Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2021 Intel Corporation
   4 */
   5
   6#include <linux/shmem_fs.h>
   7
   8#include <drm/ttm/ttm_placement.h>
   9#include <drm/ttm/ttm_tt.h>
  10#include <drm/drm_buddy.h>
  11
  12#include "i915_drv.h"
  13#include "i915_ttm_buddy_manager.h"
  14#include "intel_memory_region.h"
  15#include "intel_region_ttm.h"
  16
  17#include "gem/i915_gem_mman.h"
  18#include "gem/i915_gem_object.h"
  19#include "gem/i915_gem_region.h"
  20#include "gem/i915_gem_ttm.h"
  21#include "gem/i915_gem_ttm_move.h"
  22#include "gem/i915_gem_ttm_pm.h"
  23#include "gt/intel_gpu_commands.h"
  24
  25#define I915_TTM_PRIO_PURGE     0
  26#define I915_TTM_PRIO_NO_PAGES  1
  27#define I915_TTM_PRIO_HAS_PAGES 2
  28#define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
  29
  30/*
  31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
  32 */
  33#define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
  34
  35/**
  36 * struct i915_ttm_tt - TTM page vector with additional private information
  37 * @ttm: The base TTM page vector.
  38 * @dev: The struct device used for dma mapping and unmapping.
  39 * @cached_rsgt: The cached scatter-gather table.
  40 * @is_shmem: Set if using shmem.
  41 * @filp: The shmem file, if using shmem backend.
  42 *
  43 * Note that DMA may be going on right up to the point where the page-
  44 * vector is unpopulated in delayed destroy. Hence keep the
  45 * scatter-gather table mapped and cached up to that point. This is
  46 * different from the cached gem object io scatter-gather table which
  47 * doesn't have an associated dma mapping.
  48 */
  49struct i915_ttm_tt {
  50	struct ttm_tt ttm;
  51	struct device *dev;
  52	struct i915_refct_sgt cached_rsgt;
  53
  54	bool is_shmem;
  55	struct file *filp;
  56};
  57
  58static const struct ttm_place sys_placement_flags = {
  59	.fpfn = 0,
  60	.lpfn = 0,
  61	.mem_type = I915_PL_SYSTEM,
  62	.flags = 0,
  63};
  64
  65static struct ttm_placement i915_sys_placement = {
  66	.num_placement = 1,
  67	.placement = &sys_placement_flags,
  68};
  69
  70/**
  71 * i915_ttm_sys_placement - Return the struct ttm_placement to be
  72 * used for an object in system memory.
  73 *
  74 * Rather than making the struct extern, use this
  75 * function.
  76 *
  77 * Return: A pointer to a static variable for sys placement.
  78 */
  79struct ttm_placement *i915_ttm_sys_placement(void)
  80{
  81	return &i915_sys_placement;
  82}
  83
  84static int i915_ttm_err_to_gem(int err)
  85{
  86	/* Fastpath */
  87	if (likely(!err))
  88		return 0;
  89
  90	switch (err) {
  91	case -EBUSY:
  92		/*
  93		 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
  94		 * restart the operation, since we don't record the contending
  95		 * lock. We use -EAGAIN to restart.
  96		 */
  97		return -EAGAIN;
  98	case -ENOSPC:
  99		/*
 100		 * Memory type / region is full, and we can't evict.
 101		 * Except possibly system, that returns -ENOMEM;
 102		 */
 103		return -ENXIO;
 104	default:
 105		break;
 106	}
 107
 108	return err;
 109}
 110
 111static enum ttm_caching
 112i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
 113{
 114	/*
 115	 * Objects only allowed in system get cached cpu-mappings, or when
 116	 * evicting lmem-only buffers to system for swapping. Other objects get
 117	 * WC mapping for now. Even if in system.
 118	 */
 119	if (obj->mm.n_placements <= 1)
 120		return ttm_cached;
 121
 122	return ttm_write_combined;
 123}
 124
 125static void
 126i915_ttm_place_from_region(const struct intel_memory_region *mr,
 127			   struct ttm_place *place,
 128			   resource_size_t offset,
 129			   resource_size_t size,
 130			   unsigned int flags)
 131{
 132	memset(place, 0, sizeof(*place));
 133	place->mem_type = intel_region_to_ttm_type(mr);
 134
 135	if (mr->type == INTEL_MEMORY_SYSTEM)
 136		return;
 137
 138	if (flags & I915_BO_ALLOC_CONTIGUOUS)
 139		place->flags |= TTM_PL_FLAG_CONTIGUOUS;
 140	if (offset != I915_BO_INVALID_OFFSET) {
 141		WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn));
 142		place->fpfn = offset >> PAGE_SHIFT;
 143		WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn));
 144		place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
 145	} else if (resource_size(&mr->io) && resource_size(&mr->io) < mr->total) {
 146		if (flags & I915_BO_ALLOC_GPU_ONLY) {
 147			place->flags |= TTM_PL_FLAG_TOPDOWN;
 148		} else {
 149			place->fpfn = 0;
 150			WARN_ON(overflows_type(resource_size(&mr->io) >> PAGE_SHIFT, place->lpfn));
 151			place->lpfn = resource_size(&mr->io) >> PAGE_SHIFT;
 152		}
 153	}
 154}
 155
 156static void
 157i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
 158			    struct ttm_place *places,
 159			    struct ttm_placement *placement)
 160{
 161	unsigned int num_allowed = obj->mm.n_placements;
 162	unsigned int flags = obj->flags;
 163	unsigned int i;
 164
 165	i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
 166				   obj->mm.region, &places[0], obj->bo_offset,
 167				   obj->base.size, flags);
 168	places[0].flags |= TTM_PL_FLAG_DESIRED;
 169
 170	/* Cache this on object? */
 171	for (i = 0; i < num_allowed; ++i) {
 172		i915_ttm_place_from_region(obj->mm.placements[i],
 173					   &places[i + 1], obj->bo_offset,
 174					   obj->base.size, flags);
 175		places[i + 1].flags |= TTM_PL_FLAG_FALLBACK;
 176	}
 177
 178	placement->num_placement = num_allowed + 1;
 179	placement->placement = places;
 180}
 181
 182static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
 183				      struct ttm_tt *ttm,
 184				      struct ttm_operation_ctx *ctx)
 185{
 186	struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
 187	struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
 188	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 189	const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
 190	const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
 191	struct file *filp = i915_tt->filp;
 192	struct sgt_iter sgt_iter;
 193	struct sg_table *st;
 194	struct page *page;
 195	unsigned long i;
 196	int err;
 197
 198	if (!filp) {
 199		struct address_space *mapping;
 200		gfp_t mask;
 201
 202		filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
 203		if (IS_ERR(filp))
 204			return PTR_ERR(filp);
 205
 206		mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
 207
 208		mapping = filp->f_mapping;
 209		mapping_set_gfp_mask(mapping, mask);
 210		GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
 211
 212		i915_tt->filp = filp;
 213	}
 214
 215	st = &i915_tt->cached_rsgt.table;
 216	err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
 217				   max_segment);
 218	if (err)
 219		return err;
 220
 221	err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
 222			      DMA_ATTR_SKIP_CPU_SYNC);
 223	if (err)
 224		goto err_free_st;
 225
 226	i = 0;
 227	for_each_sgt_page(page, sgt_iter, st)
 228		ttm->pages[i++] = page;
 229
 230	if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
 231		ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
 232
 233	return 0;
 234
 235err_free_st:
 236	shmem_sg_free_table(st, filp->f_mapping, false, false);
 237
 238	return err;
 239}
 240
 241static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
 242{
 243	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 244	bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
 245	struct sg_table *st = &i915_tt->cached_rsgt.table;
 246
 247	shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
 248			    backup, backup);
 249}
 250
 251static void i915_ttm_tt_release(struct kref *ref)
 252{
 253	struct i915_ttm_tt *i915_tt =
 254		container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
 255	struct sg_table *st = &i915_tt->cached_rsgt.table;
 256
 257	GEM_WARN_ON(st->sgl);
 258
 259	kfree(i915_tt);
 260}
 261
 262static const struct i915_refct_sgt_ops tt_rsgt_ops = {
 263	.release = i915_ttm_tt_release
 264};
 265
 266static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
 267					 uint32_t page_flags)
 268{
 269	struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
 270						     bdev);
 271	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 272	unsigned long ccs_pages = 0;
 273	enum ttm_caching caching;
 274	struct i915_ttm_tt *i915_tt;
 275	int ret;
 276
 277	if (i915_ttm_is_ghost_object(bo))
 278		return NULL;
 279
 280	i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
 281	if (!i915_tt)
 282		return NULL;
 283
 284	if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource ||
 285	    ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt))
 286		page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
 287
 288	caching = i915_ttm_select_tt_caching(obj);
 289	if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
 290		page_flags |= TTM_TT_FLAG_EXTERNAL |
 291			      TTM_TT_FLAG_EXTERNAL_MAPPABLE;
 292		i915_tt->is_shmem = true;
 293	}
 294
 295	if (i915_gem_object_needs_ccs_pages(obj))
 296		ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
 297						      NUM_BYTES_PER_CCS_BYTE),
 298					 PAGE_SIZE);
 299
 300	ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
 301	if (ret)
 302		goto err_free;
 303
 304	__i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
 305			      &tt_rsgt_ops);
 306
 307	i915_tt->dev = obj->base.dev->dev;
 308
 309	return &i915_tt->ttm;
 310
 311err_free:
 312	kfree(i915_tt);
 313	return NULL;
 314}
 315
 316static int i915_ttm_tt_populate(struct ttm_device *bdev,
 317				struct ttm_tt *ttm,
 318				struct ttm_operation_ctx *ctx)
 319{
 320	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 321
 322	if (i915_tt->is_shmem)
 323		return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
 324
 325	return ttm_pool_alloc(&bdev->pool, ttm, ctx);
 326}
 327
 328static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
 329{
 330	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 331	struct sg_table *st = &i915_tt->cached_rsgt.table;
 332
 333	if (st->sgl)
 334		dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
 335
 336	if (i915_tt->is_shmem) {
 337		i915_ttm_tt_shmem_unpopulate(ttm);
 338	} else {
 339		sg_free_table(st);
 340		ttm_pool_free(&bdev->pool, ttm);
 341	}
 342}
 343
 344static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
 345{
 346	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 347
 348	if (i915_tt->filp)
 349		fput(i915_tt->filp);
 350
 351	ttm_tt_fini(ttm);
 352	i915_refct_sgt_put(&i915_tt->cached_rsgt);
 353}
 354
 355static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
 356				       const struct ttm_place *place)
 357{
 358	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 359
 360	if (i915_ttm_is_ghost_object(bo))
 361		return false;
 362
 363	/*
 364	 * EXTERNAL objects should never be swapped out by TTM, instead we need
 365	 * to handle that ourselves. TTM will already skip such objects for us,
 366	 * but we would like to avoid grabbing locks for no good reason.
 367	 */
 368	if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
 369		return false;
 370
 371	/* Will do for now. Our pinned objects are still on TTM's LRU lists */
 372	if (!i915_gem_object_evictable(obj))
 373		return false;
 374
 375	return ttm_bo_eviction_valuable(bo, place);
 376}
 377
 378static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
 379				 struct ttm_placement *placement)
 380{
 381	*placement = i915_sys_placement;
 382}
 383
 384/**
 385 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
 386 * @obj: The GEM object
 387 * This function frees any LMEM-related information that is cached on
 388 * the object. For example the radix tree for fast page lookup and the
 389 * cached refcounted sg-table
 390 */
 391void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
 392{
 393	struct radix_tree_iter iter;
 394	void __rcu **slot;
 395
 396	if (!obj->ttm.cached_io_rsgt)
 397		return;
 398
 399	rcu_read_lock();
 400	radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
 401		radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
 402	rcu_read_unlock();
 403
 404	i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
 405	obj->ttm.cached_io_rsgt = NULL;
 406}
 407
 408/**
 409 * i915_ttm_purge - Clear an object of its memory
 410 * @obj: The object
 411 *
 412 * This function is called to clear an object of it's memory when it is
 413 * marked as not needed anymore.
 414 *
 415 * Return: 0 on success, negative error code on failure.
 416 */
 417int i915_ttm_purge(struct drm_i915_gem_object *obj)
 418{
 419	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 420	struct i915_ttm_tt *i915_tt =
 421		container_of(bo->ttm, typeof(*i915_tt), ttm);
 422	struct ttm_operation_ctx ctx = {
 423		.interruptible = true,
 424		.no_wait_gpu = false,
 425	};
 426	struct ttm_placement place = {};
 427	int ret;
 428
 429	if (obj->mm.madv == __I915_MADV_PURGED)
 430		return 0;
 431
 432	ret = ttm_bo_validate(bo, &place, &ctx);
 433	if (ret)
 434		return ret;
 435
 436	if (bo->ttm && i915_tt->filp) {
 437		/*
 438		 * The below fput(which eventually calls shmem_truncate) might
 439		 * be delayed by worker, so when directly called to purge the
 440		 * pages(like by the shrinker) we should try to be more
 441		 * aggressive and release the pages immediately.
 442		 */
 443		shmem_truncate_range(file_inode(i915_tt->filp),
 444				     0, (loff_t)-1);
 445		fput(fetch_and_zero(&i915_tt->filp));
 446	}
 447
 448	obj->write_domain = 0;
 449	obj->read_domains = 0;
 450	i915_ttm_adjust_gem_after_move(obj);
 451	i915_ttm_free_cached_io_rsgt(obj);
 452	obj->mm.madv = __I915_MADV_PURGED;
 453
 454	return 0;
 455}
 456
 457static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
 458{
 459	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 460	struct i915_ttm_tt *i915_tt =
 461		container_of(bo->ttm, typeof(*i915_tt), ttm);
 462	struct ttm_operation_ctx ctx = {
 463		.interruptible = true,
 464		.no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
 465	};
 466	struct ttm_placement place = {};
 467	int ret;
 468
 469	if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource))
 470		return 0;
 471
 472	GEM_BUG_ON(!i915_tt->is_shmem);
 473
 474	if (!i915_tt->filp)
 475		return 0;
 476
 477	ret = ttm_bo_wait_ctx(bo, &ctx);
 478	if (ret)
 479		return ret;
 480
 481	switch (obj->mm.madv) {
 482	case I915_MADV_DONTNEED:
 483		return i915_ttm_purge(obj);
 484	case __I915_MADV_PURGED:
 485		return 0;
 486	}
 487
 488	if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
 489		return 0;
 490
 491	bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
 492	ret = ttm_bo_validate(bo, &place, &ctx);
 493	if (ret) {
 494		bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
 495		return ret;
 496	}
 497
 498	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
 499		__shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
 500
 501	return 0;
 502}
 503
 504static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
 505{
 506	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 507
 508	/*
 509	 * This gets called twice by ttm, so long as we have a ttm resource or
 510	 * ttm_tt then we can still safely call this. Due to pipeline-gutting,
 511	 * we maybe have NULL bo->resource, but in that case we should always
 512	 * have a ttm alive (like if the pages are swapped out).
 513	 */
 514	if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) {
 515		__i915_gem_object_pages_fini(obj);
 516		i915_ttm_free_cached_io_rsgt(obj);
 517	}
 518}
 519
 520static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
 521{
 522	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
 523	struct sg_table *st;
 524	int ret;
 525
 526	if (i915_tt->cached_rsgt.table.sgl)
 527		return i915_refct_sgt_get(&i915_tt->cached_rsgt);
 528
 529	st = &i915_tt->cached_rsgt.table;
 530	ret = sg_alloc_table_from_pages_segment(st,
 531			ttm->pages, ttm->num_pages,
 532			0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
 533			i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
 534	if (ret) {
 535		st->sgl = NULL;
 536		return ERR_PTR(ret);
 537	}
 538
 539	ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
 540	if (ret) {
 541		sg_free_table(st);
 542		return ERR_PTR(ret);
 543	}
 544
 545	return i915_refct_sgt_get(&i915_tt->cached_rsgt);
 546}
 547
 548/**
 549 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
 550 * resource memory
 551 * @obj: The GEM object used for sg-table caching
 552 * @res: The struct ttm_resource for which an sg-table is requested.
 553 *
 554 * This function returns a refcounted sg-table representing the memory
 555 * pointed to by @res. If @res is the object's current resource it may also
 556 * cache the sg_table on the object or attempt to access an already cached
 557 * sg-table. The refcounted sg-table needs to be put when no-longer in use.
 558 *
 559 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
 560 * failure.
 561 */
 562struct i915_refct_sgt *
 563i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
 564			 struct ttm_resource *res)
 565{
 566	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 567	u32 page_alignment;
 568
 569	if (!i915_ttm_gtt_binds_lmem(res))
 570		return i915_ttm_tt_get_st(bo->ttm);
 571
 572	page_alignment = bo->page_alignment << PAGE_SHIFT;
 573	if (!page_alignment)
 574		page_alignment = obj->mm.region->min_page_size;
 575
 576	/*
 577	 * If CPU mapping differs, we need to add the ttm_tt pages to
 578	 * the resulting st. Might make sense for GGTT.
 579	 */
 580	GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
 581	if (bo->resource == res) {
 582		if (!obj->ttm.cached_io_rsgt) {
 583			struct i915_refct_sgt *rsgt;
 584
 585			rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
 586								 res,
 587								 page_alignment);
 588			if (IS_ERR(rsgt))
 589				return rsgt;
 590
 591			obj->ttm.cached_io_rsgt = rsgt;
 592		}
 593		return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
 594	}
 595
 596	return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
 597						 page_alignment);
 598}
 599
 600static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
 601{
 602	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 603	long err;
 604
 605	WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
 606
 607	err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
 608				    true, 15 * HZ);
 609	if (err < 0)
 610		return err;
 611	if (err == 0)
 612		return -EBUSY;
 613
 614	err = i915_ttm_move_notify(bo);
 615	if (err)
 616		return err;
 617
 618	return i915_ttm_purge(obj);
 619}
 620
 621static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
 622{
 623	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 624	int ret;
 625
 626	if (i915_ttm_is_ghost_object(bo))
 627		return;
 628
 629	ret = i915_ttm_move_notify(bo);
 630	GEM_WARN_ON(ret);
 631	GEM_WARN_ON(obj->ttm.cached_io_rsgt);
 632	if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
 633		i915_ttm_purge(obj);
 634}
 635
 636/**
 637 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
 638 * accessible.
 639 * @res: The TTM resource to check.
 640 *
 641 * This is interesting on small-BAR systems where we may encounter lmem objects
 642 * that can't be accessed via the CPU.
 643 */
 644bool i915_ttm_resource_mappable(struct ttm_resource *res)
 645{
 646	struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
 647
 648	if (!i915_ttm_cpu_maps_iomem(res))
 649		return true;
 650
 651	return bman_res->used_visible_size == PFN_UP(bman_res->base.size);
 652}
 653
 654static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
 655{
 656	struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
 657	bool unknown_state;
 658
 659	if (i915_ttm_is_ghost_object(mem->bo))
 660		return -EINVAL;
 661
 662	if (!kref_get_unless_zero(&obj->base.refcount))
 663		return -EINVAL;
 664
 665	assert_object_held(obj);
 666
 667	unknown_state = i915_gem_object_has_unknown_state(obj);
 668	i915_gem_object_put(obj);
 669	if (unknown_state)
 670		return -EINVAL;
 671
 672	if (!i915_ttm_cpu_maps_iomem(mem))
 673		return 0;
 674
 675	if (!i915_ttm_resource_mappable(mem))
 676		return -EINVAL;
 677
 678	mem->bus.caching = ttm_write_combined;
 679	mem->bus.is_iomem = true;
 680
 681	return 0;
 682}
 683
 684static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 685					 unsigned long page_offset)
 686{
 687	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 688	struct scatterlist *sg;
 689	unsigned long base;
 690	unsigned int ofs;
 691
 692	GEM_BUG_ON(i915_ttm_is_ghost_object(bo));
 693	GEM_WARN_ON(bo->ttm);
 694
 695	base = obj->mm.region->iomap.base - obj->mm.region->region.start;
 696	sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs);
 697
 698	return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
 699}
 700
 701static int i915_ttm_access_memory(struct ttm_buffer_object *bo,
 702				  unsigned long offset, void *buf,
 703				  int len, int write)
 704{
 705	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
 706	resource_size_t iomap = obj->mm.region->iomap.base -
 707		obj->mm.region->region.start;
 708	unsigned long page = offset >> PAGE_SHIFT;
 709	unsigned long bytes_left = len;
 710
 711	/*
 712	 * TODO: For now just let it fail if the resource is non-mappable,
 713	 * otherwise we need to perform the memcpy from the gpu here, without
 714	 * interfering with the object (like moving the entire thing).
 715	 */
 716	if (!i915_ttm_resource_mappable(bo->resource))
 717		return -EIO;
 718
 719	offset -= page << PAGE_SHIFT;
 720	do {
 721		unsigned long bytes = min(bytes_left, PAGE_SIZE - offset);
 722		void __iomem *ptr;
 723		dma_addr_t daddr;
 724
 725		daddr = i915_gem_object_get_dma_address(obj, page);
 726		ptr = ioremap_wc(iomap + daddr + offset, bytes);
 727		if (!ptr)
 728			return -EIO;
 729
 730		if (write)
 731			memcpy_toio(ptr, buf, bytes);
 732		else
 733			memcpy_fromio(buf, ptr, bytes);
 734		iounmap(ptr);
 735
 736		page++;
 737		buf += bytes;
 738		bytes_left -= bytes;
 739		offset = 0;
 740	} while (bytes_left);
 741
 742	return len;
 743}
 744
 745/*
 746 * All callbacks need to take care not to downcast a struct ttm_buffer_object
 747 * without checking its subclass, since it might be a TTM ghost object.
 748 */
 749static struct ttm_device_funcs i915_ttm_bo_driver = {
 750	.ttm_tt_create = i915_ttm_tt_create,
 751	.ttm_tt_populate = i915_ttm_tt_populate,
 752	.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
 753	.ttm_tt_destroy = i915_ttm_tt_destroy,
 754	.eviction_valuable = i915_ttm_eviction_valuable,
 755	.evict_flags = i915_ttm_evict_flags,
 756	.move = i915_ttm_move,
 757	.swap_notify = i915_ttm_swap_notify,
 758	.delete_mem_notify = i915_ttm_delete_mem_notify,
 759	.io_mem_reserve = i915_ttm_io_mem_reserve,
 760	.io_mem_pfn = i915_ttm_io_mem_pfn,
 761	.access_memory = i915_ttm_access_memory,
 762};
 763
 764/**
 765 * i915_ttm_driver - Return a pointer to the TTM device funcs
 766 *
 767 * Return: Pointer to statically allocated TTM device funcs.
 768 */
 769struct ttm_device_funcs *i915_ttm_driver(void)
 770{
 771	return &i915_ttm_bo_driver;
 772}
 773
 774static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
 775				struct ttm_placement *placement)
 776{
 777	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 778	struct ttm_operation_ctx ctx = {
 779		.interruptible = true,
 780		.no_wait_gpu = false,
 781	};
 782	int real_num_busy;
 783	int ret;
 784
 785	/* First try only the requested placement. No eviction. */
 786	real_num_busy = placement->num_placement;
 787	placement->num_placement = 1;
 788	ret = ttm_bo_validate(bo, placement, &ctx);
 789	if (ret) {
 790		ret = i915_ttm_err_to_gem(ret);
 791		/*
 792		 * Anything that wants to restart the operation gets to
 793		 * do that.
 794		 */
 795		if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
 796		    ret == -EAGAIN)
 797			return ret;
 798
 799		/*
 800		 * If the initial attempt fails, allow all accepted placements,
 801		 * evicting if necessary.
 802		 */
 803		placement->num_placement = real_num_busy;
 804		ret = ttm_bo_validate(bo, placement, &ctx);
 805		if (ret)
 806			return i915_ttm_err_to_gem(ret);
 807	}
 808
 809	if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
 810		ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
 811		if (ret)
 812			return ret;
 813
 814		i915_ttm_adjust_domains_after_move(obj);
 815		i915_ttm_adjust_gem_after_move(obj);
 816	}
 817
 818	if (!i915_gem_object_has_pages(obj)) {
 819		struct i915_refct_sgt *rsgt =
 820			i915_ttm_resource_get_st(obj, bo->resource);
 821
 822		if (IS_ERR(rsgt))
 823			return PTR_ERR(rsgt);
 824
 825		GEM_BUG_ON(obj->mm.rsgt);
 826		obj->mm.rsgt = rsgt;
 827		__i915_gem_object_set_pages(obj, &rsgt->table);
 828	}
 829
 830	GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
 831	i915_ttm_adjust_lru(obj);
 832	return ret;
 833}
 834
 835static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
 836{
 837	struct ttm_place places[I915_TTM_MAX_PLACEMENTS + 1];
 838	struct ttm_placement placement;
 839
 840	/* restricted by sg_alloc_table */
 841	if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int))
 842		return -E2BIG;
 843
 844	GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
 845
 846	/* Move to the requested placement. */
 847	i915_ttm_placement_from_obj(obj, places, &placement);
 848
 849	return __i915_ttm_get_pages(obj, &placement);
 850}
 851
 852/**
 853 * DOC: Migration vs eviction
 854 *
 855 * GEM migration may not be the same as TTM migration / eviction. If
 856 * the TTM core decides to evict an object it may be evicted to a
 857 * TTM memory type that is not in the object's allowable GEM regions, or
 858 * in fact theoretically to a TTM memory type that doesn't correspond to
 859 * a GEM memory region. In that case the object's GEM region is not
 860 * updated, and the data is migrated back to the GEM region at
 861 * get_pages time. TTM may however set up CPU ptes to the object even
 862 * when it is evicted.
 863 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
 864 * to regions that are not in the object's list of allowable placements.
 865 */
 866static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
 867			      struct intel_memory_region *mr,
 868			      unsigned int flags)
 869{
 870	struct ttm_place requested;
 871	struct ttm_placement placement;
 872	int ret;
 873
 874	i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
 875				   obj->base.size, flags);
 876	placement.num_placement = 1;
 877	placement.placement = &requested;
 878
 879	ret = __i915_ttm_get_pages(obj, &placement);
 880	if (ret)
 881		return ret;
 882
 883	/*
 884	 * Reinitialize the region bindings. This is primarily
 885	 * required for objects where the new region is not in
 886	 * its allowable placements.
 887	 */
 888	if (obj->mm.region != mr) {
 889		i915_gem_object_release_memory_region(obj);
 890		i915_gem_object_init_memory_region(obj, mr);
 891	}
 892
 893	return 0;
 894}
 895
 896static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
 897			    struct intel_memory_region *mr,
 898			    unsigned int flags)
 899{
 900	return __i915_ttm_migrate(obj, mr, flags);
 901}
 902
 903static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
 904			       struct sg_table *st)
 905{
 906	/*
 907	 * We're currently not called from a shrinker, so put_pages()
 908	 * typically means the object is about to destroyed, or called
 909	 * from move_notify(). So just avoid doing much for now.
 910	 * If the object is not destroyed next, The TTM eviction logic
 911	 * and shrinkers will move it out if needed.
 912	 */
 913
 914	if (obj->mm.rsgt)
 915		i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
 916}
 917
 918/**
 919 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
 920 * @obj: The object
 921 */
 922void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
 923{
 924	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
 925	struct i915_ttm_tt *i915_tt =
 926		container_of(bo->ttm, typeof(*i915_tt), ttm);
 927	bool shrinkable =
 928		bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
 929
 930	/*
 931	 * Don't manipulate the TTM LRUs while in TTM bo destruction.
 932	 * We're called through i915_ttm_delete_mem_notify().
 933	 */
 934	if (!kref_read(&bo->kref))
 935		return;
 936
 937	/*
 938	 * We skip managing the shrinker LRU in set_pages() and just manage
 939	 * everything here. This does at least solve the issue with having
 940	 * temporary shmem mappings(like with evicted lmem) not being visible to
 941	 * the shrinker. Only our shmem objects are shrinkable, everything else
 942	 * we keep as unshrinkable.
 943	 *
 944	 * To make sure everything plays nice we keep an extra shrink pin in TTM
 945	 * if the underlying pages are not currently shrinkable. Once we release
 946	 * our pin, like when the pages are moved to shmem, the pages will then
 947	 * be added to the shrinker LRU, assuming the caller isn't also holding
 948	 * a pin.
 949	 *
 950	 * TODO: consider maybe also bumping the shrinker list here when we have
 951	 * already unpinned it, which should give us something more like an LRU.
 952	 *
 953	 * TODO: There is a small window of opportunity for this function to
 954	 * get called from eviction after we've dropped the last GEM refcount,
 955	 * but before the TTM deleted flag is set on the object. Avoid
 956	 * adjusting the shrinker list in such cases, since the object is
 957	 * not available to the shrinker anyway due to its zero refcount.
 958	 * To fix this properly we should move to a TTM shrinker LRU list for
 959	 * these objects.
 960	 */
 961	if (kref_get_unless_zero(&obj->base.refcount)) {
 962		if (shrinkable != obj->mm.ttm_shrinkable) {
 963			if (shrinkable) {
 964				if (obj->mm.madv == I915_MADV_WILLNEED)
 965					__i915_gem_object_make_shrinkable(obj);
 966				else
 967					__i915_gem_object_make_purgeable(obj);
 968			} else {
 969				i915_gem_object_make_unshrinkable(obj);
 970			}
 971
 972			obj->mm.ttm_shrinkable = shrinkable;
 973		}
 974		i915_gem_object_put(obj);
 975	}
 976
 977	/*
 978	 * Put on the correct LRU list depending on the MADV status
 979	 */
 980	spin_lock(&bo->bdev->lru_lock);
 981	if (shrinkable) {
 982		/* Try to keep shmem_tt from being considered for shrinking. */
 983		bo->priority = TTM_MAX_BO_PRIORITY - 1;
 984	} else if (obj->mm.madv != I915_MADV_WILLNEED) {
 985		bo->priority = I915_TTM_PRIO_PURGE;
 986	} else if (!i915_gem_object_has_pages(obj)) {
 987		bo->priority = I915_TTM_PRIO_NO_PAGES;
 988	} else {
 989		struct ttm_resource_manager *man =
 990			ttm_manager_type(bo->bdev, bo->resource->mem_type);
 991
 992		/*
 993		 * If we need to place an LMEM resource which doesn't need CPU
 994		 * access then we should try not to victimize mappable objects
 995		 * first, since we likely end up stealing more of the mappable
 996		 * portion. And likewise when we try to find space for a mappble
 997		 * object, we know not to ever victimize objects that don't
 998		 * occupy any mappable pages.
 999		 */
1000		if (i915_ttm_cpu_maps_iomem(bo->resource) &&
1001		    i915_ttm_buddy_man_visible_size(man) < man->size &&
1002		    !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
1003			bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
1004		else
1005			bo->priority = I915_TTM_PRIO_HAS_PAGES;
1006	}
1007
1008	ttm_bo_move_to_lru_tail(bo);
1009	spin_unlock(&bo->bdev->lru_lock);
1010}
1011
1012/*
1013 * TTM-backed gem object destruction requires some clarification.
1014 * Basically we have two possibilities here. We can either rely on the
1015 * i915 delayed destruction and put the TTM object when the object
1016 * is idle. This would be detected by TTM which would bypass the
1017 * TTM delayed destroy handling. The other approach is to put the TTM
1018 * object early and rely on the TTM destroyed handling, and then free
1019 * the leftover parts of the GEM object once TTM's destroyed list handling is
1020 * complete. For now, we rely on the latter for two reasons:
1021 * a) TTM can evict an object even when it's on the delayed destroy list,
1022 * which in theory allows for complete eviction.
1023 * b) There is work going on in TTM to allow freeing an object even when
1024 * it's not idle, and using the TTM destroyed list handling could help us
1025 * benefit from that.
1026 */
1027static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1028{
1029	GEM_BUG_ON(!obj->ttm.created);
1030
1031	ttm_bo_put(i915_gem_to_ttm(obj));
1032}
1033
1034static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1035{
1036	struct vm_area_struct *area = vmf->vma;
1037	struct ttm_buffer_object *bo = area->vm_private_data;
1038	struct drm_device *dev = bo->base.dev;
1039	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1040	intel_wakeref_t wakeref = 0;
1041	vm_fault_t ret;
1042	int idx;
1043
1044	/* Sanity check that we allow writing into this object */
1045	if (unlikely(i915_gem_object_is_readonly(obj) &&
1046		     area->vm_flags & VM_WRITE))
1047		return VM_FAULT_SIGBUS;
1048
1049	ret = ttm_bo_vm_reserve(bo, vmf);
1050	if (ret)
1051		return ret;
1052
1053	if (obj->mm.madv != I915_MADV_WILLNEED) {
1054		dma_resv_unlock(bo->base.resv);
1055		return VM_FAULT_SIGBUS;
1056	}
1057
1058	/*
1059	 * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1060	 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1061	 * far as far doing a ttm_bo_move_null(), which should skip all the
1062	 * other junk.
1063	 */
1064	if (!bo->resource) {
1065		struct ttm_operation_ctx ctx = {
1066			.interruptible = true,
1067			.no_wait_gpu = true, /* should be idle already */
1068		};
1069		int err;
1070
1071		GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1072
1073		err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1074		if (err) {
1075			dma_resv_unlock(bo->base.resv);
1076			return VM_FAULT_SIGBUS;
1077		}
1078	} else if (!i915_ttm_resource_mappable(bo->resource)) {
1079		int err = -ENODEV;
1080		int i;
1081
1082		for (i = 0; i < obj->mm.n_placements; i++) {
1083			struct intel_memory_region *mr = obj->mm.placements[i];
1084			unsigned int flags;
1085
1086			if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM)
1087				continue;
1088
1089			flags = obj->flags;
1090			flags &= ~I915_BO_ALLOC_GPU_ONLY;
1091			err = __i915_ttm_migrate(obj, mr, flags);
1092			if (!err)
1093				break;
1094		}
1095
1096		if (err) {
1097			drm_dbg_ratelimited(dev,
1098					    "Unable to make resource CPU accessible(err = %pe)\n",
1099					    ERR_PTR(err));
1100			dma_resv_unlock(bo->base.resv);
1101			ret = VM_FAULT_SIGBUS;
1102			goto out_rpm;
1103		}
1104	}
1105
1106	if (i915_ttm_cpu_maps_iomem(bo->resource))
1107		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1108
1109	if (drm_dev_enter(dev, &idx)) {
1110		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1111					       TTM_BO_VM_NUM_PREFAULT);
1112		drm_dev_exit(idx);
1113	} else {
1114		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1115	}
1116
1117	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1118		goto out_rpm;
1119
1120	/*
1121	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1122	 * userfault_count is protected by dma_resv lock and rpm wakeref.
1123	 */
1124	if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1125		obj->userfault_count = 1;
1126		spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1127		list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1128		spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1129
1130		GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1131	}
1132
1133	if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
1134		intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1135				   msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1136
1137	i915_ttm_adjust_lru(obj);
1138
1139	dma_resv_unlock(bo->base.resv);
1140
1141out_rpm:
1142	if (wakeref)
1143		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1144
1145	return ret;
1146}
1147
1148static int
1149vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1150	      void *buf, int len, int write)
1151{
1152	struct drm_i915_gem_object *obj =
1153		i915_ttm_to_gem(area->vm_private_data);
1154
1155	if (i915_gem_object_is_readonly(obj) && write)
1156		return -EACCES;
1157
1158	return ttm_bo_vm_access(area, addr, buf, len, write);
1159}
1160
1161static void ttm_vm_open(struct vm_area_struct *vma)
1162{
1163	struct drm_i915_gem_object *obj =
1164		i915_ttm_to_gem(vma->vm_private_data);
1165
1166	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1167	i915_gem_object_get(obj);
1168}
1169
1170static void ttm_vm_close(struct vm_area_struct *vma)
1171{
1172	struct drm_i915_gem_object *obj =
1173		i915_ttm_to_gem(vma->vm_private_data);
1174
1175	GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1176	i915_gem_object_put(obj);
1177}
1178
1179static const struct vm_operations_struct vm_ops_ttm = {
1180	.fault = vm_fault_ttm,
1181	.access = vm_access_ttm,
1182	.open = ttm_vm_open,
1183	.close = ttm_vm_close,
1184};
1185
1186static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1187{
1188	/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1189	GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1190
1191	return drm_vma_node_offset_addr(&obj->base.vma_node);
1192}
1193
1194static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1195{
1196	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
1197	intel_wakeref_t wakeref = 0;
1198
1199	assert_object_held_shared(obj);
1200
1201	if (i915_ttm_cpu_maps_iomem(bo->resource)) {
1202		wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1203
1204		/* userfault_count is protected by obj lock and rpm wakeref. */
1205		if (obj->userfault_count) {
1206			spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1207			list_del(&obj->userfault_link);
1208			spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1209			obj->userfault_count = 0;
1210		}
1211	}
1212
1213	GEM_WARN_ON(obj->userfault_count);
1214
1215	ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1216
1217	if (wakeref)
1218		intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1219}
1220
1221static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1222	.name = "i915_gem_object_ttm",
1223	.flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1224		 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1225
1226	.get_pages = i915_ttm_get_pages,
1227	.put_pages = i915_ttm_put_pages,
1228	.truncate = i915_ttm_truncate,
1229	.shrink = i915_ttm_shrink,
1230
1231	.adjust_lru = i915_ttm_adjust_lru,
1232	.delayed_free = i915_ttm_delayed_free,
1233	.migrate = i915_ttm_migrate,
1234
1235	.mmap_offset = i915_ttm_mmap_offset,
1236	.unmap_virtual = i915_ttm_unmap_virtual,
1237	.mmap_ops = &vm_ops_ttm,
1238};
1239
1240void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1241{
1242	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1243
1244	i915_gem_object_release_memory_region(obj);
1245	mutex_destroy(&obj->ttm.get_io_page.lock);
1246
1247	if (obj->ttm.created) {
1248		/*
1249		 * We freely manage the shrinker LRU outide of the mm.pages life
1250		 * cycle. As a result when destroying the object we should be
1251		 * extra paranoid and ensure we remove it from the LRU, before
1252		 * we free the object.
1253		 *
1254		 * Touching the ttm_shrinkable outside of the object lock here
1255		 * should be safe now that the last GEM object ref was dropped.
1256		 */
1257		if (obj->mm.ttm_shrinkable)
1258			i915_gem_object_make_unshrinkable(obj);
1259
1260		i915_ttm_backup_free(obj);
1261
1262		/* This releases all gem object bindings to the backend. */
1263		__i915_gem_free_object(obj);
1264
1265		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1266	} else {
1267		__i915_gem_object_fini(obj);
1268	}
1269}
1270
1271/*
1272 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1273 * @mem: The initial memory region for the object.
1274 * @obj: The gem object.
1275 * @size: Object size in bytes.
1276 * @flags: gem object flags.
1277 *
1278 * Return: 0 on success, negative error code on failure.
1279 */
1280int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1281			       struct drm_i915_gem_object *obj,
1282			       resource_size_t offset,
1283			       resource_size_t size,
1284			       resource_size_t page_size,
1285			       unsigned int flags)
1286{
1287	static struct lock_class_key lock_class;
1288	struct drm_i915_private *i915 = mem->i915;
1289	struct ttm_operation_ctx ctx = {
1290		.interruptible = true,
1291		.no_wait_gpu = false,
1292	};
1293	enum ttm_bo_type bo_type;
1294	int ret;
1295
1296	drm_gem_private_object_init(&i915->drm, &obj->base, size);
1297	i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1298
1299	obj->bo_offset = offset;
1300
1301	/* Don't put on a region list until we're either locked or fully initialized. */
1302	obj->mm.region = mem;
1303	INIT_LIST_HEAD(&obj->mm.region_link);
1304
1305	INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1306	mutex_init(&obj->ttm.get_io_page.lock);
1307	bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1308		ttm_bo_type_kernel;
1309
1310	obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1311
1312	/* Forcing the page size is kernel internal only */
1313	GEM_BUG_ON(page_size && obj->mm.n_placements);
1314
1315	/*
1316	 * Keep an extra shrink pin to prevent the object from being made
1317	 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1318	 * drop the pin. The TTM backend manages the shrinker LRU itself,
1319	 * outside of the normal mm.pages life cycle.
1320	 */
1321	i915_gem_object_make_unshrinkable(obj);
1322
1323	/*
1324	 * If this function fails, it will call the destructor, but
1325	 * our caller still owns the object. So no freeing in the
1326	 * destructor until obj->ttm.created is true.
1327	 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1328	 * until successful initialization.
1329	 */
1330	ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1331				   &i915_sys_placement, page_size >> PAGE_SHIFT,
1332				   &ctx, NULL, NULL, i915_ttm_bo_destroy);
1333
1334	/*
1335	 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size
1336	 * is too big to add vma. The direct function that returns -ENOSPC is
1337	 * drm_mm_insert_node_in_range(). To handle the same error as other code
1338	 * that returns -E2BIG when the size is too large, it converts -ENOSPC to
1339	 * -E2BIG.
1340	 */
1341	if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC)
1342		ret = -E2BIG;
1343
1344	if (ret)
1345		return i915_ttm_err_to_gem(ret);
1346
1347	obj->ttm.created = true;
1348	i915_gem_object_release_memory_region(obj);
1349	i915_gem_object_init_memory_region(obj, mem);
1350	i915_ttm_adjust_domains_after_move(obj);
1351	i915_ttm_adjust_gem_after_move(obj);
1352	i915_gem_object_unlock(obj);
1353
1354	return 0;
1355}
1356
1357static const struct intel_memory_region_ops ttm_system_region_ops = {
1358	.init_object = __i915_gem_ttm_object_init,
1359	.release = intel_region_ttm_fini,
1360};
1361
1362struct intel_memory_region *
1363i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1364			  u16 type, u16 instance)
1365{
1366	struct intel_memory_region *mr;
1367
1368	mr = intel_memory_region_create(i915, 0,
1369					totalram_pages() << PAGE_SHIFT,
1370					PAGE_SIZE, 0, 0,
1371					type, instance,
1372					&ttm_system_region_ops);
1373	if (IS_ERR(mr))
1374		return mr;
1375
1376	intel_memory_region_set_name(mr, "system-ttm");
1377	return mr;
1378}