Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * AppliedMicro X-Gene Multi-purpose PHY driver
   4 *
   5 * Copyright (c) 2014, Applied Micro Circuits Corporation
   6 * Author: Loc Ho <lho@apm.com>
   7 *         Tuan Phan <tphan@apm.com>
   8 *         Suman Tripathi <stripathi@apm.com>
   9 *
  10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
  11 * The first PLL clock macro is used for internal reference clock. The second
  12 * PLL clock macro is used to generate the clock for the PHY. This driver
  13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
  14 * operate according to the mode of operation. The first PLL CMU is only
  15 * required if internal clock is enabled.
  16 *
  17 * Logical Layer Out Of HW module units:
  18 *
  19 * -----------------
  20 * | Internal      |    |------|
  21 * | Ref PLL CMU   |----|      |     -------------    ---------
  22 * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
  23 *                      |      |     |           |    ---------
  24 * External Clock ------|      |     -------------
  25 *                      |------|
  26 *
  27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
  28 * indirectly from the SDS offset at 0x2000. It is only required for
  29 * internal reference clock.
  30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
  31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
  32 *
  33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
  34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
  35 * it is located outside the PHY IP. This is the case for the PHY located
  36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
  37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
  38 *
  39 * Currently, this driver only supports Gen3 SATA mode with external clock.
  40 */
  41#include <linux/module.h>
  42#include <linux/of.h>
  43#include <linux/platform_device.h>
  44#include <linux/io.h>
  45#include <linux/delay.h>
  46#include <linux/phy/phy.h>
  47#include <linux/clk.h>
  48
  49/* Max 2 lanes per a PHY unit */
  50#define MAX_LANE			2
  51
  52/* Register offset inside the PHY */
  53#define SERDES_PLL_INDIRECT_OFFSET	0x0000
  54#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
  55#define SERDES_INDIRECT_OFFSET		0x0400
  56#define SERDES_LANE_STRIDE		0x0200
  57
  58/* Some default Serdes parameters */
  59#define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
  60#define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
  61#define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
  62#define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
  63#define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
  64#define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
  65#define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
  66#define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
  67
  68#define SATA_SPD_SEL_GEN3		0x7
  69#define SATA_SPD_SEL_GEN2		0x3
  70#define SATA_SPD_SEL_GEN1		0x1
  71
  72#define SSC_DISABLE			0
  73#define SSC_ENABLE			1
  74
  75#define FBDIV_VAL_50M			0x77
  76#define REFDIV_VAL_50M			0x1
  77#define FBDIV_VAL_100M			0x3B
  78#define REFDIV_VAL_100M			0x0
  79
  80/* SATA Clock/Reset CSR */
  81#define SATACLKENREG			0x00000000
  82#define  SATA0_CORE_CLKEN		0x00000002
  83#define  SATA1_CORE_CLKEN		0x00000004
  84#define SATASRESETREG			0x00000004
  85#define  SATA_MEM_RESET_MASK		0x00000020
  86#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
  87#define  SATA_SDS_RESET_MASK		0x00000004
  88#define  SATA_CSR_RESET_MASK		0x00000001
  89#define  SATA_CORE_RESET_MASK		0x00000002
  90#define  SATA_PMCLK_RESET_MASK		0x00000010
  91#define  SATA_PCLK_RESET_MASK		0x00000008
  92
  93/* SDS CSR used for PHY Indirect access */
  94#define SATA_ENET_SDS_PCS_CTL0		0x00000000
  95#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
  96		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
  97#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
  98		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
  99#define SATA_ENET_SDS_CTL0		0x0000000c
 100#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
 101		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
 102#define SATA_ENET_SDS_CTL1		0x00000010
 103#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
 104		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
 105#define SATA_ENET_SDS_RST_CTL		0x00000024
 106#define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
 107#define  CFG_IND_WR_CMD_MASK		0x00000001
 108#define  CFG_IND_RD_CMD_MASK		0x00000002
 109#define  CFG_IND_CMD_DONE_MASK		0x00000004
 110#define  CFG_IND_ADDR_SET(dst, src) \
 111		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
 112#define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
 113#define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
 114#define SATA_ENET_CLK_MACRO_REG		0x0000004c
 115#define  I_RESET_B_SET(dst, src) \
 116		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
 117#define  I_PLL_FBDIV_SET(dst, src) \
 118		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
 119#define  I_CUSTOMEROV_SET(dst, src) \
 120		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
 121#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
 122#define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
 123
 124/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
 125#define CMU_REG0			0x00000
 126#define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
 127#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
 128		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
 129#define  CMU_REG0_PDOWN_MASK		0x00004000
 130#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
 131		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
 132#define CMU_REG1			0x00002
 133#define  CMU_REG1_PLL_CP_SET(dst, src) \
 134		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
 135#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
 136		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 137#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
 138		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
 139#define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
 140#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
 141		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 142#define CMU_REG2			0x00004
 143#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
 144		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 145#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
 146		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
 147#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
 148		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
 149#define CMU_REG3			0x00006
 150#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
 151		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
 152#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
 153		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 154#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
 155		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 156#define CMU_REG4			0x00008
 157#define CMU_REG5			0x0000a
 158#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
 159		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 160#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
 161		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
 162#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
 163		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
 164#define  CMU_REG5_PLL_RESETB_MASK	0x00000001
 165#define CMU_REG6			0x0000c
 166#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
 167		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
 168#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
 169		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 170#define CMU_REG7			0x0000e
 171#define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
 172#define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
 173#define CMU_REG8			0x00010
 174#define CMU_REG9			0x00012
 175#define  CMU_REG9_WORD_LEN_8BIT		0x000
 176#define  CMU_REG9_WORD_LEN_10BIT	0x001
 177#define  CMU_REG9_WORD_LEN_16BIT	0x002
 178#define  CMU_REG9_WORD_LEN_20BIT	0x003
 179#define  CMU_REG9_WORD_LEN_32BIT	0x004
 180#define  CMU_REG9_WORD_LEN_40BIT	0x005
 181#define  CMU_REG9_WORD_LEN_64BIT	0x006
 182#define  CMU_REG9_WORD_LEN_66BIT	0x007
 183#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
 184		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
 185#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
 186		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
 187#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
 188		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 189#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
 190		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 191#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
 192		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 193#define CMU_REG10			0x00014
 194#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
 195		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 196#define CMU_REG11			0x00016
 197#define CMU_REG12			0x00018
 198#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
 199		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 200#define CMU_REG13			0x0001a
 201#define CMU_REG14			0x0001c
 202#define CMU_REG15			0x0001e
 203#define CMU_REG16			0x00020
 204#define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
 205#define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
 206#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
 207		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
 208#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
 209		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 210#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
 211		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 212#define CMU_REG17			0x00022
 213#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
 214		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
 215#define  CMU_REG17_RESERVED_7_SET(dst, src) \
 216		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
 217#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
 218#define CMU_REG18			0x00024
 219#define CMU_REG19			0x00026
 220#define CMU_REG20			0x00028
 221#define CMU_REG21			0x0002a
 222#define CMU_REG22			0x0002c
 223#define CMU_REG23			0x0002e
 224#define CMU_REG24			0x00030
 225#define CMU_REG25			0x00032
 226#define CMU_REG26			0x00034
 227#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
 228		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 229#define CMU_REG27			0x00036
 230#define CMU_REG28			0x00038
 231#define CMU_REG29			0x0003a
 232#define CMU_REG30			0x0003c
 233#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
 234		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
 235#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
 236		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 237#define CMU_REG31			0x0003e
 238#define CMU_REG32			0x00040
 239#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
 240#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
 241		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
 242#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
 243		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
 244#define CMU_REG33			0x00042
 245#define CMU_REG34			0x00044
 246#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
 247		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
 248#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
 249		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
 250#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
 251		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 252#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
 253		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
 254#define CMU_REG35			0x00046
 255#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
 256		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
 257#define CMU_REG36				0x00048
 258#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
 259		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
 260#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
 261		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
 262#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
 263		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 264#define CMU_REG37			0x0004a
 265#define CMU_REG38			0x0004c
 266#define CMU_REG39			0x0004e
 267
 268/* PHY lane CSR accessing from SDS indirectly */
 269#define RXTX_REG0			0x000
 270#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
 271		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 272#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
 273		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 274#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
 275		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 276#define RXTX_REG1			0x002
 277#define  RXTX_REG1_RXACVCM_SET(dst, src) \
 278		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
 279#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
 280		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
 281#define  RXTX_REG1_RXVREG1_SET(dst, src) \
 282		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
 283#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
 284		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
 285#define RXTX_REG2			0x004
 286#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
 287		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 288#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
 289		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 290#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
 291		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
 292#define RXTX_REG4			0x008
 293#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
 294#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
 295		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 296#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
 297		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 298#define RXTX_REG5			0x00a
 299#define  RXTX_REG5_TX_CN1_SET(dst, src) \
 300		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 301#define  RXTX_REG5_TX_CP1_SET(dst, src) \
 302		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
 303#define  RXTX_REG5_TX_CN2_SET(dst, src) \
 304		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
 305#define RXTX_REG6			0x00c
 306#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
 307		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
 308#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
 309		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 310#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
 311		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 312#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
 313		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 314#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
 315		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 316#define RXTX_REG7			0x00e
 317#define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
 318#define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
 319#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
 320		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 321#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
 322		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 323#define RXTX_REG8			0x010
 324#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
 325		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
 326#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
 327		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
 328#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
 329		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
 330#define  RXTX_REG8_SD_VREF_SET(dst, src) \
 331		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 332#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
 333		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 334#define RXTX_REG7			0x00e
 335#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
 336		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 337#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
 338		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
 339#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
 340#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
 341		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
 342#define RXTX_REG11			0x016
 343#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
 344		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 345#define RXTX_REG12			0x018
 346#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
 347		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
 348#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
 349		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 350#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
 351#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
 352		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 353#define RXTX_REG13			0x01a
 354#define RXTX_REG14			0x01c
 355#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
 356		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
 357#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
 358		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 359#define RXTX_REG26			0x034
 360#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
 361		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 362#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
 363		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 364#define RXTX_REG21			0x02a
 365#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 366#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 367#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
 368#define RXTX_REG22			0x02c
 369#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 370#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 371#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
 372#define RXTX_REG23			0x02e
 373#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 374#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 375#define RXTX_REG24			0x030
 376#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 377#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 378#define RXTX_REG27			0x036
 379#define RXTX_REG28			0x038
 380#define RXTX_REG31			0x03e
 381#define RXTX_REG38			0x04c
 382#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
 383		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
 384#define RXTX_REG39			0x04e
 385#define RXTX_REG40			0x050
 386#define RXTX_REG41			0x052
 387#define RXTX_REG42			0x054
 388#define RXTX_REG43			0x056
 389#define RXTX_REG44			0x058
 390#define RXTX_REG45			0x05a
 391#define RXTX_REG46			0x05c
 392#define RXTX_REG47			0x05e
 393#define RXTX_REG48			0x060
 394#define RXTX_REG49			0x062
 395#define RXTX_REG50			0x064
 396#define RXTX_REG51			0x066
 397#define RXTX_REG52			0x068
 398#define RXTX_REG53			0x06a
 399#define RXTX_REG54			0x06c
 400#define RXTX_REG55			0x06e
 401#define RXTX_REG61			0x07a
 402#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
 403		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
 404#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
 405		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 406#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
 407		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
 408#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
 409		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
 410#define RXTX_REG62			0x07c
 411#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
 412		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 413#define RXTX_REG81			0x0a2
 414#define  RXTX_REG89_MU_TH7_SET(dst, src) \
 415		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 416#define  RXTX_REG89_MU_TH8_SET(dst, src) \
 417		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 418#define  RXTX_REG89_MU_TH9_SET(dst, src) \
 419		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 420#define RXTX_REG96			0x0c0
 421#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
 422		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 423#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
 424		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 425#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
 426		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 427#define RXTX_REG99			0x0c6
 428#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
 429		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 430#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
 431		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 432#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
 433		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 434#define RXTX_REG102			0x0cc
 435#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
 436		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
 437#define RXTX_REG114			0x0e4
 438#define RXTX_REG121			0x0f2
 439#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
 440#define RXTX_REG125			0x0fa
 441#define  RXTX_REG125_PQ_REG_SET(dst, src) \
 442		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
 443#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
 444		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 445#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
 446		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
 447#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
 448		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
 449#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
 450		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 451#define RXTX_REG127			0x0fe
 452#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
 453#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
 454#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
 455		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 456#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
 457		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 458#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
 459		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 460#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
 461		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 462#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
 463		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 464#define RXTX_REG128			0x100
 465#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
 466		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
 467#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
 468		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 469#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
 470		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 471#define RXTX_REG129			0x102
 472#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
 473		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 474#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
 475		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 476#define RXTX_REG130			0x104
 477#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
 478		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 479#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
 480		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 481#define RXTX_REG145			0x122
 482#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
 483		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 484#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
 485		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 486#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
 487		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 488#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
 489		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 490#define RXTX_REG147			0x126
 491#define RXTX_REG148			0x128
 492
 493/* Clock macro type */
 494enum cmu_type_t {
 495	REF_CMU = 0,	/* Clock macro is the internal reference clock */
 496	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
 497};
 498
 499enum mux_type_t {
 500	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
 501	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
 502};
 503
 504enum clk_type_t {
 505	CLK_EXT_DIFF = 0,	/* External differential */
 506	CLK_INT_DIFF = 1,	/* Internal differential */
 507	CLK_INT_SING = 2,	/* Internal single ended */
 508};
 509
 510enum xgene_phy_mode {
 511	MODE_SATA	= 0,	/* List them for simple reference */
 512	MODE_SGMII	= 1,
 513	MODE_PCIE	= 2,
 514	MODE_USB	= 3,
 515	MODE_XFI	= 4,
 516	MODE_MAX
 517};
 518
 519struct xgene_sata_override_param {
 520	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
 521	u32 txspeed[3];			/* Tx speed */
 522	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
 523	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
 524	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
 525	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
 526	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
 527	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
 528	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
 529};
 530
 531struct xgene_phy_ctx {
 532	struct device *dev;
 533	struct phy *phy;
 534	enum xgene_phy_mode mode;		/* Mode of operation */
 535	enum clk_type_t clk_type;	/* Input clock selection */
 536	void __iomem *sds_base;		/* PHY CSR base addr */
 537	struct clk *clk;		/* Optional clock */
 538
 539	/* Override Serdes parameters */
 540	struct xgene_sata_override_param sata_param;
 541};
 542
 543/*
 544 * For chip earlier than A3 version, enable this flag.
 545 * To enable, pass boot argument phy_xgene.preA3Chip=1
 546 */
 547static int preA3Chip;
 548MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
 549module_param_named(preA3Chip, preA3Chip, int, 0444);
 550
 551static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
 552		   u32 indirect_data_reg, u32 addr, u32 data)
 553{
 554	unsigned long deadline = jiffies + HZ;
 555	u32 val;
 556	u32 cmd;
 557
 558	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
 559	cmd = CFG_IND_ADDR_SET(cmd, addr);
 560	writel(data, csr_base + indirect_data_reg);
 561	readl(csr_base + indirect_data_reg); /* Force a barrier */
 562	writel(cmd, csr_base + indirect_cmd_reg);
 563	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
 564	do {
 565		val = readl(csr_base + indirect_cmd_reg);
 566	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
 567		 time_before(jiffies, deadline));
 568	if (!(val & CFG_IND_CMD_DONE_MASK))
 569		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
 570		       csr_base + indirect_cmd_reg, addr, data);
 571}
 572
 573static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
 574		   u32 indirect_data_reg, u32 addr, u32 *data)
 575{
 576	unsigned long deadline = jiffies + HZ;
 577	u32 val;
 578	u32 cmd;
 579
 580	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
 581	cmd = CFG_IND_ADDR_SET(cmd, addr);
 582	writel(cmd, csr_base + indirect_cmd_reg);
 583	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
 584	do {
 585		val = readl(csr_base + indirect_cmd_reg);
 586	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
 587		 time_before(jiffies, deadline));
 588	*data = readl(csr_base + indirect_data_reg);
 589	if (!(val & CFG_IND_CMD_DONE_MASK))
 590		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
 591		       csr_base + indirect_cmd_reg, addr, *data);
 592}
 593
 594static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 595		   u32 reg, u32 data)
 596{
 597	void __iomem *sds_base = ctx->sds_base;
 598	u32 val;
 599
 600	if (cmu_type == REF_CMU)
 601		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
 602	else
 603		reg += SERDES_PLL_INDIRECT_OFFSET;
 604	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 605		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
 606	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 607		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
 608	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
 609}
 610
 611static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 612		   u32 reg, u32 *data)
 613{
 614	void __iomem *sds_base = ctx->sds_base;
 615
 616	if (cmu_type == REF_CMU)
 617		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
 618	else
 619		reg += SERDES_PLL_INDIRECT_OFFSET;
 620	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 621		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
 622	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
 623}
 624
 625static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 626			   u32 reg, u32 bits)
 627{
 628	u32 val;
 629
 630	cmu_rd(ctx, cmu_type, reg, &val);
 631	val |= bits;
 632	cmu_wr(ctx, cmu_type, reg, val);
 633	cmu_rd(ctx, cmu_type, reg, &val);
 634	val &= ~bits;
 635	cmu_wr(ctx, cmu_type, reg, val);
 636}
 637
 638static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 639			u32 reg, u32 bits)
 640{
 641	u32 val;
 642
 643	cmu_rd(ctx, cmu_type, reg, &val);
 644	val &= ~bits;
 645	cmu_wr(ctx, cmu_type, reg, val);
 646}
 647
 648static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 649			u32 reg, u32 bits)
 650{
 651	u32 val;
 652
 653	cmu_rd(ctx, cmu_type, reg, &val);
 654	val |= bits;
 655	cmu_wr(ctx, cmu_type, reg, val);
 656}
 657
 658static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
 659{
 660	void __iomem *sds_base = ctx->sds_base;
 661	u32 val;
 662
 663	reg += SERDES_INDIRECT_OFFSET;
 664	reg += lane * SERDES_LANE_STRIDE;
 665	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 666	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
 667	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 668	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
 669	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
 670		 val);
 671}
 672
 673static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
 674{
 675	void __iomem *sds_base = ctx->sds_base;
 676
 677	reg += SERDES_INDIRECT_OFFSET;
 678	reg += lane * SERDES_LANE_STRIDE;
 679	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 680	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
 681	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
 682}
 683
 684static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
 685			   u32 bits)
 686{
 687	u32 val;
 688
 689	serdes_rd(ctx, lane, reg, &val);
 690	val &= ~bits;
 691	serdes_wr(ctx, lane, reg, val);
 692}
 693
 694static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
 695			   u32 bits)
 696{
 697	u32 val;
 698
 699	serdes_rd(ctx, lane, reg, &val);
 700	val |= bits;
 701	serdes_wr(ctx, lane, reg, val);
 702}
 703
 704static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
 705				       enum cmu_type_t cmu_type,
 706				       enum clk_type_t clk_type)
 707{
 708	u32 val;
 709
 710	/* Set the reset sequence delay for TX ready assertion */
 711	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
 712	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
 713	cmu_wr(ctx, cmu_type, CMU_REG12, val);
 714	/* Set the programmable stage delays between various enable stages */
 715	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
 716	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
 717
 718	/* Configure clock type */
 719	if (clk_type == CLK_EXT_DIFF) {
 720		/* Select external clock mux */
 721		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 722		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
 723		cmu_wr(ctx, cmu_type, CMU_REG0, val);
 724		/* Select CMOS as reference clock  */
 725		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 726		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
 727		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 728		dev_dbg(ctx->dev, "Set external reference clock\n");
 729	} else if (clk_type == CLK_INT_DIFF) {
 730		/* Select internal clock mux */
 731		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 732		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
 733		cmu_wr(ctx, cmu_type, CMU_REG0, val);
 734		/* Select CMOS as reference clock  */
 735		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 736		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
 737		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 738		dev_dbg(ctx->dev, "Set internal reference clock\n");
 739	} else if (clk_type == CLK_INT_SING) {
 740		/*
 741		 * NOTE: This clock type is NOT support for controller
 742		 *	 whose internal clock shared in the PCIe controller
 743		 *
 744		 * Select internal clock mux
 745		 */
 746		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 747		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
 748		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 749		/* Select CML as reference clock */
 750		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 751		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
 752		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 753		dev_dbg(ctx->dev,
 754			"Set internal single ended reference clock\n");
 755	}
 756}
 757
 758static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
 759					enum cmu_type_t cmu_type,
 760					enum clk_type_t clk_type)
 761{
 762	u32 val;
 763	int ref_100MHz;
 764
 765	if (cmu_type == REF_CMU) {
 766		/* Set VCO calibration voltage threshold */
 767		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
 768		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
 769		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
 770		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
 771		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
 772		cmu_wr(ctx, cmu_type, CMU_REG34, val);
 773	}
 774
 775	/* Set the VCO calibration counter */
 776	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 777	if (cmu_type == REF_CMU || preA3Chip)
 778		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
 779	else
 780		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
 781	cmu_wr(ctx, cmu_type, CMU_REG0, val);
 782
 783	/* Configure PLL for calibration */
 784	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 785	val = CMU_REG1_PLL_CP_SET(val, 0x1);
 786	if (cmu_type == REF_CMU || preA3Chip)
 787		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
 788	else
 789		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
 790	if (cmu_type == REF_CMU)
 791		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
 792	else
 793		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
 794	cmu_wr(ctx, cmu_type, CMU_REG1, val);
 795
 796	if (cmu_type != REF_CMU)
 797		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 798
 799	/* Configure the PLL for either 100MHz or 50MHz */
 800	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
 801	if (cmu_type == REF_CMU) {
 802		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
 803		ref_100MHz = 1;
 804	} else {
 805		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
 806		if (clk_type == CLK_EXT_DIFF)
 807			ref_100MHz = 0;
 808		else
 809			ref_100MHz = 1;
 810	}
 811	if (ref_100MHz) {
 812		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
 813		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
 814	} else {
 815		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
 816		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
 817	}
 818	cmu_wr(ctx, cmu_type, CMU_REG2, val);
 819
 820	/* Configure the VCO */
 821	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
 822	if (cmu_type == REF_CMU) {
 823		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
 824		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
 825	} else {
 826		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
 827		if (preA3Chip)
 828			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
 829		else
 830			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
 831		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
 832	}
 833	cmu_wr(ctx, cmu_type, CMU_REG3, val);
 834
 835	/* Disable force PLL lock */
 836	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
 837	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
 838	cmu_wr(ctx, cmu_type, CMU_REG26, val);
 839
 840	/* Setup PLL loop filter */
 841	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
 842	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
 843	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
 844	if (cmu_type == REF_CMU || !preA3Chip)
 845		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
 846	else
 847		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
 848	cmu_wr(ctx, cmu_type, CMU_REG5, val);
 849
 850	/* Enable or disable manual calibration */
 851	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
 852	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
 853	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
 854	cmu_wr(ctx, cmu_type, CMU_REG6, val);
 855
 856	/* Configure lane for 20-bits */
 857	if (cmu_type == PHY_CMU) {
 858		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
 859		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
 860						    CMU_REG9_WORD_LEN_20BIT);
 861		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
 862						    CMU_REG9_WORD_LEN_20BIT);
 863		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
 864		if (!preA3Chip) {
 865			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
 866			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
 867		}
 868		cmu_wr(ctx, cmu_type, CMU_REG9, val);
 869
 870		if (!preA3Chip) {
 871			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
 872			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
 873			cmu_wr(ctx, cmu_type, CMU_REG10, val);
 874		}
 875	}
 876
 877	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
 878	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
 879	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
 880	if (cmu_type == REF_CMU || preA3Chip)
 881		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
 882	else
 883		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
 884	cmu_wr(ctx, cmu_type, CMU_REG16, val);
 885
 886	/* Configure for SATA */
 887	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
 888	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
 889	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
 890	cmu_wr(ctx, cmu_type, CMU_REG30, val);
 891
 892	/* Disable state machine bypass */
 893	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
 894
 895	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
 896	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
 897	if (cmu_type == REF_CMU || preA3Chip)
 898		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
 899	else
 900		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
 901	cmu_wr(ctx, cmu_type, CMU_REG32, val);
 902
 903	/* Set VCO calibration threshold */
 904	if (cmu_type != REF_CMU && preA3Chip)
 905		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
 906	else
 907		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
 908
 909	/* Set CTLE Override and override waiting from state machine */
 910	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
 911}
 912
 913static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
 914				 enum cmu_type_t cmu_type)
 915{
 916	u32 val;
 917
 918	/* Set SSC modulation value */
 919	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
 920	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
 921	cmu_wr(ctx, cmu_type, CMU_REG35, val);
 922
 923	/* Enable SSC, set vertical step and DSM value */
 924	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
 925	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
 926	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
 927	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
 928	cmu_wr(ctx, cmu_type, CMU_REG36, val);
 929
 930	/* Reset the PLL */
 931	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 932	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 933
 934	/* Force VCO calibration to restart */
 935	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
 936		       CMU_REG32_FORCE_VCOCAL_START_MASK);
 937}
 938
 939static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
 940{
 941	u32 val;
 942	u32 reg;
 943	int i;
 944	int lane;
 945
 946	for (lane = 0; lane < MAX_LANE; lane++) {
 947		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
 948
 949		/* Set boost control for quarter, half, and full rate */
 950		serdes_rd(ctx, lane, RXTX_REG0, &val);
 951		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
 952		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
 953		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
 954		serdes_wr(ctx, lane, RXTX_REG0, val);
 955
 956		/* Set boost control value */
 957		serdes_rd(ctx, lane, RXTX_REG1, &val);
 958		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
 959		val = RXTX_REG1_CTLE_EQ_SET(val,
 960			ctx->sata_param.txboostgain[lane * 3 +
 961			ctx->sata_param.speed[lane]]);
 962		serdes_wr(ctx, lane, RXTX_REG1, val);
 963
 964		/* Latch VTT value based on the termination to ground and
 965		 * enable TX FIFO
 966		 */
 967		serdes_rd(ctx, lane, RXTX_REG2, &val);
 968		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
 969		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
 970		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
 971		serdes_wr(ctx, lane, RXTX_REG2, val);
 972
 973		/* Configure Tx for 20-bits */
 974		serdes_rd(ctx, lane, RXTX_REG4, &val);
 975		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
 976		serdes_wr(ctx, lane, RXTX_REG4, val);
 977
 978		if (!preA3Chip) {
 979			serdes_rd(ctx, lane, RXTX_REG1, &val);
 980			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
 981			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
 982			serdes_wr(ctx, lane, RXTX_REG1, val);
 983		}
 984
 985		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
 986		serdes_rd(ctx, lane, RXTX_REG5, &val);
 987		val = RXTX_REG5_TX_CN1_SET(val,
 988			ctx->sata_param.txprecursor_cn1[lane * 3 +
 989			ctx->sata_param.speed[lane]]);
 990		val = RXTX_REG5_TX_CP1_SET(val,
 991			ctx->sata_param.txpostcursor_cp1[lane * 3 +
 992			ctx->sata_param.speed[lane]]);
 993		val = RXTX_REG5_TX_CN2_SET(val,
 994			ctx->sata_param.txprecursor_cn2[lane * 3 +
 995			ctx->sata_param.speed[lane]]);
 996		serdes_wr(ctx, lane, RXTX_REG5, val);
 997
 998		/* Set TX amplitude value */
 999		serdes_rd(ctx, lane, RXTX_REG6, &val);
1000		val = RXTX_REG6_TXAMP_CNTL_SET(val,
1001			ctx->sata_param.txamplitude[lane * 3 +
1002			ctx->sata_param.speed[lane]]);
1003		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1004		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1005		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1006		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1007		serdes_wr(ctx, lane, RXTX_REG6, val);
1008
1009		/* Configure Rx for 20-bits */
1010		serdes_rd(ctx, lane, RXTX_REG7, &val);
1011		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1012		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1013		serdes_wr(ctx, lane, RXTX_REG7, val);
1014
1015		/* Set CDR and LOS values and enable Rx SSC */
1016		serdes_rd(ctx, lane, RXTX_REG8, &val);
1017		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1018		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1019		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1020		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1021		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1022		serdes_wr(ctx, lane, RXTX_REG8, val);
1023
1024		/* Set phase adjust upper/lower limits */
1025		serdes_rd(ctx, lane, RXTX_REG11, &val);
1026		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1027		serdes_wr(ctx, lane, RXTX_REG11, val);
1028
1029		/* Enable Latch Off; disable SUMOS and Tx termination */
1030		serdes_rd(ctx, lane, RXTX_REG12, &val);
1031		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1032		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1033		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1034		serdes_wr(ctx, lane, RXTX_REG12, val);
1035
1036		/* Set period error latch to 512T and enable BWL */
1037		serdes_rd(ctx, lane, RXTX_REG26, &val);
1038		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1039		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1040		serdes_wr(ctx, lane, RXTX_REG26, val);
1041
1042		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1043
1044		/* Set DFE loop preset value */
1045		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1046
1047		/* Set Eye Monitor counter width to 12-bit */
1048		serdes_rd(ctx, lane, RXTX_REG61, &val);
1049		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1050		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1051		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1052		serdes_wr(ctx, lane, RXTX_REG61, val);
1053
1054		serdes_rd(ctx, lane, RXTX_REG62, &val);
1055		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1056		serdes_wr(ctx, lane, RXTX_REG62, val);
1057
1058		/* Set BW select tap X for DFE loop */
1059		for (i = 0; i < 9; i++) {
1060			reg = RXTX_REG81 + i * 2;
1061			serdes_rd(ctx, lane, reg, &val);
1062			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1063			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1064			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1065			serdes_wr(ctx, lane, reg, val);
1066		}
1067
1068		/* Set BW select tap X for frequency adjust loop */
1069		for (i = 0; i < 3; i++) {
1070			reg = RXTX_REG96 + i * 2;
1071			serdes_rd(ctx, lane, reg, &val);
1072			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1073			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1074			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1075			serdes_wr(ctx, lane, reg, val);
1076		}
1077
1078		/* Set BW select tap X for phase adjust loop */
1079		for (i = 0; i < 3; i++) {
1080			reg = RXTX_REG99 + i * 2;
1081			serdes_rd(ctx, lane, reg, &val);
1082			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1083			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1084			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1085			serdes_wr(ctx, lane, reg, val);
1086		}
1087
1088		serdes_rd(ctx, lane, RXTX_REG102, &val);
1089		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1090		serdes_wr(ctx, lane, RXTX_REG102, val);
1091
1092		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1093
1094		serdes_rd(ctx, lane, RXTX_REG125, &val);
1095		val = RXTX_REG125_SIGN_PQ_SET(val,
1096			ctx->sata_param.txeyedirection[lane * 3 +
1097			ctx->sata_param.speed[lane]]);
1098		val = RXTX_REG125_PQ_REG_SET(val,
1099			ctx->sata_param.txeyetuning[lane * 3 +
1100			ctx->sata_param.speed[lane]]);
1101		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1102		serdes_wr(ctx, lane, RXTX_REG125, val);
1103
1104		serdes_rd(ctx, lane, RXTX_REG127, &val);
1105		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1106		serdes_wr(ctx, lane, RXTX_REG127, val);
1107
1108		serdes_rd(ctx, lane, RXTX_REG128, &val);
1109		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1110		serdes_wr(ctx, lane, RXTX_REG128, val);
1111
1112		serdes_rd(ctx, lane, RXTX_REG145, &val);
1113		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1114		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1115		if (preA3Chip) {
1116			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1117			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1118		} else {
1119			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1120			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1121		}
1122		serdes_wr(ctx, lane, RXTX_REG145, val);
1123
1124		/*
1125		 * Set Rx LOS filter clock rate, sample rate, and threshold
1126		 * windows
1127		 */
1128		for (i = 0; i < 4; i++) {
1129			reg = RXTX_REG148 + i * 2;
1130			serdes_wr(ctx, lane, reg, 0xFFFF);
1131		}
1132	}
1133}
1134
1135static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1136				 enum cmu_type_t cmu_type,
1137				 enum clk_type_t clk_type)
1138{
1139	void __iomem *csr_serdes = ctx->sds_base;
1140	int loop;
1141	u32 val;
1142
1143	/* Release PHY main reset */
1144	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1145	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1146
1147	if (cmu_type != REF_CMU) {
1148		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1149		/*
1150		 * As per PHY design spec, the PLL reset requires a minimum
1151		 * of 800us.
1152		 */
1153		usleep_range(800, 1000);
1154
1155		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1156		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1157		cmu_wr(ctx, cmu_type, CMU_REG1, val);
1158		/*
1159		 * As per PHY design spec, the PLL auto calibration requires
1160		 * a minimum of 800us.
1161		 */
1162		usleep_range(800, 1000);
1163
1164		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1165			       CMU_REG32_FORCE_VCOCAL_START_MASK);
1166		/*
1167		 * As per PHY design spec, the PLL requires a minimum of
1168		 * 800us to settle.
1169		 */
1170		usleep_range(800, 1000);
1171	}
1172
1173	if (!preA3Chip)
1174		goto skip_manual_cal;
1175
1176	/*
1177	 * Configure the termination resister calibration
1178	 * The serial receive pins, RXP/RXN, have TERMination resistor
1179	 * that is required to be calibrated.
1180	 */
1181	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1182	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1183	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1184	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1185	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1186		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1187	/*
1188	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1189	 * resistors that are required to the calibrated.
1190	 * Configure the pull DOWN calibration
1191	 */
1192	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1193	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1194	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1195	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1196	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1197		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1198	/* Configure the pull UP calibration */
1199	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1200	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1201	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1202	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1203	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1204		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1205
1206skip_manual_cal:
1207	/* Poll the PLL calibration completion status for at least 1 ms */
1208	loop = 100;
1209	do {
1210		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1211		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1212			break;
1213		/*
1214		 * As per PHY design spec, PLL calibration status requires
1215		 * a minimum of 10us to be updated.
1216		 */
1217		usleep_range(10, 100);
1218	} while (--loop > 0);
1219
1220	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1221	dev_dbg(ctx->dev, "PLL calibration %s\n",
1222		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1223	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1224		dev_err(ctx->dev,
1225			"PLL calibration failed due to VCO failure\n");
1226		return -1;
1227	}
1228	dev_dbg(ctx->dev, "PLL calibration successful\n");
1229
1230	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1231	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1232	return 0;
1233}
1234
1235static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1236				     enum cmu_type_t cmu_type,
1237				     enum clk_type_t clk_type)
1238{
1239	u32 val;
1240
1241	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1242	if (cmu_type == PHY_CMU) {
1243		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1244		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1245		cmu_wr(ctx, cmu_type, CMU_REG16, val);
1246	}
1247
1248	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1249	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1250		       CMU_REG32_FORCE_VCOCAL_START_MASK);
1251}
1252
1253static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1254				  enum clk_type_t clk_type, int ssc_enable)
1255{
1256	void __iomem *sds_base = ctx->sds_base;
1257	u32 val;
1258	int i;
1259
1260	/* Configure the PHY for operation */
1261	dev_dbg(ctx->dev, "Reset PHY\n");
1262	/* Place PHY into reset */
1263	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1264	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1265	/* Release PHY lane from reset (active high) */
1266	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1267	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1268	/* Release all PHY module out of reset except PHY main reset */
1269	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1270	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1271
1272	/* Set the operation speed */
1273	val = readl(sds_base + SATA_ENET_SDS_CTL1);
1274	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1275		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1276	writel(val, sds_base + SATA_ENET_SDS_CTL1);
1277
1278	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1279	val = readl(sds_base + SATA_ENET_SDS_CTL0);
1280	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1281	writel(val, sds_base + SATA_ENET_SDS_CTL0);
1282
1283	/* Configure the clock macro unit (CMU) clock type */
1284	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1285
1286	/* Configure the clock macro */
1287	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1288
1289	/* Enable SSC if enabled */
1290	if (ssc_enable)
1291		xgene_phy_ssc_enable(ctx, PHY_CMU);
1292
1293	/* Configure PHY lanes */
1294	xgene_phy_sata_cfg_lanes(ctx);
1295
1296	/* Set Rx/Tx 20-bit */
1297	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1298	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1299	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1300	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1301
1302	/* Start PLL calibration and try for three times */
1303	i = 10;
1304	do {
1305		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1306			break;
1307		/* If failed, toggle the VCO power signal and start again */
1308		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1309	} while (--i > 0);
1310	/* Even on failure, allow to continue any way */
1311	if (i <= 0)
1312		dev_err(ctx->dev, "PLL calibration failed\n");
1313
1314	return 0;
1315}
1316
1317static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1318				   enum clk_type_t clk_type,
1319				   int ssc_enable)
1320{
1321	int rc;
1322
1323	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1324
1325	if (ctx->mode == MODE_SATA) {
1326		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1327		if (rc)
1328			return rc;
1329	} else {
1330		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1331			ctx->mode);
1332		return -ENODEV;
1333	}
1334
1335	return 0;
1336}
1337
1338/*
1339 * Receiver Offset Calibration:
1340 *
1341 * Calibrate the receiver signal path offset in two steps - summar and
1342 * latch calibrations
1343 */
1344static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1345{
1346	int i;
1347	static const struct {
1348		u32 reg;
1349		u32 val;
1350	} serdes_reg[] = {
1351		{RXTX_REG38, 0x0},
1352		{RXTX_REG39, 0xff00},
1353		{RXTX_REG40, 0xffff},
1354		{RXTX_REG41, 0xffff},
1355		{RXTX_REG42, 0xffff},
1356		{RXTX_REG43, 0xffff},
1357		{RXTX_REG44, 0xffff},
1358		{RXTX_REG45, 0xffff},
1359		{RXTX_REG46, 0xffff},
1360		{RXTX_REG47, 0xfffc},
1361		{RXTX_REG48, 0x0},
1362		{RXTX_REG49, 0x0},
1363		{RXTX_REG50, 0x0},
1364		{RXTX_REG51, 0x0},
1365		{RXTX_REG52, 0x0},
1366		{RXTX_REG53, 0x0},
1367		{RXTX_REG54, 0x0},
1368		{RXTX_REG55, 0x0},
1369	};
1370
1371	/* Start SUMMER calibration */
1372	serdes_setbits(ctx, lane, RXTX_REG127,
1373		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1374	/*
1375	 * As per PHY design spec, the Summer calibration requires a minimum
1376	 * of 100us to complete.
1377	 */
1378	usleep_range(100, 500);
1379	serdes_clrbits(ctx, lane, RXTX_REG127,
1380			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1381	/*
1382	 * As per PHY design spec, the auto calibration requires a minimum
1383	 * of 100us to complete.
1384	 */
1385	usleep_range(100, 500);
1386
1387	/* Start latch calibration */
1388	serdes_setbits(ctx, lane, RXTX_REG127,
1389		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1390	/*
1391	 * As per PHY design spec, the latch calibration requires a minimum
1392	 * of 100us to complete.
1393	 */
1394	usleep_range(100, 500);
1395	serdes_clrbits(ctx, lane, RXTX_REG127,
1396		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1397
1398	/* Configure the PHY lane for calibration */
1399	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1400	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1401	serdes_clrbits(ctx, lane, RXTX_REG4,
1402		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1403	serdes_clrbits(ctx, lane, RXTX_REG7,
1404		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1405	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1406		serdes_wr(ctx, lane, serdes_reg[i].reg,
1407			  serdes_reg[i].val);
1408}
1409
1410static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1411{
1412	/* Reset digital Rx */
1413	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1414	/* As per PHY design spec, the reset requires a minimum of 100us. */
1415	usleep_range(100, 150);
1416	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1417}
1418
1419static int xgene_phy_get_avg(int accum, int samples)
1420{
1421	return (accum + (samples / 2)) / samples;
1422}
1423
1424static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1425{
1426	int max_loop = 10;
1427	int avg_loop = 0;
1428	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1429	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1430	int sum_cal = 0;
1431	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1432	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1433	int sum_cal_itr;
1434	int fail_even;
1435	int fail_odd;
1436	u32 val;
1437
1438	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1439		lane);
1440
1441	/* Enable RX Hi-Z termination */
1442	serdes_setbits(ctx, lane, RXTX_REG12,
1443			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1444	/* Turn off DFE */
1445	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1446	/* DFE Presets to zero */
1447	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1448
1449	/*
1450	 * Receiver Offset Calibration:
1451	 * Calibrate the receiver signal path offset in two steps - summar
1452	 * and latch calibration.
1453	 * Runs the "Receiver Offset Calibration multiple times to determine
1454	 * the average value to use.
1455	 */
1456	while (avg_loop < max_loop) {
1457		/* Start the calibration */
1458		xgene_phy_force_lat_summer_cal(ctx, lane);
1459
1460		serdes_rd(ctx, lane, RXTX_REG21, &val);
1461		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1462		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1463		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1464
1465		serdes_rd(ctx, lane, RXTX_REG22, &val);
1466		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1467		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1468		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1469
1470		serdes_rd(ctx, lane, RXTX_REG23, &val);
1471		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1472		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1473
1474		serdes_rd(ctx, lane, RXTX_REG24, &val);
1475		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1476		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1477
1478		serdes_rd(ctx, lane, RXTX_REG121, &val);
1479		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1480
1481		/* Check for failure. If passed, sum them for averaging */
1482		if ((fail_even == 0 || fail_even == 1) &&
1483		    (fail_odd == 0 || fail_odd == 1)) {
1484			lat_do += lat_do_itr;
1485			lat_xo += lat_xo_itr;
1486			lat_eo += lat_eo_itr;
1487			lat_so += lat_so_itr;
1488			lat_de += lat_de_itr;
1489			lat_xe += lat_xe_itr;
1490			lat_ee += lat_ee_itr;
1491			lat_se += lat_se_itr;
1492			sum_cal += sum_cal_itr;
1493
1494			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1495			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1496				lat_do_itr, lat_xo_itr, lat_eo_itr,
1497				lat_so_itr);
1498			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1499				lat_de_itr, lat_xe_itr, lat_ee_itr,
1500				lat_se_itr);
1501			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1502			++avg_loop;
1503		} else {
1504			dev_err(ctx->dev,
1505				"Receiver calibration failed at %d loop\n",
1506				avg_loop);
1507		}
1508		xgene_phy_reset_rxd(ctx, lane);
1509	}
1510
1511	/* Update latch manual calibration with average value */
1512	serdes_rd(ctx, lane, RXTX_REG127, &val);
1513	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1514		xgene_phy_get_avg(lat_do, max_loop));
1515	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1516		xgene_phy_get_avg(lat_xo, max_loop));
1517	serdes_wr(ctx, lane, RXTX_REG127, val);
1518
1519	serdes_rd(ctx, lane, RXTX_REG128, &val);
1520	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1521		xgene_phy_get_avg(lat_eo, max_loop));
1522	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1523		xgene_phy_get_avg(lat_so, max_loop));
1524	serdes_wr(ctx, lane, RXTX_REG128, val);
1525
1526	serdes_rd(ctx, lane, RXTX_REG129, &val);
1527	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1528		xgene_phy_get_avg(lat_de, max_loop));
1529	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1530		xgene_phy_get_avg(lat_xe, max_loop));
1531	serdes_wr(ctx, lane, RXTX_REG129, val);
1532
1533	serdes_rd(ctx, lane, RXTX_REG130, &val);
1534	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1535		xgene_phy_get_avg(lat_ee, max_loop));
1536	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1537		xgene_phy_get_avg(lat_se, max_loop));
1538	serdes_wr(ctx, lane, RXTX_REG130, val);
1539
1540	/* Update SUMMER calibration with average value */
1541	serdes_rd(ctx, lane, RXTX_REG14, &val);
1542	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1543		xgene_phy_get_avg(sum_cal, max_loop));
1544	serdes_wr(ctx, lane, RXTX_REG14, val);
1545
1546	dev_dbg(ctx->dev, "Average Value:\n");
1547	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1548		 xgene_phy_get_avg(lat_do, max_loop),
1549		 xgene_phy_get_avg(lat_xo, max_loop),
1550		 xgene_phy_get_avg(lat_eo, max_loop),
1551		 xgene_phy_get_avg(lat_so, max_loop));
1552	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1553		 xgene_phy_get_avg(lat_de, max_loop),
1554		 xgene_phy_get_avg(lat_xe, max_loop),
1555		 xgene_phy_get_avg(lat_ee, max_loop),
1556		 xgene_phy_get_avg(lat_se, max_loop));
1557	dev_dbg(ctx->dev, "SUM 0x%x\n",
1558		xgene_phy_get_avg(sum_cal, max_loop));
1559
1560	serdes_rd(ctx, lane, RXTX_REG14, &val);
1561	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1562	serdes_wr(ctx, lane, RXTX_REG14, val);
1563	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1564
1565	serdes_rd(ctx, lane, RXTX_REG127, &val);
1566	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1567	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1568	serdes_wr(ctx, lane, RXTX_REG127, val);
1569
1570	/* Disable RX Hi-Z termination */
1571	serdes_rd(ctx, lane, RXTX_REG12, &val);
1572	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1573	serdes_wr(ctx, lane, RXTX_REG12, val);
1574	/* Turn on DFE */
1575	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1576	/* Set DFE preset */
1577	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1578}
1579
1580static int xgene_phy_hw_init(struct phy *phy)
1581{
1582	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1583	int rc;
1584	int i;
1585
1586	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1587	if (rc) {
1588		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1589		return rc;
1590	}
1591
1592	/* Setup clock properly after PHY configuration */
1593	if (!IS_ERR(ctx->clk)) {
1594		/* HW requires an toggle of the clock */
1595		clk_prepare_enable(ctx->clk);
1596		clk_disable_unprepare(ctx->clk);
1597		clk_prepare_enable(ctx->clk);
1598	}
1599
1600	/* Compute average value */
1601	for (i = 0; i < MAX_LANE; i++)
1602		xgene_phy_gen_avg_val(ctx, i);
1603
1604	dev_dbg(ctx->dev, "PHY initialized\n");
1605	return 0;
1606}
1607
1608static const struct phy_ops xgene_phy_ops = {
1609	.init		= xgene_phy_hw_init,
1610	.owner		= THIS_MODULE,
1611};
1612
1613static struct phy *xgene_phy_xlate(struct device *dev,
1614				   const struct of_phandle_args *args)
1615{
1616	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1617
1618	if (args->args_count <= 0)
1619		return ERR_PTR(-EINVAL);
1620	if (args->args[0] >= MODE_MAX)
1621		return ERR_PTR(-EINVAL);
1622
1623	ctx->mode = args->args[0];
1624	return ctx->phy;
1625}
1626
1627static void xgene_phy_get_param(struct platform_device *pdev,
1628				const char *name, u32 *buffer,
1629				int count, u32 *default_val,
1630				u32 conv_factor)
1631{
1632	int i;
1633
1634	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1635					count)) {
1636		for (i = 0; i < count; i++)
1637			buffer[i] /= conv_factor;
1638		return;
1639	}
1640	/* Does not exist, load default */
1641	for (i = 0; i < count; i++)
1642		buffer[i] = default_val[i % 3];
1643}
1644
1645static int xgene_phy_probe(struct platform_device *pdev)
1646{
1647	struct phy_provider *phy_provider;
1648	struct xgene_phy_ctx *ctx;
1649	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1650	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1651	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1652	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1653	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1654	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1655	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1656	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1657	int i;
1658
1659	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1660	if (!ctx)
1661		return -ENOMEM;
1662
1663	ctx->dev = &pdev->dev;
1664
1665	ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
1666	if (IS_ERR(ctx->sds_base))
1667		return PTR_ERR(ctx->sds_base);
1668
1669	/* Retrieve optional clock */
1670	ctx->clk = clk_get(&pdev->dev, NULL);
1671
1672	/* Load override paramaters */
1673	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1674		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1675	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1676		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1677	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1678		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1679	xgene_phy_get_param(pdev, "apm,tx-amplitude",
1680		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1681	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1682		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1683	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1684		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1685	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1686		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1687	xgene_phy_get_param(pdev, "apm,tx-speed",
1688		ctx->sata_param.txspeed, 3, default_spd, 1);
1689	for (i = 0; i < MAX_LANE; i++)
1690		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1691
1692	platform_set_drvdata(pdev, ctx);
1693
1694	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1695	if (IS_ERR(ctx->phy)) {
1696		dev_dbg(&pdev->dev, "Failed to create PHY\n");
1697		return PTR_ERR(ctx->phy);
1698	}
1699	phy_set_drvdata(ctx->phy, ctx);
1700
1701	phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1702	return PTR_ERR_OR_ZERO(phy_provider);
1703}
1704
1705static const struct of_device_id xgene_phy_of_match[] = {
1706	{.compatible = "apm,xgene-phy",},
1707	{},
1708};
1709MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1710
1711static struct platform_driver xgene_phy_driver = {
1712	.probe = xgene_phy_probe,
1713	.driver = {
1714		   .name = "xgene-phy",
1715		   .of_match_table = xgene_phy_of_match,
1716	},
1717};
1718module_platform_driver(xgene_phy_driver);
1719
1720MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1721MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1722MODULE_LICENSE("GPL v2");
1723MODULE_VERSION("0.1");