now);
1088 goto out_unlock;
1089 }
1090
1091 /*
1092 * Prepare control register for clock syncing
1093 * (reset data port bit, set sync check control.
1094 */
1095 eacr.dp = 0;
1096 eacr.es = 1;
1097
1098 /*
1099 * Update eacr and try to synchronize the clock. If the update
1100 * of eacr caused a stepping port switch (or if we have to
1101 * assume that a stepping port switch has occurred) or the
1102 * clock syncing failed, reset the sync check control bit
1103 * and set up a timer to try again after 0.5 seconds
1104 */
1105 etr_update_eacr(eacr);
1106 if (now < etr_tolec + (1600000 << 12) ||
1107 etr_sync_clock_stop(&aib, sync_port) != 0) {
1108 /* Sync failed. Try again in 1/2 second. */
1109 eacr.es = 0;
1110 etr_update_eacr(eacr);
1111 etr_set_sync_timeout();
1112 } else
1113 etr_set_tolec_timeout(now);
1114out_unlock:
1115 mutex_unlock(&etr_work_mutex);
1116}
1117
1118/*
1119 * Sysfs interface functions
1120 */
1121static struct bus_type etr_subsys = {
1122 .name = "etr",
1123 .dev_name = "etr",
1124};
1125
1126static struct device etr_port0_dev = {
1127 .id = 0,
1128 .bus = &etr_subsys,
1129};
1130
1131static struct device etr_port1_dev = {
1132 .id = 1,
1133 .bus = &etr_subsys,
1134};
1135
1136/*
1137 * ETR subsys attributes
1138 */
1139static ssize_t etr_stepping_port_show(struct device *dev,
1140 struct device_attribute *attr,
1141 char *buf)
1142{
1143 return sprintf(buf, "%i\n", etr_port0.esw.p);
1144}
1145
1146static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1147
1148static ssize_t etr_stepping_mode_show(struct device *dev,
1149 struct device_attribute *attr,
1150 char *buf)
1151{
1152 char *mode_str;
1153
1154 if (etr_mode_is_pps(etr_eacr))
1155 mode_str = "pps";
1156 else if (etr_mode_is_etr(etr_eacr))
1157 mode_str = "etr";
1158 else
1159 mode_str = "local";
1160 return sprintf(buf, "%s\n", mode_str);
1161}
1162
1163static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1164
1165/*
1166 * ETR port attributes
1167 */
1168static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1169{
1170 if (dev == &etr_port0_dev)
1171 return etr_port0_online ? &etr_port0 : NULL;
1172 else
1173 return etr_port1_online ? &etr_port1 : NULL;
1174}
1175
1176static ssize_t etr_online_show(struct device *dev,
1177 struct device_attribute *attr,
1178 char *buf)
1179{
1180 unsigned int online;
1181
1182 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1183 return sprintf(buf, "%i\n", online);
1184}
1185
1186static ssize_t etr_online_store(struct device *dev,
1187 struct device_attribute *attr,
1188 const char *buf, size_t count)
1189{
1190 unsigned int value;
1191
1192 value = simple_strtoul(buf, NULL, 0);
1193 if (value != 0 && value != 1)
1194 return -EINVAL;
1195 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1196 return -EOPNOTSUPP;
1197 mutex_lock(&clock_sync_mutex);
1198 if (dev == &etr_port0_dev) {
1199 if (etr_port0_online == value)
1200 goto out; /* Nothing to do. */
1201 etr_port0_online = value;
1202 if (etr_port0_online && etr_port1_online)
1203 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1204 else
1205 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1206 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1207 queue_work(time_sync_wq, &etr_work);
1208 } else {
1209 if (etr_port1_online == value)
1210 goto out; /* Nothing to do. */
1211 etr_port1_online = value;
1212 if (etr_port0_online && etr_port1_online)
1213 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1214 else
1215 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1216 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1217 queue_work(time_sync_wq, &etr_work);
1218 }
1219out:
1220 mutex_unlock(&clock_sync_mutex);
1221 return count;
1222}
1223
1224static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1225
1226static ssize_t etr_stepping_control_show(struct device *dev,
1227 struct device_attribute *attr,
1228 char *buf)
1229{
1230 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1231 etr_eacr.e0 : etr_eacr.e1);
1232}
1233
1234static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1235
1236static ssize_t etr_mode_code_show(struct device *dev,
1237 struct device_attribute *attr, char *buf)
1238{
1239 if (!etr_port0_online && !etr_port1_online)
1240 /* Status word is not uptodate if both ports are offline. */
1241 return -ENODATA;
1242 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1243 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1244}
1245
1246static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1247
1248static ssize_t etr_untuned_show(struct device *dev,
1249 struct device_attribute *attr, char *buf)
1250{
1251 struct etr_aib *aib = etr_aib_from_dev(dev);
1252
1253 if (!aib || !aib->slsw.v1)
1254 return -ENODATA;
1255 return sprintf(buf, "%i\n", aib->edf1.u);
1256}
1257
1258static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1259
1260static ssize_t etr_network_id_show(struct device *dev,
1261 struct device_attribute *attr, char *buf)
1262{
1263 struct etr_aib *aib = etr_aib_from_dev(dev);
1264
1265 if (!aib || !aib->slsw.v1)
1266 return -ENODATA;
1267 return sprintf(buf, "%i\n", aib->edf1.net_id);
1268}
1269
1270static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1271
1272static ssize_t etr_id_show(struct device *dev,
1273 struct device_attribute *attr, char *buf)
1274{
1275 struct etr_aib *aib = etr_aib_from_dev(dev);
1276
1277 if (!aib || !aib->slsw.v1)
1278 return -ENODATA;
1279 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1280}
1281
1282static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1283
1284static ssize_t etr_port_number_show(struct device *dev,
1285 struct device_attribute *attr, char *buf)
1286{
1287 struct etr_aib *aib = etr_aib_from_dev(dev);
1288
1289 if (!aib || !aib->slsw.v1)
1290 return -ENODATA;
1291 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1292}
1293
1294static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1295
1296static ssize_t etr_coupled_show(struct device *dev,
1297 struct device_attribute *attr, char *buf)
1298{
1299 struct etr_aib *aib = etr_aib_from_dev(dev);
1300
1301 if (!aib || !aib->slsw.v3)
1302 return -ENODATA;
1303 return sprintf(buf, "%i\n", aib->edf3.c);
1304}
1305
1306static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1307
1308static ssize_t etr_local_time_show(struct device *dev,
1309 struct device_attribute *attr, char *buf)
1310{
1311 struct etr_aib *aib = etr_aib_from_dev(dev);
1312
1313 if (!aib || !aib->slsw.v3)
1314 return -ENODATA;
1315 return sprintf(buf, "%i\n", aib->edf3.blto);
1316}
1317
1318static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1319
1320static ssize_t etr_utc_offset_show(struct device *dev,
1321 struct device_attribute *attr, char *buf)
1322{
1323 struct etr_aib *aib = etr_aib_from_dev(dev);
1324
1325 if (!aib || !aib->slsw.v3)
1326 return -ENODATA;
1327 return sprintf(buf, "%i\n", aib->edf3.buo);
1328}
1329
1330static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1331
1332static struct device_attribute *etr_port_attributes[] = {
1333 &dev_attr_online,
1334 &dev_attr_stepping_control,
1335 &dev_attr_state_code,
1336 &dev_attr_untuned,
1337 &dev_attr_network,
1338 &dev_attr_id,
1339 &dev_attr_port,
1340 &dev_attr_coupled,
1341 &dev_attr_local_time,
1342 &dev_attr_utc_offset,
1343 NULL
1344};
1345
1346static int __init etr_register_port(struct device *dev)
1347{
1348 struct device_attribute **attr;
1349 int rc;
1350
1351 rc = device_register(dev);
1352 if (rc)
1353 goto out;
1354 for (attr = etr_port_attributes; *attr; attr++) {
1355 rc = device_create_file(dev, *attr);
1356 if (rc)
1357 goto out_unreg;
1358 }
1359 return 0;
1360out_unreg:
1361 for (; attr >= etr_port_attributes; attr--)
1362 device_remove_file(dev, *attr);
1363 device_unregister(dev);
1364out:
1365 return rc;
1366}
1367
1368static void __init etr_unregister_port(struct device *dev)
1369{
1370 struct device_attribute **attr;
1371
1372 for (attr = etr_port_attributes; *attr; attr++)
1373 device_remove_file(dev, *attr);
1374 device_unregister(dev);
1375}
1376
1377static int __init etr_init_sysfs(void)
1378{
1379 int rc;
1380
1381 rc = subsys_system_register(&etr_subsys, NULL);
1382 if (rc)
1383 goto out;
1384 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1385 if (rc)
1386 goto out_unreg_subsys;
1387 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1388 if (rc)
1389 goto out_remove_stepping_port;
1390 rc = etr_register_port(&etr_port0_dev);
1391 if (rc)
1392 goto out_remove_stepping_mode;
1393 rc = etr_register_port(&etr_port1_dev);
1394 if (rc)
1395 goto out_remove_port0;
1396 return 0;
1397
1398out_remove_port0:
1399 etr_unregister_port(&etr_port0_dev);
1400out_remove_stepping_mode:
1401 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402out_remove_stepping_port:
1403 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1404out_unreg_subsys:
1405 bus_unregister(&etr_subsys);
1406out:
1407 return rc;
1408}
1409
1410device_initcall(etr_init_sysfs);
1411
1412/*
1413 * Server Time Protocol (STP) code.
1414 */
1415static int stp_online;
1416static struct stp_sstpi stp_info;
1417static void *stp_page;
1418
1419static void stp_work_fn(struct work_struct *work);
1420static DEFINE_MUTEX(stp_work_mutex);
1421static DECLARE_WORK(stp_work, stp_work_fn);
1422static struct timer_list stp_timer;
1423
1424static int __init early_parse_stp(char *p)
1425{
1426 if (strncmp(p, "off", 3) == 0)
1427 stp_online = 0;
1428 else if (strncmp(p, "on", 2) == 0)
1429 stp_online = 1;
1430 return 0;
1431}
1432early_param("stp", early_parse_stp);
1433
1434/*
1435 * Reset STP attachment.
1436 */
1437static void __init stp_reset(void)
1438{
1439 int rc;
1440
1441 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1442 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1443 if (rc == 0)
1444 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1445 else if (stp_online) {
1446 pr_warning("The real or virtual hardware system does "
1447 "not provide an STP interface\n");
1448 free_page((unsigned long) stp_page);
1449 stp_page = NULL;
1450 stp_online = 0;
1451 }
1452}
1453
1454static void stp_timeout(unsigned long dummy)
1455{
1456 queue_work(time_sync_wq, &stp_work);
1457}
1458
1459static int __init stp_init(void)
1460{
1461 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1462 return 0;
1463 setup_timer(&stp_timer, stp_timeout, 0UL);
1464 time_init_wq();
1465 if (!stp_online)
1466 return 0;
1467 queue_work(time_sync_wq, &stp_work);
1468 return 0;
1469}
1470
1471arch_initcall(stp_init);
1472
1473/*
1474 * STP timing alert. There are three causes:
1475 * 1) timing status change
1476 * 2) link availability change
1477 * 3) time control parameter change
1478 * In all three cases we are only interested in the clock source state.
1479 * If a STP clock source is now available use it.
1480 */
1481static void stp_timing_alert(struct stp_irq_parm *intparm)
1482{
1483 if (intparm->tsc || intparm->lac || intparm->tcpc)
1484 queue_work(time_sync_wq, &stp_work);
1485}
1486
1487/*
1488 * STP sync check machine check. This is called when the timing state
1489 * changes from the synchronized state to the unsynchronized state.
1490 * After a STP sync check the clock is not in sync. The machine check
1491 * is broadcasted to all cpus at the same time.
1492 */
1493void stp_sync_check(void)
1494{
1495 disable_sync_clock(NULL);
1496 queue_work(time_sync_wq, &stp_work);
1497}
1498
1499/*
1500 * STP island condition machine check. This is called when an attached
1501 * server attempts to communicate over an STP link and the servers
1502 * have matching CTN ids and have a valid stratum-1 configuration
1503 * but the configurations do not match.
1504 */
1505void stp_island_check(void)
1506{
1507 disable_sync_clock(NULL);
1508 queue_work(time_sync_wq, &stp_work);
1509}
1510
1511
1512static int stp_sync_clock(void *data)
1513{
1514 static int first;
1515 unsigned long long old_clock, delta;
1516 struct clock_sync_data *stp_sync;
1517 int rc;
1518
1519 stp_sync = data;
1520
1521 if (xchg(&first, 1) == 1) {
1522 /* Slave */
1523 clock_sync_cpu(stp_sync);
1524 return 0;
1525 }
1526
1527 /* Wait until all other cpus entered the sync function. */
1528 while (atomic_read(&stp_sync->cpus) != 0)
1529 cpu_relax();
1530
1531 enable_sync_clock();
1532
1533 rc = 0;
1534 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1535 stp_info.todoff[2] || stp_info.todoff[3] ||
1536 stp_info.tmd != 2) {
1537 old_clock = get_tod_clock();
1538 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1539 if (rc == 0) {
1540 delta = adjust_time(old_clock, get_tod_clock(), 0);
1541 fixup_clock_comparator(delta);
1542 rc = chsc_sstpi(stp_page, &stp_info,
1543 sizeof(struct stp_sstpi));
1544 if (rc == 0 && stp_info.tmd != 2)
1545 rc = -EAGAIN;
1546 }
1547 }
1548 if (rc) {
1549 disable_sync_clock(NULL);
1550 stp_sync->in_sync = -EAGAIN;
1551 } else
1552 stp_sync->in_sync = 1;
1553 xchg(&first, 0);
1554 return 0;
1555}
1556
1557/*
1558 * STP work. Check for the STP state and take over the clock
1559 * synchronization if the STP clock source is usable.
1560 */
1561static void stp_work_fn(struct work_struct *work)
1562{
1563 struct clock_sync_data stp_sync;
1564 int rc;
1565
1566 /* prevent multiple execution. */
1567 mutex_lock(&stp_work_mutex);
1568
1569 if (!stp_online) {
1570 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1571 del_timer_sync(&stp_timer);
1572 goto out_unlock;
1573 }
1574
1575 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1576 if (rc)
1577 goto out_unlock;
1578
1579 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1580 if (rc || stp_info.c == 0)
1581 goto out_unlock;
1582
1583 /* Skip synchronization if the clock is already in sync. */
1584 if (check_sync_clock())
1585 goto out_unlock;
1586
1587 memset(&stp_sync, 0, sizeof(stp_sync));
1588 get_online_cpus();
1589 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1590 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1591 put_online_cpus();
1592
1593 if (!check_sync_clock())
1594 /*
1595 * There is a usable clock but the synchonization failed.
1596 * Retry after a second.
1597 */
1598 mod_timer(&stp_timer, jiffies + HZ);
1599
1600out_unlock:
1601 mutex_unlock(&stp_work_mutex);
1602}
1603
1604/*
1605 * STP subsys sysfs interface functions
1606 */
1607static struct bus_type stp_subsys = {
1608 .name = "stp",
1609 .dev_name = "stp",
1610};
1611
1612static ssize_t stp_ctn_id_show(struct device *dev,
1613 struct device_attribute *attr,
1614 char *buf)
1615{
1616 if (!stp_online)
1617 return -ENODATA;
1618 return sprintf(buf, "%016llx\n",
1619 *(unsigned long long *) stp_info.ctnid);
1620}
1621
1622static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1623
1624static ssize_t stp_ctn_type_show(struct device *dev,
1625 struct device_attribute *attr,
1626 char *buf)
1627{
1628 if (!stp_online)
1629 return -ENODATA;
1630 return sprintf(buf, "%i\n", stp_info.ctn);
1631}
1632
1633static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1634
1635static ssize_t stp_dst_offset_show(struct device *dev,
1636 struct device_attribute *attr,
1637 char *buf)
1638{
1639 if (!stp_online || !(stp_info.vbits & 0x2000))
1640 return -ENODATA;
1641 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1642}
1643
1644static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1645
1646static ssize_t stp_leap_seconds_show(struct device *dev,
1647 struct device_attribute *attr,
1648 char *buf)
1649{
1650 if (!stp_online || !(stp_info.vbits & 0x8000))
1651 return -ENODATA;
1652 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1653}
1654
1655static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1656
1657static ssize_t stp_stratum_show(struct device *dev,
1658 struct device_attribute *attr,
1659 char *buf)
1660{
1661 if (!stp_online)
1662 return -ENODATA;
1663 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1664}
1665
1666static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1667
1668static ssize_t stp_time_offset_show(struct device *dev,
1669 struct device_attribute *attr,
1670 char *buf)
1671{
1672 if (!stp_online || !(stp_info.vbits & 0x0800))
1673 return -ENODATA;
1674 return sprintf(buf, "%i\n", (int) stp_info.tto);
1675}
1676
1677static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1678
1679static ssize_t stp_time_zone_offset_show(struct device *dev,
1680 struct device_attribute *attr,
1681 char *buf)
1682{
1683 if (!stp_online || !(stp_info.vbits & 0x4000))
1684 return -ENODATA;
1685 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1686}
1687
1688static DEVICE_ATTR(time_zone_offset, 0400,
1689 stp_time_zone_offset_show, NULL);
1690
1691static ssize_t stp_timing_mode_show(struct device *dev,
1692 struct device_attribute *attr,
1693 char *buf)
1694{
1695 if (!stp_online)
1696 return -ENODATA;
1697 return sprintf(buf, "%i\n", stp_info.tmd);
1698}
1699
1700static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1701
1702static ssize_t stp_timing_state_show(struct device *dev,
1703 struct device_attribute *attr,
1704 char *buf)
1705{
1706 if (!stp_online)
1707 return -ENODATA;
1708 return sprintf(buf, "%i\n", stp_info.tst);
1709}
1710
1711static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1712
1713static ssize_t stp_online_show(struct device *dev,
1714 struct device_attribute *attr,
1715 char *buf)
1716{
1717 return sprintf(buf, "%i\n", stp_online);
1718}
1719
1720static ssize_t stp_online_store(struct device *dev,
1721 struct device_attribute *attr,
1722 const char *buf, size_t count)
1723{
1724 unsigned int value;
1725
1726 value = simple_strtoul(buf, NULL, 0);
1727 if (value != 0 && value != 1)
1728 return -EINVAL;
1729 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1730 return -EOPNOTSUPP;
1731 mutex_lock(&clock_sync_mutex);
1732 stp_online = value;
1733 if (stp_online)
1734 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1735 else
1736 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1737 queue_work(time_sync_wq, &stp_work);
1738 mutex_unlock(&clock_sync_mutex);
1739 return count;
1740}
1741
1742/*
1743 * Can't use DEVICE_ATTR because the attribute should be named
1744 * stp/online but dev_attr_online already exists in this file ..
1745 */
1746static struct device_attribute dev_attr_stp_online = {
1747 .attr = { .name = "online", .mode = 0600 },
1748 .show = stp_online_show,
1749 .store = stp_online_store,
1750};
1751
1752static struct device_attribute *stp_attributes[] = {
1753 &dev_attr_ctn_id,
1754 &dev_attr_ctn_type,
1755 &dev_attr_dst_offset,
1756 &dev_attr_leap_seconds,
1757 &dev_attr_stp_online,
1758 &dev_attr_stratum,
1759 &dev_attr_time_offset,
1760 &dev_attr_time_zone_offset,
1761 &dev_attr_timing_mode,
1762 &dev_attr_timing_state,
1763 NULL
1764};
1765
1766static int __init stp_init_sysfs(void)
1767{
1768 struct device_attribute **attr;
1769 int rc;
1770
1771 rc = subsys_system_register(&stp_subsys, NULL);
1772 if (rc)
1773 goto out;
1774 for (attr = stp_attributes; *attr; attr++) {
1775 rc = device_create_file(stp_subsys.dev_root, *attr);
1776 if (rc)
1777 goto out_unreg;
1778 }
1779 return 0;
1780out_unreg:
1781 for (; attr >= stp_attributes; attr--)
1782 device_remove_file(stp_subsys.dev_root, *attr);
1783 bus_unregister(&stp_subsys);
1784out:
1785 return rc;
1786}
1787
1788device_initcall(stp_init_sysfs);
1/*
2 * arch/s390/kernel/time.c
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15#define KMSG_COMPONENT "time"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/kernel_stat.h>
19#include <linux/errno.h>
20#include <linux/module.h>
21#include <linux/sched.h>
22#include <linux/kernel.h>
23#include <linux/param.h>
24#include <linux/string.h>
25#include <linux/mm.h>
26#include <linux/interrupt.h>
27#include <linux/cpu.h>
28#include <linux/stop_machine.h>
29#include <linux/time.h>
30#include <linux/sysdev.h>
31#include <linux/delay.h>
32#include <linux/init.h>
33#include <linux/smp.h>
34#include <linux/types.h>
35#include <linux/profile.h>
36#include <linux/timex.h>
37#include <linux/notifier.h>
38#include <linux/clocksource.h>
39#include <linux/clockchips.h>
40#include <linux/gfp.h>
41#include <linux/kprobes.h>
42#include <asm/uaccess.h>
43#include <asm/delay.h>
44#include <asm/div64.h>
45#include <asm/vdso.h>
46#include <asm/irq.h>
47#include <asm/irq_regs.h>
48#include <asm/timer.h>
49#include <asm/etr.h>
50#include <asm/cio.h>
51
52/* change this if you have some constant time drift */
53#define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55
56u64 sched_clock_base_cc = -1; /* Force to data section. */
57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58
59static DEFINE_PER_CPU(struct clock_event_device, comparators);
60
61/*
62 * Scheduler clock - returns current time in nanosec units.
63 */
64unsigned long long notrace __kprobes sched_clock(void)
65{
66 return (get_clock_monotonic() * 125) >> 9;
67}
68
69/*
70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
71 */
72unsigned long long monotonic_clock(void)
73{
74 return sched_clock();
75}
76EXPORT_SYMBOL(monotonic_clock);
77
78void tod_to_timeval(__u64 todval, struct timespec *xt)
79{
80 unsigned long long sec;
81
82 sec = todval >> 12;
83 do_div(sec, 1000000);
84 xt->tv_sec = sec;
85 todval -= (sec * 1000000) << 12;
86 xt->tv_nsec = ((todval * 1000) >> 12);
87}
88EXPORT_SYMBOL(tod_to_timeval);
89
90void clock_comparator_work(void)
91{
92 struct clock_event_device *cd;
93
94 S390_lowcore.clock_comparator = -1ULL;
95 set_clock_comparator(S390_lowcore.clock_comparator);
96 cd = &__get_cpu_var(comparators);
97 cd->event_handler(cd);
98}
99
100/*
101 * Fixup the clock comparator.
102 */
103static void fixup_clock_comparator(unsigned long long delta)
104{
105 /* If nobody is waiting there's nothing to fix. */
106 if (S390_lowcore.clock_comparator == -1ULL)
107 return;
108 S390_lowcore.clock_comparator += delta;
109 set_clock_comparator(S390_lowcore.clock_comparator);
110}
111
112static int s390_next_event(unsigned long delta,
113 struct clock_event_device *evt)
114{
115 S390_lowcore.clock_comparator = get_clock() + delta;
116 set_clock_comparator(S390_lowcore.clock_comparator);
117 return 0;
118}
119
120static void s390_set_mode(enum clock_event_mode mode,
121 struct clock_event_device *evt)
122{
123}
124
125/*
126 * Set up lowcore and control register of the current cpu to
127 * enable TOD clock and clock comparator interrupts.
128 */
129void init_cpu_timer(void)
130{
131 struct clock_event_device *cd;
132 int cpu;
133
134 S390_lowcore.clock_comparator = -1ULL;
135 set_clock_comparator(S390_lowcore.clock_comparator);
136
137 cpu = smp_processor_id();
138 cd = &per_cpu(comparators, cpu);
139 cd->name = "comparator";
140 cd->features = CLOCK_EVT_FEAT_ONESHOT;
141 cd->mult = 16777;
142 cd->shift = 12;
143 cd->min_delta_ns = 1;
144 cd->max_delta_ns = LONG_MAX;
145 cd->rating = 400;
146 cd->cpumask = cpumask_of(cpu);
147 cd->set_next_event = s390_next_event;
148 cd->set_mode = s390_set_mode;
149
150 clockevents_register_device(cd);
151
152 /* Enable clock comparator timer interrupt. */
153 __ctl_set_bit(0,11);
154
155 /* Always allow the timing alert external interrupt. */
156 __ctl_set_bit(0, 4);
157}
158
159static void clock_comparator_interrupt(unsigned int ext_int_code,
160 unsigned int param32,
161 unsigned long param64)
162{
163 kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
164 if (S390_lowcore.clock_comparator == -1ULL)
165 set_clock_comparator(S390_lowcore.clock_comparator);
166}
167
168static void etr_timing_alert(struct etr_irq_parm *);
169static void stp_timing_alert(struct stp_irq_parm *);
170
171static void timing_alert_interrupt(unsigned int ext_int_code,
172 unsigned int param32, unsigned long param64)
173{
174 kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
175 if (param32 & 0x00c40000)
176 etr_timing_alert((struct etr_irq_parm *) ¶m32);
177 if (param32 & 0x00038000)
178 stp_timing_alert((struct stp_irq_parm *) ¶m32);
179}
180
181static void etr_reset(void);
182static void stp_reset(void);
183
184void read_persistent_clock(struct timespec *ts)
185{
186 tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
187}
188
189void read_boot_clock(struct timespec *ts)
190{
191 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
192}
193
194static cycle_t read_tod_clock(struct clocksource *cs)
195{
196 return get_clock();
197}
198
199static struct clocksource clocksource_tod = {
200 .name = "tod",
201 .rating = 400,
202 .read = read_tod_clock,
203 .mask = -1ULL,
204 .mult = 1000,
205 .shift = 12,
206 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
207};
208
209struct clocksource * __init clocksource_default_clock(void)
210{
211 return &clocksource_tod;
212}
213
214void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
215 struct clocksource *clock, u32 mult)
216{
217 if (clock != &clocksource_tod)
218 return;
219
220 /* Make userspace gettimeofday spin until we're done. */
221 ++vdso_data->tb_update_count;
222 smp_wmb();
223 vdso_data->xtime_tod_stamp = clock->cycle_last;
224 vdso_data->xtime_clock_sec = wall_time->tv_sec;
225 vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
226 vdso_data->wtom_clock_sec = wtm->tv_sec;
227 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
228 vdso_data->ntp_mult = mult;
229 smp_wmb();
230 ++vdso_data->tb_update_count;
231}
232
233extern struct timezone sys_tz;
234
235void update_vsyscall_tz(void)
236{
237 /* Make userspace gettimeofday spin until we're done. */
238 ++vdso_data->tb_update_count;
239 smp_wmb();
240 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
241 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
242 smp_wmb();
243 ++vdso_data->tb_update_count;
244}
245
246/*
247 * Initialize the TOD clock and the CPU timer of
248 * the boot cpu.
249 */
250void __init time_init(void)
251{
252 /* Reset time synchronization interfaces. */
253 etr_reset();
254 stp_reset();
255
256 /* request the clock comparator external interrupt */
257 if (register_external_interrupt(0x1004, clock_comparator_interrupt))
258 panic("Couldn't request external interrupt 0x1004");
259
260 /* request the timing alert external interrupt */
261 if (register_external_interrupt(0x1406, timing_alert_interrupt))
262 panic("Couldn't request external interrupt 0x1406");
263
264 if (clocksource_register(&clocksource_tod) != 0)
265 panic("Could not register TOD clock source");
266
267 /* Enable TOD clock interrupts on the boot cpu. */
268 init_cpu_timer();
269
270 /* Enable cpu timer interrupts on the boot cpu. */
271 vtime_init();
272}
273
274/*
275 * The time is "clock". old is what we think the time is.
276 * Adjust the value by a multiple of jiffies and add the delta to ntp.
277 * "delay" is an approximation how long the synchronization took. If
278 * the time correction is positive, then "delay" is subtracted from
279 * the time difference and only the remaining part is passed to ntp.
280 */
281static unsigned long long adjust_time(unsigned long long old,
282 unsigned long long clock,
283 unsigned long long delay)
284{
285 unsigned long long delta, ticks;
286 struct timex adjust;
287
288 if (clock > old) {
289 /* It is later than we thought. */
290 delta = ticks = clock - old;
291 delta = ticks = (delta < delay) ? 0 : delta - delay;
292 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
293 adjust.offset = ticks * (1000000 / HZ);
294 } else {
295 /* It is earlier than we thought. */
296 delta = ticks = old - clock;
297 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
298 delta = -delta;
299 adjust.offset = -ticks * (1000000 / HZ);
300 }
301 sched_clock_base_cc += delta;
302 if (adjust.offset != 0) {
303 pr_notice("The ETR interface has adjusted the clock "
304 "by %li microseconds\n", adjust.offset);
305 adjust.modes = ADJ_OFFSET_SINGLESHOT;
306 do_adjtimex(&adjust);
307 }
308 return delta;
309}
310
311static DEFINE_PER_CPU(atomic_t, clock_sync_word);
312static DEFINE_MUTEX(clock_sync_mutex);
313static unsigned long clock_sync_flags;
314
315#define CLOCK_SYNC_HAS_ETR 0
316#define CLOCK_SYNC_HAS_STP 1
317#define CLOCK_SYNC_ETR 2
318#define CLOCK_SYNC_STP 3
319
320/*
321 * The synchronous get_clock function. It will write the current clock
322 * value to the clock pointer and return 0 if the clock is in sync with
323 * the external time source. If the clock mode is local it will return
324 * -ENOSYS and -EAGAIN if the clock is not in sync with the external
325 * reference.
326 */
327int get_sync_clock(unsigned long long *clock)
328{
329 atomic_t *sw_ptr;
330 unsigned int sw0, sw1;
331
332 sw_ptr = &get_cpu_var(clock_sync_word);
333 sw0 = atomic_read(sw_ptr);
334 *clock = get_clock();
335 sw1 = atomic_read(sw_ptr);
336 put_cpu_var(clock_sync_word);
337 if (sw0 == sw1 && (sw0 & 0x80000000U))
338 /* Success: time is in sync. */
339 return 0;
340 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
341 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
342 return -ENOSYS;
343 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
344 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
345 return -EACCES;
346 return -EAGAIN;
347}
348EXPORT_SYMBOL(get_sync_clock);
349
350/*
351 * Make get_sync_clock return -EAGAIN.
352 */
353static void disable_sync_clock(void *dummy)
354{
355 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
356 /*
357 * Clear the in-sync bit 2^31. All get_sync_clock calls will
358 * fail until the sync bit is turned back on. In addition
359 * increase the "sequence" counter to avoid the race of an
360 * etr event and the complete recovery against get_sync_clock.
361 */
362 atomic_clear_mask(0x80000000, sw_ptr);
363 atomic_inc(sw_ptr);
364}
365
366/*
367 * Make get_sync_clock return 0 again.
368 * Needs to be called from a context disabled for preemption.
369 */
370static void enable_sync_clock(void)
371{
372 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
373 atomic_set_mask(0x80000000, sw_ptr);
374}
375
376/*
377 * Function to check if the clock is in sync.
378 */
379static inline int check_sync_clock(void)
380{
381 atomic_t *sw_ptr;
382 int rc;
383
384 sw_ptr = &get_cpu_var(clock_sync_word);
385 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
386 put_cpu_var(clock_sync_word);
387 return rc;
388}
389
390/* Single threaded workqueue used for etr and stp sync events */
391static struct workqueue_struct *time_sync_wq;
392
393static void __init time_init_wq(void)
394{
395 if (time_sync_wq)
396 return;
397 time_sync_wq = create_singlethread_workqueue("timesync");
398}
399
400/*
401 * External Time Reference (ETR) code.
402 */
403static int etr_port0_online;
404static int etr_port1_online;
405static int etr_steai_available;
406
407static int __init early_parse_etr(char *p)
408{
409 if (strncmp(p, "off", 3) == 0)
410 etr_port0_online = etr_port1_online = 0;
411 else if (strncmp(p, "port0", 5) == 0)
412 etr_port0_online = 1;
413 else if (strncmp(p, "port1", 5) == 0)
414 etr_port1_online = 1;
415 else if (strncmp(p, "on", 2) == 0)
416 etr_port0_online = etr_port1_online = 1;
417 return 0;
418}
419early_param("etr", early_parse_etr);
420
421enum etr_event {
422 ETR_EVENT_PORT0_CHANGE,
423 ETR_EVENT_PORT1_CHANGE,
424 ETR_EVENT_PORT_ALERT,
425 ETR_EVENT_SYNC_CHECK,
426 ETR_EVENT_SWITCH_LOCAL,
427 ETR_EVENT_UPDATE,
428};
429
430/*
431 * Valid bit combinations of the eacr register are (x = don't care):
432 * e0 e1 dp p0 p1 ea es sl
433 * 0 0 x 0 0 0 0 0 initial, disabled state
434 * 0 0 x 0 1 1 0 0 port 1 online
435 * 0 0 x 1 0 1 0 0 port 0 online
436 * 0 0 x 1 1 1 0 0 both ports online
437 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
438 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
439 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
440 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
441 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
442 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
443 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
444 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
445 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
446 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
447 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
448 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
449 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
450 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
451 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
452 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
453 */
454static struct etr_eacr etr_eacr;
455static u64 etr_tolec; /* time of last eacr update */
456static struct etr_aib etr_port0;
457static int etr_port0_uptodate;
458static struct etr_aib etr_port1;
459static int etr_port1_uptodate;
460static unsigned long etr_events;
461static struct timer_list etr_timer;
462
463static void etr_timeout(unsigned long dummy);
464static void etr_work_fn(struct work_struct *work);
465static DEFINE_MUTEX(etr_work_mutex);
466static DECLARE_WORK(etr_work, etr_work_fn);
467
468/*
469 * Reset ETR attachment.
470 */
471static void etr_reset(void)
472{
473 etr_eacr = (struct etr_eacr) {
474 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
475 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
476 .es = 0, .sl = 0 };
477 if (etr_setr(&etr_eacr) == 0) {
478 etr_tolec = get_clock();
479 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
480 if (etr_port0_online && etr_port1_online)
481 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
482 } else if (etr_port0_online || etr_port1_online) {
483 pr_warning("The real or virtual hardware system does "
484 "not provide an ETR interface\n");
485 etr_port0_online = etr_port1_online = 0;
486 }
487}
488
489static int __init etr_init(void)
490{
491 struct etr_aib aib;
492
493 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
494 return 0;
495 time_init_wq();
496 /* Check if this machine has the steai instruction. */
497 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
498 etr_steai_available = 1;
499 setup_timer(&etr_timer, etr_timeout, 0UL);
500 if (etr_port0_online) {
501 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
502 queue_work(time_sync_wq, &etr_work);
503 }
504 if (etr_port1_online) {
505 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
506 queue_work(time_sync_wq, &etr_work);
507 }
508 return 0;
509}
510
511arch_initcall(etr_init);
512
513/*
514 * Two sorts of ETR machine checks. The architecture reads:
515 * "When a machine-check niterruption occurs and if a switch-to-local or
516 * ETR-sync-check interrupt request is pending but disabled, this pending
517 * disabled interruption request is indicated and is cleared".
518 * Which means that we can get etr_switch_to_local events from the machine
519 * check handler although the interruption condition is disabled. Lovely..
520 */
521
522/*
523 * Switch to local machine check. This is called when the last usable
524 * ETR port goes inactive. After switch to local the clock is not in sync.
525 */
526void etr_switch_to_local(void)
527{
528 if (!etr_eacr.sl)
529 return;
530 disable_sync_clock(NULL);
531 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
532 etr_eacr.es = etr_eacr.sl = 0;
533 etr_setr(&etr_eacr);
534 queue_work(time_sync_wq, &etr_work);
535 }
536}
537
538/*
539 * ETR sync check machine check. This is called when the ETR OTE and the
540 * local clock OTE are farther apart than the ETR sync check tolerance.
541 * After a ETR sync check the clock is not in sync. The machine check
542 * is broadcasted to all cpus at the same time.
543 */
544void etr_sync_check(void)
545{
546 if (!etr_eacr.es)
547 return;
548 disable_sync_clock(NULL);
549 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
550 etr_eacr.es = 0;
551 etr_setr(&etr_eacr);
552 queue_work(time_sync_wq, &etr_work);
553 }
554}
555
556/*
557 * ETR timing alert. There are two causes:
558 * 1) port state change, check the usability of the port
559 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
560 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
561 * or ETR-data word 4 (edf4) has changed.
562 */
563static void etr_timing_alert(struct etr_irq_parm *intparm)
564{
565 if (intparm->pc0)
566 /* ETR port 0 state change. */
567 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
568 if (intparm->pc1)
569 /* ETR port 1 state change. */
570 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
571 if (intparm->eai)
572 /*
573 * ETR port alert on either port 0, 1 or both.
574 * Both ports are not up-to-date now.
575 */
576 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
577 queue_work(time_sync_wq, &etr_work);
578}
579
580static void etr_timeout(unsigned long dummy)
581{
582 set_bit(ETR_EVENT_UPDATE, &etr_events);
583 queue_work(time_sync_wq, &etr_work);
584}
585
586/*
587 * Check if the etr mode is pss.
588 */
589static inline int etr_mode_is_pps(struct etr_eacr eacr)
590{
591 return eacr.es && !eacr.sl;
592}
593
594/*
595 * Check if the etr mode is etr.
596 */
597static inline int etr_mode_is_etr(struct etr_eacr eacr)
598{
599 return eacr.es && eacr.sl;
600}
601
602/*
603 * Check if the port can be used for TOD synchronization.
604 * For PPS mode the port has to receive OTEs. For ETR mode
605 * the port has to receive OTEs, the ETR stepping bit has to
606 * be zero and the validity bits for data frame 1, 2, and 3
607 * have to be 1.
608 */
609static int etr_port_valid(struct etr_aib *aib, int port)
610{
611 unsigned int psc;
612
613 /* Check that this port is receiving OTEs. */
614 if (aib->tsp == 0)
615 return 0;
616
617 psc = port ? aib->esw.psc1 : aib->esw.psc0;
618 if (psc == etr_lpsc_pps_mode)
619 return 1;
620 if (psc == etr_lpsc_operational_step)
621 return !aib->esw.y && aib->slsw.v1 &&
622 aib->slsw.v2 && aib->slsw.v3;
623 return 0;
624}
625
626/*
627 * Check if two ports are on the same network.
628 */
629static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
630{
631 // FIXME: any other fields we have to compare?
632 return aib1->edf1.net_id == aib2->edf1.net_id;
633}
634
635/*
636 * Wrapper for etr_stei that converts physical port states
637 * to logical port states to be consistent with the output
638 * of stetr (see etr_psc vs. etr_lpsc).
639 */
640static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
641{
642 BUG_ON(etr_steai(aib, func) != 0);
643 /* Convert port state to logical port state. */
644 if (aib->esw.psc0 == 1)
645 aib->esw.psc0 = 2;
646 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
647 aib->esw.psc0 = 1;
648 if (aib->esw.psc1 == 1)
649 aib->esw.psc1 = 2;
650 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
651 aib->esw.psc1 = 1;
652}
653
654/*
655 * Check if the aib a2 is still connected to the same attachment as
656 * aib a1, the etv values differ by one and a2 is valid.
657 */
658static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
659{
660 int state_a1, state_a2;
661
662 /* Paranoia check: e0/e1 should better be the same. */
663 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
664 a1->esw.eacr.e1 != a2->esw.eacr.e1)
665 return 0;
666
667 /* Still connected to the same etr ? */
668 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
669 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
670 if (state_a1 == etr_lpsc_operational_step) {
671 if (state_a2 != etr_lpsc_operational_step ||
672 a1->edf1.net_id != a2->edf1.net_id ||
673 a1->edf1.etr_id != a2->edf1.etr_id ||
674 a1->edf1.etr_pn != a2->edf1.etr_pn)
675 return 0;
676 } else if (state_a2 != etr_lpsc_pps_mode)
677 return 0;
678
679 /* The ETV value of a2 needs to be ETV of a1 + 1. */
680 if (a1->edf2.etv + 1 != a2->edf2.etv)
681 return 0;
682
683 if (!etr_port_valid(a2, p))
684 return 0;
685
686 return 1;
687}
688
689struct clock_sync_data {
690 atomic_t cpus;
691 int in_sync;
692 unsigned long long fixup_cc;
693 int etr_port;
694 struct etr_aib *etr_aib;
695};
696
697static void clock_sync_cpu(struct clock_sync_data *sync)
698{
699 atomic_dec(&sync->cpus);
700 enable_sync_clock();
701 /*
702 * This looks like a busy wait loop but it isn't. etr_sync_cpus
703 * is called on all other cpus while the TOD clocks is stopped.
704 * __udelay will stop the cpu on an enabled wait psw until the
705 * TOD is running again.
706 */
707 while (sync->in_sync == 0) {
708 __udelay(1);
709 /*
710 * A different cpu changes *in_sync. Therefore use
711 * barrier() to force memory access.
712 */
713 barrier();
714 }
715 if (sync->in_sync != 1)
716 /* Didn't work. Clear per-cpu in sync bit again. */
717 disable_sync_clock(NULL);
718 /*
719 * This round of TOD syncing is done. Set the clock comparator
720 * to the next tick and let the processor continue.
721 */
722 fixup_clock_comparator(sync->fixup_cc);
723}
724
725/*
726 * Sync the TOD clock using the port referred to by aibp. This port
727 * has to be enabled and the other port has to be disabled. The
728 * last eacr update has to be more than 1.6 seconds in the past.
729 */
730static int etr_sync_clock(void *data)
731{
732 static int first;
733 unsigned long long clock, old_clock, delay, delta;
734 struct clock_sync_data *etr_sync;
735 struct etr_aib *sync_port, *aib;
736 int port;
737 int rc;
738
739 etr_sync = data;
740
741 if (xchg(&first, 1) == 1) {
742 /* Slave */
743 clock_sync_cpu(etr_sync);
744 return 0;
745 }
746
747 /* Wait until all other cpus entered the sync function. */
748 while (atomic_read(&etr_sync->cpus) != 0)
749 cpu_relax();
750
751 port = etr_sync->etr_port;
752 aib = etr_sync->etr_aib;
753 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
754 enable_sync_clock();
755
756 /* Set clock to next OTE. */
757 __ctl_set_bit(14, 21);
758 __ctl_set_bit(0, 29);
759 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
760 old_clock = get_clock();
761 if (set_clock(clock) == 0) {
762 __udelay(1); /* Wait for the clock to start. */
763 __ctl_clear_bit(0, 29);
764 __ctl_clear_bit(14, 21);
765 etr_stetr(aib);
766 /* Adjust Linux timing variables. */
767 delay = (unsigned long long)
768 (aib->edf2.etv - sync_port->edf2.etv) << 32;
769 delta = adjust_time(old_clock, clock, delay);
770 etr_sync->fixup_cc = delta;
771 fixup_clock_comparator(delta);
772 /* Verify that the clock is properly set. */
773 if (!etr_aib_follows(sync_port, aib, port)) {
774 /* Didn't work. */
775 disable_sync_clock(NULL);
776 etr_sync->in_sync = -EAGAIN;
777 rc = -EAGAIN;
778 } else {
779 etr_sync->in_sync = 1;
780 rc = 0;
781 }
782 } else {
783 /* Could not set the clock ?!? */
784 __ctl_clear_bit(0, 29);
785 __ctl_clear_bit(14, 21);
786 disable_sync_clock(NULL);
787 etr_sync->in_sync = -EAGAIN;
788 rc = -EAGAIN;
789 }
790 xchg(&first, 0);
791 return rc;
792}
793
794static int etr_sync_clock_stop(struct etr_aib *aib, int port)
795{
796 struct clock_sync_data etr_sync;
797 struct etr_aib *sync_port;
798 int follows;
799 int rc;
800
801 /* Check if the current aib is adjacent to the sync port aib. */
802 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
803 follows = etr_aib_follows(sync_port, aib, port);
804 memcpy(sync_port, aib, sizeof(*aib));
805 if (!follows)
806 return -EAGAIN;
807 memset(&etr_sync, 0, sizeof(etr_sync));
808 etr_sync.etr_aib = aib;
809 etr_sync.etr_port = port;
810 get_online_cpus();
811 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
812 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
813 put_online_cpus();
814 return rc;
815}
816
817/*
818 * Handle the immediate effects of the different events.
819 * The port change event is used for online/offline changes.
820 */
821static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
822{
823 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
824 eacr.es = 0;
825 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
826 eacr.es = eacr.sl = 0;
827 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
828 etr_port0_uptodate = etr_port1_uptodate = 0;
829
830 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
831 if (eacr.e0)
832 /*
833 * Port change of an enabled port. We have to
834 * assume that this can have caused an stepping
835 * port switch.
836 */
837 etr_tolec = get_clock();
838 eacr.p0 = etr_port0_online;
839 if (!eacr.p0)
840 eacr.e0 = 0;
841 etr_port0_uptodate = 0;
842 }
843 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
844 if (eacr.e1)
845 /*
846 * Port change of an enabled port. We have to
847 * assume that this can have caused an stepping
848 * port switch.
849 */
850 etr_tolec = get_clock();
851 eacr.p1 = etr_port1_online;
852 if (!eacr.p1)
853 eacr.e1 = 0;
854 etr_port1_uptodate = 0;
855 }
856 clear_bit(ETR_EVENT_UPDATE, &etr_events);
857 return eacr;
858}
859
860/*
861 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
862 * one of the ports needs an update.
863 */
864static void etr_set_tolec_timeout(unsigned long long now)
865{
866 unsigned long micros;
867
868 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
869 (!etr_eacr.p1 || etr_port1_uptodate))
870 return;
871 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
872 micros = (micros > 1600000) ? 0 : 1600000 - micros;
873 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
874}
875
876/*
877 * Set up a time that expires after 1/2 second.
878 */
879static void etr_set_sync_timeout(void)
880{
881 mod_timer(&etr_timer, jiffies + HZ/2);
882}
883
884/*
885 * Update the aib information for one or both ports.
886 */
887static struct etr_eacr etr_handle_update(struct etr_aib *aib,
888 struct etr_eacr eacr)
889{
890 /* With both ports disabled the aib information is useless. */
891 if (!eacr.e0 && !eacr.e1)
892 return eacr;
893
894 /* Update port0 or port1 with aib stored in etr_work_fn. */
895 if (aib->esw.q == 0) {
896 /* Information for port 0 stored. */
897 if (eacr.p0 && !etr_port0_uptodate) {
898 etr_port0 = *aib;
899 if (etr_port0_online)
900 etr_port0_uptodate = 1;
901 }
902 } else {
903 /* Information for port 1 stored. */
904 if (eacr.p1 && !etr_port1_uptodate) {
905 etr_port1 = *aib;
906 if (etr_port0_online)
907 etr_port1_uptodate = 1;
908 }
909 }
910
911 /*
912 * Do not try to get the alternate port aib if the clock
913 * is not in sync yet.
914 */
915 if (!eacr.es || !check_sync_clock())
916 return eacr;
917
918 /*
919 * If steai is available we can get the information about
920 * the other port immediately. If only stetr is available the
921 * data-port bit toggle has to be used.
922 */
923 if (etr_steai_available) {
924 if (eacr.p0 && !etr_port0_uptodate) {
925 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
926 etr_port0_uptodate = 1;
927 }
928 if (eacr.p1 && !etr_port1_uptodate) {
929 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
930 etr_port1_uptodate = 1;
931 }
932 } else {
933 /*
934 * One port was updated above, if the other
935 * port is not uptodate toggle dp bit.
936 */
937 if ((eacr.p0 && !etr_port0_uptodate) ||
938 (eacr.p1 && !etr_port1_uptodate))
939 eacr.dp ^= 1;
940 else
941 eacr.dp = 0;
942 }
943 return eacr;
944}
945
946/*
947 * Write new etr control register if it differs from the current one.
948 * Return 1 if etr_tolec has been updated as well.
949 */
950static void etr_update_eacr(struct etr_eacr eacr)
951{
952 int dp_changed;
953
954 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
955 /* No change, return. */
956 return;
957 /*
958 * The disable of an active port of the change of the data port
959 * bit can/will cause a change in the data port.
960 */
961 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
962 (etr_eacr.dp ^ eacr.dp) != 0;
963 etr_eacr = eacr;
964 etr_setr(&etr_eacr);
965 if (dp_changed)
966 etr_tolec = get_clock();
967}
968
969/*
970 * ETR work. In this function you'll find the main logic. In
971 * particular this is the only function that calls etr_update_eacr(),
972 * it "controls" the etr control register.
973 */
974static void etr_work_fn(struct work_struct *work)
975{
976 unsigned long long now;
977 struct etr_eacr eacr;
978 struct etr_aib aib;
979 int sync_port;
980
981 /* prevent multiple execution. */
982 mutex_lock(&etr_work_mutex);
983
984 /* Create working copy of etr_eacr. */
985 eacr = etr_eacr;
986
987 /* Check for the different events and their immediate effects. */
988 eacr = etr_handle_events(eacr);
989
990 /* Check if ETR is supposed to be active. */
991 eacr.ea = eacr.p0 || eacr.p1;
992 if (!eacr.ea) {
993 /* Both ports offline. Reset everything. */
994 eacr.dp = eacr.es = eacr.sl = 0;
995 on_each_cpu(disable_sync_clock, NULL, 1);
996 del_timer_sync(&etr_timer);
997 etr_update_eacr(eacr);
998 goto out_unlock;
999 }
1000
1001 /* Store aib to get the current ETR status word. */
1002 BUG_ON(etr_stetr(&aib) != 0);
1003 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1004 now = get_clock();
1005
1006 /*
1007 * Update the port information if the last stepping port change
1008 * or data port change is older than 1.6 seconds.
1009 */
1010 if (now >= etr_tolec + (1600000 << 12))
1011 eacr = etr_handle_update(&aib, eacr);
1012
1013 /*
1014 * Select ports to enable. The preferred synchronization mode is PPS.
1015 * If a port can be enabled depends on a number of things:
1016 * 1) The port needs to be online and uptodate. A port is not
1017 * disabled just because it is not uptodate, but it is only
1018 * enabled if it is uptodate.
1019 * 2) The port needs to have the same mode (pps / etr).
1020 * 3) The port needs to be usable -> etr_port_valid() == 1
1021 * 4) To enable the second port the clock needs to be in sync.
1022 * 5) If both ports are useable and are ETR ports, the network id
1023 * has to be the same.
1024 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1025 */
1026 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1027 eacr.sl = 0;
1028 eacr.e0 = 1;
1029 if (!etr_mode_is_pps(etr_eacr))
1030 eacr.es = 0;
1031 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1032 eacr.e1 = 0;
1033 // FIXME: uptodate checks ?
1034 else if (etr_port0_uptodate && etr_port1_uptodate)
1035 eacr.e1 = 1;
1036 sync_port = (etr_port0_uptodate &&
1037 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1038 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1039 eacr.sl = 0;
1040 eacr.e0 = 0;
1041 eacr.e1 = 1;
1042 if (!etr_mode_is_pps(etr_eacr))
1043 eacr.es = 0;
1044 sync_port = (etr_port1_uptodate &&
1045 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1046 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1047 eacr.sl = 1;
1048 eacr.e0 = 1;
1049 if (!etr_mode_is_etr(etr_eacr))
1050 eacr.es = 0;
1051 if (!eacr.es || !eacr.p1 ||
1052 aib.esw.psc1 != etr_lpsc_operational_alt)
1053 eacr.e1 = 0;
1054 else if (etr_port0_uptodate && etr_port1_uptodate &&
1055 etr_compare_network(&etr_port0, &etr_port1))
1056 eacr.e1 = 1;
1057 sync_port = (etr_port0_uptodate &&
1058 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1059 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1060 eacr.sl = 1;
1061 eacr.e0 = 0;
1062 eacr.e1 = 1;
1063 if (!etr_mode_is_etr(etr_eacr))
1064 eacr.es = 0;
1065 sync_port = (etr_port1_uptodate &&
1066 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1067 } else {
1068 /* Both ports not usable. */
1069 eacr.es = eacr.sl = 0;
1070 sync_port = -1;
1071 }
1072
1073 /*
1074 * If the clock is in sync just update the eacr and return.
1075 * If there is no valid sync port wait for a port update.
1076 */
1077 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1078 etr_update_eacr(eacr);
1079 etr_set_tolec_timeout(now);
1080 goto out_unlock;
1081 }
1082
1083 /*
1084 * Prepare control register for clock syncing
1085 * (reset data port bit, set sync check control.
1086 */
1087 eacr.dp = 0;
1088 eacr.es = 1;
1089
1090 /*
1091 * Update eacr and try to synchronize the clock. If the update
1092 * of eacr caused a stepping port switch (or if we have to
1093 * assume that a stepping port switch has occurred) or the
1094 * clock syncing failed, reset the sync check control bit
1095 * and set up a timer to try again after 0.5 seconds
1096 */
1097 etr_update_eacr(eacr);
1098 if (now < etr_tolec + (1600000 << 12) ||
1099 etr_sync_clock_stop(&aib, sync_port) != 0) {
1100 /* Sync failed. Try again in 1/2 second. */
1101 eacr.es = 0;
1102 etr_update_eacr(eacr);
1103 etr_set_sync_timeout();
1104 } else
1105 etr_set_tolec_timeout(now);
1106out_unlock:
1107 mutex_unlock(&etr_work_mutex);
1108}
1109
1110/*
1111 * Sysfs interface functions
1112 */
1113static struct sysdev_class etr_sysclass = {
1114 .name = "etr",
1115};
1116
1117static struct sys_device etr_port0_dev = {
1118 .id = 0,
1119 .cls = &etr_sysclass,
1120};
1121
1122static struct sys_device etr_port1_dev = {
1123 .id = 1,
1124 .cls = &etr_sysclass,
1125};
1126
1127/*
1128 * ETR class attributes
1129 */
1130static ssize_t etr_stepping_port_show(struct sysdev_class *class,
1131 struct sysdev_class_attribute *attr,
1132 char *buf)
1133{
1134 return sprintf(buf, "%i\n", etr_port0.esw.p);
1135}
1136
1137static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1138
1139static ssize_t etr_stepping_mode_show(struct sysdev_class *class,
1140 struct sysdev_class_attribute *attr,
1141 char *buf)
1142{
1143 char *mode_str;
1144
1145 if (etr_mode_is_pps(etr_eacr))
1146 mode_str = "pps";
1147 else if (etr_mode_is_etr(etr_eacr))
1148 mode_str = "etr";
1149 else
1150 mode_str = "local";
1151 return sprintf(buf, "%s\n", mode_str);
1152}
1153
1154static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1155
1156/*
1157 * ETR port attributes
1158 */
1159static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1160{
1161 if (dev == &etr_port0_dev)
1162 return etr_port0_online ? &etr_port0 : NULL;
1163 else
1164 return etr_port1_online ? &etr_port1 : NULL;
1165}
1166
1167static ssize_t etr_online_show(struct sys_device *dev,
1168 struct sysdev_attribute *attr,
1169 char *buf)
1170{
1171 unsigned int online;
1172
1173 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1174 return sprintf(buf, "%i\n", online);
1175}
1176
1177static ssize_t etr_online_store(struct sys_device *dev,
1178 struct sysdev_attribute *attr,
1179 const char *buf, size_t count)
1180{
1181 unsigned int value;
1182
1183 value = simple_strtoul(buf, NULL, 0);
1184 if (value != 0 && value != 1)
1185 return -EINVAL;
1186 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1187 return -EOPNOTSUPP;
1188 mutex_lock(&clock_sync_mutex);
1189 if (dev == &etr_port0_dev) {
1190 if (etr_port0_online == value)
1191 goto out; /* Nothing to do. */
1192 etr_port0_online = value;
1193 if (etr_port0_online && etr_port1_online)
1194 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1195 else
1196 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1197 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1198 queue_work(time_sync_wq, &etr_work);
1199 } else {
1200 if (etr_port1_online == value)
1201 goto out; /* Nothing to do. */
1202 etr_port1_online = value;
1203 if (etr_port0_online && etr_port1_online)
1204 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1205 else
1206 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1207 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1208 queue_work(time_sync_wq, &etr_work);
1209 }
1210out:
1211 mutex_unlock(&clock_sync_mutex);
1212 return count;
1213}
1214
1215static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1216
1217static ssize_t etr_stepping_control_show(struct sys_device *dev,
1218 struct sysdev_attribute *attr,
1219 char *buf)
1220{
1221 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1222 etr_eacr.e0 : etr_eacr.e1);
1223}
1224
1225static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1226
1227static ssize_t etr_mode_code_show(struct sys_device *dev,
1228 struct sysdev_attribute *attr, char *buf)
1229{
1230 if (!etr_port0_online && !etr_port1_online)
1231 /* Status word is not uptodate if both ports are offline. */
1232 return -ENODATA;
1233 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1234 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1235}
1236
1237static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1238
1239static ssize_t etr_untuned_show(struct sys_device *dev,
1240 struct sysdev_attribute *attr, char *buf)
1241{
1242 struct etr_aib *aib = etr_aib_from_dev(dev);
1243
1244 if (!aib || !aib->slsw.v1)
1245 return -ENODATA;
1246 return sprintf(buf, "%i\n", aib->edf1.u);
1247}
1248
1249static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1250
1251static ssize_t etr_network_id_show(struct sys_device *dev,
1252 struct sysdev_attribute *attr, char *buf)
1253{
1254 struct etr_aib *aib = etr_aib_from_dev(dev);
1255
1256 if (!aib || !aib->slsw.v1)
1257 return -ENODATA;
1258 return sprintf(buf, "%i\n", aib->edf1.net_id);
1259}
1260
1261static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1262
1263static ssize_t etr_id_show(struct sys_device *dev,
1264 struct sysdev_attribute *attr, char *buf)
1265{
1266 struct etr_aib *aib = etr_aib_from_dev(dev);
1267
1268 if (!aib || !aib->slsw.v1)
1269 return -ENODATA;
1270 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1271}
1272
1273static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1274
1275static ssize_t etr_port_number_show(struct sys_device *dev,
1276 struct sysdev_attribute *attr, char *buf)
1277{
1278 struct etr_aib *aib = etr_aib_from_dev(dev);
1279
1280 if (!aib || !aib->slsw.v1)
1281 return -ENODATA;
1282 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1283}
1284
1285static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1286
1287static ssize_t etr_coupled_show(struct sys_device *dev,
1288 struct sysdev_attribute *attr, char *buf)
1289{
1290 struct etr_aib *aib = etr_aib_from_dev(dev);
1291
1292 if (!aib || !aib->slsw.v3)
1293 return -ENODATA;
1294 return sprintf(buf, "%i\n", aib->edf3.c);
1295}
1296
1297static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1298
1299static ssize_t etr_local_time_show(struct sys_device *dev,
1300 struct sysdev_attribute *attr, char *buf)
1301{
1302 struct etr_aib *aib = etr_aib_from_dev(dev);
1303
1304 if (!aib || !aib->slsw.v3)
1305 return -ENODATA;
1306 return sprintf(buf, "%i\n", aib->edf3.blto);
1307}
1308
1309static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1310
1311static ssize_t etr_utc_offset_show(struct sys_device *dev,
1312 struct sysdev_attribute *attr, char *buf)
1313{
1314 struct etr_aib *aib = etr_aib_from_dev(dev);
1315
1316 if (!aib || !aib->slsw.v3)
1317 return -ENODATA;
1318 return sprintf(buf, "%i\n", aib->edf3.buo);
1319}
1320
1321static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1322
1323static struct sysdev_attribute *etr_port_attributes[] = {
1324 &attr_online,
1325 &attr_stepping_control,
1326 &attr_state_code,
1327 &attr_untuned,
1328 &attr_network,
1329 &attr_id,
1330 &attr_port,
1331 &attr_coupled,
1332 &attr_local_time,
1333 &attr_utc_offset,
1334 NULL
1335};
1336
1337static int __init etr_register_port(struct sys_device *dev)
1338{
1339 struct sysdev_attribute **attr;
1340 int rc;
1341
1342 rc = sysdev_register(dev);
1343 if (rc)
1344 goto out;
1345 for (attr = etr_port_attributes; *attr; attr++) {
1346 rc = sysdev_create_file(dev, *attr);
1347 if (rc)
1348 goto out_unreg;
1349 }
1350 return 0;
1351out_unreg:
1352 for (; attr >= etr_port_attributes; attr--)
1353 sysdev_remove_file(dev, *attr);
1354 sysdev_unregister(dev);
1355out:
1356 return rc;
1357}
1358
1359static void __init etr_unregister_port(struct sys_device *dev)
1360{
1361 struct sysdev_attribute **attr;
1362
1363 for (attr = etr_port_attributes; *attr; attr++)
1364 sysdev_remove_file(dev, *attr);
1365 sysdev_unregister(dev);
1366}
1367
1368static int __init etr_init_sysfs(void)
1369{
1370 int rc;
1371
1372 rc = sysdev_class_register(&etr_sysclass);
1373 if (rc)
1374 goto out;
1375 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1376 if (rc)
1377 goto out_unreg_class;
1378 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1379 if (rc)
1380 goto out_remove_stepping_port;
1381 rc = etr_register_port(&etr_port0_dev);
1382 if (rc)
1383 goto out_remove_stepping_mode;
1384 rc = etr_register_port(&etr_port1_dev);
1385 if (rc)
1386 goto out_remove_port0;
1387 return 0;
1388
1389out_remove_port0:
1390 etr_unregister_port(&etr_port0_dev);
1391out_remove_stepping_mode:
1392 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1393out_remove_stepping_port:
1394 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1395out_unreg_class:
1396 sysdev_class_unregister(&etr_sysclass);
1397out:
1398 return rc;
1399}
1400
1401device_initcall(etr_init_sysfs);
1402
1403/*
1404 * Server Time Protocol (STP) code.
1405 */
1406static int stp_online;
1407static struct stp_sstpi stp_info;
1408static void *stp_page;
1409
1410static void stp_work_fn(struct work_struct *work);
1411static DEFINE_MUTEX(stp_work_mutex);
1412static DECLARE_WORK(stp_work, stp_work_fn);
1413static struct timer_list stp_timer;
1414
1415static int __init early_parse_stp(char *p)
1416{
1417 if (strncmp(p, "off", 3) == 0)
1418 stp_online = 0;
1419 else if (strncmp(p, "on", 2) == 0)
1420 stp_online = 1;
1421 return 0;
1422}
1423early_param("stp", early_parse_stp);
1424
1425/*
1426 * Reset STP attachment.
1427 */
1428static void __init stp_reset(void)
1429{
1430 int rc;
1431
1432 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1433 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1434 if (rc == 0)
1435 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1436 else if (stp_online) {
1437 pr_warning("The real or virtual hardware system does "
1438 "not provide an STP interface\n");
1439 free_page((unsigned long) stp_page);
1440 stp_page = NULL;
1441 stp_online = 0;
1442 }
1443}
1444
1445static void stp_timeout(unsigned long dummy)
1446{
1447 queue_work(time_sync_wq, &stp_work);
1448}
1449
1450static int __init stp_init(void)
1451{
1452 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1453 return 0;
1454 setup_timer(&stp_timer, stp_timeout, 0UL);
1455 time_init_wq();
1456 if (!stp_online)
1457 return 0;
1458 queue_work(time_sync_wq, &stp_work);
1459 return 0;
1460}
1461
1462arch_initcall(stp_init);
1463
1464/*
1465 * STP timing alert. There are three causes:
1466 * 1) timing status change
1467 * 2) link availability change
1468 * 3) time control parameter change
1469 * In all three cases we are only interested in the clock source state.
1470 * If a STP clock source is now available use it.
1471 */
1472static void stp_timing_alert(struct stp_irq_parm *intparm)
1473{
1474 if (intparm->tsc || intparm->lac || intparm->tcpc)
1475 queue_work(time_sync_wq, &stp_work);
1476}
1477
1478/*
1479 * STP sync check machine check. This is called when the timing state
1480 * changes from the synchronized state to the unsynchronized state.
1481 * After a STP sync check the clock is not in sync. The machine check
1482 * is broadcasted to all cpus at the same time.
1483 */
1484void stp_sync_check(void)
1485{
1486 disable_sync_clock(NULL);
1487 queue_work(time_sync_wq, &stp_work);
1488}
1489
1490/*
1491 * STP island condition machine check. This is called when an attached
1492 * server attempts to communicate over an STP link and the servers
1493 * have matching CTN ids and have a valid stratum-1 configuration
1494 * but the configurations do not match.
1495 */
1496void stp_island_check(void)
1497{
1498 disable_sync_clock(NULL);
1499 queue_work(time_sync_wq, &stp_work);
1500}
1501
1502
1503static int stp_sync_clock(void *data)
1504{
1505 static int first;
1506 unsigned long long old_clock, delta;
1507 struct clock_sync_data *stp_sync;
1508 int rc;
1509
1510 stp_sync = data;
1511
1512 if (xchg(&first, 1) == 1) {
1513 /* Slave */
1514 clock_sync_cpu(stp_sync);
1515 return 0;
1516 }
1517
1518 /* Wait until all other cpus entered the sync function. */
1519 while (atomic_read(&stp_sync->cpus) != 0)
1520 cpu_relax();
1521
1522 enable_sync_clock();
1523
1524 rc = 0;
1525 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1526 stp_info.todoff[2] || stp_info.todoff[3] ||
1527 stp_info.tmd != 2) {
1528 old_clock = get_clock();
1529 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1530 if (rc == 0) {
1531 delta = adjust_time(old_clock, get_clock(), 0);
1532 fixup_clock_comparator(delta);
1533 rc = chsc_sstpi(stp_page, &stp_info,
1534 sizeof(struct stp_sstpi));
1535 if (rc == 0 && stp_info.tmd != 2)
1536 rc = -EAGAIN;
1537 }
1538 }
1539 if (rc) {
1540 disable_sync_clock(NULL);
1541 stp_sync->in_sync = -EAGAIN;
1542 } else
1543 stp_sync->in_sync = 1;
1544 xchg(&first, 0);
1545 return 0;
1546}
1547
1548/*
1549 * STP work. Check for the STP state and take over the clock
1550 * synchronization if the STP clock source is usable.
1551 */
1552static void stp_work_fn(struct work_struct *work)
1553{
1554 struct clock_sync_data stp_sync;
1555 int rc;
1556
1557 /* prevent multiple execution. */
1558 mutex_lock(&stp_work_mutex);
1559
1560 if (!stp_online) {
1561 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1562 del_timer_sync(&stp_timer);
1563 goto out_unlock;
1564 }
1565
1566 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1567 if (rc)
1568 goto out_unlock;
1569
1570 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1571 if (rc || stp_info.c == 0)
1572 goto out_unlock;
1573
1574 /* Skip synchronization if the clock is already in sync. */
1575 if (check_sync_clock())
1576 goto out_unlock;
1577
1578 memset(&stp_sync, 0, sizeof(stp_sync));
1579 get_online_cpus();
1580 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1581 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1582 put_online_cpus();
1583
1584 if (!check_sync_clock())
1585 /*
1586 * There is a usable clock but the synchonization failed.
1587 * Retry after a second.
1588 */
1589 mod_timer(&stp_timer, jiffies + HZ);
1590
1591out_unlock:
1592 mutex_unlock(&stp_work_mutex);
1593}
1594
1595/*
1596 * STP class sysfs interface functions
1597 */
1598static struct sysdev_class stp_sysclass = {
1599 .name = "stp",
1600};
1601
1602static ssize_t stp_ctn_id_show(struct sysdev_class *class,
1603 struct sysdev_class_attribute *attr,
1604 char *buf)
1605{
1606 if (!stp_online)
1607 return -ENODATA;
1608 return sprintf(buf, "%016llx\n",
1609 *(unsigned long long *) stp_info.ctnid);
1610}
1611
1612static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1613
1614static ssize_t stp_ctn_type_show(struct sysdev_class *class,
1615 struct sysdev_class_attribute *attr,
1616 char *buf)
1617{
1618 if (!stp_online)
1619 return -ENODATA;
1620 return sprintf(buf, "%i\n", stp_info.ctn);
1621}
1622
1623static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1624
1625static ssize_t stp_dst_offset_show(struct sysdev_class *class,
1626 struct sysdev_class_attribute *attr,
1627 char *buf)
1628{
1629 if (!stp_online || !(stp_info.vbits & 0x2000))
1630 return -ENODATA;
1631 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1632}
1633
1634static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1635
1636static ssize_t stp_leap_seconds_show(struct sysdev_class *class,
1637 struct sysdev_class_attribute *attr,
1638 char *buf)
1639{
1640 if (!stp_online || !(stp_info.vbits & 0x8000))
1641 return -ENODATA;
1642 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1643}
1644
1645static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1646
1647static ssize_t stp_stratum_show(struct sysdev_class *class,
1648 struct sysdev_class_attribute *attr,
1649 char *buf)
1650{
1651 if (!stp_online)
1652 return -ENODATA;
1653 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1654}
1655
1656static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1657
1658static ssize_t stp_time_offset_show(struct sysdev_class *class,
1659 struct sysdev_class_attribute *attr,
1660 char *buf)
1661{
1662 if (!stp_online || !(stp_info.vbits & 0x0800))
1663 return -ENODATA;
1664 return sprintf(buf, "%i\n", (int) stp_info.tto);
1665}
1666
1667static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1668
1669static ssize_t stp_time_zone_offset_show(struct sysdev_class *class,
1670 struct sysdev_class_attribute *attr,
1671 char *buf)
1672{
1673 if (!stp_online || !(stp_info.vbits & 0x4000))
1674 return -ENODATA;
1675 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1676}
1677
1678static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1679 stp_time_zone_offset_show, NULL);
1680
1681static ssize_t stp_timing_mode_show(struct sysdev_class *class,
1682 struct sysdev_class_attribute *attr,
1683 char *buf)
1684{
1685 if (!stp_online)
1686 return -ENODATA;
1687 return sprintf(buf, "%i\n", stp_info.tmd);
1688}
1689
1690static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1691
1692static ssize_t stp_timing_state_show(struct sysdev_class *class,
1693 struct sysdev_class_attribute *attr,
1694 char *buf)
1695{
1696 if (!stp_online)
1697 return -ENODATA;
1698 return sprintf(buf, "%i\n", stp_info.tst);
1699}
1700
1701static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1702
1703static ssize_t stp_online_show(struct sysdev_class *class,
1704 struct sysdev_class_attribute *attr,
1705 char *buf)
1706{
1707 return sprintf(buf, "%i\n", stp_online);
1708}
1709
1710static ssize_t stp_online_store(struct sysdev_class *class,
1711 struct sysdev_class_attribute *attr,
1712 const char *buf, size_t count)
1713{
1714 unsigned int value;
1715
1716 value = simple_strtoul(buf, NULL, 0);
1717 if (value != 0 && value != 1)
1718 return -EINVAL;
1719 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1720 return -EOPNOTSUPP;
1721 mutex_lock(&clock_sync_mutex);
1722 stp_online = value;
1723 if (stp_online)
1724 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1725 else
1726 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1727 queue_work(time_sync_wq, &stp_work);
1728 mutex_unlock(&clock_sync_mutex);
1729 return count;
1730}
1731
1732/*
1733 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1734 * stp/online but attr_online already exists in this file ..
1735 */
1736static struct sysdev_class_attribute attr_stp_online = {
1737 .attr = { .name = "online", .mode = 0600 },
1738 .show = stp_online_show,
1739 .store = stp_online_store,
1740};
1741
1742static struct sysdev_class_attribute *stp_attributes[] = {
1743 &attr_ctn_id,
1744 &attr_ctn_type,
1745 &attr_dst_offset,
1746 &attr_leap_seconds,
1747 &attr_stp_online,
1748 &attr_stratum,
1749 &attr_time_offset,
1750 &attr_time_zone_offset,
1751 &attr_timing_mode,
1752 &attr_timing_state,
1753 NULL
1754};
1755
1756static int __init stp_init_sysfs(void)
1757{
1758 struct sysdev_class_attribute **attr;
1759 int rc;
1760
1761 rc = sysdev_class_register(&stp_sysclass);
1762 if (rc)
1763 goto out;
1764 for (attr = stp_attributes; *attr; attr++) {
1765 rc = sysdev_class_create_file(&stp_sysclass, *attr);
1766 if (rc)
1767 goto out_unreg;
1768 }
1769 return 0;
1770out_unreg:
1771 for (; attr >= stp_attributes; attr--)
1772 sysdev_class_remove_file(&stp_sysclass, *attr);
1773 sysdev_class_unregister(&stp_sysclass);
1774out:
1775 return rc;
1776}
1777
1778device_initcall(stp_init_sysfs);