Linux Audio

Check our new training course

Loading...
  1/*
  2 * SHA1 routine optimized to do word accesses rather than byte accesses,
  3 * and to avoid unnecessary copies into the context array.
  4 *
  5 * This was based on the git SHA1 implementation.
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10#include <linux/bitops.h>
 11#include <linux/cryptohash.h>
 12#include <asm/unaligned.h>
 13
 14/*
 15 * If you have 32 registers or more, the compiler can (and should)
 16 * try to change the array[] accesses into registers. However, on
 17 * machines with less than ~25 registers, that won't really work,
 18 * and at least gcc will make an unholy mess of it.
 19 *
 20 * So to avoid that mess which just slows things down, we force
 21 * the stores to memory to actually happen (we might be better off
 22 * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
 23 * suggested by Artur Skawina - that will also make gcc unable to
 24 * try to do the silly "optimize away loads" part because it won't
 25 * see what the value will be).
 26 *
 27 * Ben Herrenschmidt reports that on PPC, the C version comes close
 28 * to the optimized asm with this (ie on PPC you don't want that
 29 * 'volatile', since there are lots of registers).
 30 *
 31 * On ARM we get the best code generation by forcing a full memory barrier
 32 * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
 33 * the stack frame size simply explode and performance goes down the drain.
 34 */
 35
 36#ifdef CONFIG_X86
 37  #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
 38#elif defined(CONFIG_ARM)
 39  #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
 40#else
 41  #define setW(x, val) (W(x) = (val))
 42#endif
 43
 44/* This "rolls" over the 512-bit array */
 45#define W(x) (array[(x)&15])
 46
 47/*
 48 * Where do we get the source from? The first 16 iterations get it from
 49 * the input data, the next mix it from the 512-bit array.
 50 */
 51#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
 52#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
 53
 54#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
 55	__u32 TEMP = input(t); setW(t, TEMP); \
 56	E += TEMP + rol32(A,5) + (fn) + (constant); \
 57	B = ror32(B, 2); } while (0)
 58
 59#define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
 60#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
 61#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
 62#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
 63#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
 64
 65/**
 66 * sha_transform - single block SHA1 transform
 67 *
 68 * @digest: 160 bit digest to update
 69 * @data:   512 bits of data to hash
 70 * @array:  16 words of workspace (see note)
 71 *
 72 * This function generates a SHA1 digest for a single 512-bit block.
 73 * Be warned, it does not handle padding and message digest, do not
 74 * confuse it with the full FIPS 180-1 digest algorithm for variable
 75 * length messages.
 76 *
 77 * Note: If the hash is security sensitive, the caller should be sure
 78 * to clear the workspace. This is left to the caller to avoid
 79 * unnecessary clears between chained hashing operations.
 80 */
 81void sha_transform(__u32 *digest, const char *data, __u32 *array)
 82{
 83	__u32 A, B, C, D, E;
 84
 85	A = digest[0];
 86	B = digest[1];
 87	C = digest[2];
 88	D = digest[3];
 89	E = digest[4];
 90
 91	/* Round 1 - iterations 0-16 take their input from 'data' */
 92	T_0_15( 0, A, B, C, D, E);
 93	T_0_15( 1, E, A, B, C, D);
 94	T_0_15( 2, D, E, A, B, C);
 95	T_0_15( 3, C, D, E, A, B);
 96	T_0_15( 4, B, C, D, E, A);
 97	T_0_15( 5, A, B, C, D, E);
 98	T_0_15( 6, E, A, B, C, D);
 99	T_0_15( 7, D, E, A, B, C);
100	T_0_15( 8, C, D, E, A, B);
101	T_0_15( 9, B, C, D, E, A);
102	T_0_15(10, A, B, C, D, E);
103	T_0_15(11, E, A, B, C, D);
104	T_0_15(12, D, E, A, B, C);
105	T_0_15(13, C, D, E, A, B);
106	T_0_15(14, B, C, D, E, A);
107	T_0_15(15, A, B, C, D, E);
108
109	/* Round 1 - tail. Input from 512-bit mixing array */
110	T_16_19(16, E, A, B, C, D);
111	T_16_19(17, D, E, A, B, C);
112	T_16_19(18, C, D, E, A, B);
113	T_16_19(19, B, C, D, E, A);
114
115	/* Round 2 */
116	T_20_39(20, A, B, C, D, E);
117	T_20_39(21, E, A, B, C, D);
118	T_20_39(22, D, E, A, B, C);
119	T_20_39(23, C, D, E, A, B);
120	T_20_39(24, B, C, D, E, A);
121	T_20_39(25, A, B, C, D, E);
122	T_20_39(26, E, A, B, C, D);
123	T_20_39(27, D, E, A, B, C);
124	T_20_39(28, C, D, E, A, B);
125	T_20_39(29, B, C, D, E, A);
126	T_20_39(30, A, B, C, D, E);
127	T_20_39(31, E, A, B, C, D);
128	T_20_39(32, D, E, A, B, C);
129	T_20_39(33, C, D, E, A, B);
130	T_20_39(34, B, C, D, E, A);
131	T_20_39(35, A, B, C, D, E);
132	T_20_39(36, E, A, B, C, D);
133	T_20_39(37, D, E, A, B, C);
134	T_20_39(38, C, D, E, A, B);
135	T_20_39(39, B, C, D, E, A);
136
137	/* Round 3 */
138	T_40_59(40, A, B, C, D, E);
139	T_40_59(41, E, A, B, C, D);
140	T_40_59(42, D, E, A, B, C);
141	T_40_59(43, C, D, E, A, B);
142	T_40_59(44, B, C, D, E, A);
143	T_40_59(45, A, B, C, D, E);
144	T_40_59(46, E, A, B, C, D);
145	T_40_59(47, D, E, A, B, C);
146	T_40_59(48, C, D, E, A, B);
147	T_40_59(49, B, C, D, E, A);
148	T_40_59(50, A, B, C, D, E);
149	T_40_59(51, E, A, B, C, D);
150	T_40_59(52, D, E, A, B, C);
151	T_40_59(53, C, D, E, A, B);
152	T_40_59(54, B, C, D, E, A);
153	T_40_59(55, A, B, C, D, E);
154	T_40_59(56, E, A, B, C, D);
155	T_40_59(57, D, E, A, B, C);
156	T_40_59(58, C, D, E, A, B);
157	T_40_59(59, B, C, D, E, A);
158
159	/* Round 4 */
160	T_60_79(60, A, B, C, D, E);
161	T_60_79(61, E, A, B, C, D);
162	T_60_79(62, D, E, A, B, C);
163	T_60_79(63, C, D, E, A, B);
164	T_60_79(64, B, C, D, E, A);
165	T_60_79(65, A, B, C, D, E);
166	T_60_79(66, E, A, B, C, D);
167	T_60_79(67, D, E, A, B, C);
168	T_60_79(68, C, D, E, A, B);
169	T_60_79(69, B, C, D, E, A);
170	T_60_79(70, A, B, C, D, E);
171	T_60_79(71, E, A, B, C, D);
172	T_60_79(72, D, E, A, B, C);
173	T_60_79(73, C, D, E, A, B);
174	T_60_79(74, B, C, D, E, A);
175	T_60_79(75, A, B, C, D, E);
176	T_60_79(76, E, A, B, C, D);
177	T_60_79(77, D, E, A, B, C);
178	T_60_79(78, C, D, E, A, B);
179	T_60_79(79, B, C, D, E, A);
180
181	digest[0] += A;
182	digest[1] += B;
183	digest[2] += C;
184	digest[3] += D;
185	digest[4] += E;
186}
187EXPORT_SYMBOL(sha_transform);
188
189/**
190 * sha_init - initialize the vectors for a SHA1 digest
191 * @buf: vector to initialize
192 */
193void sha_init(__u32 *buf)
194{
195	buf[0] = 0x67452301;
196	buf[1] = 0xefcdab89;
197	buf[2] = 0x98badcfe;
198	buf[3] = 0x10325476;
199	buf[4] = 0xc3d2e1f0;
200}