Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
  3 *
  4 * Copyright (C) 2008 David Brownell
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 */
 11#include <linux/kernel.h>
 12#include <linux/init.h>
 13#include <linux/bcd.h>
 14#include <linux/slab.h>
 15#include <linux/rtc.h>
 16#include <linux/workqueue.h>
 17
 18#include <linux/spi/spi.h>
 19#include <linux/spi/ds1305.h>
 
 20
 21
 22/*
 23 * Registers ... mask DS1305_WRITE into register address to write,
 24 * otherwise you're reading it.  All non-bitmask values are BCD.
 25 */
 26#define DS1305_WRITE		0x80
 27
 28
 29/* RTC date/time ... the main special cases are that we:
 30 *  - Need fancy "hours" encoding in 12hour mode
 31 *  - Don't rely on the "day-of-week" field (or tm_wday)
 32 *  - Are a 21st-century clock (2000 <= year < 2100)
 33 */
 34#define DS1305_RTC_LEN		7		/* bytes for RTC regs */
 35
 36#define DS1305_SEC		0x00		/* register addresses */
 37#define DS1305_MIN		0x01
 38#define DS1305_HOUR		0x02
 39#	define DS1305_HR_12		0x40	/* set == 12 hr mode */
 40#	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
 41#define DS1305_WDAY		0x03
 42#define DS1305_MDAY		0x04
 43#define DS1305_MON		0x05
 44#define DS1305_YEAR		0x06
 45
 46
 47/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
 48 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
 49 *
 50 * NOTE that since we don't use WDAY, we limit ourselves to alarms
 51 * only one day into the future (vs potentially up to a week).
 52 *
 53 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
 54 * don't currently support them.  We'd either need to do it only when
 55 * no alarm is pending (not the standard model), or to use the second
 56 * alarm (implying that this is a DS1305 not DS1306, *and* that either
 57 * it's wired up a second IRQ we know, or that INTCN is set)
 58 */
 59#define DS1305_ALM_LEN		4		/* bytes for ALM regs */
 60#define DS1305_ALM_DISABLE	0x80
 61
 62#define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
 63#define DS1305_ALM1(r)		(0x0b + (r))
 64
 65
 66/* three control registers */
 67#define DS1305_CONTROL_LEN	3		/* bytes of control regs */
 68
 69#define DS1305_CONTROL		0x0f		/* register addresses */
 70#	define DS1305_nEOSC		0x80	/* low enables oscillator */
 71#	define DS1305_WP		0x40	/* write protect */
 72#	define DS1305_INTCN		0x04	/* clear == only int0 used */
 73#	define DS1306_1HZ		0x04	/* enable 1Hz output */
 74#	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
 75#	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
 76#define DS1305_STATUS		0x10
 77/* status has just AEIx bits, mirrored as IRQFx */
 78#define DS1305_TRICKLE		0x11
 79/* trickle bits are defined in <linux/spi/ds1305.h> */
 80
 81/* a bunch of NVRAM */
 82#define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
 83
 84#define DS1305_NVRAM		0x20		/* register addresses */
 85
 86
 87struct ds1305 {
 88	struct spi_device	*spi;
 89	struct rtc_device	*rtc;
 90
 91	struct work_struct	work;
 92
 93	unsigned long		flags;
 94#define FLAG_EXITING	0
 95
 96	bool			hr12;
 97	u8			ctrl[DS1305_CONTROL_LEN];
 98};
 99
100
101/*----------------------------------------------------------------------*/
102
103/*
104 * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
105 * software (like a bootloader) which may require it.
106 */
107
108static unsigned bcd2hour(u8 bcd)
109{
110	if (bcd & DS1305_HR_12) {
111		unsigned	hour = 0;
112
113		bcd &= ~DS1305_HR_12;
114		if (bcd & DS1305_HR_PM) {
115			hour = 12;
116			bcd &= ~DS1305_HR_PM;
117		}
118		hour += bcd2bin(bcd);
119		return hour - 1;
120	}
121	return bcd2bin(bcd);
122}
123
124static u8 hour2bcd(bool hr12, int hour)
125{
126	if (hr12) {
127		hour++;
128		if (hour <= 12)
129			return DS1305_HR_12 | bin2bcd(hour);
130		hour -= 12;
131		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
132	}
133	return bin2bcd(hour);
134}
135
136/*----------------------------------------------------------------------*/
137
138/*
139 * Interface to RTC framework
140 */
141
142static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
143{
144	struct ds1305	*ds1305 = dev_get_drvdata(dev);
145	u8		buf[2];
146	long		err = -EINVAL;
147
148	buf[0] = DS1305_WRITE | DS1305_CONTROL;
149	buf[1] = ds1305->ctrl[0];
150
151	if (enabled) {
152		if (ds1305->ctrl[0] & DS1305_AEI0)
153			goto done;
154		buf[1] |= DS1305_AEI0;
155	} else {
156		if (!(buf[1] & DS1305_AEI0))
157			goto done;
158		buf[1] &= ~DS1305_AEI0;
159	}
160	err = spi_write_then_read(ds1305->spi, buf, sizeof buf, NULL, 0);
161	if (err >= 0)
162		ds1305->ctrl[0] = buf[1];
163done:
164	return err;
165
166}
167
168
169/*
170 * Get/set of date and time is pretty normal.
171 */
172
173static int ds1305_get_time(struct device *dev, struct rtc_time *time)
174{
175	struct ds1305	*ds1305 = dev_get_drvdata(dev);
176	u8		addr = DS1305_SEC;
177	u8		buf[DS1305_RTC_LEN];
178	int		status;
179
180	/* Use write-then-read to get all the date/time registers
181	 * since dma from stack is nonportable
182	 */
183	status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
184			buf, sizeof buf);
185	if (status < 0)
186		return status;
187
188	dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
189		"read", buf[0], buf[1], buf[2], buf[3],
190		buf[4], buf[5], buf[6]);
191
192	/* Decode the registers */
193	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
194	time->tm_min = bcd2bin(buf[DS1305_MIN]);
195	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
196	time->tm_wday = buf[DS1305_WDAY] - 1;
197	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
198	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
199	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
200
201	dev_vdbg(dev, "%s secs=%d, mins=%d, "
202		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
203		"read", time->tm_sec, time->tm_min,
204		time->tm_hour, time->tm_mday,
205		time->tm_mon, time->tm_year, time->tm_wday);
206
207	/* Time may not be set */
208	return rtc_valid_tm(time);
209}
210
211static int ds1305_set_time(struct device *dev, struct rtc_time *time)
212{
213	struct ds1305	*ds1305 = dev_get_drvdata(dev);
214	u8		buf[1 + DS1305_RTC_LEN];
215	u8		*bp = buf;
216
217	dev_vdbg(dev, "%s secs=%d, mins=%d, "
218		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
219		"write", time->tm_sec, time->tm_min,
220		time->tm_hour, time->tm_mday,
221		time->tm_mon, time->tm_year, time->tm_wday);
222
223	/* Write registers starting at the first time/date address. */
224	*bp++ = DS1305_WRITE | DS1305_SEC;
225
226	*bp++ = bin2bcd(time->tm_sec);
227	*bp++ = bin2bcd(time->tm_min);
228	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
229	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
230	*bp++ = bin2bcd(time->tm_mday);
231	*bp++ = bin2bcd(time->tm_mon + 1);
232	*bp++ = bin2bcd(time->tm_year - 100);
233
234	dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
235		"write", buf[1], buf[2], buf[3],
236		buf[4], buf[5], buf[6], buf[7]);
237
238	/* use write-then-read since dma from stack is nonportable */
239	return spi_write_then_read(ds1305->spi, buf, sizeof buf,
240			NULL, 0);
241}
242
243/*
244 * Get/set of alarm is a bit funky:
245 *
246 * - First there's the inherent raciness of getting the (partitioned)
247 *   status of an alarm that could trigger while we're reading parts
248 *   of that status.
249 *
250 * - Second there's its limited range (we could increase it a bit by
251 *   relying on WDAY), which means it will easily roll over.
252 *
253 * - Third there's the choice of two alarms and alarm signals.
254 *   Here we use ALM0 and expect that nINT0 (open drain) is used;
255 *   that's the only real option for DS1306 runtime alarms, and is
256 *   natural on DS1305.
257 *
258 * - Fourth, there's also ALM1, and a second interrupt signal:
259 *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
260 *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
261 *       and it won't work when VCC1 is active.
262 *
263 *   So to be most general, we should probably set both alarms to the
264 *   same value, letting ALM1 be the wakeup event source on DS1306
265 *   and handling several wiring options on DS1305.
266 *
267 * - Fifth, we support the polled mode (as well as possible; why not?)
268 *   even when no interrupt line is wired to an IRQ.
269 */
270
271/*
272 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
273 */
274static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
275{
276	struct ds1305	*ds1305 = dev_get_drvdata(dev);
277	struct spi_device *spi = ds1305->spi;
278	u8		addr;
279	int		status;
280	u8		buf[DS1305_ALM_LEN];
281
282	/* Refresh control register cache BEFORE reading ALM0 registers,
283	 * since reading alarm registers acks any pending IRQ.  That
284	 * makes returning "pending" status a bit of a lie, but that bit
285	 * of EFI status is at best fragile anyway (given IRQ handlers).
286	 */
287	addr = DS1305_CONTROL;
288	status = spi_write_then_read(spi, &addr, sizeof addr,
289			ds1305->ctrl, sizeof ds1305->ctrl);
290	if (status < 0)
291		return status;
292
293	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
294	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
295
296	/* get and check ALM0 registers */
297	addr = DS1305_ALM0(DS1305_SEC);
298	status = spi_write_then_read(spi, &addr, sizeof addr,
299			buf, sizeof buf);
300	if (status < 0)
301		return status;
302
303	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
304		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
305		buf[DS1305_HOUR], buf[DS1305_WDAY]);
306
307	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
308			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
309			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
310		return -EIO;
311
312	/* Stuff these values into alm->time and let RTC framework code
313	 * fill in the rest ... and also handle rollover to tomorrow when
314	 * that's needed.
315	 */
316	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
317	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
318	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
319	alm->time.tm_mday = -1;
320	alm->time.tm_mon = -1;
321	alm->time.tm_year = -1;
322	/* next three fields are unused by Linux */
323	alm->time.tm_wday = -1;
324	alm->time.tm_mday = -1;
325	alm->time.tm_isdst = -1;
326
327	return 0;
328}
329
330/*
331 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
332 */
333static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
334{
335	struct ds1305	*ds1305 = dev_get_drvdata(dev);
336	struct spi_device *spi = ds1305->spi;
337	unsigned long	now, later;
338	struct rtc_time	tm;
339	int		status;
340	u8		buf[1 + DS1305_ALM_LEN];
341
342	/* convert desired alarm to time_t */
343	status = rtc_tm_to_time(&alm->time, &later);
344	if (status < 0)
345		return status;
346
347	/* Read current time as time_t */
348	status = ds1305_get_time(dev, &tm);
349	if (status < 0)
350		return status;
351	status = rtc_tm_to_time(&tm, &now);
352	if (status < 0)
353		return status;
354
355	/* make sure alarm fires within the next 24 hours */
356	if (later <= now)
357		return -EINVAL;
358	if ((later - now) > 24 * 60 * 60)
359		return -EDOM;
360
361	/* disable alarm if needed */
362	if (ds1305->ctrl[0] & DS1305_AEI0) {
363		ds1305->ctrl[0] &= ~DS1305_AEI0;
364
365		buf[0] = DS1305_WRITE | DS1305_CONTROL;
366		buf[1] = ds1305->ctrl[0];
367		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
368		if (status < 0)
369			return status;
370	}
371
372	/* write alarm */
373	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
374	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
375	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
376	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
377	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
378
379	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
380		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
381		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
382
383	status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
384	if (status < 0)
385		return status;
386
387	/* enable alarm if requested */
388	if (alm->enabled) {
389		ds1305->ctrl[0] |= DS1305_AEI0;
390
391		buf[0] = DS1305_WRITE | DS1305_CONTROL;
392		buf[1] = ds1305->ctrl[0];
393		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
394	}
395
396	return status;
397}
398
399#ifdef CONFIG_PROC_FS
400
401static int ds1305_proc(struct device *dev, struct seq_file *seq)
402{
403	struct ds1305	*ds1305 = dev_get_drvdata(dev);
404	char		*diodes = "no";
405	char		*resistors = "";
406
407	/* ctrl[2] is treated as read-only; no locking needed */
408	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
409		switch (ds1305->ctrl[2] & 0x0c) {
410		case DS1305_TRICKLE_DS2:
411			diodes = "2 diodes, ";
412			break;
413		case DS1305_TRICKLE_DS1:
414			diodes = "1 diode, ";
415			break;
416		default:
417			goto done;
418		}
419		switch (ds1305->ctrl[2] & 0x03) {
420		case DS1305_TRICKLE_2K:
421			resistors = "2k Ohm";
422			break;
423		case DS1305_TRICKLE_4K:
424			resistors = "4k Ohm";
425			break;
426		case DS1305_TRICKLE_8K:
427			resistors = "8k Ohm";
428			break;
429		default:
430			diodes = "no";
431			break;
432		}
433	}
434
435done:
436	return seq_printf(seq,
437			"trickle_charge\t: %s%s\n",
438			diodes, resistors);
439}
440
441#else
442#define ds1305_proc	NULL
443#endif
444
445static const struct rtc_class_ops ds1305_ops = {
446	.read_time	= ds1305_get_time,
447	.set_time	= ds1305_set_time,
448	.read_alarm	= ds1305_get_alarm,
449	.set_alarm	= ds1305_set_alarm,
450	.proc		= ds1305_proc,
451	.alarm_irq_enable = ds1305_alarm_irq_enable,
452};
453
454static void ds1305_work(struct work_struct *work)
455{
456	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
457	struct mutex	*lock = &ds1305->rtc->ops_lock;
458	struct spi_device *spi = ds1305->spi;
459	u8		buf[3];
460	int		status;
461
462	/* lock to protect ds1305->ctrl */
463	mutex_lock(lock);
464
465	/* Disable the IRQ, and clear its status ... for now, we "know"
466	 * that if more than one alarm is active, they're in sync.
467	 * Note that reading ALM data registers also clears IRQ status.
468	 */
469	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
470	ds1305->ctrl[1] = 0;
471
472	buf[0] = DS1305_WRITE | DS1305_CONTROL;
473	buf[1] = ds1305->ctrl[0];
474	buf[2] = 0;
475
476	status = spi_write_then_read(spi, buf, sizeof buf,
477			NULL, 0);
478	if (status < 0)
479		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
480
481	mutex_unlock(lock);
482
483	if (!test_bit(FLAG_EXITING, &ds1305->flags))
484		enable_irq(spi->irq);
485
486	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
487}
488
489/*
490 * This "real" IRQ handler hands off to a workqueue mostly to allow
491 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
492 * I/O requests in IRQ context (to clear the IRQ status).
493 */
494static irqreturn_t ds1305_irq(int irq, void *p)
495{
496	struct ds1305		*ds1305 = p;
497
498	disable_irq(irq);
499	schedule_work(&ds1305->work);
500	return IRQ_HANDLED;
501}
502
503/*----------------------------------------------------------------------*/
504
505/*
506 * Interface for NVRAM
507 */
508
509static void msg_init(struct spi_message *m, struct spi_transfer *x,
510		u8 *addr, size_t count, char *tx, char *rx)
511{
512	spi_message_init(m);
513	memset(x, 0, 2 * sizeof(*x));
514
515	x->tx_buf = addr;
516	x->len = 1;
517	spi_message_add_tail(x, m);
518
519	x++;
520
521	x->tx_buf = tx;
522	x->rx_buf = rx;
523	x->len = count;
524	spi_message_add_tail(x, m);
525}
526
527static ssize_t
528ds1305_nvram_read(struct file *filp, struct kobject *kobj,
529		struct bin_attribute *attr,
530		char *buf, loff_t off, size_t count)
531{
532	struct spi_device	*spi;
 
533	u8			addr;
534	struct spi_message	m;
535	struct spi_transfer	x[2];
536	int			status;
537
538	spi = container_of(kobj, struct spi_device, dev.kobj);
539
540	if (unlikely(off >= DS1305_NVRAM_LEN))
541		return 0;
542	if (count >= DS1305_NVRAM_LEN)
543		count = DS1305_NVRAM_LEN;
544	if ((off + count) > DS1305_NVRAM_LEN)
545		count = DS1305_NVRAM_LEN - off;
546	if (unlikely(!count))
547		return count;
548
549	addr = DS1305_NVRAM + off;
550	msg_init(&m, x, &addr, count, NULL, buf);
551
552	status = spi_sync(spi, &m);
553	if (status < 0)
554		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
555	return (status < 0) ? status : count;
556}
557
558static ssize_t
559ds1305_nvram_write(struct file *filp, struct kobject *kobj,
560		struct bin_attribute *attr,
561		char *buf, loff_t off, size_t count)
562{
563	struct spi_device	*spi;
 
564	u8			addr;
565	struct spi_message	m;
566	struct spi_transfer	x[2];
567	int			status;
568
569	spi = container_of(kobj, struct spi_device, dev.kobj);
570
571	if (unlikely(off >= DS1305_NVRAM_LEN))
572		return -EFBIG;
573	if (count >= DS1305_NVRAM_LEN)
574		count = DS1305_NVRAM_LEN;
575	if ((off + count) > DS1305_NVRAM_LEN)
576		count = DS1305_NVRAM_LEN - off;
577	if (unlikely(!count))
578		return count;
579
580	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
581	msg_init(&m, x, &addr, count, buf, NULL);
582
583	status = spi_sync(spi, &m);
584	if (status < 0)
585		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
586	return (status < 0) ? status : count;
587}
588
589static struct bin_attribute nvram = {
590	.attr.name	= "nvram",
591	.attr.mode	= S_IRUGO | S_IWUSR,
592	.read		= ds1305_nvram_read,
593	.write		= ds1305_nvram_write,
594	.size		= DS1305_NVRAM_LEN,
595};
596
597/*----------------------------------------------------------------------*/
598
599/*
600 * Interface to SPI stack
601 */
602
603static int __devinit ds1305_probe(struct spi_device *spi)
604{
605	struct ds1305			*ds1305;
606	int				status;
607	u8				addr, value;
608	struct ds1305_platform_data	*pdata = spi->dev.platform_data;
609	bool				write_ctrl = false;
 
 
 
 
 
 
 
 
610
611	/* Sanity check board setup data.  This may be hooked up
612	 * in 3wire mode, but we don't care.  Note that unless
613	 * there's an inverter in place, this needs SPI_CS_HIGH!
614	 */
615	if ((spi->bits_per_word && spi->bits_per_word != 8)
616			|| (spi->max_speed_hz > 2000000)
617			|| !(spi->mode & SPI_CPHA))
618		return -EINVAL;
619
620	/* set up driver data */
621	ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
622	if (!ds1305)
623		return -ENOMEM;
624	ds1305->spi = spi;
625	spi_set_drvdata(spi, ds1305);
626
627	/* read and cache control registers */
628	addr = DS1305_CONTROL;
629	status = spi_write_then_read(spi, &addr, sizeof addr,
630			ds1305->ctrl, sizeof ds1305->ctrl);
631	if (status < 0) {
632		dev_dbg(&spi->dev, "can't %s, %d\n",
633				"read", status);
634		goto fail0;
635	}
636
637	dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
638			"read", ds1305->ctrl[0],
639			ds1305->ctrl[1], ds1305->ctrl[2]);
640
641	/* Sanity check register values ... partially compensating for the
642	 * fact that SPI has no device handshake.  A pullup on MISO would
643	 * make these tests fail; but not all systems will have one.  If
644	 * some register is neither 0x00 nor 0xff, a chip is likely there.
645	 */
646	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
647		dev_dbg(&spi->dev, "RTC chip is not present\n");
648		status = -ENODEV;
649		goto fail0;
650	}
651	if (ds1305->ctrl[2] == 0)
652		dev_dbg(&spi->dev, "chip may not be present\n");
653
654	/* enable writes if needed ... if we were paranoid it would
655	 * make sense to enable them only when absolutely necessary.
656	 */
657	if (ds1305->ctrl[0] & DS1305_WP) {
658		u8		buf[2];
659
660		ds1305->ctrl[0] &= ~DS1305_WP;
661
662		buf[0] = DS1305_WRITE | DS1305_CONTROL;
663		buf[1] = ds1305->ctrl[0];
664		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
665
666		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
667		if (status < 0)
668			goto fail0;
669	}
670
671	/* on DS1305, maybe start oscillator; like most low power
672	 * oscillators, it may take a second to stabilize
673	 */
674	if (ds1305->ctrl[0] & DS1305_nEOSC) {
675		ds1305->ctrl[0] &= ~DS1305_nEOSC;
676		write_ctrl = true;
677		dev_warn(&spi->dev, "SET TIME!\n");
678	}
679
680	/* ack any pending IRQs */
681	if (ds1305->ctrl[1]) {
682		ds1305->ctrl[1] = 0;
683		write_ctrl = true;
684	}
685
686	/* this may need one-time (re)init */
687	if (pdata) {
688		/* maybe enable trickle charge */
689		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
690			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
691						| pdata->trickle;
692			write_ctrl = true;
693		}
694
695		/* on DS1306, configure 1 Hz signal */
696		if (pdata->is_ds1306) {
697			if (pdata->en_1hz) {
698				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
699					ds1305->ctrl[0] |= DS1306_1HZ;
700					write_ctrl = true;
701				}
702			} else {
703				if (ds1305->ctrl[0] & DS1306_1HZ) {
704					ds1305->ctrl[0] &= ~DS1306_1HZ;
705					write_ctrl = true;
706				}
707			}
708		}
709	}
710
711	if (write_ctrl) {
712		u8		buf[4];
713
714		buf[0] = DS1305_WRITE | DS1305_CONTROL;
715		buf[1] = ds1305->ctrl[0];
716		buf[2] = ds1305->ctrl[1];
717		buf[3] = ds1305->ctrl[2];
718		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
719		if (status < 0) {
720			dev_dbg(&spi->dev, "can't %s, %d\n",
721					"write", status);
722			goto fail0;
723		}
724
725		dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
726				"write", ds1305->ctrl[0],
727				ds1305->ctrl[1], ds1305->ctrl[2]);
728	}
729
730	/* see if non-Linux software set up AM/PM mode */
731	addr = DS1305_HOUR;
732	status = spi_write_then_read(spi, &addr, sizeof addr,
733				&value, sizeof value);
734	if (status < 0) {
735		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
736		goto fail0;
737	}
738
739	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
740	if (ds1305->hr12)
741		dev_dbg(&spi->dev, "AM/PM\n");
742
743	/* register RTC ... from here on, ds1305->ctrl needs locking */
744	ds1305->rtc = rtc_device_register("ds1305", &spi->dev,
745			&ds1305_ops, THIS_MODULE);
746	if (IS_ERR(ds1305->rtc)) {
747		status = PTR_ERR(ds1305->rtc);
748		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
749		goto fail0;
750	}
 
 
 
 
 
 
 
 
751
752	/* Maybe set up alarm IRQ; be ready to handle it triggering right
753	 * away.  NOTE that we don't share this.  The signal is active low,
754	 * and we can't ack it before a SPI message delay.  We temporarily
755	 * disable the IRQ until it's acked, which lets us work with more
756	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
757	 */
758	if (spi->irq) {
759		INIT_WORK(&ds1305->work, ds1305_work);
760		status = request_irq(spi->irq, ds1305_irq,
761				0, dev_name(&ds1305->rtc->dev), ds1305);
762		if (status < 0) {
763			dev_dbg(&spi->dev, "request_irq %d --> %d\n",
764					spi->irq, status);
765			goto fail1;
 
766		}
767
768		device_set_wakeup_capable(&spi->dev, 1);
769	}
770
771	/* export NVRAM */
772	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
773	if (status < 0) {
774		dev_dbg(&spi->dev, "register nvram --> %d\n", status);
775		goto fail2;
776	}
777
778	return 0;
779
780fail2:
781	free_irq(spi->irq, ds1305);
782fail1:
783	rtc_device_unregister(ds1305->rtc);
784fail0:
785	kfree(ds1305);
786	return status;
787}
788
789static int __devexit ds1305_remove(struct spi_device *spi)
790{
791	struct ds1305 *ds1305 = spi_get_drvdata(spi);
792
793	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
794
795	/* carefully shut down irq and workqueue, if present */
796	if (spi->irq) {
797		set_bit(FLAG_EXITING, &ds1305->flags);
798		free_irq(spi->irq, ds1305);
799		cancel_work_sync(&ds1305->work);
800	}
801
802	rtc_device_unregister(ds1305->rtc);
803	spi_set_drvdata(spi, NULL);
804	kfree(ds1305);
805	return 0;
806}
807
808static struct spi_driver ds1305_driver = {
809	.driver.name	= "rtc-ds1305",
810	.driver.owner	= THIS_MODULE,
811	.probe		= ds1305_probe,
812	.remove		= __devexit_p(ds1305_remove),
813	/* REVISIT add suspend/resume */
814};
815
816static int __init ds1305_init(void)
817{
818	return spi_register_driver(&ds1305_driver);
819}
820module_init(ds1305_init);
821
822static void __exit ds1305_exit(void)
823{
824	spi_unregister_driver(&ds1305_driver);
825}
826module_exit(ds1305_exit);
827
828MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
829MODULE_LICENSE("GPL");
830MODULE_ALIAS("spi:rtc-ds1305");
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
  4 *
  5 * Copyright (C) 2008 David Brownell
 
 
 
 
 
  6 */
  7#include <linux/kernel.h>
  8#include <linux/init.h>
  9#include <linux/bcd.h>
 10#include <linux/slab.h>
 11#include <linux/rtc.h>
 12#include <linux/workqueue.h>
 13
 14#include <linux/spi/spi.h>
 15#include <linux/spi/ds1305.h>
 16#include <linux/module.h>
 17
 18
 19/*
 20 * Registers ... mask DS1305_WRITE into register address to write,
 21 * otherwise you're reading it.  All non-bitmask values are BCD.
 22 */
 23#define DS1305_WRITE		0x80
 24
 25
 26/* RTC date/time ... the main special cases are that we:
 27 *  - Need fancy "hours" encoding in 12hour mode
 28 *  - Don't rely on the "day-of-week" field (or tm_wday)
 29 *  - Are a 21st-century clock (2000 <= year < 2100)
 30 */
 31#define DS1305_RTC_LEN		7		/* bytes for RTC regs */
 32
 33#define DS1305_SEC		0x00		/* register addresses */
 34#define DS1305_MIN		0x01
 35#define DS1305_HOUR		0x02
 36#	define DS1305_HR_12		0x40	/* set == 12 hr mode */
 37#	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
 38#define DS1305_WDAY		0x03
 39#define DS1305_MDAY		0x04
 40#define DS1305_MON		0x05
 41#define DS1305_YEAR		0x06
 42
 43
 44/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
 45 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
 46 *
 47 * NOTE that since we don't use WDAY, we limit ourselves to alarms
 48 * only one day into the future (vs potentially up to a week).
 49 *
 50 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
 51 * don't currently support them.  We'd either need to do it only when
 52 * no alarm is pending (not the standard model), or to use the second
 53 * alarm (implying that this is a DS1305 not DS1306, *and* that either
 54 * it's wired up a second IRQ we know, or that INTCN is set)
 55 */
 56#define DS1305_ALM_LEN		4		/* bytes for ALM regs */
 57#define DS1305_ALM_DISABLE	0x80
 58
 59#define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
 60#define DS1305_ALM1(r)		(0x0b + (r))
 61
 62
 63/* three control registers */
 64#define DS1305_CONTROL_LEN	3		/* bytes of control regs */
 65
 66#define DS1305_CONTROL		0x0f		/* register addresses */
 67#	define DS1305_nEOSC		0x80	/* low enables oscillator */
 68#	define DS1305_WP		0x40	/* write protect */
 69#	define DS1305_INTCN		0x04	/* clear == only int0 used */
 70#	define DS1306_1HZ		0x04	/* enable 1Hz output */
 71#	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
 72#	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
 73#define DS1305_STATUS		0x10
 74/* status has just AEIx bits, mirrored as IRQFx */
 75#define DS1305_TRICKLE		0x11
 76/* trickle bits are defined in <linux/spi/ds1305.h> */
 77
 78/* a bunch of NVRAM */
 79#define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
 80
 81#define DS1305_NVRAM		0x20		/* register addresses */
 82
 83
 84struct ds1305 {
 85	struct spi_device	*spi;
 86	struct rtc_device	*rtc;
 87
 88	struct work_struct	work;
 89
 90	unsigned long		flags;
 91#define FLAG_EXITING	0
 92
 93	bool			hr12;
 94	u8			ctrl[DS1305_CONTROL_LEN];
 95};
 96
 97
 98/*----------------------------------------------------------------------*/
 99
100/*
101 * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
102 * software (like a bootloader) which may require it.
103 */
104
105static unsigned bcd2hour(u8 bcd)
106{
107	if (bcd & DS1305_HR_12) {
108		unsigned	hour = 0;
109
110		bcd &= ~DS1305_HR_12;
111		if (bcd & DS1305_HR_PM) {
112			hour = 12;
113			bcd &= ~DS1305_HR_PM;
114		}
115		hour += bcd2bin(bcd);
116		return hour - 1;
117	}
118	return bcd2bin(bcd);
119}
120
121static u8 hour2bcd(bool hr12, int hour)
122{
123	if (hr12) {
124		hour++;
125		if (hour <= 12)
126			return DS1305_HR_12 | bin2bcd(hour);
127		hour -= 12;
128		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
129	}
130	return bin2bcd(hour);
131}
132
133/*----------------------------------------------------------------------*/
134
135/*
136 * Interface to RTC framework
137 */
138
139static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
140{
141	struct ds1305	*ds1305 = dev_get_drvdata(dev);
142	u8		buf[2];
143	long		err = -EINVAL;
144
145	buf[0] = DS1305_WRITE | DS1305_CONTROL;
146	buf[1] = ds1305->ctrl[0];
147
148	if (enabled) {
149		if (ds1305->ctrl[0] & DS1305_AEI0)
150			goto done;
151		buf[1] |= DS1305_AEI0;
152	} else {
153		if (!(buf[1] & DS1305_AEI0))
154			goto done;
155		buf[1] &= ~DS1305_AEI0;
156	}
157	err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
158	if (err >= 0)
159		ds1305->ctrl[0] = buf[1];
160done:
161	return err;
162
163}
164
165
166/*
167 * Get/set of date and time is pretty normal.
168 */
169
170static int ds1305_get_time(struct device *dev, struct rtc_time *time)
171{
172	struct ds1305	*ds1305 = dev_get_drvdata(dev);
173	u8		addr = DS1305_SEC;
174	u8		buf[DS1305_RTC_LEN];
175	int		status;
176
177	/* Use write-then-read to get all the date/time registers
178	 * since dma from stack is nonportable
179	 */
180	status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
181			buf, sizeof(buf));
182	if (status < 0)
183		return status;
184
185	dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
 
 
186
187	/* Decode the registers */
188	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
189	time->tm_min = bcd2bin(buf[DS1305_MIN]);
190	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
191	time->tm_wday = buf[DS1305_WDAY] - 1;
192	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
193	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
194	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
195
196	dev_vdbg(dev, "%s secs=%d, mins=%d, "
197		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
198		"read", time->tm_sec, time->tm_min,
199		time->tm_hour, time->tm_mday,
200		time->tm_mon, time->tm_year, time->tm_wday);
201
202	return 0;
 
203}
204
205static int ds1305_set_time(struct device *dev, struct rtc_time *time)
206{
207	struct ds1305	*ds1305 = dev_get_drvdata(dev);
208	u8		buf[1 + DS1305_RTC_LEN];
209	u8		*bp = buf;
210
211	dev_vdbg(dev, "%s secs=%d, mins=%d, "
212		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
213		"write", time->tm_sec, time->tm_min,
214		time->tm_hour, time->tm_mday,
215		time->tm_mon, time->tm_year, time->tm_wday);
216
217	/* Write registers starting at the first time/date address. */
218	*bp++ = DS1305_WRITE | DS1305_SEC;
219
220	*bp++ = bin2bcd(time->tm_sec);
221	*bp++ = bin2bcd(time->tm_min);
222	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
223	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
224	*bp++ = bin2bcd(time->tm_mday);
225	*bp++ = bin2bcd(time->tm_mon + 1);
226	*bp++ = bin2bcd(time->tm_year - 100);
227
228	dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
 
 
229
230	/* use write-then-read since dma from stack is nonportable */
231	return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
232			NULL, 0);
233}
234
235/*
236 * Get/set of alarm is a bit funky:
237 *
238 * - First there's the inherent raciness of getting the (partitioned)
239 *   status of an alarm that could trigger while we're reading parts
240 *   of that status.
241 *
242 * - Second there's its limited range (we could increase it a bit by
243 *   relying on WDAY), which means it will easily roll over.
244 *
245 * - Third there's the choice of two alarms and alarm signals.
246 *   Here we use ALM0 and expect that nINT0 (open drain) is used;
247 *   that's the only real option for DS1306 runtime alarms, and is
248 *   natural on DS1305.
249 *
250 * - Fourth, there's also ALM1, and a second interrupt signal:
251 *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
252 *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
253 *       and it won't work when VCC1 is active.
254 *
255 *   So to be most general, we should probably set both alarms to the
256 *   same value, letting ALM1 be the wakeup event source on DS1306
257 *   and handling several wiring options on DS1305.
258 *
259 * - Fifth, we support the polled mode (as well as possible; why not?)
260 *   even when no interrupt line is wired to an IRQ.
261 */
262
263/*
264 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
265 */
266static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
267{
268	struct ds1305	*ds1305 = dev_get_drvdata(dev);
269	struct spi_device *spi = ds1305->spi;
270	u8		addr;
271	int		status;
272	u8		buf[DS1305_ALM_LEN];
273
274	/* Refresh control register cache BEFORE reading ALM0 registers,
275	 * since reading alarm registers acks any pending IRQ.  That
276	 * makes returning "pending" status a bit of a lie, but that bit
277	 * of EFI status is at best fragile anyway (given IRQ handlers).
278	 */
279	addr = DS1305_CONTROL;
280	status = spi_write_then_read(spi, &addr, sizeof(addr),
281			ds1305->ctrl, sizeof(ds1305->ctrl));
282	if (status < 0)
283		return status;
284
285	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
286	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
287
288	/* get and check ALM0 registers */
289	addr = DS1305_ALM0(DS1305_SEC);
290	status = spi_write_then_read(spi, &addr, sizeof(addr),
291			buf, sizeof(buf));
292	if (status < 0)
293		return status;
294
295	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
296		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
297		buf[DS1305_HOUR], buf[DS1305_WDAY]);
298
299	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
300			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
301			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
302		return -EIO;
303
304	/* Stuff these values into alm->time and let RTC framework code
305	 * fill in the rest ... and also handle rollover to tomorrow when
306	 * that's needed.
307	 */
308	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
309	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
310	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
 
 
 
 
 
 
 
311
312	return 0;
313}
314
315/*
316 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
317 */
318static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
319{
320	struct ds1305	*ds1305 = dev_get_drvdata(dev);
321	struct spi_device *spi = ds1305->spi;
322	unsigned long	now, later;
323	struct rtc_time	tm;
324	int		status;
325	u8		buf[1 + DS1305_ALM_LEN];
326
327	/* convert desired alarm to time_t */
328	later = rtc_tm_to_time64(&alm->time);
 
 
329
330	/* Read current time as time_t */
331	status = ds1305_get_time(dev, &tm);
332	if (status < 0)
333		return status;
334	now = rtc_tm_to_time64(&tm);
 
 
335
336	/* make sure alarm fires within the next 24 hours */
337	if (later <= now)
338		return -EINVAL;
339	if ((later - now) > ds1305->rtc->alarm_offset_max)
340		return -ERANGE;
341
342	/* disable alarm if needed */
343	if (ds1305->ctrl[0] & DS1305_AEI0) {
344		ds1305->ctrl[0] &= ~DS1305_AEI0;
345
346		buf[0] = DS1305_WRITE | DS1305_CONTROL;
347		buf[1] = ds1305->ctrl[0];
348		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
349		if (status < 0)
350			return status;
351	}
352
353	/* write alarm */
354	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
355	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
356	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
357	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
358	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
359
360	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
361		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
362		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
363
364	status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
365	if (status < 0)
366		return status;
367
368	/* enable alarm if requested */
369	if (alm->enabled) {
370		ds1305->ctrl[0] |= DS1305_AEI0;
371
372		buf[0] = DS1305_WRITE | DS1305_CONTROL;
373		buf[1] = ds1305->ctrl[0];
374		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
375	}
376
377	return status;
378}
379
380#ifdef CONFIG_PROC_FS
381
382static int ds1305_proc(struct device *dev, struct seq_file *seq)
383{
384	struct ds1305	*ds1305 = dev_get_drvdata(dev);
385	char		*diodes = "no";
386	char		*resistors = "";
387
388	/* ctrl[2] is treated as read-only; no locking needed */
389	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
390		switch (ds1305->ctrl[2] & 0x0c) {
391		case DS1305_TRICKLE_DS2:
392			diodes = "2 diodes, ";
393			break;
394		case DS1305_TRICKLE_DS1:
395			diodes = "1 diode, ";
396			break;
397		default:
398			goto done;
399		}
400		switch (ds1305->ctrl[2] & 0x03) {
401		case DS1305_TRICKLE_2K:
402			resistors = "2k Ohm";
403			break;
404		case DS1305_TRICKLE_4K:
405			resistors = "4k Ohm";
406			break;
407		case DS1305_TRICKLE_8K:
408			resistors = "8k Ohm";
409			break;
410		default:
411			diodes = "no";
412			break;
413		}
414	}
415
416done:
417	seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
418
419	return 0;
420}
421
422#else
423#define ds1305_proc	NULL
424#endif
425
426static const struct rtc_class_ops ds1305_ops = {
427	.read_time	= ds1305_get_time,
428	.set_time	= ds1305_set_time,
429	.read_alarm	= ds1305_get_alarm,
430	.set_alarm	= ds1305_set_alarm,
431	.proc		= ds1305_proc,
432	.alarm_irq_enable = ds1305_alarm_irq_enable,
433};
434
435static void ds1305_work(struct work_struct *work)
436{
437	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
 
438	struct spi_device *spi = ds1305->spi;
439	u8		buf[3];
440	int		status;
441
442	/* lock to protect ds1305->ctrl */
443	rtc_lock(ds1305->rtc);
444
445	/* Disable the IRQ, and clear its status ... for now, we "know"
446	 * that if more than one alarm is active, they're in sync.
447	 * Note that reading ALM data registers also clears IRQ status.
448	 */
449	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
450	ds1305->ctrl[1] = 0;
451
452	buf[0] = DS1305_WRITE | DS1305_CONTROL;
453	buf[1] = ds1305->ctrl[0];
454	buf[2] = 0;
455
456	status = spi_write_then_read(spi, buf, sizeof(buf),
457			NULL, 0);
458	if (status < 0)
459		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
460
461	rtc_unlock(ds1305->rtc);
462
463	if (!test_bit(FLAG_EXITING, &ds1305->flags))
464		enable_irq(spi->irq);
465
466	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
467}
468
469/*
470 * This "real" IRQ handler hands off to a workqueue mostly to allow
471 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
472 * I/O requests in IRQ context (to clear the IRQ status).
473 */
474static irqreturn_t ds1305_irq(int irq, void *p)
475{
476	struct ds1305		*ds1305 = p;
477
478	disable_irq(irq);
479	schedule_work(&ds1305->work);
480	return IRQ_HANDLED;
481}
482
483/*----------------------------------------------------------------------*/
484
485/*
486 * Interface for NVRAM
487 */
488
489static void msg_init(struct spi_message *m, struct spi_transfer *x,
490		u8 *addr, size_t count, char *tx, char *rx)
491{
492	spi_message_init(m);
493	memset(x, 0, 2 * sizeof(*x));
494
495	x->tx_buf = addr;
496	x->len = 1;
497	spi_message_add_tail(x, m);
498
499	x++;
500
501	x->tx_buf = tx;
502	x->rx_buf = rx;
503	x->len = count;
504	spi_message_add_tail(x, m);
505}
506
507static int ds1305_nvram_read(void *priv, unsigned int off, void *buf,
508			     size_t count)
 
 
509{
510	struct ds1305		*ds1305 = priv;
511	struct spi_device	*spi = ds1305->spi;
512	u8			addr;
513	struct spi_message	m;
514	struct spi_transfer	x[2];
 
 
 
 
 
 
 
 
 
 
 
 
515
516	addr = DS1305_NVRAM + off;
517	msg_init(&m, x, &addr, count, NULL, buf);
518
519	return spi_sync(spi, &m);
 
 
 
520}
521
522static int ds1305_nvram_write(void *priv, unsigned int off, void *buf,
523			      size_t count)
 
 
524{
525	struct ds1305		*ds1305 = priv;
526	struct spi_device	*spi = ds1305->spi;
527	u8			addr;
528	struct spi_message	m;
529	struct spi_transfer	x[2];
 
 
 
 
 
 
 
 
 
 
 
 
530
531	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
532	msg_init(&m, x, &addr, count, buf, NULL);
533
534	return spi_sync(spi, &m);
 
 
 
535}
536
 
 
 
 
 
 
 
 
537/*----------------------------------------------------------------------*/
538
539/*
540 * Interface to SPI stack
541 */
542
543static int ds1305_probe(struct spi_device *spi)
544{
545	struct ds1305			*ds1305;
546	int				status;
547	u8				addr, value;
548	struct ds1305_platform_data	*pdata = dev_get_platdata(&spi->dev);
549	bool				write_ctrl = false;
550	struct nvmem_config ds1305_nvmem_cfg = {
551		.name = "ds1305_nvram",
552		.word_size = 1,
553		.stride = 1,
554		.size = DS1305_NVRAM_LEN,
555		.reg_read = ds1305_nvram_read,
556		.reg_write = ds1305_nvram_write,
557	};
558
559	/* Sanity check board setup data.  This may be hooked up
560	 * in 3wire mode, but we don't care.  Note that unless
561	 * there's an inverter in place, this needs SPI_CS_HIGH!
562	 */
563	if ((spi->bits_per_word && spi->bits_per_word != 8)
564			|| (spi->max_speed_hz > 2000000)
565			|| !(spi->mode & SPI_CPHA))
566		return -EINVAL;
567
568	/* set up driver data */
569	ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
570	if (!ds1305)
571		return -ENOMEM;
572	ds1305->spi = spi;
573	spi_set_drvdata(spi, ds1305);
574
575	/* read and cache control registers */
576	addr = DS1305_CONTROL;
577	status = spi_write_then_read(spi, &addr, sizeof(addr),
578			ds1305->ctrl, sizeof(ds1305->ctrl));
579	if (status < 0) {
580		dev_dbg(&spi->dev, "can't %s, %d\n",
581				"read", status);
582		return status;
583	}
584
585	dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
 
 
586
587	/* Sanity check register values ... partially compensating for the
588	 * fact that SPI has no device handshake.  A pullup on MISO would
589	 * make these tests fail; but not all systems will have one.  If
590	 * some register is neither 0x00 nor 0xff, a chip is likely there.
591	 */
592	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
593		dev_dbg(&spi->dev, "RTC chip is not present\n");
594		return -ENODEV;
 
595	}
596	if (ds1305->ctrl[2] == 0)
597		dev_dbg(&spi->dev, "chip may not be present\n");
598
599	/* enable writes if needed ... if we were paranoid it would
600	 * make sense to enable them only when absolutely necessary.
601	 */
602	if (ds1305->ctrl[0] & DS1305_WP) {
603		u8		buf[2];
604
605		ds1305->ctrl[0] &= ~DS1305_WP;
606
607		buf[0] = DS1305_WRITE | DS1305_CONTROL;
608		buf[1] = ds1305->ctrl[0];
609		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
610
611		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
612		if (status < 0)
613			return status;
614	}
615
616	/* on DS1305, maybe start oscillator; like most low power
617	 * oscillators, it may take a second to stabilize
618	 */
619	if (ds1305->ctrl[0] & DS1305_nEOSC) {
620		ds1305->ctrl[0] &= ~DS1305_nEOSC;
621		write_ctrl = true;
622		dev_warn(&spi->dev, "SET TIME!\n");
623	}
624
625	/* ack any pending IRQs */
626	if (ds1305->ctrl[1]) {
627		ds1305->ctrl[1] = 0;
628		write_ctrl = true;
629	}
630
631	/* this may need one-time (re)init */
632	if (pdata) {
633		/* maybe enable trickle charge */
634		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
635			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
636						| pdata->trickle;
637			write_ctrl = true;
638		}
639
640		/* on DS1306, configure 1 Hz signal */
641		if (pdata->is_ds1306) {
642			if (pdata->en_1hz) {
643				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
644					ds1305->ctrl[0] |= DS1306_1HZ;
645					write_ctrl = true;
646				}
647			} else {
648				if (ds1305->ctrl[0] & DS1306_1HZ) {
649					ds1305->ctrl[0] &= ~DS1306_1HZ;
650					write_ctrl = true;
651				}
652			}
653		}
654	}
655
656	if (write_ctrl) {
657		u8		buf[4];
658
659		buf[0] = DS1305_WRITE | DS1305_CONTROL;
660		buf[1] = ds1305->ctrl[0];
661		buf[2] = ds1305->ctrl[1];
662		buf[3] = ds1305->ctrl[2];
663		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
664		if (status < 0) {
665			dev_dbg(&spi->dev, "can't %s, %d\n",
666					"write", status);
667			return status;
668		}
669
670		dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
 
 
671	}
672
673	/* see if non-Linux software set up AM/PM mode */
674	addr = DS1305_HOUR;
675	status = spi_write_then_read(spi, &addr, sizeof(addr),
676				&value, sizeof(value));
677	if (status < 0) {
678		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
679		return status;
680	}
681
682	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
683	if (ds1305->hr12)
684		dev_dbg(&spi->dev, "AM/PM\n");
685
686	/* register RTC ... from here on, ds1305->ctrl needs locking */
687	ds1305->rtc = devm_rtc_allocate_device(&spi->dev);
688	if (IS_ERR(ds1305->rtc))
689		return PTR_ERR(ds1305->rtc);
690
691	ds1305->rtc->ops = &ds1305_ops;
692	ds1305->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
693	ds1305->rtc->range_max = RTC_TIMESTAMP_END_2099;
694	ds1305->rtc->alarm_offset_max = 24 * 60 * 60;
695
696	ds1305_nvmem_cfg.priv = ds1305;
697	status = devm_rtc_register_device(ds1305->rtc);
698	if (status)
699		return status;
700
701	devm_rtc_nvmem_register(ds1305->rtc, &ds1305_nvmem_cfg);
702
703	/* Maybe set up alarm IRQ; be ready to handle it triggering right
704	 * away.  NOTE that we don't share this.  The signal is active low,
705	 * and we can't ack it before a SPI message delay.  We temporarily
706	 * disable the IRQ until it's acked, which lets us work with more
707	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
708	 */
709	if (spi->irq) {
710		INIT_WORK(&ds1305->work, ds1305_work);
711		status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
712				0, dev_name(&ds1305->rtc->dev), ds1305);
713		if (status < 0) {
714			dev_err(&spi->dev, "request_irq %d --> %d\n",
715					spi->irq, status);
716		} else {
717			device_set_wakeup_capable(&spi->dev, 1);
718		}
 
 
 
 
 
 
 
 
 
719	}
720
721	return 0;
 
 
 
 
 
 
 
 
722}
723
724static void ds1305_remove(struct spi_device *spi)
725{
726	struct ds1305 *ds1305 = spi_get_drvdata(spi);
727
 
 
728	/* carefully shut down irq and workqueue, if present */
729	if (spi->irq) {
730		set_bit(FLAG_EXITING, &ds1305->flags);
731		devm_free_irq(&spi->dev, spi->irq, ds1305);
732		cancel_work_sync(&ds1305->work);
733	}
 
 
 
 
 
734}
735
736static struct spi_driver ds1305_driver = {
737	.driver.name	= "rtc-ds1305",
 
738	.probe		= ds1305_probe,
739	.remove		= ds1305_remove,
740	/* REVISIT add suspend/resume */
741};
742
743module_spi_driver(ds1305_driver);
 
 
 
 
 
 
 
 
 
 
744
745MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
746MODULE_LICENSE("GPL");
747MODULE_ALIAS("spi:rtc-ds1305");