Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2022 Intel Corporation
   4 */
   5
   6#include "xe_pt.h"
   7
   8#include "xe_bo.h"
   9#include "xe_device.h"
  10#include "xe_drm_client.h"
  11#include "xe_gt.h"
  12#include "xe_gt_tlb_invalidation.h"
  13#include "xe_migrate.h"
  14#include "xe_pt_types.h"
  15#include "xe_pt_walk.h"
  16#include "xe_res_cursor.h"
  17#include "xe_trace.h"
  18#include "xe_ttm_stolen_mgr.h"
  19#include "xe_vm.h"
  20
  21struct xe_pt_dir {
  22	struct xe_pt pt;
  23	/** @children: Array of page-table child nodes */
  24	struct xe_ptw *children[XE_PDES];
  25};
  26
  27#if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
  28#define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
  29#define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
  30#else
  31#define xe_pt_set_addr(__xe_pt, __addr)
  32#define xe_pt_addr(__xe_pt) 0ull
  33#endif
  34
  35static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
  36static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
  37
  38#define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
  39
  40static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
  41{
  42	return container_of(pt, struct xe_pt_dir, pt);
  43}
  44
  45static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
  46{
  47	return container_of(pt_dir->children[index], struct xe_pt, base);
  48}
  49
  50static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
  51			     unsigned int level)
  52{
  53	struct xe_device *xe = tile_to_xe(tile);
  54	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
  55	u8 id = tile->id;
  56
  57	if (!xe_vm_has_scratch(vm))
  58		return 0;
  59
  60	if (level > MAX_HUGEPTE_LEVEL)
  61		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
  62						 0, pat_index);
  63
  64	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
  65		XE_PTE_NULL;
  66}
  67
  68static void xe_pt_free(struct xe_pt *pt)
  69{
  70	if (pt->level)
  71		kfree(as_xe_pt_dir(pt));
  72	else
  73		kfree(pt);
  74}
  75
  76/**
  77 * xe_pt_create() - Create a page-table.
  78 * @vm: The vm to create for.
  79 * @tile: The tile to create for.
  80 * @level: The page-table level.
  81 *
  82 * Allocate and initialize a single struct xe_pt metadata structure. Also
  83 * create the corresponding page-table bo, but don't initialize it. If the
  84 * level is grater than zero, then it's assumed to be a directory page-
  85 * table and the directory structure is also allocated and initialized to
  86 * NULL pointers.
  87 *
  88 * Return: A valid struct xe_pt pointer on success, Pointer error code on
  89 * error.
  90 */
  91struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
  92			   unsigned int level)
  93{
  94	struct xe_pt *pt;
  95	struct xe_bo *bo;
  96	int err;
  97
  98	if (level) {
  99		struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
 100
 101		pt = (dir) ? &dir->pt : NULL;
 102	} else {
 103		pt = kzalloc(sizeof(*pt), GFP_KERNEL);
 104	}
 105	if (!pt)
 106		return ERR_PTR(-ENOMEM);
 107
 108	pt->level = level;
 109	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
 110				  ttm_bo_type_kernel,
 111				  XE_BO_CREATE_VRAM_IF_DGFX(tile) |
 112				  XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT |
 113				  XE_BO_CREATE_PINNED_BIT |
 114				  XE_BO_CREATE_NO_RESV_EVICT |
 115				  XE_BO_PAGETABLE);
 116	if (IS_ERR(bo)) {
 117		err = PTR_ERR(bo);
 118		goto err_kfree;
 119	}
 120	pt->bo = bo;
 121	pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
 122
 123	if (vm->xef)
 124		xe_drm_client_add_bo(vm->xef->client, pt->bo);
 125	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
 126
 127	return pt;
 128
 129err_kfree:
 130	xe_pt_free(pt);
 131	return ERR_PTR(err);
 132}
 133
 134/**
 135 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
 136 * entries.
 137 * @tile: The tile the scratch pagetable of which to use.
 138 * @vm: The vm we populate for.
 139 * @pt: The pagetable the bo of which to initialize.
 140 *
 141 * Populate the page-table bo of @pt with entries pointing into the tile's
 142 * scratch page-table tree if any. Otherwise populate with zeros.
 143 */
 144void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
 145			  struct xe_pt *pt)
 146{
 147	struct iosys_map *map = &pt->bo->vmap;
 148	u64 empty;
 149	int i;
 150
 151	if (!xe_vm_has_scratch(vm)) {
 152		/*
 153		 * FIXME: Some memory is allocated already allocated to zero?
 154		 * Find out which memory that is and avoid this memset...
 155		 */
 156		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
 157	} else {
 158		empty = __xe_pt_empty_pte(tile, vm, pt->level);
 159		for (i = 0; i < XE_PDES; i++)
 160			xe_pt_write(vm->xe, map, i, empty);
 161	}
 162}
 163
 164/**
 165 * xe_pt_shift() - Return the ilog2 value of the size of the address range of
 166 * a page-table at a certain level.
 167 * @level: The level.
 168 *
 169 * Return: The ilog2 value of the size of the address range of a page-table
 170 * at level @level.
 171 */
 172unsigned int xe_pt_shift(unsigned int level)
 173{
 174	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
 175}
 176
 177/**
 178 * xe_pt_destroy() - Destroy a page-table tree.
 179 * @pt: The root of the page-table tree to destroy.
 180 * @flags: vm flags. Currently unused.
 181 * @deferred: List head of lockless list for deferred putting. NULL for
 182 *            immediate putting.
 183 *
 184 * Puts the page-table bo, recursively calls xe_pt_destroy on all children
 185 * and finally frees @pt. TODO: Can we remove the @flags argument?
 186 */
 187void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
 188{
 189	int i;
 190
 191	if (!pt)
 192		return;
 193
 194	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
 195	xe_bo_unpin(pt->bo);
 196	xe_bo_put_deferred(pt->bo, deferred);
 197
 198	if (pt->level > 0 && pt->num_live) {
 199		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
 200
 201		for (i = 0; i < XE_PDES; i++) {
 202			if (xe_pt_entry(pt_dir, i))
 203				xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
 204					      deferred);
 205		}
 206	}
 207	xe_pt_free(pt);
 208}
 209
 210/**
 211 * DOC: Pagetable building
 212 *
 213 * Below we use the term "page-table" for both page-directories, containing
 214 * pointers to lower level page-directories or page-tables, and level 0
 215 * page-tables that contain only page-table-entries pointing to memory pages.
 216 *
 217 * When inserting an address range in an already existing page-table tree
 218 * there will typically be a set of page-tables that are shared with other
 219 * address ranges, and a set that are private to this address range.
 220 * The set of shared page-tables can be at most two per level,
 221 * and those can't be updated immediately because the entries of those
 222 * page-tables may still be in use by the gpu for other mappings. Therefore
 223 * when inserting entries into those, we instead stage those insertions by
 224 * adding insertion data into struct xe_vm_pgtable_update structures. This
 225 * data, (subtrees for the cpu and page-table-entries for the gpu) is then
 226 * added in a separate commit step. CPU-data is committed while still under the
 227 * vm lock, the object lock and for userptr, the notifier lock in read mode.
 228 * The GPU async data is committed either by the GPU or CPU after fulfilling
 229 * relevant dependencies.
 230 * For non-shared page-tables (and, in fact, for shared ones that aren't
 231 * existing at the time of staging), we add the data in-place without the
 232 * special update structures. This private part of the page-table tree will
 233 * remain disconnected from the vm page-table tree until data is committed to
 234 * the shared page tables of the vm tree in the commit phase.
 235 */
 236
 237struct xe_pt_update {
 238	/** @update: The update structure we're building for this parent. */
 239	struct xe_vm_pgtable_update *update;
 240	/** @parent: The parent. Used to detect a parent change. */
 241	struct xe_pt *parent;
 242	/** @preexisting: Whether the parent was pre-existing or allocated */
 243	bool preexisting;
 244};
 245
 246struct xe_pt_stage_bind_walk {
 247	/** base: The base class. */
 248	struct xe_pt_walk base;
 249
 250	/* Input parameters for the walk */
 251	/** @vm: The vm we're building for. */
 252	struct xe_vm *vm;
 253	/** @tile: The tile we're building for. */
 254	struct xe_tile *tile;
 255	/** @default_pte: PTE flag only template. No address is associated */
 256	u64 default_pte;
 257	/** @dma_offset: DMA offset to add to the PTE. */
 258	u64 dma_offset;
 259	/**
 260	 * @needs_64k: This address range enforces 64K alignment and
 261	 * granularity.
 262	 */
 263	bool needs_64K;
 264	/**
 265	 * @vma: VMA being mapped
 266	 */
 267	struct xe_vma *vma;
 268
 269	/* Also input, but is updated during the walk*/
 270	/** @curs: The DMA address cursor. */
 271	struct xe_res_cursor *curs;
 272	/** @va_curs_start: The Virtual address coresponding to @curs->start */
 273	u64 va_curs_start;
 274
 275	/* Output */
 276	struct xe_walk_update {
 277		/** @wupd.entries: Caller provided storage. */
 278		struct xe_vm_pgtable_update *entries;
 279		/** @wupd.num_used_entries: Number of update @entries used. */
 280		unsigned int num_used_entries;
 281		/** @wupd.updates: Tracks the update entry at a given level */
 282		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
 283	} wupd;
 284
 285	/* Walk state */
 286	/**
 287	 * @l0_end_addr: The end address of the current l0 leaf. Used for
 288	 * 64K granularity detection.
 289	 */
 290	u64 l0_end_addr;
 291	/** @addr_64K: The start address of the current 64K chunk. */
 292	u64 addr_64K;
 293	/** @found_64: Whether @add_64K actually points to a 64K chunk. */
 294	bool found_64K;
 295};
 296
 297static int
 298xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
 299		 pgoff_t offset, bool alloc_entries)
 300{
 301	struct xe_pt_update *upd = &wupd->updates[parent->level];
 302	struct xe_vm_pgtable_update *entry;
 303
 304	/*
 305	 * For *each level*, we could only have one active
 306	 * struct xt_pt_update at any one time. Once we move on to a
 307	 * new parent and page-directory, the old one is complete, and
 308	 * updates are either already stored in the build tree or in
 309	 * @wupd->entries
 310	 */
 311	if (likely(upd->parent == parent))
 312		return 0;
 313
 314	upd->parent = parent;
 315	upd->preexisting = true;
 316
 317	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
 318		return -EINVAL;
 319
 320	entry = wupd->entries + wupd->num_used_entries++;
 321	upd->update = entry;
 322	entry->ofs = offset;
 323	entry->pt_bo = parent->bo;
 324	entry->pt = parent;
 325	entry->flags = 0;
 326	entry->qwords = 0;
 327
 328	if (alloc_entries) {
 329		entry->pt_entries = kmalloc_array(XE_PDES,
 330						  sizeof(*entry->pt_entries),
 331						  GFP_KERNEL);
 332		if (!entry->pt_entries)
 333			return -ENOMEM;
 334	}
 335
 336	return 0;
 337}
 338
 339/*
 340 * NOTE: This is a very frequently called function so we allow ourselves
 341 * to annotate (using branch prediction hints) the fastpath of updating a
 342 * non-pre-existing pagetable with leaf ptes.
 343 */
 344static int
 345xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
 346		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
 347{
 348	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
 349	struct xe_pt_update *child_upd = xe_child ?
 350		&xe_walk->wupd.updates[xe_child->level] : NULL;
 351	int ret;
 352
 353	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
 354	if (unlikely(ret))
 355		return ret;
 356
 357	/*
 358	 * Register this new pagetable so that it won't be recognized as
 359	 * a shared pagetable by a subsequent insertion.
 360	 */
 361	if (unlikely(child_upd)) {
 362		child_upd->update = NULL;
 363		child_upd->parent = xe_child;
 364		child_upd->preexisting = false;
 365	}
 366
 367	if (likely(!upd->preexisting)) {
 368		/* Continue building a non-connected subtree. */
 369		struct iosys_map *map = &parent->bo->vmap;
 370
 371		if (unlikely(xe_child))
 372			parent->base.children[offset] = &xe_child->base;
 373
 374		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
 375		parent->num_live++;
 376	} else {
 377		/* Shared pt. Stage update. */
 378		unsigned int idx;
 379		struct xe_vm_pgtable_update *entry = upd->update;
 380
 381		idx = offset - entry->ofs;
 382		entry->pt_entries[idx].pt = xe_child;
 383		entry->pt_entries[idx].pte = pte;
 384		entry->qwords++;
 385	}
 386
 387	return 0;
 388}
 389
 390static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
 391				   struct xe_pt_stage_bind_walk *xe_walk)
 392{
 393	u64 size, dma;
 394
 395	if (level > MAX_HUGEPTE_LEVEL)
 396		return false;
 397
 398	/* Does the virtual range requested cover a huge pte? */
 399	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
 400		return false;
 401
 402	/* Does the DMA segment cover the whole pte? */
 403	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
 404		return false;
 405
 406	/* null VMA's do not have dma addresses */
 407	if (xe_vma_is_null(xe_walk->vma))
 408		return true;
 409
 410	/* Is the DMA address huge PTE size aligned? */
 411	size = next - addr;
 412	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
 413
 414	return IS_ALIGNED(dma, size);
 415}
 416
 417/*
 418 * Scan the requested mapping to check whether it can be done entirely
 419 * with 64K PTEs.
 420 */
 421static bool
 422xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
 423{
 424	struct xe_res_cursor curs = *xe_walk->curs;
 425
 426	if (!IS_ALIGNED(addr, SZ_64K))
 427		return false;
 428
 429	if (next > xe_walk->l0_end_addr)
 430		return false;
 431
 432	/* null VMA's do not have dma addresses */
 433	if (xe_vma_is_null(xe_walk->vma))
 434		return true;
 435
 436	xe_res_next(&curs, addr - xe_walk->va_curs_start);
 437	for (; addr < next; addr += SZ_64K) {
 438		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
 439			return false;
 440
 441		xe_res_next(&curs, SZ_64K);
 442	}
 443
 444	return addr == next;
 445}
 446
 447/*
 448 * For non-compact "normal" 4K level-0 pagetables, we want to try to group
 449 * addresses together in 64K-contigous regions to add a 64K TLB hint for the
 450 * device to the PTE.
 451 * This function determines whether the address is part of such a
 452 * segment. For VRAM in normal pagetables, this is strictly necessary on
 453 * some devices.
 454 */
 455static bool
 456xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
 457{
 458	/* Address is within an already found 64k region */
 459	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
 460		return true;
 461
 462	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
 463	xe_walk->addr_64K = addr;
 464
 465	return xe_walk->found_64K;
 466}
 467
 468static int
 469xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
 470		       unsigned int level, u64 addr, u64 next,
 471		       struct xe_ptw **child,
 472		       enum page_walk_action *action,
 473		       struct xe_pt_walk *walk)
 474{
 475	struct xe_pt_stage_bind_walk *xe_walk =
 476		container_of(walk, typeof(*xe_walk), base);
 477	u16 pat_index = xe_walk->vma->pat_index;
 478	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
 479	struct xe_vm *vm = xe_walk->vm;
 480	struct xe_pt *xe_child;
 481	bool covers;
 482	int ret = 0;
 483	u64 pte;
 484
 485	/* Is this a leaf entry ?*/
 486	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
 487		struct xe_res_cursor *curs = xe_walk->curs;
 488		bool is_null = xe_vma_is_null(xe_walk->vma);
 489
 490		XE_WARN_ON(xe_walk->va_curs_start != addr);
 491
 492		pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
 493						 xe_res_dma(curs) + xe_walk->dma_offset,
 494						 xe_walk->vma, pat_index, level);
 495		pte |= xe_walk->default_pte;
 496
 497		/*
 498		 * Set the XE_PTE_PS64 hint if possible, otherwise if
 499		 * this device *requires* 64K PTE size for VRAM, fail.
 500		 */
 501		if (level == 0 && !xe_parent->is_compact) {
 502			if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
 503				xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K;
 504				pte |= XE_PTE_PS64;
 505			} else if (XE_WARN_ON(xe_walk->needs_64K)) {
 506				return -EINVAL;
 507			}
 508		}
 509
 510		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
 511		if (unlikely(ret))
 512			return ret;
 513
 514		if (!is_null)
 515			xe_res_next(curs, next - addr);
 516		xe_walk->va_curs_start = next;
 517		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
 518		*action = ACTION_CONTINUE;
 519
 520		return ret;
 521	}
 522
 523	/*
 524	 * Descending to lower level. Determine if we need to allocate a
 525	 * new page table or -directory, which we do if there is no
 526	 * previous one or there is one we can completely replace.
 527	 */
 528	if (level == 1) {
 529		walk->shifts = xe_normal_pt_shifts;
 530		xe_walk->l0_end_addr = next;
 531	}
 532
 533	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
 534	if (covers || !*child) {
 535		u64 flags = 0;
 536
 537		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
 538		if (IS_ERR(xe_child))
 539			return PTR_ERR(xe_child);
 540
 541		xe_pt_set_addr(xe_child,
 542			       round_down(addr, 1ull << walk->shifts[level]));
 543
 544		if (!covers)
 545			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
 546
 547		*child = &xe_child->base;
 548
 549		/*
 550		 * Prefer the compact pagetable layout for L0 if possible. Only
 551		 * possible if VMA covers entire 2MB region as compact 64k and
 552		 * 4k pages cannot be mixed within a 2MB region.
 553		 * TODO: Suballocate the pt bo to avoid wasting a lot of
 554		 * memory.
 555		 */
 556		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
 557		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
 558			walk->shifts = xe_compact_pt_shifts;
 559			xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
 560			flags |= XE_PDE_64K;
 561			xe_child->is_compact = true;
 562		}
 563
 564		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
 565		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
 566					 pte);
 567	}
 568
 569	*action = ACTION_SUBTREE;
 570	return ret;
 571}
 572
 573static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
 574	.pt_entry = xe_pt_stage_bind_entry,
 575};
 576
 577/**
 578 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
 579 * range.
 580 * @tile: The tile we're building for.
 581 * @vma: The vma indicating the address range.
 582 * @entries: Storage for the update entries used for connecting the tree to
 583 * the main tree at commit time.
 584 * @num_entries: On output contains the number of @entries used.
 585 *
 586 * This function builds a disconnected page-table tree for a given address
 587 * range. The tree is connected to the main vm tree for the gpu using
 588 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
 589 * The function builds xe_vm_pgtable_update structures for already existing
 590 * shared page-tables, and non-existing shared and non-shared page-tables
 591 * are built and populated directly.
 592 *
 593 * Return 0 on success, negative error code on error.
 594 */
 595static int
 596xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
 597		 struct xe_vm_pgtable_update *entries, u32 *num_entries)
 598{
 599	struct xe_device *xe = tile_to_xe(tile);
 600	struct xe_bo *bo = xe_vma_bo(vma);
 601	bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
 602		(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
 603	struct xe_res_cursor curs;
 604	struct xe_pt_stage_bind_walk xe_walk = {
 605		.base = {
 606			.ops = &xe_pt_stage_bind_ops,
 607			.shifts = xe_normal_pt_shifts,
 608			.max_level = XE_PT_HIGHEST_LEVEL,
 609		},
 610		.vm = xe_vma_vm(vma),
 611		.tile = tile,
 612		.curs = &curs,
 613		.va_curs_start = xe_vma_start(vma),
 614		.vma = vma,
 615		.wupd.entries = entries,
 616		.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
 617	};
 618	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
 619	int ret;
 620
 621	if (vma && (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) &&
 622	    (is_devmem || !IS_DGFX(xe)))
 623		xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
 624
 625	if (is_devmem) {
 626		xe_walk.default_pte |= XE_PPGTT_PTE_DM;
 627		xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
 628	}
 629
 630	if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
 631		xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
 632
 633	xe_bo_assert_held(bo);
 634
 635	if (!xe_vma_is_null(vma)) {
 636		if (xe_vma_is_userptr(vma))
 637			xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
 638					xe_vma_size(vma), &curs);
 639		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
 640			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
 641				     xe_vma_size(vma), &curs);
 642		else
 643			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
 644					xe_vma_size(vma), &curs);
 645	} else {
 646		curs.size = xe_vma_size(vma);
 647	}
 648
 649	ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
 650			       xe_vma_end(vma), &xe_walk.base);
 651
 652	*num_entries = xe_walk.wupd.num_used_entries;
 653	return ret;
 654}
 655
 656/**
 657 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
 658 * shared pagetable.
 659 * @addr: The start address within the non-shared pagetable.
 660 * @end: The end address within the non-shared pagetable.
 661 * @level: The level of the non-shared pagetable.
 662 * @walk: Walk info. The function adjusts the walk action.
 663 * @action: next action to perform (see enum page_walk_action)
 664 * @offset: Ignored on input, First non-shared entry on output.
 665 * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
 666 *
 667 * A non-shared page-table has some entries that belong to the address range
 668 * and others that don't. This function determines the entries that belong
 669 * fully to the address range. Depending on level, some entries may
 670 * partially belong to the address range (that can't happen at level 0).
 671 * The function detects that and adjust those offsets to not include those
 672 * partial entries. Iff it does detect partial entries, we know that there must
 673 * be shared page tables also at lower levels, so it adjusts the walk action
 674 * accordingly.
 675 *
 676 * Return: true if there were non-shared entries, false otherwise.
 677 */
 678static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
 679				    struct xe_pt_walk *walk,
 680				    enum page_walk_action *action,
 681				    pgoff_t *offset, pgoff_t *end_offset)
 682{
 683	u64 size = 1ull << walk->shifts[level];
 684
 685	*offset = xe_pt_offset(addr, level, walk);
 686	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
 687
 688	if (!level)
 689		return true;
 690
 691	/*
 692	 * If addr or next are not size aligned, there are shared pts at lower
 693	 * level, so in that case traverse down the subtree
 694	 */
 695	*action = ACTION_CONTINUE;
 696	if (!IS_ALIGNED(addr, size)) {
 697		*action = ACTION_SUBTREE;
 698		(*offset)++;
 699	}
 700
 701	if (!IS_ALIGNED(end, size)) {
 702		*action = ACTION_SUBTREE;
 703		(*end_offset)--;
 704	}
 705
 706	return *end_offset > *offset;
 707}
 708
 709struct xe_pt_zap_ptes_walk {
 710	/** @base: The walk base-class */
 711	struct xe_pt_walk base;
 712
 713	/* Input parameters for the walk */
 714	/** @tile: The tile we're building for */
 715	struct xe_tile *tile;
 716
 717	/* Output */
 718	/** @needs_invalidate: Whether we need to invalidate TLB*/
 719	bool needs_invalidate;
 720};
 721
 722static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
 723				unsigned int level, u64 addr, u64 next,
 724				struct xe_ptw **child,
 725				enum page_walk_action *action,
 726				struct xe_pt_walk *walk)
 727{
 728	struct xe_pt_zap_ptes_walk *xe_walk =
 729		container_of(walk, typeof(*xe_walk), base);
 730	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
 731	pgoff_t end_offset;
 732
 733	XE_WARN_ON(!*child);
 734	XE_WARN_ON(!level && xe_child->is_compact);
 735
 736	/*
 737	 * Note that we're called from an entry callback, and we're dealing
 738	 * with the child of that entry rather than the parent, so need to
 739	 * adjust level down.
 740	 */
 741	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
 742				    &end_offset)) {
 743		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
 744			      offset * sizeof(u64), 0,
 745			      (end_offset - offset) * sizeof(u64));
 746		xe_walk->needs_invalidate = true;
 747	}
 748
 749	return 0;
 750}
 751
 752static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
 753	.pt_entry = xe_pt_zap_ptes_entry,
 754};
 755
 756/**
 757 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
 758 * @tile: The tile we're zapping for.
 759 * @vma: GPU VMA detailing address range.
 760 *
 761 * Eviction and Userptr invalidation needs to be able to zap the
 762 * gpu ptes of a given address range in pagefaulting mode.
 763 * In order to be able to do that, that function needs access to the shared
 764 * page-table entrieaso it can either clear the leaf PTEs or
 765 * clear the pointers to lower-level page-tables. The caller is required
 766 * to hold the necessary locks to ensure neither the page-table connectivity
 767 * nor the page-table entries of the range is updated from under us.
 768 *
 769 * Return: Whether ptes were actually updated and a TLB invalidation is
 770 * required.
 771 */
 772bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
 773{
 774	struct xe_pt_zap_ptes_walk xe_walk = {
 775		.base = {
 776			.ops = &xe_pt_zap_ptes_ops,
 777			.shifts = xe_normal_pt_shifts,
 778			.max_level = XE_PT_HIGHEST_LEVEL,
 779		},
 780		.tile = tile,
 781	};
 782	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
 783
 784	if (!(vma->tile_present & BIT(tile->id)))
 785		return false;
 786
 787	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
 788				xe_vma_end(vma), &xe_walk.base);
 789
 790	return xe_walk.needs_invalidate;
 791}
 792
 793static void
 794xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
 795		       struct iosys_map *map, void *data,
 796		       u32 qword_ofs, u32 num_qwords,
 797		       const struct xe_vm_pgtable_update *update)
 798{
 799	struct xe_pt_entry *ptes = update->pt_entries;
 800	u64 *ptr = data;
 801	u32 i;
 802
 803	for (i = 0; i < num_qwords; i++) {
 804		if (map)
 805			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
 806				  sizeof(u64), u64, ptes[i].pte);
 807		else
 808			ptr[i] = ptes[i].pte;
 809	}
 810}
 811
 812static void xe_pt_abort_bind(struct xe_vma *vma,
 813			     struct xe_vm_pgtable_update *entries,
 814			     u32 num_entries)
 815{
 816	u32 i, j;
 817
 818	for (i = 0; i < num_entries; i++) {
 819		if (!entries[i].pt_entries)
 820			continue;
 821
 822		for (j = 0; j < entries[i].qwords; j++)
 823			xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL);
 824		kfree(entries[i].pt_entries);
 825	}
 826}
 827
 828static void xe_pt_commit_locks_assert(struct xe_vma *vma)
 829{
 830	struct xe_vm *vm = xe_vma_vm(vma);
 831
 832	lockdep_assert_held(&vm->lock);
 833
 834	if (xe_vma_is_userptr(vma))
 835		lockdep_assert_held_read(&vm->userptr.notifier_lock);
 836	else if (!xe_vma_is_null(vma))
 837		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
 838
 839	xe_vm_assert_held(vm);
 840}
 841
 842static void xe_pt_commit_bind(struct xe_vma *vma,
 843			      struct xe_vm_pgtable_update *entries,
 844			      u32 num_entries, bool rebind,
 845			      struct llist_head *deferred)
 846{
 847	u32 i, j;
 848
 849	xe_pt_commit_locks_assert(vma);
 850
 851	for (i = 0; i < num_entries; i++) {
 852		struct xe_pt *pt = entries[i].pt;
 853		struct xe_pt_dir *pt_dir;
 854
 855		if (!rebind)
 856			pt->num_live += entries[i].qwords;
 857
 858		if (!pt->level) {
 859			kfree(entries[i].pt_entries);
 860			continue;
 861		}
 862
 863		pt_dir = as_xe_pt_dir(pt);
 864		for (j = 0; j < entries[i].qwords; j++) {
 865			u32 j_ = j + entries[i].ofs;
 866			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
 867
 868			if (xe_pt_entry(pt_dir, j_))
 869				xe_pt_destroy(xe_pt_entry(pt_dir, j_),
 870					      xe_vma_vm(vma)->flags, deferred);
 871
 872			pt_dir->children[j_] = &newpte->base;
 873		}
 874		kfree(entries[i].pt_entries);
 875	}
 876}
 877
 878static int
 879xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
 880		   struct xe_vm_pgtable_update *entries, u32 *num_entries)
 881{
 882	int err;
 883
 884	*num_entries = 0;
 885	err = xe_pt_stage_bind(tile, vma, entries, num_entries);
 886	if (!err)
 887		xe_tile_assert(tile, *num_entries);
 888	else /* abort! */
 889		xe_pt_abort_bind(vma, entries, *num_entries);
 890
 891	return err;
 892}
 893
 894static void xe_vm_dbg_print_entries(struct xe_device *xe,
 895				    const struct xe_vm_pgtable_update *entries,
 896				    unsigned int num_entries)
 897#if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
 898{
 899	unsigned int i;
 900
 901	vm_dbg(&xe->drm, "%u entries to update\n", num_entries);
 902	for (i = 0; i < num_entries; i++) {
 903		const struct xe_vm_pgtable_update *entry = &entries[i];
 904		struct xe_pt *xe_pt = entry->pt;
 905		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
 906		u64 end;
 907		u64 start;
 908
 909		xe_assert(xe, !entry->pt->is_compact);
 910		start = entry->ofs * page_size;
 911		end = start + page_size * entry->qwords;
 912		vm_dbg(&xe->drm,
 913		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
 914		       i, xe_pt->level, entry->ofs, entry->qwords,
 915		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
 916	}
 917}
 918#else
 919{}
 920#endif
 921
 922#ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
 923
 924static int xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
 925{
 926	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
 927	static u32 count;
 928
 929	if (count++ % divisor == divisor - 1) {
 930		struct xe_vm *vm = xe_vma_vm(&uvma->vma);
 931
 932		uvma->userptr.divisor = divisor << 1;
 933		spin_lock(&vm->userptr.invalidated_lock);
 934		list_move_tail(&uvma->userptr.invalidate_link,
 935			       &vm->userptr.invalidated);
 936		spin_unlock(&vm->userptr.invalidated_lock);
 937		return true;
 938	}
 939
 940	return false;
 941}
 942
 943#else
 944
 945static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
 946{
 947	return false;
 948}
 949
 950#endif
 951
 952/**
 953 * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks
 954 * @base: Base we derive from.
 955 * @bind: Whether this is a bind or an unbind operation. A bind operation
 956 *        makes the pre-commit callback error with -EAGAIN if it detects a
 957 *        pending invalidation.
 958 * @locked: Whether the pre-commit callback locked the userptr notifier lock
 959 *          and it needs unlocking.
 960 */
 961struct xe_pt_migrate_pt_update {
 962	struct xe_migrate_pt_update base;
 963	bool bind;
 964	bool locked;
 965};
 966
 967/*
 968 * This function adds the needed dependencies to a page-table update job
 969 * to make sure racing jobs for separate bind engines don't race writing
 970 * to the same page-table range, wreaking havoc. Initially use a single
 971 * fence for the entire VM. An optimization would use smaller granularity.
 972 */
 973static int xe_pt_vm_dependencies(struct xe_sched_job *job,
 974				 struct xe_range_fence_tree *rftree,
 975				 u64 start, u64 last)
 976{
 977	struct xe_range_fence *rtfence;
 978	struct dma_fence *fence;
 979	int err;
 980
 981	rtfence = xe_range_fence_tree_first(rftree, start, last);
 982	while (rtfence) {
 983		fence = rtfence->fence;
 984
 985		if (!dma_fence_is_signaled(fence)) {
 986			/*
 987			 * Is this a CPU update? GPU is busy updating, so return
 988			 * an error
 989			 */
 990			if (!job)
 991				return -ETIME;
 992
 993			dma_fence_get(fence);
 994			err = drm_sched_job_add_dependency(&job->drm, fence);
 995			if (err)
 996				return err;
 997		}
 998
 999		rtfence = xe_range_fence_tree_next(rtfence, start, last);
1000	}
1001
1002	return 0;
1003}
1004
1005static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1006{
1007	struct xe_range_fence_tree *rftree =
1008		&xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id];
1009
1010	return xe_pt_vm_dependencies(pt_update->job, rftree,
1011				     pt_update->start, pt_update->last);
1012}
1013
1014static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1015{
1016	struct xe_pt_migrate_pt_update *userptr_update =
1017		container_of(pt_update, typeof(*userptr_update), base);
1018	struct xe_userptr_vma *uvma = to_userptr_vma(pt_update->vma);
1019	unsigned long notifier_seq = uvma->userptr.notifier_seq;
1020	struct xe_vm *vm = xe_vma_vm(&uvma->vma);
1021	int err = xe_pt_vm_dependencies(pt_update->job,
1022					&vm->rftree[pt_update->tile_id],
1023					pt_update->start,
1024					pt_update->last);
1025
1026	if (err)
1027		return err;
1028
1029	userptr_update->locked = false;
1030
1031	/*
1032	 * Wait until nobody is running the invalidation notifier, and
1033	 * since we're exiting the loop holding the notifier lock,
1034	 * nobody can proceed invalidating either.
1035	 *
1036	 * Note that we don't update the vma->userptr.notifier_seq since
1037	 * we don't update the userptr pages.
1038	 */
1039	do {
1040		down_read(&vm->userptr.notifier_lock);
1041		if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1042					     notifier_seq))
1043			break;
1044
1045		up_read(&vm->userptr.notifier_lock);
1046
1047		if (userptr_update->bind)
1048			return -EAGAIN;
1049
1050		notifier_seq = mmu_interval_read_begin(&uvma->userptr.notifier);
1051	} while (true);
1052
1053	/* Inject errors to test_whether they are handled correctly */
1054	if (userptr_update->bind && xe_pt_userptr_inject_eagain(uvma)) {
1055		up_read(&vm->userptr.notifier_lock);
1056		return -EAGAIN;
1057	}
1058
1059	userptr_update->locked = true;
1060
1061	return 0;
1062}
1063
1064static const struct xe_migrate_pt_update_ops bind_ops = {
1065	.populate = xe_vm_populate_pgtable,
1066	.pre_commit = xe_pt_pre_commit,
1067};
1068
1069static const struct xe_migrate_pt_update_ops userptr_bind_ops = {
1070	.populate = xe_vm_populate_pgtable,
1071	.pre_commit = xe_pt_userptr_pre_commit,
1072};
1073
1074struct invalidation_fence {
1075	struct xe_gt_tlb_invalidation_fence base;
1076	struct xe_gt *gt;
1077	struct xe_vma *vma;
1078	struct dma_fence *fence;
1079	struct dma_fence_cb cb;
1080	struct work_struct work;
1081};
1082
1083static const char *
1084invalidation_fence_get_driver_name(struct dma_fence *dma_fence)
1085{
1086	return "xe";
1087}
1088
1089static const char *
1090invalidation_fence_get_timeline_name(struct dma_fence *dma_fence)
1091{
1092	return "invalidation_fence";
1093}
1094
1095static const struct dma_fence_ops invalidation_fence_ops = {
1096	.get_driver_name = invalidation_fence_get_driver_name,
1097	.get_timeline_name = invalidation_fence_get_timeline_name,
1098};
1099
1100static void invalidation_fence_cb(struct dma_fence *fence,
1101				  struct dma_fence_cb *cb)
1102{
1103	struct invalidation_fence *ifence =
1104		container_of(cb, struct invalidation_fence, cb);
1105
1106	trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base);
1107	if (!ifence->fence->error) {
1108		queue_work(system_wq, &ifence->work);
1109	} else {
1110		ifence->base.base.error = ifence->fence->error;
1111		dma_fence_signal(&ifence->base.base);
1112		dma_fence_put(&ifence->base.base);
1113	}
1114	dma_fence_put(ifence->fence);
1115}
1116
1117static void invalidation_fence_work_func(struct work_struct *w)
1118{
1119	struct invalidation_fence *ifence =
1120		container_of(w, struct invalidation_fence, work);
1121
1122	trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base);
1123	xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma);
1124}
1125
1126static int invalidation_fence_init(struct xe_gt *gt,
1127				   struct invalidation_fence *ifence,
1128				   struct dma_fence *fence,
1129				   struct xe_vma *vma)
1130{
1131	int ret;
1132
1133	trace_xe_gt_tlb_invalidation_fence_create(&ifence->base);
1134
1135	spin_lock_irq(&gt->tlb_invalidation.lock);
1136	dma_fence_init(&ifence->base.base, &invalidation_fence_ops,
1137		       &gt->tlb_invalidation.lock,
1138		       dma_fence_context_alloc(1), 1);
1139	spin_unlock_irq(&gt->tlb_invalidation.lock);
1140
1141	INIT_LIST_HEAD(&ifence->base.link);
1142
1143	dma_fence_get(&ifence->base.base);	/* Ref for caller */
1144	ifence->fence = fence;
1145	ifence->gt = gt;
1146	ifence->vma = vma;
1147
1148	INIT_WORK(&ifence->work, invalidation_fence_work_func);
1149	ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1150	if (ret == -ENOENT) {
1151		dma_fence_put(ifence->fence);	/* Usually dropped in CB */
1152		invalidation_fence_work_func(&ifence->work);
1153	} else if (ret) {
1154		dma_fence_put(&ifence->base.base);	/* Caller ref */
1155		dma_fence_put(&ifence->base.base);	/* Creation ref */
1156	}
1157
1158	xe_gt_assert(gt, !ret || ret == -ENOENT);
1159
1160	return ret && ret != -ENOENT ? ret : 0;
1161}
1162
1163static void xe_pt_calc_rfence_interval(struct xe_vma *vma,
1164				       struct xe_pt_migrate_pt_update *update,
1165				       struct xe_vm_pgtable_update *entries,
1166				       u32 num_entries)
1167{
1168	int i, level = 0;
1169
1170	for (i = 0; i < num_entries; i++) {
1171		const struct xe_vm_pgtable_update *entry = &entries[i];
1172
1173		if (entry->pt->level > level)
1174			level = entry->pt->level;
1175	}
1176
1177	/* Greedy (non-optimal) calculation but simple */
1178	update->base.start = ALIGN_DOWN(xe_vma_start(vma),
1179					0x1ull << xe_pt_shift(level));
1180	update->base.last = ALIGN(xe_vma_end(vma),
1181				  0x1ull << xe_pt_shift(level)) - 1;
1182}
1183
1184/**
1185 * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma
1186 * address range.
1187 * @tile: The tile to bind for.
1188 * @vma: The vma to bind.
1189 * @q: The exec_queue with which to do pipelined page-table updates.
1190 * @syncs: Entries to sync on before binding the built tree to the live vm tree.
1191 * @num_syncs: Number of @sync entries.
1192 * @rebind: Whether we're rebinding this vma to the same address range without
1193 * an unbind in-between.
1194 *
1195 * This function builds a page-table tree (see xe_pt_stage_bind() for more
1196 * information on page-table building), and the xe_vm_pgtable_update entries
1197 * abstracting the operations needed to attach it to the main vm tree. It
1198 * then takes the relevant locks and updates the metadata side of the main
1199 * vm tree and submits the operations for pipelined attachment of the
1200 * gpu page-table to the vm main tree, (which can be done either by the
1201 * cpu and the GPU).
1202 *
1203 * Return: A valid dma-fence representing the pipelined attachment operation
1204 * on success, an error pointer on error.
1205 */
1206struct dma_fence *
1207__xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
1208		 struct xe_sync_entry *syncs, u32 num_syncs,
1209		 bool rebind)
1210{
1211	struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
1212	struct xe_pt_migrate_pt_update bind_pt_update = {
1213		.base = {
1214			.ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops,
1215			.vma = vma,
1216			.tile_id = tile->id,
1217		},
1218		.bind = true,
1219	};
1220	struct xe_vm *vm = xe_vma_vm(vma);
1221	u32 num_entries;
1222	struct dma_fence *fence;
1223	struct invalidation_fence *ifence = NULL;
1224	struct xe_range_fence *rfence;
1225	int err;
1226
1227	bind_pt_update.locked = false;
1228	xe_bo_assert_held(xe_vma_bo(vma));
1229	xe_vm_assert_held(vm);
1230
1231	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1232	       "Preparing bind, with range [%llx...%llx) engine %p.\n",
1233	       xe_vma_start(vma), xe_vma_end(vma), q);
1234
1235	err = xe_pt_prepare_bind(tile, vma, entries, &num_entries);
1236	if (err)
1237		goto err;
1238
1239	err = dma_resv_reserve_fences(xe_vm_resv(vm), 1);
1240	if (!err && !xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1241		err = dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1);
1242	if (err)
1243		goto err;
1244
1245	xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
1246
1247	xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
1248	xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries,
1249				   num_entries);
1250
1251	/*
1252	 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1253	 * cached PTEs point to freed memory. on LR vms this is done
1254	 * automatically when the context is re-enabled by the rebind worker,
1255	 * or in fault mode it was invalidated on PTE zapping.
1256	 *
1257	 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1258	 * PTE is already cached in the TLB so it needs to be invalidated.
1259	 * on !LR VMs this is done in the ring ops preceding a batch, but on
1260	 * non-faulting LR, in particular on user-space batch buffer chaining,
1261	 * it needs to be done here.
1262	 */
1263	if ((!rebind && xe_vm_has_scratch(vm) && xe_vm_in_preempt_fence_mode(vm))) {
1264		ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1265		if (!ifence)
1266			return ERR_PTR(-ENOMEM);
1267	} else if (rebind && !xe_vm_in_lr_mode(vm)) {
1268		/* We bump also if batch_invalidate_tlb is true */
1269		vm->tlb_flush_seqno++;
1270	}
1271
1272	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
1273	if (!rfence) {
1274		kfree(ifence);
1275		return ERR_PTR(-ENOMEM);
1276	}
1277
1278	fence = xe_migrate_update_pgtables(tile->migrate,
1279					   vm, xe_vma_bo(vma), q,
1280					   entries, num_entries,
1281					   syncs, num_syncs,
1282					   &bind_pt_update.base);
1283	if (!IS_ERR(fence)) {
1284		bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND;
1285		LLIST_HEAD(deferred);
1286		int err;
1287
1288		err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
1289					    &xe_range_fence_kfree_ops,
1290					    bind_pt_update.base.start,
1291					    bind_pt_update.base.last, fence);
1292		if (err)
1293			dma_fence_wait(fence, false);
1294
1295		/* TLB invalidation must be done before signaling rebind */
1296		if (ifence) {
1297			int err = invalidation_fence_init(tile->primary_gt, ifence, fence,
1298							  vma);
1299			if (err) {
1300				dma_fence_put(fence);
1301				kfree(ifence);
1302				return ERR_PTR(err);
1303			}
1304			fence = &ifence->base.base;
1305		}
1306
1307		/* add shared fence now for pagetable delayed destroy */
1308		dma_resv_add_fence(xe_vm_resv(vm), fence, rebind ||
1309				   last_munmap_rebind ?
1310				   DMA_RESV_USAGE_KERNEL :
1311				   DMA_RESV_USAGE_BOOKKEEP);
1312
1313		if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1314			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1315					   DMA_RESV_USAGE_BOOKKEEP);
1316		xe_pt_commit_bind(vma, entries, num_entries, rebind,
1317				  bind_pt_update.locked ? &deferred : NULL);
1318
1319		/* This vma is live (again?) now */
1320		vma->tile_present |= BIT(tile->id);
1321
1322		if (bind_pt_update.locked) {
1323			to_userptr_vma(vma)->userptr.initial_bind = true;
1324			up_read(&vm->userptr.notifier_lock);
1325			xe_bo_put_commit(&deferred);
1326		}
1327		if (!rebind && last_munmap_rebind &&
1328		    xe_vm_in_preempt_fence_mode(vm))
1329			xe_vm_queue_rebind_worker(vm);
1330	} else {
1331		kfree(rfence);
1332		kfree(ifence);
1333		if (bind_pt_update.locked)
1334			up_read(&vm->userptr.notifier_lock);
1335		xe_pt_abort_bind(vma, entries, num_entries);
1336	}
1337
1338	return fence;
1339
1340err:
1341	return ERR_PTR(err);
1342}
1343
1344struct xe_pt_stage_unbind_walk {
1345	/** @base: The pagewalk base-class. */
1346	struct xe_pt_walk base;
1347
1348	/* Input parameters for the walk */
1349	/** @tile: The tile we're unbinding from. */
1350	struct xe_tile *tile;
1351
1352	/**
1353	 * @modified_start: Walk range start, modified to include any
1354	 * shared pagetables that we're the only user of and can thus
1355	 * treat as private.
1356	 */
1357	u64 modified_start;
1358	/** @modified_end: Walk range start, modified like @modified_start. */
1359	u64 modified_end;
1360
1361	/* Output */
1362	/* @wupd: Structure to track the page-table updates we're building */
1363	struct xe_walk_update wupd;
1364};
1365
1366/*
1367 * Check whether this range is the only one populating this pagetable,
1368 * and in that case, update the walk range checks so that higher levels don't
1369 * view us as a shared pagetable.
1370 */
1371static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1372			     const struct xe_pt *child,
1373			     enum page_walk_action *action,
1374			     struct xe_pt_walk *walk)
1375{
1376	struct xe_pt_stage_unbind_walk *xe_walk =
1377		container_of(walk, typeof(*xe_walk), base);
1378	unsigned int shift = walk->shifts[level];
1379	u64 size = 1ull << shift;
1380
1381	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1382	    ((next - addr) >> shift) == child->num_live) {
1383		u64 size = 1ull << walk->shifts[level + 1];
1384
1385		*action = ACTION_CONTINUE;
1386
1387		if (xe_walk->modified_start >= addr)
1388			xe_walk->modified_start = round_down(addr, size);
1389		if (xe_walk->modified_end <= next)
1390			xe_walk->modified_end = round_up(next, size);
1391
1392		return true;
1393	}
1394
1395	return false;
1396}
1397
1398static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1399				    unsigned int level, u64 addr, u64 next,
1400				    struct xe_ptw **child,
1401				    enum page_walk_action *action,
1402				    struct xe_pt_walk *walk)
1403{
1404	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1405
1406	XE_WARN_ON(!*child);
1407	XE_WARN_ON(!level && xe_child->is_compact);
1408
1409	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1410
1411	return 0;
1412}
1413
1414static int
1415xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1416				unsigned int level, u64 addr, u64 next,
1417				struct xe_ptw **child,
1418				enum page_walk_action *action,
1419				struct xe_pt_walk *walk)
1420{
1421	struct xe_pt_stage_unbind_walk *xe_walk =
1422		container_of(walk, typeof(*xe_walk), base);
1423	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1424	pgoff_t end_offset;
1425	u64 size = 1ull << walk->shifts[--level];
1426
1427	if (!IS_ALIGNED(addr, size))
1428		addr = xe_walk->modified_start;
1429	if (!IS_ALIGNED(next, size))
1430		next = xe_walk->modified_end;
1431
1432	/* Parent == *child is the root pt. Don't kill it. */
1433	if (parent != *child &&
1434	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1435		return 0;
1436
1437	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1438				     &end_offset))
1439		return 0;
1440
1441	(void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false);
1442	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1443
1444	return 0;
1445}
1446
1447static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1448	.pt_entry = xe_pt_stage_unbind_entry,
1449	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1450};
1451
1452/**
1453 * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1454 * operation
1455 * @tile: The tile we're unbinding for.
1456 * @vma: The vma we're unbinding.
1457 * @entries: Caller-provided storage for the update structures.
1458 *
1459 * Builds page-table update structures for an unbind operation. The function
1460 * will attempt to remove all page-tables that we're the only user
1461 * of, and for that to work, the unbind operation must be committed in the
1462 * same critical section that blocks racing binds to the same page-table tree.
1463 *
1464 * Return: The number of entries used.
1465 */
1466static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1467				       struct xe_vm_pgtable_update *entries)
1468{
1469	struct xe_pt_stage_unbind_walk xe_walk = {
1470		.base = {
1471			.ops = &xe_pt_stage_unbind_ops,
1472			.shifts = xe_normal_pt_shifts,
1473			.max_level = XE_PT_HIGHEST_LEVEL,
1474		},
1475		.tile = tile,
1476		.modified_start = xe_vma_start(vma),
1477		.modified_end = xe_vma_end(vma),
1478		.wupd.entries = entries,
1479	};
1480	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1481
1482	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1483				xe_vma_end(vma), &xe_walk.base);
1484
1485	return xe_walk.wupd.num_used_entries;
1486}
1487
1488static void
1489xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1490				  struct xe_tile *tile, struct iosys_map *map,
1491				  void *ptr, u32 qword_ofs, u32 num_qwords,
1492				  const struct xe_vm_pgtable_update *update)
1493{
1494	struct xe_vma *vma = pt_update->vma;
1495	u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level);
1496	int i;
1497
1498	if (map && map->is_iomem)
1499		for (i = 0; i < num_qwords; ++i)
1500			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1501				  sizeof(u64), u64, empty);
1502	else if (map)
1503		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1504			 num_qwords);
1505	else
1506		memset64(ptr, empty, num_qwords);
1507}
1508
1509static void
1510xe_pt_commit_unbind(struct xe_vma *vma,
1511		    struct xe_vm_pgtable_update *entries, u32 num_entries,
1512		    struct llist_head *deferred)
1513{
1514	u32 j;
1515
1516	xe_pt_commit_locks_assert(vma);
1517
1518	for (j = 0; j < num_entries; ++j) {
1519		struct xe_vm_pgtable_update *entry = &entries[j];
1520		struct xe_pt *pt = entry->pt;
1521
1522		pt->num_live -= entry->qwords;
1523		if (pt->level) {
1524			struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1525			u32 i;
1526
1527			for (i = entry->ofs; i < entry->ofs + entry->qwords;
1528			     i++) {
1529				if (xe_pt_entry(pt_dir, i))
1530					xe_pt_destroy(xe_pt_entry(pt_dir, i),
1531						      xe_vma_vm(vma)->flags, deferred);
1532
1533				pt_dir->children[i] = NULL;
1534			}
1535		}
1536	}
1537}
1538
1539static const struct xe_migrate_pt_update_ops unbind_ops = {
1540	.populate = xe_migrate_clear_pgtable_callback,
1541	.pre_commit = xe_pt_pre_commit,
1542};
1543
1544static const struct xe_migrate_pt_update_ops userptr_unbind_ops = {
1545	.populate = xe_migrate_clear_pgtable_callback,
1546	.pre_commit = xe_pt_userptr_pre_commit,
1547};
1548
1549/**
1550 * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma
1551 * address range.
1552 * @tile: The tile to unbind for.
1553 * @vma: The vma to unbind.
1554 * @q: The exec_queue with which to do pipelined page-table updates.
1555 * @syncs: Entries to sync on before disconnecting the tree to be destroyed.
1556 * @num_syncs: Number of @sync entries.
1557 *
1558 * This function builds a the xe_vm_pgtable_update entries abstracting the
1559 * operations needed to detach the page-table tree to be destroyed from the
1560 * man vm tree.
1561 * It then takes the relevant locks and submits the operations for
1562 * pipelined detachment of the gpu page-table from  the vm main tree,
1563 * (which can be done either by the cpu and the GPU), Finally it frees the
1564 * detached page-table tree.
1565 *
1566 * Return: A valid dma-fence representing the pipelined detachment operation
1567 * on success, an error pointer on error.
1568 */
1569struct dma_fence *
1570__xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q,
1571		   struct xe_sync_entry *syncs, u32 num_syncs)
1572{
1573	struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1];
1574	struct xe_pt_migrate_pt_update unbind_pt_update = {
1575		.base = {
1576			.ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops :
1577			&unbind_ops,
1578			.vma = vma,
1579			.tile_id = tile->id,
1580		},
1581	};
1582	struct xe_vm *vm = xe_vma_vm(vma);
1583	u32 num_entries;
1584	struct dma_fence *fence = NULL;
1585	struct invalidation_fence *ifence;
1586	struct xe_range_fence *rfence;
1587	int err;
1588
1589	LLIST_HEAD(deferred);
1590
1591	xe_bo_assert_held(xe_vma_bo(vma));
1592	xe_vm_assert_held(vm);
1593
1594	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1595	       "Preparing unbind, with range [%llx...%llx) engine %p.\n",
1596	       xe_vma_start(vma), xe_vma_end(vma), q);
1597
1598	num_entries = xe_pt_stage_unbind(tile, vma, entries);
1599	xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries));
1600
1601	xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries);
1602	xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries,
1603				   num_entries);
1604
1605	err = dma_resv_reserve_fences(xe_vm_resv(vm), 1);
1606	if (!err && !xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1607		err = dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1);
1608	if (err)
1609		return ERR_PTR(err);
1610
1611	ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
1612	if (!ifence)
1613		return ERR_PTR(-ENOMEM);
1614
1615	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
1616	if (!rfence) {
1617		kfree(ifence);
1618		return ERR_PTR(-ENOMEM);
1619	}
1620
1621	/*
1622	 * Even if we were already evicted and unbind to destroy, we need to
1623	 * clear again here. The eviction may have updated pagetables at a
1624	 * lower level, because it needs to be more conservative.
1625	 */
1626	fence = xe_migrate_update_pgtables(tile->migrate,
1627					   vm, NULL, q ? q :
1628					   vm->q[tile->id],
1629					   entries, num_entries,
1630					   syncs, num_syncs,
1631					   &unbind_pt_update.base);
1632	if (!IS_ERR(fence)) {
1633		int err;
1634
1635		err = xe_range_fence_insert(&vm->rftree[tile->id], rfence,
1636					    &xe_range_fence_kfree_ops,
1637					    unbind_pt_update.base.start,
1638					    unbind_pt_update.base.last, fence);
1639		if (err)
1640			dma_fence_wait(fence, false);
1641
1642		/* TLB invalidation must be done before signaling unbind */
1643		err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma);
1644		if (err) {
1645			dma_fence_put(fence);
1646			kfree(ifence);
1647			return ERR_PTR(err);
1648		}
1649		fence = &ifence->base.base;
1650
1651		/* add shared fence now for pagetable delayed destroy */
1652		dma_resv_add_fence(xe_vm_resv(vm), fence,
1653				   DMA_RESV_USAGE_BOOKKEEP);
1654
1655		/* This fence will be installed by caller when doing eviction */
1656		if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1657			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1658					   DMA_RESV_USAGE_BOOKKEEP);
1659		xe_pt_commit_unbind(vma, entries, num_entries,
1660				    unbind_pt_update.locked ? &deferred : NULL);
1661		vma->tile_present &= ~BIT(tile->id);
1662	} else {
1663		kfree(rfence);
1664		kfree(ifence);
1665	}
1666
1667	if (!vma->tile_present)
1668		list_del_init(&vma->combined_links.rebind);
1669
1670	if (unbind_pt_update.locked) {
1671		xe_tile_assert(tile, xe_vma_is_userptr(vma));
1672
1673		if (!vma->tile_present) {
1674			spin_lock(&vm->userptr.invalidated_lock);
1675			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1676			spin_unlock(&vm->userptr.invalidated_lock);
1677		}
1678		up_read(&vm->userptr.notifier_lock);
1679		xe_bo_put_commit(&deferred);
1680	}
1681
1682	return fence;
1683}