Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Thermal sensor driver for Allwinner SOC
  4 * Copyright (C) 2019 Yangtao Li
  5 *
  6 * Based on the work of Icenowy Zheng <icenowy@aosc.io>
  7 * Based on the work of Ondrej Jirman <megous@megous.com>
  8 * Based on the work of Josef Gajdusek <atx@atx.name>
  9 */
 10
 11#include <linux/bitmap.h>
 12#include <linux/clk.h>
 13#include <linux/device.h>
 14#include <linux/interrupt.h>
 15#include <linux/module.h>
 16#include <linux/nvmem-consumer.h>
 17#include <linux/of.h>
 18#include <linux/of_platform.h>
 19#include <linux/platform_device.h>
 20#include <linux/regmap.h>
 21#include <linux/reset.h>
 22#include <linux/slab.h>
 23#include <linux/thermal.h>
 24
 25#include "thermal_hwmon.h"
 26
 27#define MAX_SENSOR_NUM	4
 28
 29#define FT_TEMP_MASK				GENMASK(11, 0)
 30#define TEMP_CALIB_MASK				GENMASK(11, 0)
 31#define CALIBRATE_DEFAULT			0x800
 32
 33#define SUN8I_THS_CTRL0				0x00
 34#define SUN8I_THS_CTRL2				0x40
 35#define SUN8I_THS_IC				0x44
 36#define SUN8I_THS_IS				0x48
 37#define SUN8I_THS_MFC				0x70
 38#define SUN8I_THS_TEMP_CALIB			0x74
 39#define SUN8I_THS_TEMP_DATA			0x80
 40
 41#define SUN50I_THS_CTRL0			0x00
 42#define SUN50I_H6_THS_ENABLE			0x04
 43#define SUN50I_H6_THS_PC			0x08
 44#define SUN50I_H6_THS_DIC			0x10
 45#define SUN50I_H6_THS_DIS			0x20
 46#define SUN50I_H6_THS_MFC			0x30
 47#define SUN50I_H6_THS_TEMP_CALIB		0xa0
 48#define SUN50I_H6_THS_TEMP_DATA			0xc0
 49
 50#define SUN8I_THS_CTRL0_T_ACQ0(x)		(GENMASK(15, 0) & (x))
 51#define SUN8I_THS_CTRL2_T_ACQ1(x)		((GENMASK(15, 0) & (x)) << 16)
 52#define SUN8I_THS_DATA_IRQ_STS(x)		BIT(x + 8)
 53
 54#define SUN50I_THS_CTRL0_T_ACQ(x)		(GENMASK(15, 0) & ((x) - 1))
 55#define SUN50I_THS_CTRL0_T_SAMPLE_PER(x)	((GENMASK(15, 0) & ((x) - 1)) << 16)
 56#define SUN50I_THS_FILTER_EN			BIT(2)
 57#define SUN50I_THS_FILTER_TYPE(x)		(GENMASK(1, 0) & (x))
 58#define SUN50I_H6_THS_PC_TEMP_PERIOD(x)		((GENMASK(19, 0) & (x)) << 12)
 59#define SUN50I_H6_THS_DATA_IRQ_STS(x)		BIT(x)
 60
 61struct tsensor {
 62	struct ths_device		*tmdev;
 63	struct thermal_zone_device	*tzd;
 64	int				id;
 65};
 66
 67struct ths_thermal_chip {
 68	bool            has_mod_clk;
 69	bool            has_bus_clk_reset;
 70	bool		needs_sram;
 71	int		sensor_num;
 72	int		offset;
 73	int		scale;
 74	int		ft_deviation;
 75	int		temp_data_base;
 76	int		(*calibrate)(struct ths_device *tmdev,
 77				     u16 *caldata, int callen);
 78	int		(*init)(struct ths_device *tmdev);
 79	unsigned long	(*irq_ack)(struct ths_device *tmdev);
 80	int		(*calc_temp)(struct ths_device *tmdev,
 81				     int id, int reg);
 82};
 83
 84struct ths_device {
 85	const struct ths_thermal_chip		*chip;
 86	struct device				*dev;
 87	struct regmap				*regmap;
 88	struct regmap_field			*sram_regmap_field;
 89	struct reset_control			*reset;
 90	struct clk				*bus_clk;
 91	struct clk                              *mod_clk;
 92	struct tsensor				sensor[MAX_SENSOR_NUM];
 93};
 94
 95/* The H616 needs to have a bit 16 in the SRAM control register cleared. */
 96static const struct reg_field sun8i_ths_sram_reg_field = REG_FIELD(0x0, 16, 16);
 97
 98/* Temp Unit: millidegree Celsius */
 99static int sun8i_ths_calc_temp(struct ths_device *tmdev,
100			       int id, int reg)
101{
102	return tmdev->chip->offset - (reg * tmdev->chip->scale / 10);
103}
104
105static int sun50i_h5_calc_temp(struct ths_device *tmdev,
106			       int id, int reg)
107{
108	if (reg >= 0x500)
109		return -1191 * reg / 10 + 223000;
110	else if (!id)
111		return -1452 * reg / 10 + 259000;
112	else
113		return -1590 * reg / 10 + 276000;
114}
115
116static int sun8i_ths_get_temp(struct thermal_zone_device *tz, int *temp)
117{
118	struct tsensor *s = thermal_zone_device_priv(tz);
119	struct ths_device *tmdev = s->tmdev;
120	int val = 0;
121
122	regmap_read(tmdev->regmap, tmdev->chip->temp_data_base +
123		    0x4 * s->id, &val);
124
125	/* ths have no data yet */
126	if (!val)
127		return -EAGAIN;
128
129	*temp = tmdev->chip->calc_temp(tmdev, s->id, val);
130	/*
131	 * According to the original sdk, there are some platforms(rarely)
132	 * that add a fixed offset value after calculating the temperature
133	 * value. We can't simply put it on the formula for calculating the
134	 * temperature above, because the formula for calculating the
135	 * temperature above is also used when the sensor is calibrated. If
136	 * do this, the correct calibration formula is hard to know.
137	 */
138	*temp += tmdev->chip->ft_deviation;
139
140	return 0;
141}
142
143static const struct thermal_zone_device_ops ths_ops = {
144	.get_temp = sun8i_ths_get_temp,
145};
146
147static const struct regmap_config config = {
148	.reg_bits = 32,
149	.val_bits = 32,
150	.reg_stride = 4,
151	.fast_io = true,
152	.max_register = 0xfc,
153};
154
155static unsigned long sun8i_h3_irq_ack(struct ths_device *tmdev)
156{
157	unsigned long irq_bitmap = 0;
158	int i, state;
159
160	regmap_read(tmdev->regmap, SUN8I_THS_IS, &state);
161
162	for (i = 0; i < tmdev->chip->sensor_num; i++) {
163		if (state & SUN8I_THS_DATA_IRQ_STS(i)) {
164			regmap_write(tmdev->regmap, SUN8I_THS_IS,
165				     SUN8I_THS_DATA_IRQ_STS(i));
166			bitmap_set(&irq_bitmap, i, 1);
167		}
168	}
169
170	return irq_bitmap;
171}
172
173static unsigned long sun50i_h6_irq_ack(struct ths_device *tmdev)
174{
175	unsigned long irq_bitmap = 0;
176	int i, state;
177
178	regmap_read(tmdev->regmap, SUN50I_H6_THS_DIS, &state);
179
180	for (i = 0; i < tmdev->chip->sensor_num; i++) {
181		if (state & SUN50I_H6_THS_DATA_IRQ_STS(i)) {
182			regmap_write(tmdev->regmap, SUN50I_H6_THS_DIS,
183				     SUN50I_H6_THS_DATA_IRQ_STS(i));
184			bitmap_set(&irq_bitmap, i, 1);
185		}
186	}
187
188	return irq_bitmap;
189}
190
191static irqreturn_t sun8i_irq_thread(int irq, void *data)
192{
193	struct ths_device *tmdev = data;
194	unsigned long irq_bitmap = tmdev->chip->irq_ack(tmdev);
195	int i;
196
197	for_each_set_bit(i, &irq_bitmap, tmdev->chip->sensor_num) {
198		/* We allow some zones to not register. */
199		if (IS_ERR(tmdev->sensor[i].tzd))
200			continue;
201		thermal_zone_device_update(tmdev->sensor[i].tzd,
202					   THERMAL_EVENT_UNSPECIFIED);
203	}
204
205	return IRQ_HANDLED;
206}
207
208static int sun8i_h3_ths_calibrate(struct ths_device *tmdev,
209				  u16 *caldata, int callen)
210{
211	int i;
212
213	if (!caldata[0] || callen < 2 * tmdev->chip->sensor_num)
214		return -EINVAL;
215
216	for (i = 0; i < tmdev->chip->sensor_num; i++) {
217		int offset = (i % 2) << 4;
218
219		regmap_update_bits(tmdev->regmap,
220				   SUN8I_THS_TEMP_CALIB + (4 * (i >> 1)),
221				   TEMP_CALIB_MASK << offset,
222				   caldata[i] << offset);
223	}
224
225	return 0;
226}
227
228static int sun50i_h6_ths_calibrate(struct ths_device *tmdev,
229				   u16 *caldata, int callen)
230{
231	struct device *dev = tmdev->dev;
232	int i, ft_temp;
233
234	if (!caldata[0])
235		return -EINVAL;
236
237	/*
238	 * efuse layout:
239	 *
240	 * 0      11  16     27   32     43   48    57
241	 * +----------+-----------+-----------+-----------+
242	 * |  temp |  |sensor0|   |sensor1|   |sensor2|   |
243	 * +----------+-----------+-----------+-----------+
244	 *                      ^           ^           ^
245	 *                      |           |           |
246	 *                      |           |           sensor3[11:8]
247	 *                      |           sensor3[7:4]
248	 *                      sensor3[3:0]
249	 *
250	 * The calibration data on the H6 is the ambient temperature and
251	 * sensor values that are filled during the factory test stage.
252	 *
253	 * The unit of stored FT temperature is 0.1 degree celsius.
254	 *
255	 * We need to calculate a delta between measured and caluclated
256	 * register values and this will become a calibration offset.
257	 */
258	ft_temp = (caldata[0] & FT_TEMP_MASK) * 100;
259
260	for (i = 0; i < tmdev->chip->sensor_num; i++) {
261		int sensor_reg, sensor_temp, cdata, offset;
262
263		if (i == 3)
264			sensor_reg = (caldata[1] >> 12)
265				     | ((caldata[2] >> 12) << 4)
266				     | ((caldata[3] >> 12) << 8);
267		else
268			sensor_reg = caldata[i + 1] & TEMP_CALIB_MASK;
269
270		sensor_temp = tmdev->chip->calc_temp(tmdev, i, sensor_reg);
271
272		/*
273		 * Calibration data is CALIBRATE_DEFAULT - (calculated
274		 * temperature from sensor reading at factory temperature
275		 * minus actual factory temperature) * 14.88 (scale from
276		 * temperature to register values)
277		 */
278		cdata = CALIBRATE_DEFAULT -
279			((sensor_temp - ft_temp) * 10 / tmdev->chip->scale);
280		if (cdata & ~TEMP_CALIB_MASK) {
281			/*
282			 * Calibration value more than 12-bit, but calibration
283			 * register is 12-bit. In this case, ths hardware can
284			 * still work without calibration, although the data
285			 * won't be so accurate.
286			 */
287			dev_warn(dev, "sensor%d is not calibrated.\n", i);
288			continue;
289		}
290
291		offset = (i % 2) * 16;
292		regmap_update_bits(tmdev->regmap,
293				   SUN50I_H6_THS_TEMP_CALIB + (i / 2 * 4),
294				   TEMP_CALIB_MASK << offset,
295				   cdata << offset);
296	}
297
298	return 0;
299}
300
301static int sun8i_ths_calibrate(struct ths_device *tmdev)
302{
303	struct nvmem_cell *calcell;
304	struct device *dev = tmdev->dev;
305	u16 *caldata;
306	size_t callen;
307	int ret = 0;
308
309	calcell = nvmem_cell_get(dev, "calibration");
310	if (IS_ERR(calcell)) {
311		if (PTR_ERR(calcell) == -EPROBE_DEFER)
312			return -EPROBE_DEFER;
313		/*
314		 * Even if the external calibration data stored in sid is
315		 * not accessible, the THS hardware can still work, although
316		 * the data won't be so accurate.
317		 *
318		 * The default value of calibration register is 0x800 for
319		 * every sensor, and the calibration value is usually 0x7xx
320		 * or 0x8xx, so they won't be away from the default value
321		 * for a lot.
322		 *
323		 * So here we do not return error if the calibration data is
324		 * not available, except the probe needs deferring.
325		 */
326		goto out;
327	}
328
329	caldata = nvmem_cell_read(calcell, &callen);
330	if (IS_ERR(caldata)) {
331		ret = PTR_ERR(caldata);
332		goto out;
333	}
334
335	tmdev->chip->calibrate(tmdev, caldata, callen);
336
337	kfree(caldata);
338out:
339	if (!IS_ERR(calcell))
340		nvmem_cell_put(calcell);
341	return ret;
342}
343
344static void sun8i_ths_reset_control_assert(void *data)
345{
346	reset_control_assert(data);
347}
348
349static struct regmap *sun8i_ths_get_sram_regmap(struct device_node *node)
350{
351	struct device_node *sram_node;
352	struct platform_device *sram_pdev;
353	struct regmap *regmap = NULL;
354
355	sram_node = of_parse_phandle(node, "allwinner,sram", 0);
356	if (!sram_node)
357		return ERR_PTR(-ENODEV);
358
359	sram_pdev = of_find_device_by_node(sram_node);
360	if (!sram_pdev) {
361		/* platform device might not be probed yet */
362		regmap = ERR_PTR(-EPROBE_DEFER);
363		goto out_put_node;
364	}
365
366	/* If no regmap is found then the other device driver is at fault */
367	regmap = dev_get_regmap(&sram_pdev->dev, NULL);
368	if (!regmap)
369		regmap = ERR_PTR(-EINVAL);
370
371	platform_device_put(sram_pdev);
372out_put_node:
373	of_node_put(sram_node);
374	return regmap;
375}
376
377static int sun8i_ths_resource_init(struct ths_device *tmdev)
378{
379	struct device *dev = tmdev->dev;
380	struct platform_device *pdev = to_platform_device(dev);
381	void __iomem *base;
382	int ret;
383
384	base = devm_platform_ioremap_resource(pdev, 0);
385	if (IS_ERR(base))
386		return PTR_ERR(base);
387
388	tmdev->regmap = devm_regmap_init_mmio(dev, base, &config);
389	if (IS_ERR(tmdev->regmap))
390		return PTR_ERR(tmdev->regmap);
391
392	if (tmdev->chip->has_bus_clk_reset) {
393		tmdev->reset = devm_reset_control_get(dev, NULL);
394		if (IS_ERR(tmdev->reset))
395			return PTR_ERR(tmdev->reset);
396
397		ret = reset_control_deassert(tmdev->reset);
398		if (ret)
399			return ret;
400
401		ret = devm_add_action_or_reset(dev, sun8i_ths_reset_control_assert,
402					       tmdev->reset);
403		if (ret)
404			return ret;
405
406		tmdev->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus");
407		if (IS_ERR(tmdev->bus_clk))
408			return PTR_ERR(tmdev->bus_clk);
409	}
410
411	if (tmdev->chip->has_mod_clk) {
412		tmdev->mod_clk = devm_clk_get_enabled(&pdev->dev, "mod");
413		if (IS_ERR(tmdev->mod_clk))
414			return PTR_ERR(tmdev->mod_clk);
415	}
416
417	ret = clk_set_rate(tmdev->mod_clk, 24000000);
418	if (ret)
419		return ret;
420
421	if (tmdev->chip->needs_sram) {
422		struct regmap *regmap;
423
424		regmap = sun8i_ths_get_sram_regmap(dev->of_node);
425		if (IS_ERR(regmap))
426			return PTR_ERR(regmap);
427		tmdev->sram_regmap_field = devm_regmap_field_alloc(dev,
428						      regmap,
429						      sun8i_ths_sram_reg_field);
430		if (IS_ERR(tmdev->sram_regmap_field))
431			return PTR_ERR(tmdev->sram_regmap_field);
432	}
433
434	ret = sun8i_ths_calibrate(tmdev);
435	if (ret)
436		return ret;
437
438	return 0;
439}
440
441static int sun8i_h3_thermal_init(struct ths_device *tmdev)
442{
443	int val;
444
445	/* average over 4 samples */
446	regmap_write(tmdev->regmap, SUN8I_THS_MFC,
447		     SUN50I_THS_FILTER_EN |
448		     SUN50I_THS_FILTER_TYPE(1));
449	/*
450	 * clkin = 24MHz
451	 * filter_samples = 4
452	 * period = 0.25s
453	 *
454	 * x = period * clkin / 4096 / filter_samples - 1
455	 *   = 365
456	 */
457	val = GENMASK(7 + tmdev->chip->sensor_num, 8);
458	regmap_write(tmdev->regmap, SUN8I_THS_IC,
459		     SUN50I_H6_THS_PC_TEMP_PERIOD(365) | val);
460	/*
461	 * T_acq = 20us
462	 * clkin = 24MHz
463	 *
464	 * x = T_acq * clkin - 1
465	 *   = 479
466	 */
467	regmap_write(tmdev->regmap, SUN8I_THS_CTRL0,
468		     SUN8I_THS_CTRL0_T_ACQ0(479));
469	val = GENMASK(tmdev->chip->sensor_num - 1, 0);
470	regmap_write(tmdev->regmap, SUN8I_THS_CTRL2,
471		     SUN8I_THS_CTRL2_T_ACQ1(479) | val);
472
473	return 0;
474}
475
476static int sun50i_h6_thermal_init(struct ths_device *tmdev)
477{
478	int val;
479
480	/* The H616 needs to have a bit in the SRAM control register cleared. */
481	if (tmdev->sram_regmap_field)
482		regmap_field_write(tmdev->sram_regmap_field, 0);
483
484	/*
485	 * The manual recommends an overall sample frequency of 50 KHz (20us,
486	 * 480 cycles at 24 MHz), which provides plenty of time for both the
487	 * acquisition time (>24 cycles) and the actual conversion time
488	 * (>14 cycles).
489	 * The lower half of the CTRL register holds the "acquire time", in
490	 * clock cycles, which the manual recommends to be 2us:
491	 * 24MHz * 2us = 48 cycles.
492	 * The high half of THS_CTRL encodes the sample frequency, in clock
493	 * cycles: 24MHz * 20us = 480 cycles.
494	 * This is explained in the H616 manual, but apparently wrongly
495	 * described in the H6 manual, although the BSP code does the same
496	 * for both SoCs.
497	 */
498	regmap_write(tmdev->regmap, SUN50I_THS_CTRL0,
499		     SUN50I_THS_CTRL0_T_ACQ(48) |
500		     SUN50I_THS_CTRL0_T_SAMPLE_PER(480));
501	/* average over 4 samples */
502	regmap_write(tmdev->regmap, SUN50I_H6_THS_MFC,
503		     SUN50I_THS_FILTER_EN |
504		     SUN50I_THS_FILTER_TYPE(1));
505	/*
506	 * clkin = 24MHz
507	 * filter_samples = 4
508	 * period = 0.25s
509	 *
510	 * x = period * clkin / 4096 / filter_samples - 1
511	 *   = 365
512	 */
513	regmap_write(tmdev->regmap, SUN50I_H6_THS_PC,
514		     SUN50I_H6_THS_PC_TEMP_PERIOD(365));
515	/* enable sensor */
516	val = GENMASK(tmdev->chip->sensor_num - 1, 0);
517	regmap_write(tmdev->regmap, SUN50I_H6_THS_ENABLE, val);
518	/* thermal data interrupt enable */
519	val = GENMASK(tmdev->chip->sensor_num - 1, 0);
520	regmap_write(tmdev->regmap, SUN50I_H6_THS_DIC, val);
521
522	return 0;
523}
524
525static int sun8i_ths_register(struct ths_device *tmdev)
526{
527	int i;
528
529	for (i = 0; i < tmdev->chip->sensor_num; i++) {
530		tmdev->sensor[i].tmdev = tmdev;
531		tmdev->sensor[i].id = i;
532		tmdev->sensor[i].tzd =
533			devm_thermal_of_zone_register(tmdev->dev,
534						      i,
535						      &tmdev->sensor[i],
536						      &ths_ops);
537
538		/*
539		 * If an individual zone fails to register for reasons
540		 * other than probe deferral (eg, a bad DT) then carry
541		 * on, other zones might register successfully.
542		 */
543		if (IS_ERR(tmdev->sensor[i].tzd)) {
544			if (PTR_ERR(tmdev->sensor[i].tzd) == -EPROBE_DEFER)
545				return PTR_ERR(tmdev->sensor[i].tzd);
546			continue;
547		}
548
549		devm_thermal_add_hwmon_sysfs(tmdev->dev, tmdev->sensor[i].tzd);
550	}
551
552	return 0;
553}
554
555static int sun8i_ths_probe(struct platform_device *pdev)
556{
557	struct ths_device *tmdev;
558	struct device *dev = &pdev->dev;
559	int ret, irq;
560
561	tmdev = devm_kzalloc(dev, sizeof(*tmdev), GFP_KERNEL);
562	if (!tmdev)
563		return -ENOMEM;
564
565	tmdev->dev = dev;
566	tmdev->chip = of_device_get_match_data(&pdev->dev);
567	if (!tmdev->chip)
568		return -EINVAL;
569
570	ret = sun8i_ths_resource_init(tmdev);
571	if (ret)
572		return ret;
573
574	irq = platform_get_irq(pdev, 0);
575	if (irq < 0)
576		return irq;
577
578	ret = tmdev->chip->init(tmdev);
579	if (ret)
580		return ret;
581
582	ret = sun8i_ths_register(tmdev);
583	if (ret)
584		return ret;
585
586	/*
587	 * Avoid entering the interrupt handler, the thermal device is not
588	 * registered yet, we deffer the registration of the interrupt to
589	 * the end.
590	 */
591	ret = devm_request_threaded_irq(dev, irq, NULL,
592					sun8i_irq_thread,
593					IRQF_ONESHOT, "ths", tmdev);
594	if (ret)
595		return ret;
596
597	return 0;
598}
599
600static const struct ths_thermal_chip sun8i_a83t_ths = {
601	.sensor_num = 3,
602	.scale = 705,
603	.offset = 191668,
604	.temp_data_base = SUN8I_THS_TEMP_DATA,
605	.calibrate = sun8i_h3_ths_calibrate,
606	.init = sun8i_h3_thermal_init,
607	.irq_ack = sun8i_h3_irq_ack,
608	.calc_temp = sun8i_ths_calc_temp,
609};
610
611static const struct ths_thermal_chip sun8i_h3_ths = {
612	.sensor_num = 1,
613	.scale = 1211,
614	.offset = 217000,
615	.has_mod_clk = true,
616	.has_bus_clk_reset = true,
617	.temp_data_base = SUN8I_THS_TEMP_DATA,
618	.calibrate = sun8i_h3_ths_calibrate,
619	.init = sun8i_h3_thermal_init,
620	.irq_ack = sun8i_h3_irq_ack,
621	.calc_temp = sun8i_ths_calc_temp,
622};
623
624static const struct ths_thermal_chip sun8i_r40_ths = {
625	.sensor_num = 2,
626	.offset = 251086,
627	.scale = 1130,
628	.has_mod_clk = true,
629	.has_bus_clk_reset = true,
630	.temp_data_base = SUN8I_THS_TEMP_DATA,
631	.calibrate = sun8i_h3_ths_calibrate,
632	.init = sun8i_h3_thermal_init,
633	.irq_ack = sun8i_h3_irq_ack,
634	.calc_temp = sun8i_ths_calc_temp,
635};
636
637static const struct ths_thermal_chip sun50i_a64_ths = {
638	.sensor_num = 3,
639	.offset = 260890,
640	.scale = 1170,
641	.has_mod_clk = true,
642	.has_bus_clk_reset = true,
643	.temp_data_base = SUN8I_THS_TEMP_DATA,
644	.calibrate = sun8i_h3_ths_calibrate,
645	.init = sun8i_h3_thermal_init,
646	.irq_ack = sun8i_h3_irq_ack,
647	.calc_temp = sun8i_ths_calc_temp,
648};
649
650static const struct ths_thermal_chip sun50i_a100_ths = {
651	.sensor_num = 3,
652	.has_bus_clk_reset = true,
653	.ft_deviation = 8000,
654	.offset = 187744,
655	.scale = 672,
656	.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
657	.calibrate = sun50i_h6_ths_calibrate,
658	.init = sun50i_h6_thermal_init,
659	.irq_ack = sun50i_h6_irq_ack,
660	.calc_temp = sun8i_ths_calc_temp,
661};
662
663static const struct ths_thermal_chip sun50i_h5_ths = {
664	.sensor_num = 2,
665	.has_mod_clk = true,
666	.has_bus_clk_reset = true,
667	.temp_data_base = SUN8I_THS_TEMP_DATA,
668	.calibrate = sun8i_h3_ths_calibrate,
669	.init = sun8i_h3_thermal_init,
670	.irq_ack = sun8i_h3_irq_ack,
671	.calc_temp = sun50i_h5_calc_temp,
672};
673
674static const struct ths_thermal_chip sun50i_h6_ths = {
675	.sensor_num = 2,
676	.has_bus_clk_reset = true,
677	.ft_deviation = 7000,
678	.offset = 187744,
679	.scale = 672,
680	.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
681	.calibrate = sun50i_h6_ths_calibrate,
682	.init = sun50i_h6_thermal_init,
683	.irq_ack = sun50i_h6_irq_ack,
684	.calc_temp = sun8i_ths_calc_temp,
685};
686
687static const struct ths_thermal_chip sun20i_d1_ths = {
688	.sensor_num = 1,
689	.has_bus_clk_reset = true,
690	.offset = 188552,
691	.scale = 673,
692	.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
693	.calibrate = sun50i_h6_ths_calibrate,
694	.init = sun50i_h6_thermal_init,
695	.irq_ack = sun50i_h6_irq_ack,
696	.calc_temp = sun8i_ths_calc_temp,
697};
698
699static const struct ths_thermal_chip sun50i_h616_ths = {
700	.sensor_num = 4,
701	.has_bus_clk_reset = true,
702	.needs_sram = true,
703	.ft_deviation = 8000,
704	.offset = 263655,
705	.scale = 810,
706	.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
707	.calibrate = sun50i_h6_ths_calibrate,
708	.init = sun50i_h6_thermal_init,
709	.irq_ack = sun50i_h6_irq_ack,
710	.calc_temp = sun8i_ths_calc_temp,
711};
712
713static const struct of_device_id of_ths_match[] = {
714	{ .compatible = "allwinner,sun8i-a83t-ths", .data = &sun8i_a83t_ths },
715	{ .compatible = "allwinner,sun8i-h3-ths", .data = &sun8i_h3_ths },
716	{ .compatible = "allwinner,sun8i-r40-ths", .data = &sun8i_r40_ths },
717	{ .compatible = "allwinner,sun50i-a64-ths", .data = &sun50i_a64_ths },
718	{ .compatible = "allwinner,sun50i-a100-ths", .data = &sun50i_a100_ths },
719	{ .compatible = "allwinner,sun50i-h5-ths", .data = &sun50i_h5_ths },
720	{ .compatible = "allwinner,sun50i-h6-ths", .data = &sun50i_h6_ths },
721	{ .compatible = "allwinner,sun20i-d1-ths", .data = &sun20i_d1_ths },
722	{ .compatible = "allwinner,sun50i-h616-ths", .data = &sun50i_h616_ths },
723	{ /* sentinel */ },
724};
725MODULE_DEVICE_TABLE(of, of_ths_match);
726
727static struct platform_driver ths_driver = {
728	.probe = sun8i_ths_probe,
729	.driver = {
730		.name = "sun8i-thermal",
731		.of_match_table = of_ths_match,
732	},
733};
734module_platform_driver(ths_driver);
735
736MODULE_DESCRIPTION("Thermal sensor driver for Allwinner SOC");
737MODULE_LICENSE("GPL v2");