Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2#include <linux/bitfield.h>
   3#include <linux/bitmap.h>
   4#include <linux/mfd/syscon.h>
   5#include <linux/module.h>
   6#include <linux/nvmem-consumer.h>
   7#include <linux/pinctrl/consumer.h>
   8#include <linux/phy.h>
   9#include <linux/regmap.h>
  10
  11#define MTK_GPHY_ID_MT7981			0x03a29461
  12#define MTK_GPHY_ID_MT7988			0x03a29481
  13
  14#define MTK_EXT_PAGE_ACCESS			0x1f
  15#define MTK_PHY_PAGE_STANDARD			0x0000
  16#define MTK_PHY_PAGE_EXTENDED_3			0x0003
  17
  18#define MTK_PHY_LPI_REG_14			0x14
  19#define MTK_PHY_LPI_WAKE_TIMER_1000_MASK	GENMASK(8, 0)
  20
  21#define MTK_PHY_LPI_REG_1c			0x1c
  22#define MTK_PHY_SMI_DET_ON_THRESH_MASK		GENMASK(13, 8)
  23
  24#define MTK_PHY_PAGE_EXTENDED_2A30		0x2a30
  25#define MTK_PHY_PAGE_EXTENDED_52B5		0x52b5
  26
  27#define ANALOG_INTERNAL_OPERATION_MAX_US	20
  28#define TXRESERVE_MIN				0
  29#define TXRESERVE_MAX				7
  30
  31#define MTK_PHY_ANARG_RG			0x10
  32#define   MTK_PHY_TCLKOFFSET_MASK		GENMASK(12, 8)
  33
  34/* Registers on MDIO_MMD_VEND1 */
  35#define MTK_PHY_TXVLD_DA_RG			0x12
  36#define   MTK_PHY_DA_TX_I2MPB_A_GBE_MASK	GENMASK(15, 10)
  37#define   MTK_PHY_DA_TX_I2MPB_A_TBT_MASK	GENMASK(5, 0)
  38
  39#define MTK_PHY_TX_I2MPB_TEST_MODE_A2		0x16
  40#define   MTK_PHY_DA_TX_I2MPB_A_HBT_MASK	GENMASK(15, 10)
  41#define   MTK_PHY_DA_TX_I2MPB_A_TST_MASK	GENMASK(5, 0)
  42
  43#define MTK_PHY_TX_I2MPB_TEST_MODE_B1		0x17
  44#define   MTK_PHY_DA_TX_I2MPB_B_GBE_MASK	GENMASK(13, 8)
  45#define   MTK_PHY_DA_TX_I2MPB_B_TBT_MASK	GENMASK(5, 0)
  46
  47#define MTK_PHY_TX_I2MPB_TEST_MODE_B2		0x18
  48#define   MTK_PHY_DA_TX_I2MPB_B_HBT_MASK	GENMASK(13, 8)
  49#define   MTK_PHY_DA_TX_I2MPB_B_TST_MASK	GENMASK(5, 0)
  50
  51#define MTK_PHY_TX_I2MPB_TEST_MODE_C1		0x19
  52#define   MTK_PHY_DA_TX_I2MPB_C_GBE_MASK	GENMASK(13, 8)
  53#define   MTK_PHY_DA_TX_I2MPB_C_TBT_MASK	GENMASK(5, 0)
  54
  55#define MTK_PHY_TX_I2MPB_TEST_MODE_C2		0x20
  56#define   MTK_PHY_DA_TX_I2MPB_C_HBT_MASK	GENMASK(13, 8)
  57#define   MTK_PHY_DA_TX_I2MPB_C_TST_MASK	GENMASK(5, 0)
  58
  59#define MTK_PHY_TX_I2MPB_TEST_MODE_D1		0x21
  60#define   MTK_PHY_DA_TX_I2MPB_D_GBE_MASK	GENMASK(13, 8)
  61#define   MTK_PHY_DA_TX_I2MPB_D_TBT_MASK	GENMASK(5, 0)
  62
  63#define MTK_PHY_TX_I2MPB_TEST_MODE_D2		0x22
  64#define   MTK_PHY_DA_TX_I2MPB_D_HBT_MASK	GENMASK(13, 8)
  65#define   MTK_PHY_DA_TX_I2MPB_D_TST_MASK	GENMASK(5, 0)
  66
  67#define MTK_PHY_RXADC_CTRL_RG7			0xc6
  68#define   MTK_PHY_DA_AD_BUF_BIAS_LP_MASK	GENMASK(9, 8)
  69
  70#define MTK_PHY_RXADC_CTRL_RG9			0xc8
  71#define   MTK_PHY_DA_RX_PSBN_TBT_MASK		GENMASK(14, 12)
  72#define   MTK_PHY_DA_RX_PSBN_HBT_MASK		GENMASK(10, 8)
  73#define   MTK_PHY_DA_RX_PSBN_GBE_MASK		GENMASK(6, 4)
  74#define   MTK_PHY_DA_RX_PSBN_LP_MASK		GENMASK(2, 0)
  75
  76#define MTK_PHY_LDO_OUTPUT_V			0xd7
  77
  78#define MTK_PHY_RG_ANA_CAL_RG0			0xdb
  79#define   MTK_PHY_RG_CAL_CKINV			BIT(12)
  80#define   MTK_PHY_RG_ANA_CALEN			BIT(8)
  81#define   MTK_PHY_RG_ZCALEN_A			BIT(0)
  82
  83#define MTK_PHY_RG_ANA_CAL_RG1			0xdc
  84#define   MTK_PHY_RG_ZCALEN_B			BIT(12)
  85#define   MTK_PHY_RG_ZCALEN_C			BIT(8)
  86#define   MTK_PHY_RG_ZCALEN_D			BIT(4)
  87#define   MTK_PHY_RG_TXVOS_CALEN		BIT(0)
  88
  89#define MTK_PHY_RG_ANA_CAL_RG5			0xe0
  90#define   MTK_PHY_RG_REXT_TRIM_MASK		GENMASK(13, 8)
  91
  92#define MTK_PHY_RG_TX_FILTER			0xfe
  93
  94#define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120	0x120
  95#define   MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK	GENMASK(12, 8)
  96#define   MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK	GENMASK(4, 0)
  97
  98#define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122	0x122
  99#define   MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK	GENMASK(7, 0)
 100
 101#define MTK_PHY_RG_TESTMUX_ADC_CTRL		0x144
 102#define   MTK_PHY_RG_TXEN_DIG_MASK		GENMASK(5, 5)
 103
 104#define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B		0x172
 105#define   MTK_PHY_CR_TX_AMP_OFFSET_A_MASK	GENMASK(13, 8)
 106#define   MTK_PHY_CR_TX_AMP_OFFSET_B_MASK	GENMASK(6, 0)
 107
 108#define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D		0x173
 109#define   MTK_PHY_CR_TX_AMP_OFFSET_C_MASK	GENMASK(13, 8)
 110#define   MTK_PHY_CR_TX_AMP_OFFSET_D_MASK	GENMASK(6, 0)
 111
 112#define MTK_PHY_RG_AD_CAL_COMP			0x17a
 113#define   MTK_PHY_AD_CAL_COMP_OUT_SHIFT		(8)
 114
 115#define MTK_PHY_RG_AD_CAL_CLK			0x17b
 116#define   MTK_PHY_DA_CAL_CLK			BIT(0)
 117
 118#define MTK_PHY_RG_AD_CALIN			0x17c
 119#define   MTK_PHY_DA_CALIN_FLAG			BIT(0)
 120
 121#define MTK_PHY_RG_DASN_DAC_IN0_A		0x17d
 122#define   MTK_PHY_DASN_DAC_IN0_A_MASK		GENMASK(9, 0)
 123
 124#define MTK_PHY_RG_DASN_DAC_IN0_B		0x17e
 125#define   MTK_PHY_DASN_DAC_IN0_B_MASK		GENMASK(9, 0)
 126
 127#define MTK_PHY_RG_DASN_DAC_IN0_C		0x17f
 128#define   MTK_PHY_DASN_DAC_IN0_C_MASK		GENMASK(9, 0)
 129
 130#define MTK_PHY_RG_DASN_DAC_IN0_D		0x180
 131#define   MTK_PHY_DASN_DAC_IN0_D_MASK		GENMASK(9, 0)
 132
 133#define MTK_PHY_RG_DASN_DAC_IN1_A		0x181
 134#define   MTK_PHY_DASN_DAC_IN1_A_MASK		GENMASK(9, 0)
 135
 136#define MTK_PHY_RG_DASN_DAC_IN1_B		0x182
 137#define   MTK_PHY_DASN_DAC_IN1_B_MASK		GENMASK(9, 0)
 138
 139#define MTK_PHY_RG_DASN_DAC_IN1_C		0x183
 140#define   MTK_PHY_DASN_DAC_IN1_C_MASK		GENMASK(9, 0)
 141
 142#define MTK_PHY_RG_DASN_DAC_IN1_D		0x184
 143#define   MTK_PHY_DASN_DAC_IN1_D_MASK		GENMASK(9, 0)
 144
 145#define MTK_PHY_RG_DEV1E_REG19b			0x19b
 146#define   MTK_PHY_BYPASS_DSP_LPI_READY		BIT(8)
 147
 148#define MTK_PHY_RG_LP_IIR2_K1_L			0x22a
 149#define MTK_PHY_RG_LP_IIR2_K1_U			0x22b
 150#define MTK_PHY_RG_LP_IIR2_K2_L			0x22c
 151#define MTK_PHY_RG_LP_IIR2_K2_U			0x22d
 152#define MTK_PHY_RG_LP_IIR2_K3_L			0x22e
 153#define MTK_PHY_RG_LP_IIR2_K3_U			0x22f
 154#define MTK_PHY_RG_LP_IIR2_K4_L			0x230
 155#define MTK_PHY_RG_LP_IIR2_K4_U			0x231
 156#define MTK_PHY_RG_LP_IIR2_K5_L			0x232
 157#define MTK_PHY_RG_LP_IIR2_K5_U			0x233
 158
 159#define MTK_PHY_RG_DEV1E_REG234			0x234
 160#define   MTK_PHY_TR_OPEN_LOOP_EN_MASK		GENMASK(0, 0)
 161#define   MTK_PHY_LPF_X_AVERAGE_MASK		GENMASK(7, 4)
 162#define   MTK_PHY_TR_LP_IIR_EEE_EN		BIT(12)
 163
 164#define MTK_PHY_RG_LPF_CNT_VAL			0x235
 165
 166#define MTK_PHY_RG_DEV1E_REG238			0x238
 167#define   MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK	GENMASK(8, 0)
 168#define   MTK_PHY_LPI_SLV_SEND_TX_EN		BIT(12)
 169
 170#define MTK_PHY_RG_DEV1E_REG239			0x239
 171#define   MTK_PHY_LPI_SEND_LOC_TIMER_MASK	GENMASK(8, 0)
 172#define   MTK_PHY_LPI_TXPCS_LOC_RCV		BIT(12)
 173
 174#define MTK_PHY_RG_DEV1E_REG27C			0x27c
 175#define   MTK_PHY_VGASTATE_FFE_THR_ST1_MASK	GENMASK(12, 8)
 176#define MTK_PHY_RG_DEV1E_REG27D			0x27d
 177#define   MTK_PHY_VGASTATE_FFE_THR_ST2_MASK	GENMASK(4, 0)
 178
 179#define MTK_PHY_RG_DEV1E_REG2C7			0x2c7
 180#define   MTK_PHY_MAX_GAIN_MASK			GENMASK(4, 0)
 181#define   MTK_PHY_MIN_GAIN_MASK			GENMASK(12, 8)
 182
 183#define MTK_PHY_RG_DEV1E_REG2D1			0x2d1
 184#define   MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK	GENMASK(7, 0)
 185#define   MTK_PHY_LPI_SKIP_SD_SLV_TR		BIT(8)
 186#define   MTK_PHY_LPI_TR_READY			BIT(9)
 187#define   MTK_PHY_LPI_VCO_EEE_STG0_EN		BIT(10)
 188
 189#define MTK_PHY_RG_DEV1E_REG323			0x323
 190#define   MTK_PHY_EEE_WAKE_MAS_INT_DC		BIT(0)
 191#define   MTK_PHY_EEE_WAKE_SLV_INT_DC		BIT(4)
 192
 193#define MTK_PHY_RG_DEV1E_REG324			0x324
 194#define   MTK_PHY_SMI_DETCNT_MAX_MASK		GENMASK(5, 0)
 195#define   MTK_PHY_SMI_DET_MAX_EN		BIT(8)
 196
 197#define MTK_PHY_RG_DEV1E_REG326			0x326
 198#define   MTK_PHY_LPI_MODE_SD_ON		BIT(0)
 199#define   MTK_PHY_RESET_RANDUPD_CNT		BIT(1)
 200#define   MTK_PHY_TREC_UPDATE_ENAB_CLR		BIT(2)
 201#define   MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF	BIT(4)
 202#define   MTK_PHY_TR_READY_SKIP_AFE_WAKEUP	BIT(5)
 203
 204#define MTK_PHY_LDO_PUMP_EN_PAIRAB		0x502
 205#define MTK_PHY_LDO_PUMP_EN_PAIRCD		0x503
 206
 207#define MTK_PHY_DA_TX_R50_PAIR_A		0x53d
 208#define MTK_PHY_DA_TX_R50_PAIR_B		0x53e
 209#define MTK_PHY_DA_TX_R50_PAIR_C		0x53f
 210#define MTK_PHY_DA_TX_R50_PAIR_D		0x540
 211
 212/* Registers on MDIO_MMD_VEND2 */
 213#define MTK_PHY_LED0_ON_CTRL			0x24
 214#define MTK_PHY_LED1_ON_CTRL			0x26
 215#define   MTK_PHY_LED_ON_MASK			GENMASK(6, 0)
 216#define   MTK_PHY_LED_ON_LINK1000		BIT(0)
 217#define   MTK_PHY_LED_ON_LINK100		BIT(1)
 218#define   MTK_PHY_LED_ON_LINK10			BIT(2)
 219#define   MTK_PHY_LED_ON_LINK			(MTK_PHY_LED_ON_LINK10 |\
 220						 MTK_PHY_LED_ON_LINK100 |\
 221						 MTK_PHY_LED_ON_LINK1000)
 222#define   MTK_PHY_LED_ON_LINKDOWN		BIT(3)
 223#define   MTK_PHY_LED_ON_FDX			BIT(4) /* Full duplex */
 224#define   MTK_PHY_LED_ON_HDX			BIT(5) /* Half duplex */
 225#define   MTK_PHY_LED_ON_FORCE_ON		BIT(6)
 226#define   MTK_PHY_LED_ON_POLARITY		BIT(14)
 227#define   MTK_PHY_LED_ON_ENABLE			BIT(15)
 228
 229#define MTK_PHY_LED0_BLINK_CTRL			0x25
 230#define MTK_PHY_LED1_BLINK_CTRL			0x27
 231#define   MTK_PHY_LED_BLINK_1000TX		BIT(0)
 232#define   MTK_PHY_LED_BLINK_1000RX		BIT(1)
 233#define   MTK_PHY_LED_BLINK_100TX		BIT(2)
 234#define   MTK_PHY_LED_BLINK_100RX		BIT(3)
 235#define   MTK_PHY_LED_BLINK_10TX		BIT(4)
 236#define   MTK_PHY_LED_BLINK_10RX		BIT(5)
 237#define   MTK_PHY_LED_BLINK_RX			(MTK_PHY_LED_BLINK_10RX |\
 238						 MTK_PHY_LED_BLINK_100RX |\
 239						 MTK_PHY_LED_BLINK_1000RX)
 240#define   MTK_PHY_LED_BLINK_TX			(MTK_PHY_LED_BLINK_10TX |\
 241						 MTK_PHY_LED_BLINK_100TX |\
 242						 MTK_PHY_LED_BLINK_1000TX)
 243#define   MTK_PHY_LED_BLINK_COLLISION		BIT(6)
 244#define   MTK_PHY_LED_BLINK_RX_CRC_ERR		BIT(7)
 245#define   MTK_PHY_LED_BLINK_RX_IDLE_ERR		BIT(8)
 246#define   MTK_PHY_LED_BLINK_FORCE_BLINK		BIT(9)
 247
 248#define MTK_PHY_LED1_DEFAULT_POLARITIES		BIT(1)
 249
 250#define MTK_PHY_RG_BG_RASEL			0x115
 251#define   MTK_PHY_RG_BG_RASEL_MASK		GENMASK(2, 0)
 252
 253/* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */
 254#define RG_GPIO_MISC_TPBANK0			0x6f0
 255#define   RG_GPIO_MISC_TPBANK0_BOOTMODE		GENMASK(11, 8)
 256
 257/* These macro privides efuse parsing for internal phy. */
 258#define EFS_DA_TX_I2MPB_A(x)			(((x) >> 0) & GENMASK(5, 0))
 259#define EFS_DA_TX_I2MPB_B(x)			(((x) >> 6) & GENMASK(5, 0))
 260#define EFS_DA_TX_I2MPB_C(x)			(((x) >> 12) & GENMASK(5, 0))
 261#define EFS_DA_TX_I2MPB_D(x)			(((x) >> 18) & GENMASK(5, 0))
 262#define EFS_DA_TX_AMP_OFFSET_A(x)		(((x) >> 24) & GENMASK(5, 0))
 263
 264#define EFS_DA_TX_AMP_OFFSET_B(x)		(((x) >> 0) & GENMASK(5, 0))
 265#define EFS_DA_TX_AMP_OFFSET_C(x)		(((x) >> 6) & GENMASK(5, 0))
 266#define EFS_DA_TX_AMP_OFFSET_D(x)		(((x) >> 12) & GENMASK(5, 0))
 267#define EFS_DA_TX_R50_A(x)			(((x) >> 18) & GENMASK(5, 0))
 268#define EFS_DA_TX_R50_B(x)			(((x) >> 24) & GENMASK(5, 0))
 269
 270#define EFS_DA_TX_R50_C(x)			(((x) >> 0) & GENMASK(5, 0))
 271#define EFS_DA_TX_R50_D(x)			(((x) >> 6) & GENMASK(5, 0))
 272
 273#define EFS_RG_BG_RASEL(x)			(((x) >> 4) & GENMASK(2, 0))
 274#define EFS_RG_REXT_TRIM(x)			(((x) >> 7) & GENMASK(5, 0))
 275
 276enum {
 277	NO_PAIR,
 278	PAIR_A,
 279	PAIR_B,
 280	PAIR_C,
 281	PAIR_D,
 282};
 283
 284enum calibration_mode {
 285	EFUSE_K,
 286	SW_K
 287};
 288
 289enum CAL_ITEM {
 290	REXT,
 291	TX_OFFSET,
 292	TX_AMP,
 293	TX_R50,
 294	TX_VCM
 295};
 296
 297enum CAL_MODE {
 298	EFUSE_M,
 299	SW_M
 300};
 301
 302#define MTK_PHY_LED_STATE_FORCE_ON	0
 303#define MTK_PHY_LED_STATE_FORCE_BLINK	1
 304#define MTK_PHY_LED_STATE_NETDEV	2
 305
 306struct mtk_socphy_priv {
 307	unsigned long		led_state;
 308};
 309
 310struct mtk_socphy_shared {
 311	u32			boottrap;
 312	struct mtk_socphy_priv	priv[4];
 313};
 314
 315static int mtk_socphy_read_page(struct phy_device *phydev)
 316{
 317	return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
 318}
 319
 320static int mtk_socphy_write_page(struct phy_device *phydev, int page)
 321{
 322	return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
 323}
 324
 325/* One calibration cycle consists of:
 326 * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
 327 *   until AD_CAL_COMP is ready to output calibration result.
 328 * 2.Wait until DA_CAL_CLK is available.
 329 * 3.Fetch AD_CAL_COMP_OUT.
 330 */
 331static int cal_cycle(struct phy_device *phydev, int devad,
 332		     u32 regnum, u16 mask, u16 cal_val)
 333{
 334	int reg_val;
 335	int ret;
 336
 337	phy_modify_mmd(phydev, devad, regnum,
 338		       mask, cal_val);
 339	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
 340			 MTK_PHY_DA_CALIN_FLAG);
 341
 342	ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
 343					MTK_PHY_RG_AD_CAL_CLK, reg_val,
 344					reg_val & MTK_PHY_DA_CAL_CLK, 500,
 345					ANALOG_INTERNAL_OPERATION_MAX_US, false);
 346	if (ret) {
 347		phydev_err(phydev, "Calibration cycle timeout\n");
 348		return ret;
 349	}
 350
 351	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
 352			   MTK_PHY_DA_CALIN_FLAG);
 353	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
 354			   MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
 355	phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
 356
 357	return ret;
 358}
 359
 360static int rext_fill_result(struct phy_device *phydev, u16 *buf)
 361{
 362	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
 363		       MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
 364	phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
 365		       MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
 366
 367	return 0;
 368}
 369
 370static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
 371{
 372	u16 rext_cal_val[2];
 373
 374	rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
 375	rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
 376	rext_fill_result(phydev, rext_cal_val);
 377
 378	return 0;
 379}
 380
 381static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
 382{
 383	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
 384		       MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
 385	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
 386		       MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
 387	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
 388		       MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
 389	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
 390		       MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
 391
 392	return 0;
 393}
 394
 395static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
 396{
 397	u16 tx_offset_cal_val[4];
 398
 399	tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
 400	tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
 401	tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
 402	tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
 403
 404	tx_offset_fill_result(phydev, tx_offset_cal_val);
 405
 406	return 0;
 407}
 408
 409static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
 410{
 411	int i;
 412	int bias[16] = {};
 413	const int vals_9461[16] = { 7, 1, 4, 7,
 414				    7, 1, 4, 7,
 415				    7, 1, 4, 7,
 416				    7, 1, 4, 7 };
 417	const int vals_9481[16] = { 10, 6, 6, 10,
 418				    10, 6, 6, 10,
 419				    10, 6, 6, 10,
 420				    10, 6, 6, 10 };
 421	switch (phydev->drv->phy_id) {
 422	case MTK_GPHY_ID_MT7981:
 423		/* We add some calibration to efuse values
 424		 * due to board level influence.
 425		 * GBE: +7, TBT: +1, HBT: +4, TST: +7
 426		 */
 427		memcpy(bias, (const void *)vals_9461, sizeof(bias));
 428		break;
 429	case MTK_GPHY_ID_MT7988:
 430		memcpy(bias, (const void *)vals_9481, sizeof(bias));
 431		break;
 432	}
 433
 434	/* Prevent overflow */
 435	for (i = 0; i < 12; i++) {
 436		if (buf[i >> 2] + bias[i] > 63) {
 437			buf[i >> 2] = 63;
 438			bias[i] = 0;
 439		}
 440	}
 441
 442	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
 443		       MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
 444	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
 445		       MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
 446	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
 447		       MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
 448	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
 449		       MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
 450
 451	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
 452		       MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
 453	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
 454		       MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
 455	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
 456		       MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
 457	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
 458		       MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
 459
 460	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
 461		       MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
 462	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
 463		       MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
 464	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
 465		       MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
 466	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
 467		       MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
 468
 469	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
 470		       MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
 471	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
 472		       MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
 473	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
 474		       MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
 475	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
 476		       MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
 477
 478	return 0;
 479}
 480
 481static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
 482{
 483	u16 tx_amp_cal_val[4];
 484
 485	tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
 486	tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
 487	tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
 488	tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
 489	tx_amp_fill_result(phydev, tx_amp_cal_val);
 490
 491	return 0;
 492}
 493
 494static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
 495			      u8 txg_calen_x)
 496{
 497	int bias = 0;
 498	u16 reg, val;
 499
 500	if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
 501		bias = -1;
 502
 503	val = clamp_val(bias + tx_r50_cal_val, 0, 63);
 504
 505	switch (txg_calen_x) {
 506	case PAIR_A:
 507		reg = MTK_PHY_DA_TX_R50_PAIR_A;
 508		break;
 509	case PAIR_B:
 510		reg = MTK_PHY_DA_TX_R50_PAIR_B;
 511		break;
 512	case PAIR_C:
 513		reg = MTK_PHY_DA_TX_R50_PAIR_C;
 514		break;
 515	case PAIR_D:
 516		reg = MTK_PHY_DA_TX_R50_PAIR_D;
 517		break;
 518	default:
 519		return -EINVAL;
 520	}
 521
 522	phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
 523
 524	return 0;
 525}
 526
 527static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
 528			    u8 txg_calen_x)
 529{
 530	u16 tx_r50_cal_val;
 531
 532	switch (txg_calen_x) {
 533	case PAIR_A:
 534		tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
 535		break;
 536	case PAIR_B:
 537		tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
 538		break;
 539	case PAIR_C:
 540		tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
 541		break;
 542	case PAIR_D:
 543		tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
 544		break;
 545	default:
 546		return -EINVAL;
 547	}
 548	tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
 549
 550	return 0;
 551}
 552
 553static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
 554{
 555	u8 lower_idx, upper_idx, txreserve_val;
 556	u8 lower_ret, upper_ret;
 557	int ret;
 558
 559	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
 560			 MTK_PHY_RG_ANA_CALEN);
 561	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
 562			   MTK_PHY_RG_CAL_CKINV);
 563	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
 564			 MTK_PHY_RG_TXVOS_CALEN);
 565
 566	switch (rg_txreserve_x) {
 567	case PAIR_A:
 568		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 569				   MTK_PHY_RG_DASN_DAC_IN0_A,
 570				   MTK_PHY_DASN_DAC_IN0_A_MASK);
 571		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 572				   MTK_PHY_RG_DASN_DAC_IN1_A,
 573				   MTK_PHY_DASN_DAC_IN1_A_MASK);
 574		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 575				 MTK_PHY_RG_ANA_CAL_RG0,
 576				 MTK_PHY_RG_ZCALEN_A);
 577		break;
 578	case PAIR_B:
 579		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 580				   MTK_PHY_RG_DASN_DAC_IN0_B,
 581				   MTK_PHY_DASN_DAC_IN0_B_MASK);
 582		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 583				   MTK_PHY_RG_DASN_DAC_IN1_B,
 584				   MTK_PHY_DASN_DAC_IN1_B_MASK);
 585		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 586				 MTK_PHY_RG_ANA_CAL_RG1,
 587				 MTK_PHY_RG_ZCALEN_B);
 588		break;
 589	case PAIR_C:
 590		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 591				   MTK_PHY_RG_DASN_DAC_IN0_C,
 592				   MTK_PHY_DASN_DAC_IN0_C_MASK);
 593		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 594				   MTK_PHY_RG_DASN_DAC_IN1_C,
 595				   MTK_PHY_DASN_DAC_IN1_C_MASK);
 596		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 597				 MTK_PHY_RG_ANA_CAL_RG1,
 598				 MTK_PHY_RG_ZCALEN_C);
 599		break;
 600	case PAIR_D:
 601		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 602				   MTK_PHY_RG_DASN_DAC_IN0_D,
 603				   MTK_PHY_DASN_DAC_IN0_D_MASK);
 604		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 605				   MTK_PHY_RG_DASN_DAC_IN1_D,
 606				   MTK_PHY_DASN_DAC_IN1_D_MASK);
 607		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 608				 MTK_PHY_RG_ANA_CAL_RG1,
 609				 MTK_PHY_RG_ZCALEN_D);
 610		break;
 611	default:
 612		ret = -EINVAL;
 613		goto restore;
 614	}
 615
 616	lower_idx = TXRESERVE_MIN;
 617	upper_idx = TXRESERVE_MAX;
 618
 619	phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
 620	while ((upper_idx - lower_idx) > 1) {
 621		txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
 622		ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
 623				MTK_PHY_DA_RX_PSBN_TBT_MASK |
 624				MTK_PHY_DA_RX_PSBN_HBT_MASK |
 625				MTK_PHY_DA_RX_PSBN_GBE_MASK |
 626				MTK_PHY_DA_RX_PSBN_LP_MASK,
 627				txreserve_val << 12 | txreserve_val << 8 |
 628				txreserve_val << 4 | txreserve_val);
 629		if (ret == 1) {
 630			upper_idx = txreserve_val;
 631			upper_ret = ret;
 632		} else if (ret == 0) {
 633			lower_idx = txreserve_val;
 634			lower_ret = ret;
 635		} else {
 636			goto restore;
 637		}
 638	}
 639
 640	if (lower_idx == TXRESERVE_MIN) {
 641		lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
 642				      MTK_PHY_RXADC_CTRL_RG9,
 643				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
 644				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
 645				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
 646				      MTK_PHY_DA_RX_PSBN_LP_MASK,
 647				      lower_idx << 12 | lower_idx << 8 |
 648				      lower_idx << 4 | lower_idx);
 649		ret = lower_ret;
 650	} else if (upper_idx == TXRESERVE_MAX) {
 651		upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
 652				      MTK_PHY_RXADC_CTRL_RG9,
 653				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
 654				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
 655				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
 656				      MTK_PHY_DA_RX_PSBN_LP_MASK,
 657				      upper_idx << 12 | upper_idx << 8 |
 658				      upper_idx << 4 | upper_idx);
 659		ret = upper_ret;
 660	}
 661	if (ret < 0)
 662		goto restore;
 663
 664	/* We calibrate TX-VCM in different logic. Check upper index and then
 665	 * lower index. If this calibration is valid, apply lower index's result.
 666	 */
 667	ret = upper_ret - lower_ret;
 668	if (ret == 1) {
 669		ret = 0;
 670		/* Make sure we use upper_idx in our calibration system */
 671		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
 672			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
 673			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
 674			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
 675			  MTK_PHY_DA_RX_PSBN_LP_MASK,
 676			  upper_idx << 12 | upper_idx << 8 |
 677			  upper_idx << 4 | upper_idx);
 678		phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
 679	} else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
 680		   lower_ret == 1) {
 681		ret = 0;
 682		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
 683			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
 684			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
 685			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
 686			  MTK_PHY_DA_RX_PSBN_LP_MASK,
 687			  lower_idx << 12 | lower_idx << 8 |
 688			  lower_idx << 4 | lower_idx);
 689		phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
 690			    lower_idx);
 691	} else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
 692		   lower_ret == 0) {
 693		ret = 0;
 694		phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n",
 695			    upper_idx);
 696	} else {
 697		ret = -EINVAL;
 698	}
 699
 700restore:
 701	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
 702			   MTK_PHY_RG_ANA_CALEN);
 703	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
 704			   MTK_PHY_RG_TXVOS_CALEN);
 705	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
 706			   MTK_PHY_RG_ZCALEN_A);
 707	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
 708			   MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
 709			   MTK_PHY_RG_ZCALEN_D);
 710
 711	return ret;
 712}
 713
 714static void mt798x_phy_common_finetune(struct phy_device *phydev)
 715{
 716	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
 717	/* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
 718	__phy_write(phydev, 0x11, 0xc71);
 719	__phy_write(phydev, 0x12, 0xc);
 720	__phy_write(phydev, 0x10, 0x8fae);
 721
 722	/* EnabRandUpdTrig = 1 */
 723	__phy_write(phydev, 0x11, 0x2f00);
 724	__phy_write(phydev, 0x12, 0xe);
 725	__phy_write(phydev, 0x10, 0x8fb0);
 726
 727	/* NormMseLoThresh = 85 */
 728	__phy_write(phydev, 0x11, 0x55a0);
 729	__phy_write(phydev, 0x12, 0x0);
 730	__phy_write(phydev, 0x10, 0x83aa);
 731
 732	/* FfeUpdGainForce = 1(Enable), FfeUpdGainForceVal = 4 */
 733	__phy_write(phydev, 0x11, 0x240);
 734	__phy_write(phydev, 0x12, 0x0);
 735	__phy_write(phydev, 0x10, 0x9680);
 736
 737	/* TrFreeze = 0 (mt7988 default) */
 738	__phy_write(phydev, 0x11, 0x0);
 739	__phy_write(phydev, 0x12, 0x0);
 740	__phy_write(phydev, 0x10, 0x9686);
 741
 742	/* SSTrKp100 = 5 */
 743	/* SSTrKf100 = 6 */
 744	/* SSTrKp1000Mas = 5 */
 745	/* SSTrKf1000Mas = 6 */
 746	/* SSTrKp1000Slv = 5 */
 747	/* SSTrKf1000Slv = 6 */
 748	__phy_write(phydev, 0x11, 0xbaef);
 749	__phy_write(phydev, 0x12, 0x2e);
 750	__phy_write(phydev, 0x10, 0x968c);
 751	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 752}
 753
 754static void mt7981_phy_finetune(struct phy_device *phydev)
 755{
 756	u16 val[8] = { 0x01ce, 0x01c1,
 757		       0x020f, 0x0202,
 758		       0x03d0, 0x03c0,
 759		       0x0013, 0x0005 };
 760	int i, k;
 761
 762	/* 100M eye finetune:
 763	 * Keep middle level of TX MLT3 shapper as default.
 764	 * Only change TX MLT3 overshoot level here.
 765	 */
 766	for (k = 0, i = 1; i < 12; i++) {
 767		if (i % 3 == 0)
 768			continue;
 769		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
 770	}
 771
 772	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
 773	/* ResetSyncOffset = 6 */
 774	__phy_write(phydev, 0x11, 0x600);
 775	__phy_write(phydev, 0x12, 0x0);
 776	__phy_write(phydev, 0x10, 0x8fc0);
 777
 778	/* VgaDecRate = 1 */
 779	__phy_write(phydev, 0x11, 0x4c2a);
 780	__phy_write(phydev, 0x12, 0x3e);
 781	__phy_write(phydev, 0x10, 0x8fa4);
 782
 783	/* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
 784	 * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
 785	 */
 786	__phy_write(phydev, 0x11, 0xd10a);
 787	__phy_write(phydev, 0x12, 0x34);
 788	__phy_write(phydev, 0x10, 0x8f82);
 789
 790	/* VcoSlicerThreshBitsHigh */
 791	__phy_write(phydev, 0x11, 0x5555);
 792	__phy_write(phydev, 0x12, 0x55);
 793	__phy_write(phydev, 0x10, 0x8ec0);
 794	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 795
 796	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9 */
 797	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
 798		       MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
 799		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
 800
 801	/* rg_tr_lpf_cnt_val = 512 */
 802	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
 803
 804	/* IIR2 related */
 805	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
 806	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
 807	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
 808	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
 809	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
 810	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
 811	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
 812	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
 813	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
 814	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
 815
 816	/* FFE peaking */
 817	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
 818		       MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
 819	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
 820		       MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
 821
 822	/* Disable LDO pump */
 823	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
 824	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
 825	/* Adjust LDO output voltage */
 826	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
 827}
 828
 829static void mt7988_phy_finetune(struct phy_device *phydev)
 830{
 831	u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
 832			0x020d, 0x0206, 0x0384, 0x03d0,
 833			0x03c6, 0x030a, 0x0011, 0x0005 };
 834	int i;
 835
 836	/* Set default MLT3 shaper first */
 837	for (i = 0; i < 12; i++)
 838		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
 839
 840	/* TCT finetune */
 841	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
 842
 843	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
 844	/* ResetSyncOffset = 5 */
 845	__phy_write(phydev, 0x11, 0x500);
 846	__phy_write(phydev, 0x12, 0x0);
 847	__phy_write(phydev, 0x10, 0x8fc0);
 848
 849	/* VgaDecRate is 1 at default on mt7988 */
 850
 851	/* MrvlTrFix100Kp = 6, MrvlTrFix100Kf = 7,
 852	 * MrvlTrFix1000Kp = 6, MrvlTrFix1000Kf = 7
 853	 */
 854	__phy_write(phydev, 0x11, 0xb90a);
 855	__phy_write(phydev, 0x12, 0x6f);
 856	__phy_write(phydev, 0x10, 0x8f82);
 857
 858	/* RemAckCntLimitCtrl = 1 */
 859	__phy_write(phydev, 0x11, 0xfbba);
 860	__phy_write(phydev, 0x12, 0xc3);
 861	__phy_write(phydev, 0x10, 0x87f8);
 862
 863	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 864
 865	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 10 */
 866	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
 867		       MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
 868		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0xa));
 869
 870	/* rg_tr_lpf_cnt_val = 1023 */
 871	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x3ff);
 872}
 873
 874static void mt798x_phy_eee(struct phy_device *phydev)
 875{
 876	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
 877		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
 878		       MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
 879		       MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
 880		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
 881		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
 882
 883	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
 884		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
 885		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
 886		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
 887				  0xff));
 888
 889	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 890			   MTK_PHY_RG_TESTMUX_ADC_CTRL,
 891			   MTK_PHY_RG_TXEN_DIG_MASK);
 892
 893	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
 894			 MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
 895
 896	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
 897			   MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
 898
 899	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
 900		       MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
 901		       MTK_PHY_LPI_SLV_SEND_TX_EN,
 902		       FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
 903
 904	/* Keep MTK_PHY_LPI_SEND_LOC_TIMER as 375 */
 905	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
 906			   MTK_PHY_LPI_TXPCS_LOC_RCV);
 907
 908	/* This also fixes some IoT issues, such as CH340 */
 909	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
 910		       MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
 911		       FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
 912		       FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
 913
 914	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
 915		       MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
 916		       FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
 917				  0x33) |
 918		       MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
 919		       MTK_PHY_LPI_VCO_EEE_STG0_EN);
 920
 921	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
 922			 MTK_PHY_EEE_WAKE_MAS_INT_DC |
 923			 MTK_PHY_EEE_WAKE_SLV_INT_DC);
 924
 925	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
 926		       MTK_PHY_SMI_DETCNT_MAX_MASK,
 927		       FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
 928		       MTK_PHY_SMI_DET_MAX_EN);
 929
 930	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
 931			 MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
 932			 MTK_PHY_TREC_UPDATE_ENAB_CLR |
 933			 MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
 934			 MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
 935
 936	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
 937	/* Regsigdet_sel_1000 = 0 */
 938	__phy_write(phydev, 0x11, 0xb);
 939	__phy_write(phydev, 0x12, 0x0);
 940	__phy_write(phydev, 0x10, 0x9690);
 941
 942	/* REG_EEE_st2TrKf1000 = 2 */
 943	__phy_write(phydev, 0x11, 0x114f);
 944	__phy_write(phydev, 0x12, 0x2);
 945	__phy_write(phydev, 0x10, 0x969a);
 946
 947	/* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
 948	__phy_write(phydev, 0x11, 0x3028);
 949	__phy_write(phydev, 0x12, 0x0);
 950	__phy_write(phydev, 0x10, 0x969e);
 951
 952	/* RegEEE_slv_wake_int_timer_tar = 8 */
 953	__phy_write(phydev, 0x11, 0x5010);
 954	__phy_write(phydev, 0x12, 0x0);
 955	__phy_write(phydev, 0x10, 0x96a0);
 956
 957	/* RegEEE_trfreeze_timer2 = 586 */
 958	__phy_write(phydev, 0x11, 0x24a);
 959	__phy_write(phydev, 0x12, 0x0);
 960	__phy_write(phydev, 0x10, 0x96a8);
 961
 962	/* RegEEE100Stg1_tar = 16 */
 963	__phy_write(phydev, 0x11, 0x3210);
 964	__phy_write(phydev, 0x12, 0x0);
 965	__phy_write(phydev, 0x10, 0x96b8);
 966
 967	/* REGEEE_wake_slv_tr_wait_dfesigdet_en = 0 */
 968	__phy_write(phydev, 0x11, 0x1463);
 969	__phy_write(phydev, 0x12, 0x0);
 970	__phy_write(phydev, 0x10, 0x96ca);
 971
 972	/* DfeTailEnableVgaThresh1000 = 27 */
 973	__phy_write(phydev, 0x11, 0x36);
 974	__phy_write(phydev, 0x12, 0x0);
 975	__phy_write(phydev, 0x10, 0x8f80);
 976	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 977
 978	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
 979	__phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
 980		     FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
 981
 982	__phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
 983		     FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
 984	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
 985
 986	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
 987		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
 988		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
 989		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff));
 990}
 991
 992static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
 993		  u8 start_pair, u8 end_pair)
 994{
 995	u8 pair_n;
 996	int ret;
 997
 998	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
 999		/* TX_OFFSET & TX_AMP have no SW calibration. */
1000		switch (cal_item) {
1001		case TX_VCM:
1002			ret = tx_vcm_cal_sw(phydev, pair_n);
1003			break;
1004		default:
1005			return -EINVAL;
1006		}
1007		if (ret)
1008			return ret;
1009	}
1010	return 0;
1011}
1012
1013static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
1014		     u8 start_pair, u8 end_pair, u32 *buf)
1015{
1016	u8 pair_n;
1017	int ret;
1018
1019	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
1020		/* TX_VCM has no efuse calibration. */
1021		switch (cal_item) {
1022		case REXT:
1023			ret = rext_cal_efuse(phydev, buf);
1024			break;
1025		case TX_OFFSET:
1026			ret = tx_offset_cal_efuse(phydev, buf);
1027			break;
1028		case TX_AMP:
1029			ret = tx_amp_cal_efuse(phydev, buf);
1030			break;
1031		case TX_R50:
1032			ret = tx_r50_cal_efuse(phydev, buf, pair_n);
1033			break;
1034		default:
1035			return -EINVAL;
1036		}
1037		if (ret)
1038			return ret;
1039	}
1040
1041	return 0;
1042}
1043
1044static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
1045		     enum CAL_MODE cal_mode, u8 start_pair,
1046		     u8 end_pair, u32 *buf)
1047{
1048	int ret;
1049
1050	switch (cal_mode) {
1051	case EFUSE_M:
1052		ret = cal_efuse(phydev, cal_item, start_pair,
1053				end_pair, buf);
1054		break;
1055	case SW_M:
1056		ret = cal_sw(phydev, cal_item, start_pair, end_pair);
1057		break;
1058	default:
1059		return -EINVAL;
1060	}
1061
1062	if (ret) {
1063		phydev_err(phydev, "cal %d failed\n", cal_item);
1064		return -EIO;
1065	}
1066
1067	return 0;
1068}
1069
1070static int mt798x_phy_calibration(struct phy_device *phydev)
1071{
1072	int ret = 0;
1073	u32 *buf;
1074	size_t len;
1075	struct nvmem_cell *cell;
1076
1077	cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
1078	if (IS_ERR(cell)) {
1079		if (PTR_ERR(cell) == -EPROBE_DEFER)
1080			return PTR_ERR(cell);
1081		return 0;
1082	}
1083
1084	buf = (u32 *)nvmem_cell_read(cell, &len);
1085	if (IS_ERR(buf))
1086		return PTR_ERR(buf);
1087	nvmem_cell_put(cell);
1088
1089	if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
1090		phydev_err(phydev, "invalid efuse data\n");
1091		ret = -EINVAL;
1092		goto out;
1093	}
1094
1095	ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1096	if (ret)
1097		goto out;
1098	ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1099	if (ret)
1100		goto out;
1101	ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1102	if (ret)
1103		goto out;
1104	ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
1105	if (ret)
1106		goto out;
1107	ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
1108	if (ret)
1109		goto out;
1110
1111out:
1112	kfree(buf);
1113	return ret;
1114}
1115
1116static int mt798x_phy_config_init(struct phy_device *phydev)
1117{
1118	switch (phydev->drv->phy_id) {
1119	case MTK_GPHY_ID_MT7981:
1120		mt7981_phy_finetune(phydev);
1121		break;
1122	case MTK_GPHY_ID_MT7988:
1123		mt7988_phy_finetune(phydev);
1124		break;
1125	}
1126
1127	mt798x_phy_common_finetune(phydev);
1128	mt798x_phy_eee(phydev);
1129
1130	return mt798x_phy_calibration(phydev);
1131}
1132
1133static int mt798x_phy_hw_led_on_set(struct phy_device *phydev, u8 index,
1134				    bool on)
1135{
1136	unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1137	struct mtk_socphy_priv *priv = phydev->priv;
1138	bool changed;
1139
1140	if (on)
1141		changed = !test_and_set_bit(bit_on, &priv->led_state);
1142	else
1143		changed = !!test_and_clear_bit(bit_on, &priv->led_state);
1144
1145	changed |= !!test_and_clear_bit(MTK_PHY_LED_STATE_NETDEV +
1146					(index ? 16 : 0), &priv->led_state);
1147	if (changed)
1148		return phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1149				      MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1150				      MTK_PHY_LED_ON_MASK,
1151				      on ? MTK_PHY_LED_ON_FORCE_ON : 0);
1152	else
1153		return 0;
1154}
1155
1156static int mt798x_phy_hw_led_blink_set(struct phy_device *phydev, u8 index,
1157				       bool blinking)
1158{
1159	unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1160	struct mtk_socphy_priv *priv = phydev->priv;
1161	bool changed;
1162
1163	if (blinking)
1164		changed = !test_and_set_bit(bit_blink, &priv->led_state);
1165	else
1166		changed = !!test_and_clear_bit(bit_blink, &priv->led_state);
1167
1168	changed |= !!test_bit(MTK_PHY_LED_STATE_NETDEV +
1169			      (index ? 16 : 0), &priv->led_state);
1170	if (changed)
1171		return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1172				     MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL,
1173				     blinking ? MTK_PHY_LED_BLINK_FORCE_BLINK : 0);
1174	else
1175		return 0;
1176}
1177
1178static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index,
1179				    unsigned long *delay_on,
1180				    unsigned long *delay_off)
1181{
1182	bool blinking = false;
1183	int err = 0;
1184
1185	if (index > 1)
1186		return -EINVAL;
1187
1188	if (delay_on && delay_off && (*delay_on > 0) && (*delay_off > 0)) {
1189		blinking = true;
1190		*delay_on = 50;
1191		*delay_off = 50;
1192	}
1193
1194	err = mt798x_phy_hw_led_blink_set(phydev, index, blinking);
1195	if (err)
1196		return err;
1197
1198	return mt798x_phy_hw_led_on_set(phydev, index, false);
1199}
1200
1201static int mt798x_phy_led_brightness_set(struct phy_device *phydev,
1202					 u8 index, enum led_brightness value)
1203{
1204	int err;
1205
1206	err = mt798x_phy_hw_led_blink_set(phydev, index, false);
1207	if (err)
1208		return err;
1209
1210	return mt798x_phy_hw_led_on_set(phydev, index, (value != LED_OFF));
1211}
1212
1213static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_FULL_DUPLEX) |
1214						 BIT(TRIGGER_NETDEV_HALF_DUPLEX) |
1215						 BIT(TRIGGER_NETDEV_LINK)        |
1216						 BIT(TRIGGER_NETDEV_LINK_10)     |
1217						 BIT(TRIGGER_NETDEV_LINK_100)    |
1218						 BIT(TRIGGER_NETDEV_LINK_1000)   |
1219						 BIT(TRIGGER_NETDEV_RX)          |
1220						 BIT(TRIGGER_NETDEV_TX));
1221
1222static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index,
1223					  unsigned long rules)
1224{
1225	if (index > 1)
1226		return -EINVAL;
1227
1228	/* All combinations of the supported triggers are allowed */
1229	if (rules & ~supported_triggers)
1230		return -EOPNOTSUPP;
1231
1232	return 0;
1233};
1234
1235static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index,
1236					 unsigned long *rules)
1237{
1238	unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1239	unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1240	unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1241	struct mtk_socphy_priv *priv = phydev->priv;
1242	int on, blink;
1243
1244	if (index > 1)
1245		return -EINVAL;
1246
1247	on = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1248			  index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL);
1249
1250	if (on < 0)
1251		return -EIO;
1252
1253	blink = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1254			     index ? MTK_PHY_LED1_BLINK_CTRL :
1255				     MTK_PHY_LED0_BLINK_CTRL);
1256	if (blink < 0)
1257		return -EIO;
1258
1259	if ((on & (MTK_PHY_LED_ON_LINK | MTK_PHY_LED_ON_FDX | MTK_PHY_LED_ON_HDX |
1260		   MTK_PHY_LED_ON_LINKDOWN)) ||
1261	    (blink & (MTK_PHY_LED_BLINK_RX | MTK_PHY_LED_BLINK_TX)))
1262		set_bit(bit_netdev, &priv->led_state);
1263	else
1264		clear_bit(bit_netdev, &priv->led_state);
1265
1266	if (on & MTK_PHY_LED_ON_FORCE_ON)
1267		set_bit(bit_on, &priv->led_state);
1268	else
1269		clear_bit(bit_on, &priv->led_state);
1270
1271	if (blink & MTK_PHY_LED_BLINK_FORCE_BLINK)
1272		set_bit(bit_blink, &priv->led_state);
1273	else
1274		clear_bit(bit_blink, &priv->led_state);
1275
1276	if (!rules)
1277		return 0;
1278
1279	if (on & MTK_PHY_LED_ON_LINK)
1280		*rules |= BIT(TRIGGER_NETDEV_LINK);
1281
1282	if (on & MTK_PHY_LED_ON_LINK10)
1283		*rules |= BIT(TRIGGER_NETDEV_LINK_10);
1284
1285	if (on & MTK_PHY_LED_ON_LINK100)
1286		*rules |= BIT(TRIGGER_NETDEV_LINK_100);
1287
1288	if (on & MTK_PHY_LED_ON_LINK1000)
1289		*rules |= BIT(TRIGGER_NETDEV_LINK_1000);
1290
1291	if (on & MTK_PHY_LED_ON_FDX)
1292		*rules |= BIT(TRIGGER_NETDEV_FULL_DUPLEX);
1293
1294	if (on & MTK_PHY_LED_ON_HDX)
1295		*rules |= BIT(TRIGGER_NETDEV_HALF_DUPLEX);
1296
1297	if (blink & MTK_PHY_LED_BLINK_RX)
1298		*rules |= BIT(TRIGGER_NETDEV_RX);
1299
1300	if (blink & MTK_PHY_LED_BLINK_TX)
1301		*rules |= BIT(TRIGGER_NETDEV_TX);
1302
1303	return 0;
1304};
1305
1306static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index,
1307					 unsigned long rules)
1308{
1309	unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1310	struct mtk_socphy_priv *priv = phydev->priv;
1311	u16 on = 0, blink = 0;
1312	int ret;
1313
1314	if (index > 1)
1315		return -EINVAL;
1316
1317	if (rules & BIT(TRIGGER_NETDEV_FULL_DUPLEX))
1318		on |= MTK_PHY_LED_ON_FDX;
1319
1320	if (rules & BIT(TRIGGER_NETDEV_HALF_DUPLEX))
1321		on |= MTK_PHY_LED_ON_HDX;
1322
1323	if (rules & (BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK)))
1324		on |= MTK_PHY_LED_ON_LINK10;
1325
1326	if (rules & (BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK)))
1327		on |= MTK_PHY_LED_ON_LINK100;
1328
1329	if (rules & (BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_LINK)))
1330		on |= MTK_PHY_LED_ON_LINK1000;
1331
1332	if (rules & BIT(TRIGGER_NETDEV_RX)) {
1333		blink |= (on & MTK_PHY_LED_ON_LINK) ?
1334			  (((on & MTK_PHY_LED_ON_LINK10) ? MTK_PHY_LED_BLINK_10RX : 0) |
1335			   ((on & MTK_PHY_LED_ON_LINK100) ? MTK_PHY_LED_BLINK_100RX : 0) |
1336			   ((on & MTK_PHY_LED_ON_LINK1000) ? MTK_PHY_LED_BLINK_1000RX : 0)) :
1337			  MTK_PHY_LED_BLINK_RX;
1338	}
1339
1340	if (rules & BIT(TRIGGER_NETDEV_TX)) {
1341		blink |= (on & MTK_PHY_LED_ON_LINK) ?
1342			  (((on & MTK_PHY_LED_ON_LINK10) ? MTK_PHY_LED_BLINK_10TX : 0) |
1343			   ((on & MTK_PHY_LED_ON_LINK100) ? MTK_PHY_LED_BLINK_100TX : 0) |
1344			   ((on & MTK_PHY_LED_ON_LINK1000) ? MTK_PHY_LED_BLINK_1000TX : 0)) :
1345			  MTK_PHY_LED_BLINK_TX;
1346	}
1347
1348	if (blink || on)
1349		set_bit(bit_netdev, &priv->led_state);
1350	else
1351		clear_bit(bit_netdev, &priv->led_state);
1352
1353	ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1354				MTK_PHY_LED1_ON_CTRL :
1355				MTK_PHY_LED0_ON_CTRL,
1356			     MTK_PHY_LED_ON_FDX     |
1357			     MTK_PHY_LED_ON_HDX     |
1358			     MTK_PHY_LED_ON_LINK,
1359			     on);
1360
1361	if (ret)
1362		return ret;
1363
1364	return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1365				MTK_PHY_LED1_BLINK_CTRL :
1366				MTK_PHY_LED0_BLINK_CTRL, blink);
1367};
1368
1369static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num)
1370{
1371	struct mtk_socphy_shared *priv = phydev->shared->priv;
1372	u32 polarities;
1373
1374	if (led_num == 0)
1375		polarities = ~(priv->boottrap);
1376	else
1377		polarities = MTK_PHY_LED1_DEFAULT_POLARITIES;
1378
1379	if (polarities & BIT(phydev->mdio.addr))
1380		return true;
1381
1382	return false;
1383}
1384
1385static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev)
1386{
1387	struct pinctrl *pinctrl;
1388	int index;
1389
1390	/* Setup LED polarity according to bootstrap use of LED pins */
1391	for (index = 0; index < 2; ++index)
1392		phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1393				MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1394			       MTK_PHY_LED_ON_POLARITY,
1395			       mt7988_phy_led_get_polarity(phydev, index) ?
1396				MTK_PHY_LED_ON_POLARITY : 0);
1397
1398	/* Only now setup pinctrl to avoid bogus blinking */
1399	pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
1400	if (IS_ERR(pinctrl))
1401		dev_err(&phydev->mdio.bus->dev, "Failed to setup PHY LED pinctrl\n");
1402
1403	return 0;
1404}
1405
1406static int mt7988_phy_probe_shared(struct phy_device *phydev)
1407{
1408	struct device_node *np = dev_of_node(&phydev->mdio.bus->dev);
1409	struct mtk_socphy_shared *shared = phydev->shared->priv;
1410	struct regmap *regmap;
1411	u32 reg;
1412	int ret;
1413
1414	/* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B,
1415	 * LED_C and LED_D respectively. At the same time those pins are used to
1416	 * bootstrap configuration of the reference clock source (LED_A),
1417	 * DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D).
1418	 * In practise this is done using a LED and a resistor pulling the pin
1419	 * either to GND or to VIO.
1420	 * The detected value at boot time is accessible at run-time using the
1421	 * TPBANK0 register located in the gpio base of the pinctrl, in order
1422	 * to read it here it needs to be referenced by a phandle called
1423	 * 'mediatek,pio' in the MDIO bus hosting the PHY.
1424	 * The 4 bits in TPBANK0 are kept as package shared data and are used to
1425	 * set LED polarity for each of the LED0.
1426	 */
1427	regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio");
1428	if (IS_ERR(regmap))
1429		return PTR_ERR(regmap);
1430
1431	ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, &reg);
1432	if (ret)
1433		return ret;
1434
1435	shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg);
1436
1437	return 0;
1438}
1439
1440static void mt798x_phy_leds_state_init(struct phy_device *phydev)
1441{
1442	int i;
1443
1444	for (i = 0; i < 2; ++i)
1445		mt798x_phy_led_hw_control_get(phydev, i, NULL);
1446}
1447
1448static int mt7988_phy_probe(struct phy_device *phydev)
1449{
1450	struct mtk_socphy_shared *shared;
1451	struct mtk_socphy_priv *priv;
1452	int err;
1453
1454	if (phydev->mdio.addr > 3)
1455		return -EINVAL;
1456
1457	err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
1458				    sizeof(struct mtk_socphy_shared));
1459	if (err)
1460		return err;
1461
1462	if (phy_package_probe_once(phydev)) {
1463		err = mt7988_phy_probe_shared(phydev);
1464		if (err)
1465			return err;
1466	}
1467
1468	shared = phydev->shared->priv;
1469	priv = &shared->priv[phydev->mdio.addr];
1470
1471	phydev->priv = priv;
1472
1473	mt798x_phy_leds_state_init(phydev);
1474
1475	err = mt7988_phy_fix_leds_polarities(phydev);
1476	if (err)
1477		return err;
1478
1479	/* Disable TX power saving at probing to:
1480	 * 1. Meet common mode compliance test criteria
1481	 * 2. Make sure that TX-VCM calibration works fine
1482	 */
1483	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
1484		       MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
1485
1486	return mt798x_phy_calibration(phydev);
1487}
1488
1489static int mt7981_phy_probe(struct phy_device *phydev)
1490{
1491	struct mtk_socphy_priv *priv;
1492
1493	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv),
1494			    GFP_KERNEL);
1495	if (!priv)
1496		return -ENOMEM;
1497
1498	phydev->priv = priv;
1499
1500	mt798x_phy_leds_state_init(phydev);
1501
1502	return mt798x_phy_calibration(phydev);
1503}
1504
1505static struct phy_driver mtk_socphy_driver[] = {
1506	{
1507		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
1508		.name		= "MediaTek MT7981 PHY",
1509		.config_init	= mt798x_phy_config_init,
1510		.config_intr	= genphy_no_config_intr,
1511		.handle_interrupt = genphy_handle_interrupt_no_ack,
1512		.probe		= mt7981_phy_probe,
1513		.suspend	= genphy_suspend,
1514		.resume		= genphy_resume,
1515		.read_page	= mtk_socphy_read_page,
1516		.write_page	= mtk_socphy_write_page,
1517		.led_blink_set	= mt798x_phy_led_blink_set,
1518		.led_brightness_set = mt798x_phy_led_brightness_set,
1519		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1520		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1521		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1522	},
1523	{
1524		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
1525		.name		= "MediaTek MT7988 PHY",
1526		.config_init	= mt798x_phy_config_init,
1527		.config_intr	= genphy_no_config_intr,
1528		.handle_interrupt = genphy_handle_interrupt_no_ack,
1529		.probe		= mt7988_phy_probe,
1530		.suspend	= genphy_suspend,
1531		.resume		= genphy_resume,
1532		.read_page	= mtk_socphy_read_page,
1533		.write_page	= mtk_socphy_write_page,
1534		.led_blink_set	= mt798x_phy_led_blink_set,
1535		.led_brightness_set = mt798x_phy_led_brightness_set,
1536		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1537		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1538		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1539	},
1540};
1541
1542module_phy_driver(mtk_socphy_driver);
1543
1544static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
1545	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
1546	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
1547	{ }
1548};
1549
1550MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
1551MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
1552MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
1553MODULE_LICENSE("GPL");
1554
1555MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);