Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Windfarm PowerMac thermal control. iMac G5
  3 *
  4 * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
  5 *                    <benh@kernel.crashing.org>
  6 *
  7 * Released under the term of the GNU GPL v2.
  8 *
  9 * The algorithm used is the PID control algorithm, used the same
 10 * way the published Darwin code does, using the same values that
 11 * are present in the Darwin 8.2 snapshot property lists (note however
 12 * that none of the code has been re-used, it's a complete re-implementation
 13 *
 14 * The various control loops found in Darwin config file are:
 15 *
 16 * PowerMac8,1 and PowerMac8,2
 17 * ===========================
 18 *
 19 * System Fans control loop. Different based on models. In addition to the
 20 * usual PID algorithm, the control loop gets 2 additional pairs of linear
 21 * scaling factors (scale/offsets) expressed as 4.12 fixed point values
 22 * signed offset, unsigned scale)
 23 *
 24 * The targets are modified such as:
 25 *  - the linked control (second control) gets the target value as-is
 26 *    (typically the drive fan)
 27 *  - the main control (first control) gets the target value scaled with
 28 *    the first pair of factors, and is then modified as below
 29 *  - the value of the target of the CPU Fan control loop is retrieved,
 30 *    scaled with the second pair of factors, and the max of that and
 31 *    the scaled target is applied to the main control.
 32 *
 33 * # model_id: 2
 34 *   controls       : system-fan, drive-bay-fan
 35 *   sensors        : hd-temp
 36 *   PID params     : G_d = 0x15400000
 37 *                    G_p = 0x00200000
 38 *                    G_r = 0x000002fd
 39 *                    History = 2 entries
 40 *                    Input target = 0x3a0000
 41 *                    Interval = 5s
 42 *   linear-factors : offset = 0xff38 scale  = 0x0ccd
 43 *                    offset = 0x0208 scale  = 0x07ae
 44 *
 45 * # model_id: 3
 46 *   controls       : system-fan, drive-bay-fan
 47 *   sensors        : hd-temp
 48 *   PID params     : G_d = 0x08e00000
 49 *                    G_p = 0x00566666
 50 *                    G_r = 0x0000072b
 51 *                    History = 2 entries
 52 *                    Input target = 0x350000
 53 *                    Interval = 5s
 54 *   linear-factors : offset = 0xff38 scale  = 0x0ccd
 55 *                    offset = 0x0000 scale  = 0x0000
 56 *
 57 * # model_id: 5
 58 *   controls       : system-fan
 59 *   sensors        : hd-temp
 60 *   PID params     : G_d = 0x15400000
 61 *                    G_p = 0x00233333
 62 *                    G_r = 0x000002fd
 63 *                    History = 2 entries
 64 *                    Input target = 0x3a0000
 65 *                    Interval = 5s
 66 *   linear-factors : offset = 0x0000 scale  = 0x1000
 67 *                    offset = 0x0091 scale  = 0x0bae
 68 *
 69 * CPU Fan control loop. The loop is identical for all models. it
 70 * has an additional pair of scaling factor. This is used to scale the
 71 * systems fan control loop target result (the one before it gets scaled
 72 * by the System Fans control loop itself). Then, the max value of the
 73 * calculated target value and system fan value is sent to the fans
 74 *
 75 *   controls       : cpu-fan
 76 *   sensors        : cpu-temp cpu-power
 77 *   PID params     : From SMU sdb partition
 78 *   linear-factors : offset = 0xfb50 scale  = 0x1000
 79 *
 80 * CPU Slew control loop. Not implemented. The cpufreq driver in linux is
 81 * completely separate for now, though we could find a way to link it, either
 82 * as a client reacting to overtemp notifications, or directling monitoring
 83 * the CPU temperature
 84 *
 85 * WARNING ! The CPU control loop requires the CPU tmax for the current
 86 * operating point. However, we currently are completely separated from
 87 * the cpufreq driver and thus do not know what the current operating
 88 * point is. Fortunately, we also do not have any hardware supporting anything
 89 * but operating point 0 at the moment, thus we just peek that value directly
 90 * from the SDB partition. If we ever end up with actually slewing the system
 91 * clock and thus changing operating points, we'll have to find a way to
 92 * communicate with the CPU freq driver;
 93 *
 94 */
 95
 96#include <linux/types.h>
 97#include <linux/errno.h>
 98#include <linux/kernel.h>
 99#include <linux/delay.h>
100#include <linux/slab.h>
101#include <linux/init.h>
102#include <linux/spinlock.h>
103#include <linux/wait.h>
104#include <linux/kmod.h>
105#include <linux/device.h>
106#include <linux/platform_device.h>
107#include <asm/prom.h>
 
108#include <asm/machdep.h>
109#include <asm/io.h>
110#include <asm/system.h>
111#include <asm/sections.h>
112#include <asm/smu.h>
113
114#include "windfarm.h"
115#include "windfarm_pid.h"
116
117#define VERSION "0.4"
118
119#undef DEBUG
120
121#ifdef DEBUG
122#define DBG(args...)	printk(args)
123#else
124#define DBG(args...)	do { } while(0)
125#endif
126
127/* define this to force CPU overtemp to 74 degree, useful for testing
128 * the overtemp code
129 */
130#undef HACKED_OVERTEMP
131
132static int wf_smu_mach_model;	/* machine model id */
133
134/* Controls & sensors */
135static struct wf_sensor	*sensor_cpu_power;
136static struct wf_sensor	*sensor_cpu_temp;
137static struct wf_sensor	*sensor_hd_temp;
138static struct wf_control *fan_cpu_main;
139static struct wf_control *fan_hd;
140static struct wf_control *fan_system;
141static struct wf_control *cpufreq_clamp;
142
143/* Set to kick the control loop into life */
144static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
 
145
146/* Failure handling.. could be nicer */
147#define FAILURE_FAN		0x01
148#define FAILURE_SENSOR		0x02
149#define FAILURE_OVERTEMP	0x04
150
151static unsigned int wf_smu_failure_state;
152static int wf_smu_readjust, wf_smu_skipping;
 
153
154/*
155 * ****** System Fans Control Loop ******
156 *
157 */
158
159/* Parameters for the System Fans control loop. Parameters
160 * not in this table such as interval, history size, ...
161 * are common to all versions and thus hard coded for now.
162 */
163struct wf_smu_sys_fans_param {
164	int	model_id;
165	s32	itarget;
166	s32	gd, gp, gr;
167
168	s16	offset0;
169	u16	scale0;
170	s16	offset1;
171	u16	scale1;
172};
173
174#define WF_SMU_SYS_FANS_INTERVAL	5
175#define WF_SMU_SYS_FANS_HISTORY_SIZE	2
176
177/* State data used by the system fans control loop
178 */
179struct wf_smu_sys_fans_state {
180	int			ticks;
181	s32			sys_setpoint;
182	s32			hd_setpoint;
183	s16			offset0;
184	u16			scale0;
185	s16			offset1;
186	u16			scale1;
187	struct wf_pid_state	pid;
188};
189
190/*
191 * Configs for SMU System Fan control loop
192 */
193static struct wf_smu_sys_fans_param wf_smu_sys_all_params[] = {
194	/* Model ID 2 */
195	{
196		.model_id	= 2,
197		.itarget	= 0x3a0000,
198		.gd		= 0x15400000,
199		.gp		= 0x00200000,
200		.gr		= 0x000002fd,
201		.offset0	= 0xff38,
202		.scale0		= 0x0ccd,
203		.offset1	= 0x0208,
204		.scale1		= 0x07ae,
205	},
206	/* Model ID 3 */
207	{
208		.model_id	= 3,
209		.itarget	= 0x350000,
210		.gd		= 0x08e00000,
211		.gp		= 0x00566666,
212		.gr		= 0x0000072b,
213		.offset0	= 0xff38,
214		.scale0		= 0x0ccd,
215		.offset1	= 0x0000,
216		.scale1		= 0x0000,
217	},
218	/* Model ID 5 */
219	{
220		.model_id	= 5,
221		.itarget	= 0x3a0000,
222		.gd		= 0x15400000,
223		.gp		= 0x00233333,
224		.gr		= 0x000002fd,
225		.offset0	= 0x0000,
226		.scale0		= 0x1000,
227		.offset1	= 0x0091,
228		.scale1		= 0x0bae,
229	},
230};
231#define WF_SMU_SYS_FANS_NUM_CONFIGS ARRAY_SIZE(wf_smu_sys_all_params)
232
233static struct wf_smu_sys_fans_state *wf_smu_sys_fans;
234
235/*
236 * ****** CPU Fans Control Loop ******
237 *
238 */
239
240
241#define WF_SMU_CPU_FANS_INTERVAL	1
242#define WF_SMU_CPU_FANS_MAX_HISTORY	16
243#define WF_SMU_CPU_FANS_SIBLING_SCALE	0x00001000
244#define WF_SMU_CPU_FANS_SIBLING_OFFSET	0xfffffb50
245
246/* State data used by the cpu fans control loop
247 */
248struct wf_smu_cpu_fans_state {
249	int			ticks;
250	s32			cpu_setpoint;
251	s32			scale;
252	s32			offset;
253	struct wf_cpu_pid_state	pid;
254};
255
256static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
257
258
259
260/*
261 * ***** Implementation *****
262 *
263 */
264
265static void wf_smu_create_sys_fans(void)
266{
267	struct wf_smu_sys_fans_param *param = NULL;
268	struct wf_pid_param pid_param;
269	int i;
270
271	/* First, locate the params for this model */
272	for (i = 0; i < WF_SMU_SYS_FANS_NUM_CONFIGS; i++)
273		if (wf_smu_sys_all_params[i].model_id == wf_smu_mach_model) {
274			param = &wf_smu_sys_all_params[i];
275			break;
276		}
277
278	/* No params found, put fans to max */
279	if (param == NULL) {
280		printk(KERN_WARNING "windfarm: System fan config not found "
281		       "for this machine model, max fan speed\n");
282		goto fail;
283	}
284
285	/* Alloc & initialize state */
286	wf_smu_sys_fans = kmalloc(sizeof(struct wf_smu_sys_fans_state),
287				  GFP_KERNEL);
288	if (wf_smu_sys_fans == NULL) {
289		printk(KERN_WARNING "windfarm: Memory allocation error"
290		       " max fan speed\n");
291		goto fail;
292	}
293	wf_smu_sys_fans->ticks = 1;
294	wf_smu_sys_fans->scale0 = param->scale0;
295	wf_smu_sys_fans->offset0 = param->offset0;
296	wf_smu_sys_fans->scale1 = param->scale1;
297	wf_smu_sys_fans->offset1 = param->offset1;
298
299	/* Fill PID params */
300	pid_param.gd = param->gd;
301	pid_param.gp = param->gp;
302	pid_param.gr = param->gr;
303	pid_param.interval = WF_SMU_SYS_FANS_INTERVAL;
304	pid_param.history_len = WF_SMU_SYS_FANS_HISTORY_SIZE;
305	pid_param.itarget = param->itarget;
306	pid_param.min = fan_system->ops->get_min(fan_system);
307	pid_param.max = fan_system->ops->get_max(fan_system);
308	if (fan_hd) {
309		pid_param.min =
310			max(pid_param.min,fan_hd->ops->get_min(fan_hd));
311		pid_param.max =
312			min(pid_param.max,fan_hd->ops->get_max(fan_hd));
313	}
314	wf_pid_init(&wf_smu_sys_fans->pid, &pid_param);
315
316	DBG("wf: System Fan control initialized.\n");
317	DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
318	    FIX32TOPRINT(pid_param.itarget), pid_param.min, pid_param.max);
319	return;
320
321 fail:
322
323	if (fan_system)
324		wf_control_set_max(fan_system);
325	if (fan_hd)
326		wf_control_set_max(fan_hd);
327}
328
329static void wf_smu_sys_fans_tick(struct wf_smu_sys_fans_state *st)
330{
331	s32 new_setpoint, temp, scaled, cputarget;
332	int rc;
333
334	if (--st->ticks != 0) {
335		if (wf_smu_readjust)
336			goto readjust;
337		return;
338	}
339	st->ticks = WF_SMU_SYS_FANS_INTERVAL;
340
341	rc = sensor_hd_temp->ops->get_value(sensor_hd_temp, &temp);
342	if (rc) {
343		printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
344		       rc);
345		wf_smu_failure_state |= FAILURE_SENSOR;
346		return;
347	}
348
349	DBG("wf_smu: System Fans tick ! HD temp: %d.%03d\n",
350	    FIX32TOPRINT(temp));
351
352	if (temp > (st->pid.param.itarget + 0x50000))
353		wf_smu_failure_state |= FAILURE_OVERTEMP;
354
355	new_setpoint = wf_pid_run(&st->pid, temp);
356
357	DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
358
359	scaled = ((((s64)new_setpoint) * (s64)st->scale0) >> 12) + st->offset0;
360
361	DBG("wf_smu: scaled setpoint: %d RPM\n", (int)scaled);
362
363	cputarget = wf_smu_cpu_fans ? wf_smu_cpu_fans->pid.target : 0;
364	cputarget = ((((s64)cputarget) * (s64)st->scale1) >> 12) + st->offset1;
365	scaled = max(scaled, cputarget);
366	scaled = max(scaled, st->pid.param.min);
367	scaled = min(scaled, st->pid.param.max);
368
369	DBG("wf_smu: adjusted setpoint: %d RPM\n", (int)scaled);
370
371	if (st->sys_setpoint == scaled && new_setpoint == st->hd_setpoint)
372		return;
373	st->sys_setpoint = scaled;
374	st->hd_setpoint = new_setpoint;
375 readjust:
376	if (fan_system && wf_smu_failure_state == 0) {
377		rc = fan_system->ops->set_value(fan_system, st->sys_setpoint);
378		if (rc) {
379			printk(KERN_WARNING "windfarm: Sys fan error %d\n",
380			       rc);
381			wf_smu_failure_state |= FAILURE_FAN;
382		}
383	}
384	if (fan_hd && wf_smu_failure_state == 0) {
385		rc = fan_hd->ops->set_value(fan_hd, st->hd_setpoint);
386		if (rc) {
387			printk(KERN_WARNING "windfarm: HD fan error %d\n",
388			       rc);
389			wf_smu_failure_state |= FAILURE_FAN;
390		}
391	}
392}
393
394static void wf_smu_create_cpu_fans(void)
395{
396	struct wf_cpu_pid_param pid_param;
397	const struct smu_sdbp_header *hdr;
398	struct smu_sdbp_cpupiddata *piddata;
399	struct smu_sdbp_fvt *fvt;
400	s32 tmax, tdelta, maxpow, powadj;
401
402	/* First, locate the PID params in SMU SBD */
403	hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
404	if (hdr == 0) {
405		printk(KERN_WARNING "windfarm: CPU PID fan config not found "
406		       "max fan speed\n");
407		goto fail;
408	}
409	piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
410
411	/* Get the FVT params for operating point 0 (the only supported one
412	 * for now) in order to get tmax
413	 */
414	hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
415	if (hdr) {
416		fvt = (struct smu_sdbp_fvt *)&hdr[1];
417		tmax = ((s32)fvt->maxtemp) << 16;
418	} else
419		tmax = 0x5e0000; /* 94 degree default */
420
421	/* Alloc & initialize state */
422	wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
423				  GFP_KERNEL);
424	if (wf_smu_cpu_fans == NULL)
425		goto fail;
426       	wf_smu_cpu_fans->ticks = 1;
427
428	wf_smu_cpu_fans->scale = WF_SMU_CPU_FANS_SIBLING_SCALE;
429	wf_smu_cpu_fans->offset = WF_SMU_CPU_FANS_SIBLING_OFFSET;
430
431	/* Fill PID params */
432	pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
433	pid_param.history_len = piddata->history_len;
434	if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
435		printk(KERN_WARNING "windfarm: History size overflow on "
436		       "CPU control loop (%d)\n", piddata->history_len);
437		pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
438	}
439	pid_param.gd = piddata->gd;
440	pid_param.gp = piddata->gp;
441	pid_param.gr = piddata->gr / pid_param.history_len;
442
443	tdelta = ((s32)piddata->target_temp_delta) << 16;
444	maxpow = ((s32)piddata->max_power) << 16;
445	powadj = ((s32)piddata->power_adj) << 16;
446
447	pid_param.tmax = tmax;
448	pid_param.ttarget = tmax - tdelta;
449	pid_param.pmaxadj = maxpow - powadj;
450
451	pid_param.min = fan_cpu_main->ops->get_min(fan_cpu_main);
452	pid_param.max = fan_cpu_main->ops->get_max(fan_cpu_main);
453
454	wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
455
456	DBG("wf: CPU Fan control initialized.\n");
457	DBG("    ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
458	    FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
459	    pid_param.min, pid_param.max);
460
461	return;
462
463 fail:
464	printk(KERN_WARNING "windfarm: CPU fan config not found\n"
465	       "for this machine model, max fan speed\n");
466
467	if (cpufreq_clamp)
468		wf_control_set_max(cpufreq_clamp);
469	if (fan_cpu_main)
470		wf_control_set_max(fan_cpu_main);
471}
472
473static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
474{
475	s32 new_setpoint, temp, power, systarget;
476	int rc;
477
478	if (--st->ticks != 0) {
479		if (wf_smu_readjust)
480			goto readjust;
481		return;
482	}
483	st->ticks = WF_SMU_CPU_FANS_INTERVAL;
484
485	rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
486	if (rc) {
487		printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
488		       rc);
489		wf_smu_failure_state |= FAILURE_SENSOR;
490		return;
491	}
492
493	rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
494	if (rc) {
495		printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
496		       rc);
497		wf_smu_failure_state |= FAILURE_SENSOR;
498		return;
499	}
500
501	DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
502	    FIX32TOPRINT(temp), FIX32TOPRINT(power));
503
504#ifdef HACKED_OVERTEMP
505	if (temp > 0x4a0000)
506		wf_smu_failure_state |= FAILURE_OVERTEMP;
507#else
508	if (temp > st->pid.param.tmax)
509		wf_smu_failure_state |= FAILURE_OVERTEMP;
510#endif
511	new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
512
513	DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
514
515	systarget = wf_smu_sys_fans ? wf_smu_sys_fans->pid.target : 0;
516	systarget = ((((s64)systarget) * (s64)st->scale) >> 12)
517		+ st->offset;
518	new_setpoint = max(new_setpoint, systarget);
519	new_setpoint = max(new_setpoint, st->pid.param.min);
520	new_setpoint = min(new_setpoint, st->pid.param.max);
521
522	DBG("wf_smu: adjusted setpoint: %d RPM\n", (int)new_setpoint);
523
524	if (st->cpu_setpoint == new_setpoint)
525		return;
526	st->cpu_setpoint = new_setpoint;
527 readjust:
528	if (fan_cpu_main && wf_smu_failure_state == 0) {
529		rc = fan_cpu_main->ops->set_value(fan_cpu_main,
530						  st->cpu_setpoint);
531		if (rc) {
532			printk(KERN_WARNING "windfarm: CPU main fan"
533			       " error %d\n", rc);
534			wf_smu_failure_state |= FAILURE_FAN;
535		}
536	}
537}
538
539/*
540 * ****** Setup / Init / Misc ... ******
541 *
542 */
543
544static void wf_smu_tick(void)
545{
546	unsigned int last_failure = wf_smu_failure_state;
547	unsigned int new_failure;
548
549	if (!wf_smu_started) {
550		DBG("wf: creating control loops !\n");
551		wf_smu_create_sys_fans();
552		wf_smu_create_cpu_fans();
553		wf_smu_started = 1;
554	}
555
556	/* Skipping ticks */
557	if (wf_smu_skipping && --wf_smu_skipping)
558		return;
559
560	wf_smu_failure_state = 0;
561	if (wf_smu_sys_fans)
562		wf_smu_sys_fans_tick(wf_smu_sys_fans);
563	if (wf_smu_cpu_fans)
564		wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
565
566	wf_smu_readjust = 0;
567	new_failure = wf_smu_failure_state & ~last_failure;
568
569	/* If entering failure mode, clamp cpufreq and ramp all
570	 * fans to full speed.
571	 */
572	if (wf_smu_failure_state && !last_failure) {
573		if (cpufreq_clamp)
574			wf_control_set_max(cpufreq_clamp);
575		if (fan_system)
576			wf_control_set_max(fan_system);
577		if (fan_cpu_main)
578			wf_control_set_max(fan_cpu_main);
579		if (fan_hd)
580			wf_control_set_max(fan_hd);
581	}
582
583	/* If leaving failure mode, unclamp cpufreq and readjust
584	 * all fans on next iteration
585	 */
586	if (!wf_smu_failure_state && last_failure) {
587		if (cpufreq_clamp)
588			wf_control_set_min(cpufreq_clamp);
589		wf_smu_readjust = 1;
590	}
591
592	/* Overtemp condition detected, notify and start skipping a couple
593	 * ticks to let the temperature go down
594	 */
595	if (new_failure & FAILURE_OVERTEMP) {
596		wf_set_overtemp();
597		wf_smu_skipping = 2;
 
598	}
599
600	/* We only clear the overtemp condition if overtemp is cleared
601	 * _and_ no other failure is present. Since a sensor error will
602	 * clear the overtemp condition (can't measure temperature) at
603	 * the control loop levels, but we don't want to keep it clear
604	 * here in this case
605	 */
606	if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
607		wf_clear_overtemp();
 
 
608}
609
610static void wf_smu_new_control(struct wf_control *ct)
611{
612	if (wf_smu_all_controls_ok)
613		return;
614
615	if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-fan")) {
616		if (wf_get_control(ct) == 0)
617			fan_cpu_main = ct;
618	}
619
620	if (fan_system == NULL && !strcmp(ct->name, "system-fan")) {
621		if (wf_get_control(ct) == 0)
622			fan_system = ct;
623	}
624
625	if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
626		if (wf_get_control(ct) == 0)
627			cpufreq_clamp = ct;
628	}
629
630	/* Darwin property list says the HD fan is only for model ID
631	 * 0, 1, 2 and 3
632	 */
633
634	if (wf_smu_mach_model > 3) {
635		if (fan_system && fan_cpu_main && cpufreq_clamp)
636			wf_smu_all_controls_ok = 1;
637		return;
638	}
639
640	if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
641		if (wf_get_control(ct) == 0)
642			fan_hd = ct;
643	}
644
645	if (fan_system && fan_hd && fan_cpu_main && cpufreq_clamp)
646		wf_smu_all_controls_ok = 1;
647}
648
649static void wf_smu_new_sensor(struct wf_sensor *sr)
650{
651	if (wf_smu_all_sensors_ok)
652		return;
653
654	if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
655		if (wf_get_sensor(sr) == 0)
656			sensor_cpu_power = sr;
657	}
658
659	if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
660		if (wf_get_sensor(sr) == 0)
661			sensor_cpu_temp = sr;
662	}
663
664	if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
665		if (wf_get_sensor(sr) == 0)
666			sensor_hd_temp = sr;
667	}
668
669	if (sensor_cpu_power && sensor_cpu_temp && sensor_hd_temp)
670		wf_smu_all_sensors_ok = 1;
671}
672
673
674static int wf_smu_notify(struct notifier_block *self,
675			       unsigned long event, void *data)
676{
677	switch(event) {
678	case WF_EVENT_NEW_CONTROL:
679		DBG("wf: new control %s detected\n",
680		    ((struct wf_control *)data)->name);
681		wf_smu_new_control(data);
682		wf_smu_readjust = 1;
683		break;
684	case WF_EVENT_NEW_SENSOR:
685		DBG("wf: new sensor %s detected\n",
686		    ((struct wf_sensor *)data)->name);
687		wf_smu_new_sensor(data);
688		break;
689	case WF_EVENT_TICK:
690		if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
691			wf_smu_tick();
692	}
693
694	return 0;
695}
696
697static struct notifier_block wf_smu_events = {
698	.notifier_call	= wf_smu_notify,
699};
700
701static int wf_init_pm(void)
702{
703	const struct smu_sdbp_header *hdr;
704
705	hdr = smu_get_sdb_partition(SMU_SDB_SENSORTREE_ID, NULL);
706	if (hdr != 0) {
707		struct smu_sdbp_sensortree *st =
708			(struct smu_sdbp_sensortree *)&hdr[1];
709		wf_smu_mach_model = st->model_id;
710	}
711
712	printk(KERN_INFO "windfarm: Initializing for iMacG5 model ID %d\n",
713	       wf_smu_mach_model);
714
715	return 0;
716}
717
718static int wf_smu_probe(struct platform_device *ddev)
719{
720	wf_register_client(&wf_smu_events);
721
722	return 0;
723}
724
725static int __devexit wf_smu_remove(struct platform_device *ddev)
726{
727	wf_unregister_client(&wf_smu_events);
728
729	/* XXX We don't have yet a guarantee that our callback isn't
730	 * in progress when returning from wf_unregister_client, so
731	 * we add an arbitrary delay. I'll have to fix that in the core
732	 */
733	msleep(1000);
734
735	/* Release all sensors */
736	/* One more crappy race: I don't think we have any guarantee here
737	 * that the attribute callback won't race with the sensor beeing
738	 * disposed of, and I'm not 100% certain what best way to deal
739	 * with that except by adding locks all over... I'll do that
740	 * eventually but heh, who ever rmmod this module anyway ?
741	 */
742	if (sensor_cpu_power)
743		wf_put_sensor(sensor_cpu_power);
744	if (sensor_cpu_temp)
745		wf_put_sensor(sensor_cpu_temp);
746	if (sensor_hd_temp)
747		wf_put_sensor(sensor_hd_temp);
748
749	/* Release all controls */
750	if (fan_cpu_main)
751		wf_put_control(fan_cpu_main);
752	if (fan_hd)
753		wf_put_control(fan_hd);
754	if (fan_system)
755		wf_put_control(fan_system);
756	if (cpufreq_clamp)
757		wf_put_control(cpufreq_clamp);
758
759	/* Destroy control loops state structures */
760	kfree(wf_smu_sys_fans);
761	kfree(wf_smu_cpu_fans);
762
763	return 0;
764}
765
766static struct platform_driver wf_smu_driver = {
767        .probe = wf_smu_probe,
768        .remove = __devexit_p(wf_smu_remove),
769	.driver = {
770		.name = "windfarm",
771		.owner	= THIS_MODULE,
772	},
773};
774
775
776static int __init wf_smu_init(void)
777{
778	int rc = -ENODEV;
779
780	if (of_machine_is_compatible("PowerMac8,1") ||
781	    of_machine_is_compatible("PowerMac8,2"))
782		rc = wf_init_pm();
783
784	if (rc == 0) {
785#ifdef MODULE
786		request_module("windfarm_smu_controls");
787		request_module("windfarm_smu_sensors");
788		request_module("windfarm_lm75_sensor");
789		request_module("windfarm_cpufreq_clamp");
790
791#endif /* MODULE */
792		platform_driver_register(&wf_smu_driver);
793	}
794
795	return rc;
796}
797
798static void __exit wf_smu_exit(void)
799{
800
801	platform_driver_unregister(&wf_smu_driver);
802}
803
804
805module_init(wf_smu_init);
806module_exit(wf_smu_exit);
807
808MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
809MODULE_DESCRIPTION("Thermal control logic for iMac G5");
810MODULE_LICENSE("GPL");
811MODULE_ALIAS("platform:windfarm");
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Windfarm PowerMac thermal control. iMac G5
  4 *
  5 * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
  6 *                    <benh@kernel.crashing.org>
  7 *
 
 
  8 * The algorithm used is the PID control algorithm, used the same
  9 * way the published Darwin code does, using the same values that
 10 * are present in the Darwin 8.2 snapshot property lists (note however
 11 * that none of the code has been re-used, it's a complete re-implementation
 12 *
 13 * The various control loops found in Darwin config file are:
 14 *
 15 * PowerMac8,1 and PowerMac8,2
 16 * ===========================
 17 *
 18 * System Fans control loop. Different based on models. In addition to the
 19 * usual PID algorithm, the control loop gets 2 additional pairs of linear
 20 * scaling factors (scale/offsets) expressed as 4.12 fixed point values
 21 * signed offset, unsigned scale)
 22 *
 23 * The targets are modified such as:
 24 *  - the linked control (second control) gets the target value as-is
 25 *    (typically the drive fan)
 26 *  - the main control (first control) gets the target value scaled with
 27 *    the first pair of factors, and is then modified as below
 28 *  - the value of the target of the CPU Fan control loop is retrieved,
 29 *    scaled with the second pair of factors, and the max of that and
 30 *    the scaled target is applied to the main control.
 31 *
 32 * # model_id: 2
 33 *   controls       : system-fan, drive-bay-fan
 34 *   sensors        : hd-temp
 35 *   PID params     : G_d = 0x15400000
 36 *                    G_p = 0x00200000
 37 *                    G_r = 0x000002fd
 38 *                    History = 2 entries
 39 *                    Input target = 0x3a0000
 40 *                    Interval = 5s
 41 *   linear-factors : offset = 0xff38 scale  = 0x0ccd
 42 *                    offset = 0x0208 scale  = 0x07ae
 43 *
 44 * # model_id: 3
 45 *   controls       : system-fan, drive-bay-fan
 46 *   sensors        : hd-temp
 47 *   PID params     : G_d = 0x08e00000
 48 *                    G_p = 0x00566666
 49 *                    G_r = 0x0000072b
 50 *                    History = 2 entries
 51 *                    Input target = 0x350000
 52 *                    Interval = 5s
 53 *   linear-factors : offset = 0xff38 scale  = 0x0ccd
 54 *                    offset = 0x0000 scale  = 0x0000
 55 *
 56 * # model_id: 5
 57 *   controls       : system-fan
 58 *   sensors        : hd-temp
 59 *   PID params     : G_d = 0x15400000
 60 *                    G_p = 0x00233333
 61 *                    G_r = 0x000002fd
 62 *                    History = 2 entries
 63 *                    Input target = 0x3a0000
 64 *                    Interval = 5s
 65 *   linear-factors : offset = 0x0000 scale  = 0x1000
 66 *                    offset = 0x0091 scale  = 0x0bae
 67 *
 68 * CPU Fan control loop. The loop is identical for all models. it
 69 * has an additional pair of scaling factor. This is used to scale the
 70 * systems fan control loop target result (the one before it gets scaled
 71 * by the System Fans control loop itself). Then, the max value of the
 72 * calculated target value and system fan value is sent to the fans
 73 *
 74 *   controls       : cpu-fan
 75 *   sensors        : cpu-temp cpu-power
 76 *   PID params     : From SMU sdb partition
 77 *   linear-factors : offset = 0xfb50 scale  = 0x1000
 78 *
 79 * CPU Slew control loop. Not implemented. The cpufreq driver in linux is
 80 * completely separate for now, though we could find a way to link it, either
 81 * as a client reacting to overtemp notifications, or directling monitoring
 82 * the CPU temperature
 83 *
 84 * WARNING ! The CPU control loop requires the CPU tmax for the current
 85 * operating point. However, we currently are completely separated from
 86 * the cpufreq driver and thus do not know what the current operating
 87 * point is. Fortunately, we also do not have any hardware supporting anything
 88 * but operating point 0 at the moment, thus we just peek that value directly
 89 * from the SDB partition. If we ever end up with actually slewing the system
 90 * clock and thus changing operating points, we'll have to find a way to
 91 * communicate with the CPU freq driver;
 
 92 */
 93
 94#include <linux/types.h>
 95#include <linux/errno.h>
 96#include <linux/kernel.h>
 97#include <linux/delay.h>
 98#include <linux/slab.h>
 99#include <linux/init.h>
100#include <linux/spinlock.h>
101#include <linux/wait.h>
102#include <linux/kmod.h>
103#include <linux/device.h>
104#include <linux/platform_device.h>
105#include <linux/of.h>
106
107#include <asm/machdep.h>
108#include <asm/io.h>
 
109#include <asm/sections.h>
110#include <asm/smu.h>
111
112#include "windfarm.h"
113#include "windfarm_pid.h"
114
115#define VERSION "0.4"
116
117#undef DEBUG
118
119#ifdef DEBUG
120#define DBG(args...)	printk(args)
121#else
122#define DBG(args...)	do { } while(0)
123#endif
124
125/* define this to force CPU overtemp to 74 degree, useful for testing
126 * the overtemp code
127 */
128#undef HACKED_OVERTEMP
129
130static int wf_smu_mach_model;	/* machine model id */
131
132/* Controls & sensors */
133static struct wf_sensor	*sensor_cpu_power;
134static struct wf_sensor	*sensor_cpu_temp;
135static struct wf_sensor	*sensor_hd_temp;
136static struct wf_control *fan_cpu_main;
137static struct wf_control *fan_hd;
138static struct wf_control *fan_system;
139static struct wf_control *cpufreq_clamp;
140
141/* Set to kick the control loop into life */
142static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok;
143static bool wf_smu_started;
144
145/* Failure handling.. could be nicer */
146#define FAILURE_FAN		0x01
147#define FAILURE_SENSOR		0x02
148#define FAILURE_OVERTEMP	0x04
149
150static unsigned int wf_smu_failure_state;
151static int wf_smu_readjust, wf_smu_skipping;
152static bool wf_smu_overtemp;
153
154/*
155 * ****** System Fans Control Loop ******
156 *
157 */
158
159/* Parameters for the System Fans control loop. Parameters
160 * not in this table such as interval, history size, ...
161 * are common to all versions and thus hard coded for now.
162 */
163struct wf_smu_sys_fans_param {
164	int	model_id;
165	s32	itarget;
166	s32	gd, gp, gr;
167
168	s16	offset0;
169	u16	scale0;
170	s16	offset1;
171	u16	scale1;
172};
173
174#define WF_SMU_SYS_FANS_INTERVAL	5
175#define WF_SMU_SYS_FANS_HISTORY_SIZE	2
176
177/* State data used by the system fans control loop
178 */
179struct wf_smu_sys_fans_state {
180	int			ticks;
181	s32			sys_setpoint;
182	s32			hd_setpoint;
183	s16			offset0;
184	u16			scale0;
185	s16			offset1;
186	u16			scale1;
187	struct wf_pid_state	pid;
188};
189
190/*
191 * Configs for SMU System Fan control loop
192 */
193static struct wf_smu_sys_fans_param wf_smu_sys_all_params[] = {
194	/* Model ID 2 */
195	{
196		.model_id	= 2,
197		.itarget	= 0x3a0000,
198		.gd		= 0x15400000,
199		.gp		= 0x00200000,
200		.gr		= 0x000002fd,
201		.offset0	= 0xff38,
202		.scale0		= 0x0ccd,
203		.offset1	= 0x0208,
204		.scale1		= 0x07ae,
205	},
206	/* Model ID 3 */
207	{
208		.model_id	= 3,
209		.itarget	= 0x350000,
210		.gd		= 0x08e00000,
211		.gp		= 0x00566666,
212		.gr		= 0x0000072b,
213		.offset0	= 0xff38,
214		.scale0		= 0x0ccd,
215		.offset1	= 0x0000,
216		.scale1		= 0x0000,
217	},
218	/* Model ID 5 */
219	{
220		.model_id	= 5,
221		.itarget	= 0x3a0000,
222		.gd		= 0x15400000,
223		.gp		= 0x00233333,
224		.gr		= 0x000002fd,
225		.offset0	= 0x0000,
226		.scale0		= 0x1000,
227		.offset1	= 0x0091,
228		.scale1		= 0x0bae,
229	},
230};
231#define WF_SMU_SYS_FANS_NUM_CONFIGS ARRAY_SIZE(wf_smu_sys_all_params)
232
233static struct wf_smu_sys_fans_state *wf_smu_sys_fans;
234
235/*
236 * ****** CPU Fans Control Loop ******
237 *
238 */
239
240
241#define WF_SMU_CPU_FANS_INTERVAL	1
242#define WF_SMU_CPU_FANS_MAX_HISTORY	16
243#define WF_SMU_CPU_FANS_SIBLING_SCALE	0x00001000
244#define WF_SMU_CPU_FANS_SIBLING_OFFSET	0xfffffb50
245
246/* State data used by the cpu fans control loop
247 */
248struct wf_smu_cpu_fans_state {
249	int			ticks;
250	s32			cpu_setpoint;
251	s32			scale;
252	s32			offset;
253	struct wf_cpu_pid_state	pid;
254};
255
256static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
257
258
259
260/*
261 * ***** Implementation *****
262 *
263 */
264
265static void wf_smu_create_sys_fans(void)
266{
267	struct wf_smu_sys_fans_param *param = NULL;
268	struct wf_pid_param pid_param;
269	int i;
270
271	/* First, locate the params for this model */
272	for (i = 0; i < WF_SMU_SYS_FANS_NUM_CONFIGS; i++)
273		if (wf_smu_sys_all_params[i].model_id == wf_smu_mach_model) {
274			param = &wf_smu_sys_all_params[i];
275			break;
276		}
277
278	/* No params found, put fans to max */
279	if (param == NULL) {
280		printk(KERN_WARNING "windfarm: System fan config not found "
281		       "for this machine model, max fan speed\n");
282		goto fail;
283	}
284
285	/* Alloc & initialize state */
286	wf_smu_sys_fans = kmalloc(sizeof(struct wf_smu_sys_fans_state),
287				  GFP_KERNEL);
288	if (wf_smu_sys_fans == NULL) {
289		printk(KERN_WARNING "windfarm: Memory allocation error"
290		       " max fan speed\n");
291		goto fail;
292	}
293	wf_smu_sys_fans->ticks = 1;
294	wf_smu_sys_fans->scale0 = param->scale0;
295	wf_smu_sys_fans->offset0 = param->offset0;
296	wf_smu_sys_fans->scale1 = param->scale1;
297	wf_smu_sys_fans->offset1 = param->offset1;
298
299	/* Fill PID params */
300	pid_param.gd = param->gd;
301	pid_param.gp = param->gp;
302	pid_param.gr = param->gr;
303	pid_param.interval = WF_SMU_SYS_FANS_INTERVAL;
304	pid_param.history_len = WF_SMU_SYS_FANS_HISTORY_SIZE;
305	pid_param.itarget = param->itarget;
306	pid_param.min = wf_control_get_min(fan_system);
307	pid_param.max = wf_control_get_max(fan_system);
308	if (fan_hd) {
309		pid_param.min =
310			max(pid_param.min, wf_control_get_min(fan_hd));
311		pid_param.max =
312			min(pid_param.max, wf_control_get_max(fan_hd));
313	}
314	wf_pid_init(&wf_smu_sys_fans->pid, &pid_param);
315
316	DBG("wf: System Fan control initialized.\n");
317	DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
318	    FIX32TOPRINT(pid_param.itarget), pid_param.min, pid_param.max);
319	return;
320
321 fail:
322
323	if (fan_system)
324		wf_control_set_max(fan_system);
325	if (fan_hd)
326		wf_control_set_max(fan_hd);
327}
328
329static void wf_smu_sys_fans_tick(struct wf_smu_sys_fans_state *st)
330{
331	s32 new_setpoint, temp, scaled, cputarget;
332	int rc;
333
334	if (--st->ticks != 0) {
335		if (wf_smu_readjust)
336			goto readjust;
337		return;
338	}
339	st->ticks = WF_SMU_SYS_FANS_INTERVAL;
340
341	rc = wf_sensor_get(sensor_hd_temp, &temp);
342	if (rc) {
343		printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
344		       rc);
345		wf_smu_failure_state |= FAILURE_SENSOR;
346		return;
347	}
348
349	DBG("wf_smu: System Fans tick ! HD temp: %d.%03d\n",
350	    FIX32TOPRINT(temp));
351
352	if (temp > (st->pid.param.itarget + 0x50000))
353		wf_smu_failure_state |= FAILURE_OVERTEMP;
354
355	new_setpoint = wf_pid_run(&st->pid, temp);
356
357	DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
358
359	scaled = ((((s64)new_setpoint) * (s64)st->scale0) >> 12) + st->offset0;
360
361	DBG("wf_smu: scaled setpoint: %d RPM\n", (int)scaled);
362
363	cputarget = wf_smu_cpu_fans ? wf_smu_cpu_fans->pid.target : 0;
364	cputarget = ((((s64)cputarget) * (s64)st->scale1) >> 12) + st->offset1;
365	scaled = max(scaled, cputarget);
366	scaled = max(scaled, st->pid.param.min);
367	scaled = min(scaled, st->pid.param.max);
368
369	DBG("wf_smu: adjusted setpoint: %d RPM\n", (int)scaled);
370
371	if (st->sys_setpoint == scaled && new_setpoint == st->hd_setpoint)
372		return;
373	st->sys_setpoint = scaled;
374	st->hd_setpoint = new_setpoint;
375 readjust:
376	if (fan_system && wf_smu_failure_state == 0) {
377		rc = wf_control_set(fan_system, st->sys_setpoint);
378		if (rc) {
379			printk(KERN_WARNING "windfarm: Sys fan error %d\n",
380			       rc);
381			wf_smu_failure_state |= FAILURE_FAN;
382		}
383	}
384	if (fan_hd && wf_smu_failure_state == 0) {
385		rc = wf_control_set(fan_hd, st->hd_setpoint);
386		if (rc) {
387			printk(KERN_WARNING "windfarm: HD fan error %d\n",
388			       rc);
389			wf_smu_failure_state |= FAILURE_FAN;
390		}
391	}
392}
393
394static void wf_smu_create_cpu_fans(void)
395{
396	struct wf_cpu_pid_param pid_param;
397	const struct smu_sdbp_header *hdr;
398	struct smu_sdbp_cpupiddata *piddata;
399	struct smu_sdbp_fvt *fvt;
400	s32 tmax, tdelta, maxpow, powadj;
401
402	/* First, locate the PID params in SMU SBD */
403	hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
404	if (!hdr) {
405		printk(KERN_WARNING "windfarm: CPU PID fan config not found "
406		       "max fan speed\n");
407		goto fail;
408	}
409	piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
410
411	/* Get the FVT params for operating point 0 (the only supported one
412	 * for now) in order to get tmax
413	 */
414	hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
415	if (hdr) {
416		fvt = (struct smu_sdbp_fvt *)&hdr[1];
417		tmax = ((s32)fvt->maxtemp) << 16;
418	} else
419		tmax = 0x5e0000; /* 94 degree default */
420
421	/* Alloc & initialize state */
422	wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
423				  GFP_KERNEL);
424	if (wf_smu_cpu_fans == NULL)
425		goto fail;
426       	wf_smu_cpu_fans->ticks = 1;
427
428	wf_smu_cpu_fans->scale = WF_SMU_CPU_FANS_SIBLING_SCALE;
429	wf_smu_cpu_fans->offset = WF_SMU_CPU_FANS_SIBLING_OFFSET;
430
431	/* Fill PID params */
432	pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
433	pid_param.history_len = piddata->history_len;
434	if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
435		printk(KERN_WARNING "windfarm: History size overflow on "
436		       "CPU control loop (%d)\n", piddata->history_len);
437		pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
438	}
439	pid_param.gd = piddata->gd;
440	pid_param.gp = piddata->gp;
441	pid_param.gr = piddata->gr / pid_param.history_len;
442
443	tdelta = ((s32)piddata->target_temp_delta) << 16;
444	maxpow = ((s32)piddata->max_power) << 16;
445	powadj = ((s32)piddata->power_adj) << 16;
446
447	pid_param.tmax = tmax;
448	pid_param.ttarget = tmax - tdelta;
449	pid_param.pmaxadj = maxpow - powadj;
450
451	pid_param.min = wf_control_get_min(fan_cpu_main);
452	pid_param.max = wf_control_get_max(fan_cpu_main);
453
454	wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
455
456	DBG("wf: CPU Fan control initialized.\n");
457	DBG("    ttarget=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
458	    FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
459	    pid_param.min, pid_param.max);
460
461	return;
462
463 fail:
464	printk(KERN_WARNING "windfarm: CPU fan config not found\n"
465	       "for this machine model, max fan speed\n");
466
467	if (cpufreq_clamp)
468		wf_control_set_max(cpufreq_clamp);
469	if (fan_cpu_main)
470		wf_control_set_max(fan_cpu_main);
471}
472
473static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
474{
475	s32 new_setpoint, temp, power, systarget;
476	int rc;
477
478	if (--st->ticks != 0) {
479		if (wf_smu_readjust)
480			goto readjust;
481		return;
482	}
483	st->ticks = WF_SMU_CPU_FANS_INTERVAL;
484
485	rc = wf_sensor_get(sensor_cpu_temp, &temp);
486	if (rc) {
487		printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
488		       rc);
489		wf_smu_failure_state |= FAILURE_SENSOR;
490		return;
491	}
492
493	rc = wf_sensor_get(sensor_cpu_power, &power);
494	if (rc) {
495		printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
496		       rc);
497		wf_smu_failure_state |= FAILURE_SENSOR;
498		return;
499	}
500
501	DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
502	    FIX32TOPRINT(temp), FIX32TOPRINT(power));
503
504#ifdef HACKED_OVERTEMP
505	if (temp > 0x4a0000)
506		wf_smu_failure_state |= FAILURE_OVERTEMP;
507#else
508	if (temp > st->pid.param.tmax)
509		wf_smu_failure_state |= FAILURE_OVERTEMP;
510#endif
511	new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
512
513	DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
514
515	systarget = wf_smu_sys_fans ? wf_smu_sys_fans->pid.target : 0;
516	systarget = ((((s64)systarget) * (s64)st->scale) >> 12)
517		+ st->offset;
518	new_setpoint = max(new_setpoint, systarget);
519	new_setpoint = max(new_setpoint, st->pid.param.min);
520	new_setpoint = min(new_setpoint, st->pid.param.max);
521
522	DBG("wf_smu: adjusted setpoint: %d RPM\n", (int)new_setpoint);
523
524	if (st->cpu_setpoint == new_setpoint)
525		return;
526	st->cpu_setpoint = new_setpoint;
527 readjust:
528	if (fan_cpu_main && wf_smu_failure_state == 0) {
529		rc = wf_control_set(fan_cpu_main, st->cpu_setpoint);
 
530		if (rc) {
531			printk(KERN_WARNING "windfarm: CPU main fan"
532			       " error %d\n", rc);
533			wf_smu_failure_state |= FAILURE_FAN;
534		}
535	}
536}
537
538/*
539 * ****** Setup / Init / Misc ... ******
540 *
541 */
542
543static void wf_smu_tick(void)
544{
545	unsigned int last_failure = wf_smu_failure_state;
546	unsigned int new_failure;
547
548	if (!wf_smu_started) {
549		DBG("wf: creating control loops !\n");
550		wf_smu_create_sys_fans();
551		wf_smu_create_cpu_fans();
552		wf_smu_started = true;
553	}
554
555	/* Skipping ticks */
556	if (wf_smu_skipping && --wf_smu_skipping)
557		return;
558
559	wf_smu_failure_state = 0;
560	if (wf_smu_sys_fans)
561		wf_smu_sys_fans_tick(wf_smu_sys_fans);
562	if (wf_smu_cpu_fans)
563		wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
564
565	wf_smu_readjust = 0;
566	new_failure = wf_smu_failure_state & ~last_failure;
567
568	/* If entering failure mode, clamp cpufreq and ramp all
569	 * fans to full speed.
570	 */
571	if (wf_smu_failure_state && !last_failure) {
572		if (cpufreq_clamp)
573			wf_control_set_max(cpufreq_clamp);
574		if (fan_system)
575			wf_control_set_max(fan_system);
576		if (fan_cpu_main)
577			wf_control_set_max(fan_cpu_main);
578		if (fan_hd)
579			wf_control_set_max(fan_hd);
580	}
581
582	/* If leaving failure mode, unclamp cpufreq and readjust
583	 * all fans on next iteration
584	 */
585	if (!wf_smu_failure_state && last_failure) {
586		if (cpufreq_clamp)
587			wf_control_set_min(cpufreq_clamp);
588		wf_smu_readjust = 1;
589	}
590
591	/* Overtemp condition detected, notify and start skipping a couple
592	 * ticks to let the temperature go down
593	 */
594	if (new_failure & FAILURE_OVERTEMP) {
595		wf_set_overtemp();
596		wf_smu_skipping = 2;
597		wf_smu_overtemp = true;
598	}
599
600	/* We only clear the overtemp condition if overtemp is cleared
601	 * _and_ no other failure is present. Since a sensor error will
602	 * clear the overtemp condition (can't measure temperature) at
603	 * the control loop levels, but we don't want to keep it clear
604	 * here in this case
605	 */
606	if (!wf_smu_failure_state && wf_smu_overtemp) {
607		wf_clear_overtemp();
608		wf_smu_overtemp = false;
609	}
610}
611
612static void wf_smu_new_control(struct wf_control *ct)
613{
614	if (wf_smu_all_controls_ok)
615		return;
616
617	if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-fan")) {
618		if (wf_get_control(ct) == 0)
619			fan_cpu_main = ct;
620	}
621
622	if (fan_system == NULL && !strcmp(ct->name, "system-fan")) {
623		if (wf_get_control(ct) == 0)
624			fan_system = ct;
625	}
626
627	if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
628		if (wf_get_control(ct) == 0)
629			cpufreq_clamp = ct;
630	}
631
632	/* Darwin property list says the HD fan is only for model ID
633	 * 0, 1, 2 and 3
634	 */
635
636	if (wf_smu_mach_model > 3) {
637		if (fan_system && fan_cpu_main && cpufreq_clamp)
638			wf_smu_all_controls_ok = 1;
639		return;
640	}
641
642	if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
643		if (wf_get_control(ct) == 0)
644			fan_hd = ct;
645	}
646
647	if (fan_system && fan_hd && fan_cpu_main && cpufreq_clamp)
648		wf_smu_all_controls_ok = 1;
649}
650
651static void wf_smu_new_sensor(struct wf_sensor *sr)
652{
653	if (wf_smu_all_sensors_ok)
654		return;
655
656	if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
657		if (wf_get_sensor(sr) == 0)
658			sensor_cpu_power = sr;
659	}
660
661	if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
662		if (wf_get_sensor(sr) == 0)
663			sensor_cpu_temp = sr;
664	}
665
666	if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
667		if (wf_get_sensor(sr) == 0)
668			sensor_hd_temp = sr;
669	}
670
671	if (sensor_cpu_power && sensor_cpu_temp && sensor_hd_temp)
672		wf_smu_all_sensors_ok = 1;
673}
674
675
676static int wf_smu_notify(struct notifier_block *self,
677			       unsigned long event, void *data)
678{
679	switch(event) {
680	case WF_EVENT_NEW_CONTROL:
681		DBG("wf: new control %s detected\n",
682		    ((struct wf_control *)data)->name);
683		wf_smu_new_control(data);
684		wf_smu_readjust = 1;
685		break;
686	case WF_EVENT_NEW_SENSOR:
687		DBG("wf: new sensor %s detected\n",
688		    ((struct wf_sensor *)data)->name);
689		wf_smu_new_sensor(data);
690		break;
691	case WF_EVENT_TICK:
692		if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
693			wf_smu_tick();
694	}
695
696	return 0;
697}
698
699static struct notifier_block wf_smu_events = {
700	.notifier_call	= wf_smu_notify,
701};
702
703static int wf_init_pm(void)
704{
705	const struct smu_sdbp_header *hdr;
706
707	hdr = smu_get_sdb_partition(SMU_SDB_SENSORTREE_ID, NULL);
708	if (hdr) {
709		struct smu_sdbp_sensortree *st =
710			(struct smu_sdbp_sensortree *)&hdr[1];
711		wf_smu_mach_model = st->model_id;
712	}
713
714	printk(KERN_INFO "windfarm: Initializing for iMacG5 model ID %d\n",
715	       wf_smu_mach_model);
716
717	return 0;
718}
719
720static int wf_smu_probe(struct platform_device *ddev)
721{
722	wf_register_client(&wf_smu_events);
723
724	return 0;
725}
726
727static void wf_smu_remove(struct platform_device *ddev)
728{
729	wf_unregister_client(&wf_smu_events);
730
731	/* XXX We don't have yet a guarantee that our callback isn't
732	 * in progress when returning from wf_unregister_client, so
733	 * we add an arbitrary delay. I'll have to fix that in the core
734	 */
735	msleep(1000);
736
737	/* Release all sensors */
738	/* One more crappy race: I don't think we have any guarantee here
739	 * that the attribute callback won't race with the sensor beeing
740	 * disposed of, and I'm not 100% certain what best way to deal
741	 * with that except by adding locks all over... I'll do that
742	 * eventually but heh, who ever rmmod this module anyway ?
743	 */
744	if (sensor_cpu_power)
745		wf_put_sensor(sensor_cpu_power);
746	if (sensor_cpu_temp)
747		wf_put_sensor(sensor_cpu_temp);
748	if (sensor_hd_temp)
749		wf_put_sensor(sensor_hd_temp);
750
751	/* Release all controls */
752	if (fan_cpu_main)
753		wf_put_control(fan_cpu_main);
754	if (fan_hd)
755		wf_put_control(fan_hd);
756	if (fan_system)
757		wf_put_control(fan_system);
758	if (cpufreq_clamp)
759		wf_put_control(cpufreq_clamp);
760
761	/* Destroy control loops state structures */
762	kfree(wf_smu_sys_fans);
763	kfree(wf_smu_cpu_fans);
 
 
764}
765
766static struct platform_driver wf_smu_driver = {
767	.probe = wf_smu_probe,
768	.remove_new = wf_smu_remove,
769	.driver = {
770		.name = "windfarm",
 
771	},
772};
773
774
775static int __init wf_smu_init(void)
776{
777	int rc = -ENODEV;
778
779	if (of_machine_is_compatible("PowerMac8,1") ||
780	    of_machine_is_compatible("PowerMac8,2"))
781		rc = wf_init_pm();
782
783	if (rc == 0) {
784#ifdef MODULE
785		request_module("windfarm_smu_controls");
786		request_module("windfarm_smu_sensors");
787		request_module("windfarm_lm75_sensor");
788		request_module("windfarm_cpufreq_clamp");
789
790#endif /* MODULE */
791		platform_driver_register(&wf_smu_driver);
792	}
793
794	return rc;
795}
796
797static void __exit wf_smu_exit(void)
798{
799
800	platform_driver_unregister(&wf_smu_driver);
801}
802
803
804module_init(wf_smu_init);
805module_exit(wf_smu_exit);
806
807MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
808MODULE_DESCRIPTION("Thermal control logic for iMac G5");
809MODULE_LICENSE("GPL");
810MODULE_ALIAS("platform:windfarm");