Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2009 Keith Packard
   3 *
   4 * Permission to use, copy, modify, distribute, and sell this software and its
   5 * documentation for any purpose is hereby granted without fee, provided that
   6 * the above copyright notice appear in all copies and that both that copyright
   7 * notice and this permission notice appear in supporting documentation, and
   8 * that the name of the copyright holders not be used in advertising or
   9 * publicity pertaining to distribution of the software without specific,
  10 * written prior permission.  The copyright holders make no representations
  11 * about the suitability of this software for any purpose.  It is provided "as
  12 * is" without express or implied warranty.
  13 *
  14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
  15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
  16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
  17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
  18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
  20 * OF THIS SOFTWARE.
  21 */
  22
  23#include <linux/backlight.h>
  24#include <linux/delay.h>
  25#include <linux/errno.h>
  26#include <linux/i2c.h>
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/sched.h>
  31#include <linux/seq_file.h>
  32#include <linux/string_helpers.h>
  33#include <linux/dynamic_debug.h>
  34
  35#include <drm/display/drm_dp_helper.h>
  36#include <drm/display/drm_dp_mst_helper.h>
  37#include <drm/drm_edid.h>
  38#include <drm/drm_print.h>
  39#include <drm/drm_vblank.h>
  40#include <drm/drm_panel.h>
  41
  42#include "drm_dp_helper_internal.h"
  43
  44DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
  45			"DRM_UT_CORE",
  46			"DRM_UT_DRIVER",
  47			"DRM_UT_KMS",
  48			"DRM_UT_PRIME",
  49			"DRM_UT_ATOMIC",
  50			"DRM_UT_VBL",
  51			"DRM_UT_STATE",
  52			"DRM_UT_LEASE",
  53			"DRM_UT_DP",
  54			"DRM_UT_DRMRES");
  55
  56struct dp_aux_backlight {
  57	struct backlight_device *base;
  58	struct drm_dp_aux *aux;
  59	struct drm_edp_backlight_info info;
  60	bool enabled;
  61};
  62
  63/**
  64 * DOC: dp helpers
  65 *
  66 * These functions contain some common logic and helpers at various abstraction
  67 * levels to deal with Display Port sink devices and related things like DP aux
  68 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
  69 * blocks, ...
  70 */
  71
  72/* Helpers for DP link training */
  73static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
  74{
  75	return link_status[r - DP_LANE0_1_STATUS];
  76}
  77
  78static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
  79			     int lane)
  80{
  81	int i = DP_LANE0_1_STATUS + (lane >> 1);
  82	int s = (lane & 1) * 4;
  83	u8 l = dp_link_status(link_status, i);
  84
  85	return (l >> s) & 0xf;
  86}
  87
  88bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
  89			  int lane_count)
  90{
  91	u8 lane_align;
  92	u8 lane_status;
  93	int lane;
  94
  95	lane_align = dp_link_status(link_status,
  96				    DP_LANE_ALIGN_STATUS_UPDATED);
  97	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  98		return false;
  99	for (lane = 0; lane < lane_count; lane++) {
 100		lane_status = dp_get_lane_status(link_status, lane);
 101		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
 102			return false;
 103	}
 104	return true;
 105}
 106EXPORT_SYMBOL(drm_dp_channel_eq_ok);
 107
 108bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
 109			      int lane_count)
 110{
 111	int lane;
 112	u8 lane_status;
 113
 114	for (lane = 0; lane < lane_count; lane++) {
 115		lane_status = dp_get_lane_status(link_status, lane);
 116		if ((lane_status & DP_LANE_CR_DONE) == 0)
 117			return false;
 118	}
 119	return true;
 120}
 121EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
 122
 123u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
 124				     int lane)
 125{
 126	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 127	int s = ((lane & 1) ?
 128		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
 129		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
 130	u8 l = dp_link_status(link_status, i);
 131
 132	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
 133}
 134EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
 135
 136u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
 137					  int lane)
 138{
 139	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 140	int s = ((lane & 1) ?
 141		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
 142		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
 143	u8 l = dp_link_status(link_status, i);
 144
 145	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
 146}
 147EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
 148
 149/* DP 2.0 128b/132b */
 150u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
 151				   int lane)
 152{
 153	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 154	int s = ((lane & 1) ?
 155		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
 156		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
 157	u8 l = dp_link_status(link_status, i);
 158
 159	return (l >> s) & 0xf;
 160}
 161EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
 162
 163/* DP 2.0 errata for 128b/132b */
 164bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
 165					  int lane_count)
 166{
 167	u8 lane_align, lane_status;
 168	int lane;
 169
 170	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 171	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
 172		return false;
 173
 174	for (lane = 0; lane < lane_count; lane++) {
 175		lane_status = dp_get_lane_status(link_status, lane);
 176		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
 177			return false;
 178	}
 179	return true;
 180}
 181EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
 182
 183/* DP 2.0 errata for 128b/132b */
 184bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
 185					int lane_count)
 186{
 187	u8 lane_status;
 188	int lane;
 189
 190	for (lane = 0; lane < lane_count; lane++) {
 191		lane_status = dp_get_lane_status(link_status, lane);
 192		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
 193			return false;
 194	}
 195	return true;
 196}
 197EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
 198
 199/* DP 2.0 errata for 128b/132b */
 200bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
 201{
 202	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 203
 204	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
 205}
 206EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
 207
 208/* DP 2.0 errata for 128b/132b */
 209bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
 210{
 211	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 212
 213	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
 214}
 215EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
 216
 217/* DP 2.0 errata for 128b/132b */
 218bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
 219{
 220	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 221
 222	return status & DP_128B132B_LT_FAILED;
 223}
 224EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
 225
 226static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 227{
 228	if (rd_interval > 4)
 229		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
 230			    aux->name, rd_interval);
 231
 232	if (rd_interval == 0)
 233		return 100;
 234
 235	return rd_interval * 4 * USEC_PER_MSEC;
 236}
 237
 238static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 239{
 240	if (rd_interval > 4)
 241		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
 242			    aux->name, rd_interval);
 243
 244	if (rd_interval == 0)
 245		return 400;
 246
 247	return rd_interval * 4 * USEC_PER_MSEC;
 248}
 249
 250static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 251{
 252	switch (rd_interval) {
 253	default:
 254		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
 255			    aux->name, rd_interval);
 256		fallthrough;
 257	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
 258		return 400;
 259	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
 260		return 4000;
 261	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
 262		return 8000;
 263	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
 264		return 12000;
 265	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
 266		return 16000;
 267	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
 268		return 32000;
 269	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
 270		return 64000;
 271	}
 272}
 273
 274/*
 275 * The link training delays are different for:
 276 *
 277 *  - Clock recovery vs. channel equalization
 278 *  - DPRX vs. LTTPR
 279 *  - 128b/132b vs. 8b/10b
 280 *  - DPCD rev 1.3 vs. later
 281 *
 282 * Get the correct delay in us, reading DPCD if necessary.
 283 */
 284static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 285			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
 286{
 287	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
 288	unsigned int offset;
 289	u8 rd_interval, mask;
 290
 291	if (dp_phy == DP_PHY_DPRX) {
 292		if (uhbr) {
 293			if (cr)
 294				return 100;
 295
 296			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
 297			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 298			parse = __128b132b_channel_eq_delay_us;
 299		} else {
 300			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
 301				return 100;
 302
 303			offset = DP_TRAINING_AUX_RD_INTERVAL;
 304			mask = DP_TRAINING_AUX_RD_MASK;
 305			if (cr)
 306				parse = __8b10b_clock_recovery_delay_us;
 307			else
 308				parse = __8b10b_channel_eq_delay_us;
 309		}
 310	} else {
 311		if (uhbr) {
 312			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
 313			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 314			parse = __128b132b_channel_eq_delay_us;
 315		} else {
 316			if (cr)
 317				return 100;
 318
 319			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
 320			mask = DP_TRAINING_AUX_RD_MASK;
 321			parse = __8b10b_channel_eq_delay_us;
 322		}
 323	}
 324
 325	if (offset < DP_RECEIVER_CAP_SIZE) {
 326		rd_interval = dpcd[offset];
 327	} else {
 328		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
 329			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
 330				    aux->name);
 331			/* arbitrary default delay */
 332			return 400;
 333		}
 334	}
 335
 336	return parse(aux, rd_interval & mask);
 337}
 338
 339int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 340				     enum drm_dp_phy dp_phy, bool uhbr)
 341{
 342	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
 343}
 344EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
 345
 346int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 347				 enum drm_dp_phy dp_phy, bool uhbr)
 348{
 349	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
 350}
 351EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
 352
 353/* Per DP 2.0 Errata */
 354int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
 355{
 356	int unit;
 357	u8 val;
 358
 359	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
 360		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
 361			aux->name);
 362		/* default to max */
 363		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 364	}
 365
 366	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
 367	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 368
 369	return (val + 1) * unit * 1000;
 370}
 371EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
 372
 373void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
 374					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 375{
 376	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 377		DP_TRAINING_AUX_RD_MASK;
 378	int delay_us;
 379
 380	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
 381		delay_us = 100;
 382	else
 383		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
 384
 385	usleep_range(delay_us, delay_us * 2);
 386}
 387EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
 388
 389static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 390						 u8 rd_interval)
 391{
 392	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
 393
 394	usleep_range(delay_us, delay_us * 2);
 395}
 396
 397void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 398					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 399{
 400	__drm_dp_link_train_channel_eq_delay(aux,
 401					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 402					     DP_TRAINING_AUX_RD_MASK);
 403}
 404EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
 405
 406/**
 407 * drm_dp_phy_name() - Get the name of the given DP PHY
 408 * @dp_phy: The DP PHY identifier
 409 *
 410 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
 411 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
 412 * non-NULL and valid.
 413 *
 414 * Returns: Name of the DP PHY.
 415 */
 416const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
 417{
 418	static const char * const phy_names[] = {
 419		[DP_PHY_DPRX] = "DPRX",
 420		[DP_PHY_LTTPR1] = "LTTPR 1",
 421		[DP_PHY_LTTPR2] = "LTTPR 2",
 422		[DP_PHY_LTTPR3] = "LTTPR 3",
 423		[DP_PHY_LTTPR4] = "LTTPR 4",
 424		[DP_PHY_LTTPR5] = "LTTPR 5",
 425		[DP_PHY_LTTPR6] = "LTTPR 6",
 426		[DP_PHY_LTTPR7] = "LTTPR 7",
 427		[DP_PHY_LTTPR8] = "LTTPR 8",
 428	};
 429
 430	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
 431	    WARN_ON(!phy_names[dp_phy]))
 432		return "<INVALID DP PHY>";
 433
 434	return phy_names[dp_phy];
 435}
 436EXPORT_SYMBOL(drm_dp_phy_name);
 437
 438void drm_dp_lttpr_link_train_clock_recovery_delay(void)
 439{
 440	usleep_range(100, 200);
 441}
 442EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
 443
 444static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
 445{
 446	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
 447}
 448
 449void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 450					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
 451{
 452	u8 interval = dp_lttpr_phy_cap(phy_cap,
 453				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
 454		      DP_TRAINING_AUX_RD_MASK;
 455
 456	__drm_dp_link_train_channel_eq_delay(aux, interval);
 457}
 458EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
 459
 460u8 drm_dp_link_rate_to_bw_code(int link_rate)
 461{
 462	switch (link_rate) {
 463	case 1000000:
 464		return DP_LINK_BW_10;
 465	case 1350000:
 466		return DP_LINK_BW_13_5;
 467	case 2000000:
 468		return DP_LINK_BW_20;
 469	default:
 470		/* Spec says link_bw = link_rate / 0.27Gbps */
 471		return link_rate / 27000;
 472	}
 473}
 474EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
 475
 476int drm_dp_bw_code_to_link_rate(u8 link_bw)
 477{
 478	switch (link_bw) {
 479	case DP_LINK_BW_10:
 480		return 1000000;
 481	case DP_LINK_BW_13_5:
 482		return 1350000;
 483	case DP_LINK_BW_20:
 484		return 2000000;
 485	default:
 486		/* Spec says link_rate = link_bw * 0.27Gbps */
 487		return link_bw * 27000;
 488	}
 489}
 490EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
 491
 492#define AUX_RETRY_INTERVAL 500 /* us */
 493
 494static inline void
 495drm_dp_dump_access(const struct drm_dp_aux *aux,
 496		   u8 request, uint offset, void *buffer, int ret)
 497{
 498	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
 499
 500	if (ret > 0)
 501		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
 502			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
 503	else
 504		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
 505			   aux->name, offset, arrow, ret);
 506}
 507
 508/**
 509 * DOC: dp helpers
 510 *
 511 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
 512 * independent access to AUX functionality. Drivers can take advantage of
 513 * this by filling in the fields of the drm_dp_aux structure.
 514 *
 515 * Transactions are described using a hardware-independent drm_dp_aux_msg
 516 * structure, which is passed into a driver's .transfer() implementation.
 517 * Both native and I2C-over-AUX transactions are supported.
 518 */
 519
 520static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
 521			      unsigned int offset, void *buffer, size_t size)
 522{
 523	struct drm_dp_aux_msg msg;
 524	unsigned int retry, native_reply;
 525	int err = 0, ret = 0;
 526
 527	memset(&msg, 0, sizeof(msg));
 528	msg.address = offset;
 529	msg.request = request;
 530	msg.buffer = buffer;
 531	msg.size = size;
 532
 533	mutex_lock(&aux->hw_mutex);
 534
 535	/*
 536	 * If the device attached to the aux bus is powered down then there's
 537	 * no reason to attempt a transfer. Error out immediately.
 538	 */
 539	if (aux->powered_down) {
 540		ret = -EBUSY;
 541		goto unlock;
 542	}
 543
 544	/*
 545	 * The specification doesn't give any recommendation on how often to
 546	 * retry native transactions. We used to retry 7 times like for
 547	 * aux i2c transactions but real world devices this wasn't
 548	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
 549	 */
 550	for (retry = 0; retry < 32; retry++) {
 551		if (ret != 0 && ret != -ETIMEDOUT) {
 552			usleep_range(AUX_RETRY_INTERVAL,
 553				     AUX_RETRY_INTERVAL + 100);
 554		}
 555
 556		ret = aux->transfer(aux, &msg);
 557		if (ret >= 0) {
 558			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
 559			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
 560				if (ret == size)
 561					goto unlock;
 562
 563				ret = -EPROTO;
 564			} else
 565				ret = -EIO;
 566		}
 567
 568		/*
 569		 * We want the error we return to be the error we received on
 570		 * the first transaction, since we may get a different error the
 571		 * next time we retry
 572		 */
 573		if (!err)
 574			err = ret;
 575	}
 576
 577	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
 578		    aux->name, err);
 579	ret = err;
 580
 581unlock:
 582	mutex_unlock(&aux->hw_mutex);
 583	return ret;
 584}
 585
 586/**
 587 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
 588 * @aux: DisplayPort AUX channel (SST)
 589 * @offset: address of the register to probe
 590 *
 591 * Probe the provided DPCD address by reading 1 byte from it. The function can
 592 * be used to trigger some side-effect the read access has, like waking up the
 593 * sink, without the need for the read-out value.
 594 *
 595 * Returns 0 if the read access suceeded, or a negative error code on failure.
 596 */
 597int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
 598{
 599	u8 buffer;
 600	int ret;
 601
 602	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
 603	WARN_ON(ret == 0);
 604
 605	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
 606
 607	return ret < 0 ? ret : 0;
 608}
 609EXPORT_SYMBOL(drm_dp_dpcd_probe);
 610
 611/**
 612 * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
 613 * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
 614 *       and the function will be a no-op.
 615 * @powered: true if powered; false if not
 616 *
 617 * If the endpoint device on the DP AUX bus is known to be powered down
 618 * then this function can be called to make future transfers fail immediately
 619 * instead of needing to time out.
 620 *
 621 * If this function is never called then a device defaults to being powered.
 622 */
 623void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
 624{
 625	if (!aux)
 626		return;
 627
 628	mutex_lock(&aux->hw_mutex);
 629	aux->powered_down = !powered;
 630	mutex_unlock(&aux->hw_mutex);
 631}
 632EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
 633
 634/**
 635 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
 636 * @aux: DisplayPort AUX channel (SST or MST)
 637 * @offset: address of the (first) register to read
 638 * @buffer: buffer to store the register values
 639 * @size: number of bytes in @buffer
 640 *
 641 * Returns the number of bytes transferred on success, or a negative error
 642 * code on failure. -EIO is returned if the request was NAKed by the sink or
 643 * if the retry count was exceeded. If not all bytes were transferred, this
 644 * function returns -EPROTO. Errors from the underlying AUX channel transfer
 645 * function, with the exception of -EBUSY (which causes the transaction to
 646 * be retried), are propagated to the caller.
 647 */
 648ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
 649			 void *buffer, size_t size)
 650{
 651	int ret;
 652
 653	/*
 654	 * HP ZR24w corrupts the first DPCD access after entering power save
 655	 * mode. Eg. on a read, the entire buffer will be filled with the same
 656	 * byte. Do a throw away read to avoid corrupting anything we care
 657	 * about. Afterwards things will work correctly until the monitor
 658	 * gets woken up and subsequently re-enters power save mode.
 659	 *
 660	 * The user pressing any button on the monitor is enough to wake it
 661	 * up, so there is no particularly good place to do the workaround.
 662	 * We just have to do it before any DPCD access and hope that the
 663	 * monitor doesn't power down exactly after the throw away read.
 664	 */
 665	if (!aux->is_remote) {
 666		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
 667		if (ret < 0)
 668			return ret;
 669	}
 670
 671	if (aux->is_remote)
 672		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
 673	else
 674		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
 675					 buffer, size);
 676
 677	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
 678	return ret;
 679}
 680EXPORT_SYMBOL(drm_dp_dpcd_read);
 681
 682/**
 683 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
 684 * @aux: DisplayPort AUX channel (SST or MST)
 685 * @offset: address of the (first) register to write
 686 * @buffer: buffer containing the values to write
 687 * @size: number of bytes in @buffer
 688 *
 689 * Returns the number of bytes transferred on success, or a negative error
 690 * code on failure. -EIO is returned if the request was NAKed by the sink or
 691 * if the retry count was exceeded. If not all bytes were transferred, this
 692 * function returns -EPROTO. Errors from the underlying AUX channel transfer
 693 * function, with the exception of -EBUSY (which causes the transaction to
 694 * be retried), are propagated to the caller.
 695 */
 696ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
 697			  void *buffer, size_t size)
 698{
 699	int ret;
 700
 701	if (aux->is_remote)
 702		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
 703	else
 704		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
 705					 buffer, size);
 706
 707	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
 708	return ret;
 709}
 710EXPORT_SYMBOL(drm_dp_dpcd_write);
 711
 712/**
 713 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
 714 * @aux: DisplayPort AUX channel
 715 * @status: buffer to store the link status in (must be at least 6 bytes)
 716 *
 717 * Returns the number of bytes transferred on success or a negative error
 718 * code on failure.
 719 */
 720int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
 721				 u8 status[DP_LINK_STATUS_SIZE])
 722{
 723	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
 724				DP_LINK_STATUS_SIZE);
 725}
 726EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
 727
 728/**
 729 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
 730 * @aux: DisplayPort AUX channel
 731 * @dp_phy: the DP PHY to get the link status for
 732 * @link_status: buffer to return the status in
 733 *
 734 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
 735 * layout of the returned @link_status matches the DPCD register layout of the
 736 * DPRX PHY link status.
 737 *
 738 * Returns 0 if the information was read successfully or a negative error code
 739 * on failure.
 740 */
 741int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
 742				     enum drm_dp_phy dp_phy,
 743				     u8 link_status[DP_LINK_STATUS_SIZE])
 744{
 745	int ret;
 746
 747	if (dp_phy == DP_PHY_DPRX) {
 748		ret = drm_dp_dpcd_read(aux,
 749				       DP_LANE0_1_STATUS,
 750				       link_status,
 751				       DP_LINK_STATUS_SIZE);
 752
 753		if (ret < 0)
 754			return ret;
 755
 756		WARN_ON(ret != DP_LINK_STATUS_SIZE);
 757
 758		return 0;
 759	}
 760
 761	ret = drm_dp_dpcd_read(aux,
 762			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
 763			       link_status,
 764			       DP_LINK_STATUS_SIZE - 1);
 765
 766	if (ret < 0)
 767		return ret;
 768
 769	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
 770
 771	/* Convert the LTTPR to the sink PHY link status layout */
 772	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
 773		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
 774		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
 775	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
 776
 777	return 0;
 778}
 779EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
 780
 781static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
 782{
 783	/* FIXME: get rid of drm_edid_raw() */
 784	const struct edid *edid = drm_edid_raw(drm_edid);
 785
 786	return edid && edid->revision >= 4 &&
 787		edid->input & DRM_EDID_INPUT_DIGITAL &&
 788		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
 789}
 790
 791/**
 792 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
 793 * @dpcd: DisplayPort configuration data
 794 * @port_cap: port capabilities
 795 * @type: port type to be checked. Can be:
 796 * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
 797 * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
 798 *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
 799 *
 800 * Caveat: Only works with DPCD 1.1+ port caps.
 801 *
 802 * Returns: whether the downstream facing port matches the type.
 803 */
 804bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 805			       const u8 port_cap[4], u8 type)
 806{
 807	return drm_dp_is_branch(dpcd) &&
 808		dpcd[DP_DPCD_REV] >= 0x11 &&
 809		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
 810}
 811EXPORT_SYMBOL(drm_dp_downstream_is_type);
 812
 813/**
 814 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
 815 * @dpcd: DisplayPort configuration data
 816 * @port_cap: port capabilities
 817 * @drm_edid: EDID
 818 *
 819 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
 820 */
 821bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 822			       const u8 port_cap[4],
 823			       const struct drm_edid *drm_edid)
 824{
 825	if (dpcd[DP_DPCD_REV] < 0x11) {
 826		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
 827		case DP_DWN_STRM_PORT_TYPE_TMDS:
 828			return true;
 829		default:
 830			return false;
 831		}
 832	}
 833
 834	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
 835	case DP_DS_PORT_TYPE_DP_DUALMODE:
 836		if (is_edid_digital_input_dp(drm_edid))
 837			return false;
 838		fallthrough;
 839	case DP_DS_PORT_TYPE_DVI:
 840	case DP_DS_PORT_TYPE_HDMI:
 841		return true;
 842	default:
 843		return false;
 844	}
 845}
 846EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
 847
 848/**
 849 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
 850 * @aux: DisplayPort AUX channel
 851 * @real_edid_checksum: real edid checksum for the last block
 852 *
 853 * Returns:
 854 * True on success
 855 */
 856bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
 857				    u8 real_edid_checksum)
 858{
 859	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
 860
 861	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
 862			     &auto_test_req, 1) < 1) {
 863		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
 864			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
 865		return false;
 866	}
 867	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
 868
 869	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
 870		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
 871			aux->name, DP_TEST_REQUEST);
 872		return false;
 873	}
 874	link_edid_read &= DP_TEST_LINK_EDID_READ;
 875
 876	if (!auto_test_req || !link_edid_read) {
 877		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
 878			    aux->name);
 879		return false;
 880	}
 881
 882	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
 883			      &auto_test_req, 1) < 1) {
 884		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 885			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
 886		return false;
 887	}
 888
 889	/* send back checksum for the last edid extension block data */
 890	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
 891			      &real_edid_checksum, 1) < 1) {
 892		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 893			aux->name, DP_TEST_EDID_CHECKSUM);
 894		return false;
 895	}
 896
 897	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
 898	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
 899		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 900			aux->name, DP_TEST_RESPONSE);
 901		return false;
 902	}
 903
 904	return true;
 905}
 906EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
 907
 908static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 909{
 910	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
 911
 912	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
 913		port_count = 4;
 914
 915	return port_count;
 916}
 917
 918static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
 919					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
 920{
 921	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
 922	int ret;
 923
 924	/*
 925	 * Prior to DP1.3 the bit represented by
 926	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
 927	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
 928	 * the true capability of the panel. The only way to check is to
 929	 * then compare 0000h and 2200h.
 930	 */
 931	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 932	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
 933		return 0;
 934
 935	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
 936			       sizeof(dpcd_ext));
 937	if (ret < 0)
 938		return ret;
 939	if (ret != sizeof(dpcd_ext))
 940		return -EIO;
 941
 942	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
 943		drm_dbg_kms(aux->drm_dev,
 944			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
 945			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
 946		return 0;
 947	}
 948
 949	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
 950		return 0;
 951
 952	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
 953
 954	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
 955
 956	return 0;
 957}
 958
 959/**
 960 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
 961 * available
 962 * @aux: DisplayPort AUX channel
 963 * @dpcd: Buffer to store the resulting DPCD in
 964 *
 965 * Attempts to read the base DPCD caps for @aux. Additionally, this function
 966 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
 967 * present.
 968 *
 969 * Returns: %0 if the DPCD was read successfully, negative error code
 970 * otherwise.
 971 */
 972int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
 973			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
 974{
 975	int ret;
 976
 977	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
 978	if (ret < 0)
 979		return ret;
 980	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
 981		return -EIO;
 982
 983	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
 984	if (ret < 0)
 985		return ret;
 986
 987	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
 988
 989	return ret;
 990}
 991EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
 992
 993/**
 994 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
 995 * @aux: DisplayPort AUX channel
 996 * @dpcd: A cached copy of the port's DPCD
 997 * @downstream_ports: buffer to store the downstream port info in
 998 *
 999 * See also:
1000 * drm_dp_downstream_max_clock()
1001 * drm_dp_downstream_max_bpc()
1002 *
1003 * Returns: 0 if either the downstream port info was read successfully or
1004 * there was no downstream info to read, or a negative error code otherwise.
1005 */
1006int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1007				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1008				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1009{
1010	int ret;
1011	u8 len;
1012
1013	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1014
1015	/* No downstream info to read */
1016	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1017		return 0;
1018
1019	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1020	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1021	 * some branches do it we need to handle it regardless.
1022	 */
1023	len = drm_dp_downstream_port_count(dpcd);
1024	if (!len)
1025		return 0;
1026
1027	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1028		len *= 4;
1029
1030	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1031	if (ret < 0)
1032		return ret;
1033	if (ret != len)
1034		return -EIO;
1035
1036	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1037
1038	return 0;
1039}
1040EXPORT_SYMBOL(drm_dp_read_downstream_info);
1041
1042/**
1043 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1044 * @dpcd: DisplayPort configuration data
1045 * @port_cap: port capabilities
1046 *
1047 * Returns: Downstream facing port max dot clock in kHz on success,
1048 * or 0 if max clock not defined
1049 */
1050int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1051				   const u8 port_cap[4])
1052{
1053	if (!drm_dp_is_branch(dpcd))
1054		return 0;
1055
1056	if (dpcd[DP_DPCD_REV] < 0x11)
1057		return 0;
1058
1059	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1060	case DP_DS_PORT_TYPE_VGA:
1061		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1062			return 0;
1063		return port_cap[1] * 8000;
1064	default:
1065		return 0;
1066	}
1067}
1068EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1069
1070/**
1071 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1072 * @dpcd: DisplayPort configuration data
1073 * @port_cap: port capabilities
1074 * @drm_edid: EDID
1075 *
1076 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1077 * or 0 if max TMDS clock not defined
1078 */
1079int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1080				     const u8 port_cap[4],
1081				     const struct drm_edid *drm_edid)
1082{
1083	if (!drm_dp_is_branch(dpcd))
1084		return 0;
1085
1086	if (dpcd[DP_DPCD_REV] < 0x11) {
1087		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1088		case DP_DWN_STRM_PORT_TYPE_TMDS:
1089			return 165000;
1090		default:
1091			return 0;
1092		}
1093	}
1094
1095	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1096	case DP_DS_PORT_TYPE_DP_DUALMODE:
1097		if (is_edid_digital_input_dp(drm_edid))
1098			return 0;
1099		/*
1100		 * It's left up to the driver to check the
1101		 * DP dual mode adapter's max TMDS clock.
1102		 *
1103		 * Unfortunately it looks like branch devices
1104		 * may not fordward that the DP dual mode i2c
1105		 * access so we just usually get i2c nak :(
1106		 */
1107		fallthrough;
1108	case DP_DS_PORT_TYPE_HDMI:
1109		 /*
1110		  * We should perhaps assume 165 MHz when detailed cap
1111		  * info is not available. But looks like many typical
1112		  * branch devices fall into that category and so we'd
1113		  * probably end up with users complaining that they can't
1114		  * get high resolution modes with their favorite dongle.
1115		  *
1116		  * So let's limit to 300 MHz instead since DPCD 1.4
1117		  * HDMI 2.0 DFPs are required to have the detailed cap
1118		  * info. So it's more likely we're dealing with a HDMI 1.4
1119		  * compatible* device here.
1120		  */
1121		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1122			return 300000;
1123		return port_cap[1] * 2500;
1124	case DP_DS_PORT_TYPE_DVI:
1125		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1126			return 165000;
1127		/* FIXME what to do about DVI dual link? */
1128		return port_cap[1] * 2500;
1129	default:
1130		return 0;
1131	}
1132}
1133EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1134
1135/**
1136 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1137 * @dpcd: DisplayPort configuration data
1138 * @port_cap: port capabilities
1139 * @drm_edid: EDID
1140 *
1141 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1142 * or 0 if max TMDS clock not defined
1143 */
1144int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1145				     const u8 port_cap[4],
1146				     const struct drm_edid *drm_edid)
1147{
1148	if (!drm_dp_is_branch(dpcd))
1149		return 0;
1150
1151	if (dpcd[DP_DPCD_REV] < 0x11) {
1152		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1153		case DP_DWN_STRM_PORT_TYPE_TMDS:
1154			return 25000;
1155		default:
1156			return 0;
1157		}
1158	}
1159
1160	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1161	case DP_DS_PORT_TYPE_DP_DUALMODE:
1162		if (is_edid_digital_input_dp(drm_edid))
1163			return 0;
1164		fallthrough;
1165	case DP_DS_PORT_TYPE_DVI:
1166	case DP_DS_PORT_TYPE_HDMI:
1167		/*
1168		 * Unclear whether the protocol converter could
1169		 * utilize pixel replication. Assume it won't.
1170		 */
1171		return 25000;
1172	default:
1173		return 0;
1174	}
1175}
1176EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1177
1178/**
1179 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1180 *                               bits per component
1181 * @dpcd: DisplayPort configuration data
1182 * @port_cap: downstream facing port capabilities
1183 * @drm_edid: EDID
1184 *
1185 * Returns: Max bpc on success or 0 if max bpc not defined
1186 */
1187int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1188			      const u8 port_cap[4],
1189			      const struct drm_edid *drm_edid)
1190{
1191	if (!drm_dp_is_branch(dpcd))
1192		return 0;
1193
1194	if (dpcd[DP_DPCD_REV] < 0x11) {
1195		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1196		case DP_DWN_STRM_PORT_TYPE_DP:
1197			return 0;
1198		default:
1199			return 8;
1200		}
1201	}
1202
1203	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1204	case DP_DS_PORT_TYPE_DP:
1205		return 0;
1206	case DP_DS_PORT_TYPE_DP_DUALMODE:
1207		if (is_edid_digital_input_dp(drm_edid))
1208			return 0;
1209		fallthrough;
1210	case DP_DS_PORT_TYPE_HDMI:
1211	case DP_DS_PORT_TYPE_DVI:
1212	case DP_DS_PORT_TYPE_VGA:
1213		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1214			return 8;
1215
1216		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1217		case DP_DS_8BPC:
1218			return 8;
1219		case DP_DS_10BPC:
1220			return 10;
1221		case DP_DS_12BPC:
1222			return 12;
1223		case DP_DS_16BPC:
1224			return 16;
1225		default:
1226			return 8;
1227		}
1228		break;
1229	default:
1230		return 8;
1231	}
1232}
1233EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1234
1235/**
1236 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1237 *                                       YCbCr 4:2:0 pass-through capability
1238 * @dpcd: DisplayPort configuration data
1239 * @port_cap: downstream facing port capabilities
1240 *
1241 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1242 */
1243bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1244				       const u8 port_cap[4])
1245{
1246	if (!drm_dp_is_branch(dpcd))
1247		return false;
1248
1249	if (dpcd[DP_DPCD_REV] < 0x13)
1250		return false;
1251
1252	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1253	case DP_DS_PORT_TYPE_DP:
1254		return true;
1255	case DP_DS_PORT_TYPE_HDMI:
1256		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1257			return false;
1258
1259		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1260	default:
1261		return false;
1262	}
1263}
1264EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1265
1266/**
1267 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1268 *                                             YCbCr 4:4:4->4:2:0 conversion capability
1269 * @dpcd: DisplayPort configuration data
1270 * @port_cap: downstream facing port capabilities
1271 *
1272 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1273 */
1274bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1275					     const u8 port_cap[4])
1276{
1277	if (!drm_dp_is_branch(dpcd))
1278		return false;
1279
1280	if (dpcd[DP_DPCD_REV] < 0x13)
1281		return false;
1282
1283	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1284	case DP_DS_PORT_TYPE_HDMI:
1285		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1286			return false;
1287
1288		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1289	default:
1290		return false;
1291	}
1292}
1293EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1294
1295/**
1296 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1297 *                                               RGB->YCbCr conversion capability
1298 * @dpcd: DisplayPort configuration data
1299 * @port_cap: downstream facing port capabilities
1300 * @color_spc: Colorspace for which conversion cap is sought
1301 *
1302 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1303 * colorspace.
1304 */
1305bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1306					       const u8 port_cap[4],
1307					       u8 color_spc)
1308{
1309	if (!drm_dp_is_branch(dpcd))
1310		return false;
1311
1312	if (dpcd[DP_DPCD_REV] < 0x13)
1313		return false;
1314
1315	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1316	case DP_DS_PORT_TYPE_HDMI:
1317		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1318			return false;
1319
1320		return port_cap[3] & color_spc;
1321	default:
1322		return false;
1323	}
1324}
1325EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1326
1327/**
1328 * drm_dp_downstream_mode() - return a mode for downstream facing port
1329 * @dev: DRM device
1330 * @dpcd: DisplayPort configuration data
1331 * @port_cap: port capabilities
1332 *
1333 * Provides a suitable mode for downstream facing ports without EDID.
1334 *
1335 * Returns: A new drm_display_mode on success or NULL on failure
1336 */
1337struct drm_display_mode *
1338drm_dp_downstream_mode(struct drm_device *dev,
1339		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1340		       const u8 port_cap[4])
1341
1342{
1343	u8 vic;
1344
1345	if (!drm_dp_is_branch(dpcd))
1346		return NULL;
1347
1348	if (dpcd[DP_DPCD_REV] < 0x11)
1349		return NULL;
1350
1351	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1352	case DP_DS_PORT_TYPE_NON_EDID:
1353		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1354		case DP_DS_NON_EDID_720x480i_60:
1355			vic = 6;
1356			break;
1357		case DP_DS_NON_EDID_720x480i_50:
1358			vic = 21;
1359			break;
1360		case DP_DS_NON_EDID_1920x1080i_60:
1361			vic = 5;
1362			break;
1363		case DP_DS_NON_EDID_1920x1080i_50:
1364			vic = 20;
1365			break;
1366		case DP_DS_NON_EDID_1280x720_60:
1367			vic = 4;
1368			break;
1369		case DP_DS_NON_EDID_1280x720_50:
1370			vic = 19;
1371			break;
1372		default:
1373			return NULL;
1374		}
1375		return drm_display_mode_from_cea_vic(dev, vic);
1376	default:
1377		return NULL;
1378	}
1379}
1380EXPORT_SYMBOL(drm_dp_downstream_mode);
1381
1382/**
1383 * drm_dp_downstream_id() - identify branch device
1384 * @aux: DisplayPort AUX channel
1385 * @id: DisplayPort branch device id
1386 *
1387 * Returns branch device id on success or NULL on failure
1388 */
1389int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1390{
1391	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1392}
1393EXPORT_SYMBOL(drm_dp_downstream_id);
1394
1395/**
1396 * drm_dp_downstream_debug() - debug DP branch devices
1397 * @m: pointer for debugfs file
1398 * @dpcd: DisplayPort configuration data
1399 * @port_cap: port capabilities
1400 * @drm_edid: EDID
1401 * @aux: DisplayPort AUX channel
1402 *
1403 */
1404void drm_dp_downstream_debug(struct seq_file *m,
1405			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1406			     const u8 port_cap[4],
1407			     const struct drm_edid *drm_edid,
1408			     struct drm_dp_aux *aux)
1409{
1410	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1411				 DP_DETAILED_CAP_INFO_AVAILABLE;
1412	int clk;
1413	int bpc;
1414	char id[7];
1415	int len;
1416	uint8_t rev[2];
1417	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1418	bool branch_device = drm_dp_is_branch(dpcd);
1419
1420	seq_printf(m, "\tDP branch device present: %s\n",
1421		   str_yes_no(branch_device));
1422
1423	if (!branch_device)
1424		return;
1425
1426	switch (type) {
1427	case DP_DS_PORT_TYPE_DP:
1428		seq_puts(m, "\t\tType: DisplayPort\n");
1429		break;
1430	case DP_DS_PORT_TYPE_VGA:
1431		seq_puts(m, "\t\tType: VGA\n");
1432		break;
1433	case DP_DS_PORT_TYPE_DVI:
1434		seq_puts(m, "\t\tType: DVI\n");
1435		break;
1436	case DP_DS_PORT_TYPE_HDMI:
1437		seq_puts(m, "\t\tType: HDMI\n");
1438		break;
1439	case DP_DS_PORT_TYPE_NON_EDID:
1440		seq_puts(m, "\t\tType: others without EDID support\n");
1441		break;
1442	case DP_DS_PORT_TYPE_DP_DUALMODE:
1443		seq_puts(m, "\t\tType: DP++\n");
1444		break;
1445	case DP_DS_PORT_TYPE_WIRELESS:
1446		seq_puts(m, "\t\tType: Wireless\n");
1447		break;
1448	default:
1449		seq_puts(m, "\t\tType: N/A\n");
1450	}
1451
1452	memset(id, 0, sizeof(id));
1453	drm_dp_downstream_id(aux, id);
1454	seq_printf(m, "\t\tID: %s\n", id);
1455
1456	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1457	if (len > 0)
1458		seq_printf(m, "\t\tHW: %d.%d\n",
1459			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1460
1461	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1462	if (len > 0)
1463		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1464
1465	if (detailed_cap_info) {
1466		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1467		if (clk > 0)
1468			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1469
1470		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1471		if (clk > 0)
1472			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1473
1474		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1475		if (clk > 0)
1476			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1477
1478		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1479
1480		if (bpc > 0)
1481			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1482	}
1483}
1484EXPORT_SYMBOL(drm_dp_downstream_debug);
1485
1486/**
1487 * drm_dp_subconnector_type() - get DP branch device type
1488 * @dpcd: DisplayPort configuration data
1489 * @port_cap: port capabilities
1490 */
1491enum drm_mode_subconnector
1492drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1493			 const u8 port_cap[4])
1494{
1495	int type;
1496	if (!drm_dp_is_branch(dpcd))
1497		return DRM_MODE_SUBCONNECTOR_Native;
1498	/* DP 1.0 approach */
1499	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1500		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1501		       DP_DWN_STRM_PORT_TYPE_MASK;
1502
1503		switch (type) {
1504		case DP_DWN_STRM_PORT_TYPE_TMDS:
1505			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1506			return DRM_MODE_SUBCONNECTOR_DVID;
1507		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1508			/* Can be VGA or DVI-A, VGA is more popular */
1509			return DRM_MODE_SUBCONNECTOR_VGA;
1510		case DP_DWN_STRM_PORT_TYPE_DP:
1511			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1512		case DP_DWN_STRM_PORT_TYPE_OTHER:
1513		default:
1514			return DRM_MODE_SUBCONNECTOR_Unknown;
1515		}
1516	}
1517	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1518
1519	switch (type) {
1520	case DP_DS_PORT_TYPE_DP:
1521	case DP_DS_PORT_TYPE_DP_DUALMODE:
1522		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1523	case DP_DS_PORT_TYPE_VGA:
1524		return DRM_MODE_SUBCONNECTOR_VGA;
1525	case DP_DS_PORT_TYPE_DVI:
1526		return DRM_MODE_SUBCONNECTOR_DVID;
1527	case DP_DS_PORT_TYPE_HDMI:
1528		return DRM_MODE_SUBCONNECTOR_HDMIA;
1529	case DP_DS_PORT_TYPE_WIRELESS:
1530		return DRM_MODE_SUBCONNECTOR_Wireless;
1531	case DP_DS_PORT_TYPE_NON_EDID:
1532	default:
1533		return DRM_MODE_SUBCONNECTOR_Unknown;
1534	}
1535}
1536EXPORT_SYMBOL(drm_dp_subconnector_type);
1537
1538/**
1539 * drm_dp_set_subconnector_property - set subconnector for DP connector
1540 * @connector: connector to set property on
1541 * @status: connector status
1542 * @dpcd: DisplayPort configuration data
1543 * @port_cap: port capabilities
1544 *
1545 * Called by a driver on every detect event.
1546 */
1547void drm_dp_set_subconnector_property(struct drm_connector *connector,
1548				      enum drm_connector_status status,
1549				      const u8 *dpcd,
1550				      const u8 port_cap[4])
1551{
1552	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1553
1554	if (status == connector_status_connected)
1555		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1556	drm_object_property_set_value(&connector->base,
1557			connector->dev->mode_config.dp_subconnector_property,
1558			subconnector);
1559}
1560EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1561
1562/**
1563 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1564 * count
1565 * @connector: The DRM connector to check
1566 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1567 * @desc: A cached copy of the connector's DP descriptor
1568 *
1569 * See also: drm_dp_read_sink_count()
1570 *
1571 * Returns: %True if the (e)DP connector has a valid sink count that should
1572 * be probed, %false otherwise.
1573 */
1574bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1575				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1576				const struct drm_dp_desc *desc)
1577{
1578	/* Some eDP panels don't set a valid value for the sink count */
1579	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1580		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1581		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1582		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1583}
1584EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1585
1586/**
1587 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1588 * @aux: The DP AUX channel to use
1589 *
1590 * See also: drm_dp_read_sink_count_cap()
1591 *
1592 * Returns: The current sink count reported by @aux, or a negative error code
1593 * otherwise.
1594 */
1595int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1596{
1597	u8 count;
1598	int ret;
1599
1600	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1601	if (ret < 0)
1602		return ret;
1603	if (ret != 1)
1604		return -EIO;
1605
1606	return DP_GET_SINK_COUNT(count);
1607}
1608EXPORT_SYMBOL(drm_dp_read_sink_count);
1609
1610/*
1611 * I2C-over-AUX implementation
1612 */
1613
1614static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1615{
1616	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1617	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1618	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1619	       I2C_FUNC_10BIT_ADDR;
1620}
1621
1622static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1623{
1624	/*
1625	 * In case of i2c defer or short i2c ack reply to a write,
1626	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1627	 * rest of the message
1628	 */
1629	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1630		msg->request &= DP_AUX_I2C_MOT;
1631		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1632	}
1633}
1634
1635#define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1636#define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1637#define AUX_STOP_LEN 4
1638#define AUX_CMD_LEN 4
1639#define AUX_ADDRESS_LEN 20
1640#define AUX_REPLY_PAD_LEN 4
1641#define AUX_LENGTH_LEN 8
1642
1643/*
1644 * Calculate the duration of the AUX request/reply in usec. Gives the
1645 * "best" case estimate, ie. successful while as short as possible.
1646 */
1647static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1648{
1649	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1650		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1651
1652	if ((msg->request & DP_AUX_I2C_READ) == 0)
1653		len += msg->size * 8;
1654
1655	return len;
1656}
1657
1658static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1659{
1660	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1661		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1662
1663	/*
1664	 * For read we expect what was asked. For writes there will
1665	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1666	 */
1667	if (msg->request & DP_AUX_I2C_READ)
1668		len += msg->size * 8;
1669
1670	return len;
1671}
1672
1673#define I2C_START_LEN 1
1674#define I2C_STOP_LEN 1
1675#define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1676#define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1677
1678/*
1679 * Calculate the length of the i2c transfer in usec, assuming
1680 * the i2c bus speed is as specified. Gives the "worst"
1681 * case estimate, ie. successful while as long as possible.
1682 * Doesn't account the "MOT" bit, and instead assumes each
1683 * message includes a START, ADDRESS and STOP. Neither does it
1684 * account for additional random variables such as clock stretching.
1685 */
1686static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1687				   int i2c_speed_khz)
1688{
1689	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1690	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1691			     msg->size * I2C_DATA_LEN +
1692			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1693}
1694
1695/*
1696 * Determine how many retries should be attempted to successfully transfer
1697 * the specified message, based on the estimated durations of the
1698 * i2c and AUX transfers.
1699 */
1700static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1701			      int i2c_speed_khz)
1702{
1703	int aux_time_us = drm_dp_aux_req_duration(msg) +
1704		drm_dp_aux_reply_duration(msg);
1705	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1706
1707	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1708}
1709
1710/*
1711 * FIXME currently assumes 10 kHz as some real world devices seem
1712 * to require it. We should query/set the speed via DPCD if supported.
1713 */
1714static int dp_aux_i2c_speed_khz __read_mostly = 10;
1715module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1716MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1717		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1718
1719/*
1720 * Transfer a single I2C-over-AUX message and handle various error conditions,
1721 * retrying the transaction as appropriate.  It is assumed that the
1722 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1723 * reply field.
1724 *
1725 * Returns bytes transferred on success, or a negative error code on failure.
1726 */
1727static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1728{
1729	unsigned int retry, defer_i2c;
1730	int ret;
1731	/*
1732	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1733	 * is required to retry at least seven times upon receiving AUX_DEFER
1734	 * before giving up the AUX transaction.
1735	 *
1736	 * We also try to account for the i2c bus speed.
1737	 */
1738	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1739
1740	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1741		ret = aux->transfer(aux, msg);
1742		if (ret < 0) {
1743			if (ret == -EBUSY)
1744				continue;
1745
1746			/*
1747			 * While timeouts can be errors, they're usually normal
1748			 * behavior (for instance, when a driver tries to
1749			 * communicate with a non-existent DisplayPort device).
1750			 * Avoid spamming the kernel log with timeout errors.
1751			 */
1752			if (ret == -ETIMEDOUT)
1753				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1754							aux->name);
1755			else
1756				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1757					    aux->name, ret);
1758			return ret;
1759		}
1760
1761
1762		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1763		case DP_AUX_NATIVE_REPLY_ACK:
1764			/*
1765			 * For I2C-over-AUX transactions this isn't enough, we
1766			 * need to check for the I2C ACK reply.
1767			 */
1768			break;
1769
1770		case DP_AUX_NATIVE_REPLY_NACK:
1771			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1772				    aux->name, ret, msg->size);
1773			return -EREMOTEIO;
1774
1775		case DP_AUX_NATIVE_REPLY_DEFER:
1776			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1777			/*
1778			 * We could check for I2C bit rate capabilities and if
1779			 * available adjust this interval. We could also be
1780			 * more careful with DP-to-legacy adapters where a
1781			 * long legacy cable may force very low I2C bit rates.
1782			 *
1783			 * For now just defer for long enough to hopefully be
1784			 * safe for all use-cases.
1785			 */
1786			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1787			continue;
1788
1789		default:
1790			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1791				aux->name, msg->reply);
1792			return -EREMOTEIO;
1793		}
1794
1795		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1796		case DP_AUX_I2C_REPLY_ACK:
1797			/*
1798			 * Both native ACK and I2C ACK replies received. We
1799			 * can assume the transfer was successful.
1800			 */
1801			if (ret != msg->size)
1802				drm_dp_i2c_msg_write_status_update(msg);
1803			return ret;
1804
1805		case DP_AUX_I2C_REPLY_NACK:
1806			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1807				    aux->name, ret, msg->size);
1808			aux->i2c_nack_count++;
1809			return -EREMOTEIO;
1810
1811		case DP_AUX_I2C_REPLY_DEFER:
1812			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1813			/* DP Compliance Test 4.2.2.5 Requirement:
1814			 * Must have at least 7 retries for I2C defers on the
1815			 * transaction to pass this test
1816			 */
1817			aux->i2c_defer_count++;
1818			if (defer_i2c < 7)
1819				defer_i2c++;
1820			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1821			drm_dp_i2c_msg_write_status_update(msg);
1822
1823			continue;
1824
1825		default:
1826			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1827				aux->name, msg->reply);
1828			return -EREMOTEIO;
1829		}
1830	}
1831
1832	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1833	return -EREMOTEIO;
1834}
1835
1836static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1837				       const struct i2c_msg *i2c_msg)
1838{
1839	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1840		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1841	if (!(i2c_msg->flags & I2C_M_STOP))
1842		msg->request |= DP_AUX_I2C_MOT;
1843}
1844
1845/*
1846 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1847 *
1848 * Returns an error code on failure, or a recommended transfer size on success.
1849 */
1850static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1851{
1852	int err, ret = orig_msg->size;
1853	struct drm_dp_aux_msg msg = *orig_msg;
1854
1855	while (msg.size > 0) {
1856		err = drm_dp_i2c_do_msg(aux, &msg);
1857		if (err <= 0)
1858			return err == 0 ? -EPROTO : err;
1859
1860		if (err < msg.size && err < ret) {
1861			drm_dbg_kms(aux->drm_dev,
1862				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1863				    aux->name, msg.size, err);
1864			ret = err;
1865		}
1866
1867		msg.size -= err;
1868		msg.buffer += err;
1869	}
1870
1871	return ret;
1872}
1873
1874/*
1875 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1876 * packets to be as large as possible. If not, the I2C transactions never
1877 * succeed. Hence the default is maximum.
1878 */
1879static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1880module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1881MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1882		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1883
1884static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1885			   int num)
1886{
1887	struct drm_dp_aux *aux = adapter->algo_data;
1888	unsigned int i, j;
1889	unsigned transfer_size;
1890	struct drm_dp_aux_msg msg;
1891	int err = 0;
1892
1893	if (aux->powered_down)
1894		return -EBUSY;
1895
1896	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1897
1898	memset(&msg, 0, sizeof(msg));
1899
1900	for (i = 0; i < num; i++) {
1901		msg.address = msgs[i].addr;
1902		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1903		/* Send a bare address packet to start the transaction.
1904		 * Zero sized messages specify an address only (bare
1905		 * address) transaction.
1906		 */
1907		msg.buffer = NULL;
1908		msg.size = 0;
1909		err = drm_dp_i2c_do_msg(aux, &msg);
1910
1911		/*
1912		 * Reset msg.request in case in case it got
1913		 * changed into a WRITE_STATUS_UPDATE.
1914		 */
1915		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1916
1917		if (err < 0)
1918			break;
1919		/* We want each transaction to be as large as possible, but
1920		 * we'll go to smaller sizes if the hardware gives us a
1921		 * short reply.
1922		 */
1923		transfer_size = dp_aux_i2c_transfer_size;
1924		for (j = 0; j < msgs[i].len; j += msg.size) {
1925			msg.buffer = msgs[i].buf + j;
1926			msg.size = min(transfer_size, msgs[i].len - j);
1927
1928			err = drm_dp_i2c_drain_msg(aux, &msg);
1929
1930			/*
1931			 * Reset msg.request in case in case it got
1932			 * changed into a WRITE_STATUS_UPDATE.
1933			 */
1934			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1935
1936			if (err < 0)
1937				break;
1938			transfer_size = err;
1939		}
1940		if (err < 0)
1941			break;
1942	}
1943	if (err >= 0)
1944		err = num;
1945	/* Send a bare address packet to close out the transaction.
1946	 * Zero sized messages specify an address only (bare
1947	 * address) transaction.
1948	 */
1949	msg.request &= ~DP_AUX_I2C_MOT;
1950	msg.buffer = NULL;
1951	msg.size = 0;
1952	(void)drm_dp_i2c_do_msg(aux, &msg);
1953
1954	return err;
1955}
1956
1957static const struct i2c_algorithm drm_dp_i2c_algo = {
1958	.functionality = drm_dp_i2c_functionality,
1959	.master_xfer = drm_dp_i2c_xfer,
1960};
1961
1962static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1963{
1964	return container_of(i2c, struct drm_dp_aux, ddc);
1965}
1966
1967static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1968{
1969	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1970}
1971
1972static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1973{
1974	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1975}
1976
1977static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1978{
1979	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1980}
1981
1982static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1983	.lock_bus = lock_bus,
1984	.trylock_bus = trylock_bus,
1985	.unlock_bus = unlock_bus,
1986};
1987
1988static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1989{
1990	u8 buf, count;
1991	int ret;
1992
1993	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1994	if (ret < 0)
1995		return ret;
1996
1997	WARN_ON(!(buf & DP_TEST_SINK_START));
1998
1999	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
2000	if (ret < 0)
2001		return ret;
2002
2003	count = buf & DP_TEST_COUNT_MASK;
2004	if (count == aux->crc_count)
2005		return -EAGAIN; /* No CRC yet */
2006
2007	aux->crc_count = count;
2008
2009	/*
2010	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2011	 * per component (RGB or CrYCb).
2012	 */
2013	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2014	if (ret < 0)
2015		return ret;
2016
2017	return 0;
2018}
2019
2020static void drm_dp_aux_crc_work(struct work_struct *work)
2021{
2022	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2023					      crc_work);
2024	struct drm_crtc *crtc;
2025	u8 crc_bytes[6];
2026	uint32_t crcs[3];
2027	int ret;
2028
2029	if (WARN_ON(!aux->crtc))
2030		return;
2031
2032	crtc = aux->crtc;
2033	while (crtc->crc.opened) {
2034		drm_crtc_wait_one_vblank(crtc);
2035		if (!crtc->crc.opened)
2036			break;
2037
2038		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2039		if (ret == -EAGAIN) {
2040			usleep_range(1000, 2000);
2041			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2042		}
2043
2044		if (ret == -EAGAIN) {
2045			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2046				    aux->name, ret);
2047			continue;
2048		} else if (ret) {
2049			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2050			continue;
2051		}
2052
2053		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2054		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2055		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2056		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2057	}
2058}
2059
2060/**
2061 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2062 * @aux: DisplayPort AUX channel
2063 *
2064 * Used for remote aux channel in general. Merely initialize the crc work
2065 * struct.
2066 */
2067void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2068{
2069	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2070}
2071EXPORT_SYMBOL(drm_dp_remote_aux_init);
2072
2073/**
2074 * drm_dp_aux_init() - minimally initialise an aux channel
2075 * @aux: DisplayPort AUX channel
2076 *
2077 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2078 * the outside world, call drm_dp_aux_init() first. For drivers which are
2079 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2080 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2081 * has been registered to allow userspace access to the auxiliary DP channel.
2082 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2083 * early as possible so that the &drm_device that corresponds to the AUX adapter
2084 * may be mentioned in debugging output from the DRM DP helpers.
2085 *
2086 * For devices which use a separate platform device for their AUX adapters, this
2087 * may be called as early as required by the driver.
2088 *
2089 */
2090void drm_dp_aux_init(struct drm_dp_aux *aux)
2091{
2092	mutex_init(&aux->hw_mutex);
2093	mutex_init(&aux->cec.lock);
2094	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2095
2096	aux->ddc.algo = &drm_dp_i2c_algo;
2097	aux->ddc.algo_data = aux;
2098	aux->ddc.retries = 3;
2099
2100	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2101}
2102EXPORT_SYMBOL(drm_dp_aux_init);
2103
2104/**
2105 * drm_dp_aux_register() - initialise and register aux channel
2106 * @aux: DisplayPort AUX channel
2107 *
2108 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2109 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2110 * initialized. For devices which are grandparents of their AUX channels,
2111 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2112 * corresponds to @aux. For these devices, it's advised to call
2113 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2114 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2115 * Functions which don't follow this will likely Oops when
2116 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2117 *
2118 * For devices where the AUX channel is a device that exists independently of
2119 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2120 * recommended to call drm_dp_aux_register() after a &drm_device has been
2121 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2122 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2123 * with the AUX channel (e.g. on bridge detach).
2124 *
2125 * Drivers which need to use the aux channel before either of the two points
2126 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2127 * channel before registration.
2128 *
2129 * Returns 0 on success or a negative error code on failure.
2130 */
2131int drm_dp_aux_register(struct drm_dp_aux *aux)
2132{
2133	int ret;
2134
2135	WARN_ON_ONCE(!aux->drm_dev);
2136
2137	if (!aux->ddc.algo)
2138		drm_dp_aux_init(aux);
2139
2140	aux->ddc.owner = THIS_MODULE;
2141	aux->ddc.dev.parent = aux->dev;
2142
2143	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2144		sizeof(aux->ddc.name));
2145
2146	ret = drm_dp_aux_register_devnode(aux);
2147	if (ret)
2148		return ret;
2149
2150	ret = i2c_add_adapter(&aux->ddc);
2151	if (ret) {
2152		drm_dp_aux_unregister_devnode(aux);
2153		return ret;
2154	}
2155
2156	return 0;
2157}
2158EXPORT_SYMBOL(drm_dp_aux_register);
2159
2160/**
2161 * drm_dp_aux_unregister() - unregister an AUX adapter
2162 * @aux: DisplayPort AUX channel
2163 */
2164void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2165{
2166	drm_dp_aux_unregister_devnode(aux);
2167	i2c_del_adapter(&aux->ddc);
2168}
2169EXPORT_SYMBOL(drm_dp_aux_unregister);
2170
2171#define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2172
2173/**
2174 * drm_dp_psr_setup_time() - PSR setup in time usec
2175 * @psr_cap: PSR capabilities from DPCD
2176 *
2177 * Returns:
2178 * PSR setup time for the panel in microseconds,  negative
2179 * error code on failure.
2180 */
2181int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2182{
2183	static const u16 psr_setup_time_us[] = {
2184		PSR_SETUP_TIME(330),
2185		PSR_SETUP_TIME(275),
2186		PSR_SETUP_TIME(220),
2187		PSR_SETUP_TIME(165),
2188		PSR_SETUP_TIME(110),
2189		PSR_SETUP_TIME(55),
2190		PSR_SETUP_TIME(0),
2191	};
2192	int i;
2193
2194	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2195	if (i >= ARRAY_SIZE(psr_setup_time_us))
2196		return -EINVAL;
2197
2198	return psr_setup_time_us[i];
2199}
2200EXPORT_SYMBOL(drm_dp_psr_setup_time);
2201
2202#undef PSR_SETUP_TIME
2203
2204/**
2205 * drm_dp_start_crc() - start capture of frame CRCs
2206 * @aux: DisplayPort AUX channel
2207 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2208 *
2209 * Returns 0 on success or a negative error code on failure.
2210 */
2211int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2212{
2213	u8 buf;
2214	int ret;
2215
2216	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2217	if (ret < 0)
2218		return ret;
2219
2220	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2221	if (ret < 0)
2222		return ret;
2223
2224	aux->crc_count = 0;
2225	aux->crtc = crtc;
2226	schedule_work(&aux->crc_work);
2227
2228	return 0;
2229}
2230EXPORT_SYMBOL(drm_dp_start_crc);
2231
2232/**
2233 * drm_dp_stop_crc() - stop capture of frame CRCs
2234 * @aux: DisplayPort AUX channel
2235 *
2236 * Returns 0 on success or a negative error code on failure.
2237 */
2238int drm_dp_stop_crc(struct drm_dp_aux *aux)
2239{
2240	u8 buf;
2241	int ret;
2242
2243	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2244	if (ret < 0)
2245		return ret;
2246
2247	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2248	if (ret < 0)
2249		return ret;
2250
2251	flush_work(&aux->crc_work);
2252	aux->crtc = NULL;
2253
2254	return 0;
2255}
2256EXPORT_SYMBOL(drm_dp_stop_crc);
2257
2258struct dpcd_quirk {
2259	u8 oui[3];
2260	u8 device_id[6];
2261	bool is_branch;
2262	u32 quirks;
2263};
2264
2265#define OUI(first, second, third) { (first), (second), (third) }
2266#define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2267	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2268
2269#define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2270
2271static const struct dpcd_quirk dpcd_quirk_list[] = {
2272	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2273	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2274	/* LG LP140WF6-SPM1 eDP panel */
2275	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2276	/* Apple panels need some additional handling to support PSR */
2277	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2278	/* CH7511 seems to leave SINK_COUNT zeroed */
2279	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2280	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2281	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2282	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2283	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2284	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2285	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2286};
2287
2288#undef OUI
2289
2290/*
2291 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2292 * ident. The quirk data is shared but it's up to the drivers to act on the
2293 * data.
2294 *
2295 * For now, only the OUI (first three bytes) is used, but this may be extended
2296 * to device identification string and hardware/firmware revisions later.
2297 */
2298static u32
2299drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2300{
2301	const struct dpcd_quirk *quirk;
2302	u32 quirks = 0;
2303	int i;
2304	u8 any_device[] = DEVICE_ID_ANY;
2305
2306	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2307		quirk = &dpcd_quirk_list[i];
2308
2309		if (quirk->is_branch != is_branch)
2310			continue;
2311
2312		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2313			continue;
2314
2315		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2316		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2317			continue;
2318
2319		quirks |= quirk->quirks;
2320	}
2321
2322	return quirks;
2323}
2324
2325#undef DEVICE_ID_ANY
2326#undef DEVICE_ID
2327
2328/**
2329 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2330 * @aux: DisplayPort AUX channel
2331 * @desc: Device descriptor to fill from DPCD
2332 * @is_branch: true for branch devices, false for sink devices
2333 *
2334 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2335 * identification.
2336 *
2337 * Returns 0 on success or a negative error code on failure.
2338 */
2339int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2340		     bool is_branch)
2341{
2342	struct drm_dp_dpcd_ident *ident = &desc->ident;
2343	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2344	int ret, dev_id_len;
2345
2346	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2347	if (ret < 0)
2348		return ret;
2349
2350	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2351
2352	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2353
2354	drm_dbg_kms(aux->drm_dev,
2355		    "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2356		    aux->name, is_branch ? "branch" : "sink",
2357		    (int)sizeof(ident->oui), ident->oui, dev_id_len,
2358		    ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2359		    ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2360
2361	return 0;
2362}
2363EXPORT_SYMBOL(drm_dp_read_desc);
2364
2365/**
2366 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2367 * @dsc_dpcd: DSC capabilities from DPCD
2368 *
2369 * Returns the bpp precision supported by the DP sink.
2370 */
2371u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2372{
2373	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2374
2375	switch (bpp_increment_dpcd) {
2376	case DP_DSC_BITS_PER_PIXEL_1_16:
2377		return 16;
2378	case DP_DSC_BITS_PER_PIXEL_1_8:
2379		return 8;
2380	case DP_DSC_BITS_PER_PIXEL_1_4:
2381		return 4;
2382	case DP_DSC_BITS_PER_PIXEL_1_2:
2383		return 2;
2384	case DP_DSC_BITS_PER_PIXEL_1_1:
2385		return 1;
2386	}
2387
2388	return 0;
2389}
2390EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2391
2392/**
2393 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2394 * supported by the DSC sink.
2395 * @dsc_dpcd: DSC capabilities from DPCD
2396 * @is_edp: true if its eDP, false for DP
2397 *
2398 * Read the slice capabilities DPCD register from DSC sink to get
2399 * the maximum slice count supported. This is used to populate
2400 * the DSC parameters in the &struct drm_dsc_config by the driver.
2401 * Driver creates an infoframe using these parameters to populate
2402 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2403 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2404 *
2405 * Returns:
2406 * Maximum slice count supported by DSC sink or 0 its invalid
2407 */
2408u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2409				   bool is_edp)
2410{
2411	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2412
2413	if (is_edp) {
2414		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2415		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2416			return 4;
2417		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2418			return 2;
2419		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2420			return 1;
2421	} else {
2422		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2423		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2424
2425		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2426			return 24;
2427		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2428			return 20;
2429		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2430			return 16;
2431		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2432			return 12;
2433		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2434			return 10;
2435		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2436			return 8;
2437		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2438			return 6;
2439		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2440			return 4;
2441		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2442			return 2;
2443		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2444			return 1;
2445	}
2446
2447	return 0;
2448}
2449EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2450
2451/**
2452 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2453 * @dsc_dpcd: DSC capabilities from DPCD
2454 *
2455 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2456 * number of bits of precision within the decoder line buffer supported by
2457 * the DSC sink. This is used to populate the DSC parameters in the
2458 * &struct drm_dsc_config by the driver.
2459 * Driver creates an infoframe using these parameters to populate
2460 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2461 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2462 *
2463 * Returns:
2464 * Line buffer depth supported by DSC panel or 0 its invalid
2465 */
2466u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2467{
2468	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2469
2470	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2471	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2472		return 9;
2473	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2474		return 10;
2475	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2476		return 11;
2477	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2478		return 12;
2479	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2480		return 13;
2481	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2482		return 14;
2483	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2484		return 15;
2485	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2486		return 16;
2487	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2488		return 8;
2489	}
2490
2491	return 0;
2492}
2493EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2494
2495/**
2496 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2497 * values supported by the DSC sink.
2498 * @dsc_dpcd: DSC capabilities from DPCD
2499 * @dsc_bpc: An array to be filled by this helper with supported
2500 *           input bpcs.
2501 *
2502 * Read the DSC DPCD from the sink device to parse the supported bits per
2503 * component values. This is used to populate the DSC parameters
2504 * in the &struct drm_dsc_config by the driver.
2505 * Driver creates an infoframe using these parameters to populate
2506 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2507 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2508 *
2509 * Returns:
2510 * Number of input BPC values parsed from the DPCD
2511 */
2512int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2513					 u8 dsc_bpc[3])
2514{
2515	int num_bpc = 0;
2516	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2517
2518	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2519		return 0;
2520
2521	if (color_depth & DP_DSC_12_BPC)
2522		dsc_bpc[num_bpc++] = 12;
2523	if (color_depth & DP_DSC_10_BPC)
2524		dsc_bpc[num_bpc++] = 10;
2525
2526	/* A DP DSC Sink device shall support 8 bpc. */
2527	dsc_bpc[num_bpc++] = 8;
2528
2529	return num_bpc;
2530}
2531EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2532
2533static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2534				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2535				  u8 *buf, int buf_size)
2536{
2537	/*
2538	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2539	 * corrupted values when reading from the 0xF0000- range with a block
2540	 * size bigger than 1.
2541	 */
2542	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2543	int offset;
2544	int ret;
2545
2546	for (offset = 0; offset < buf_size; offset += block_size) {
2547		ret = drm_dp_dpcd_read(aux,
2548				       address + offset,
2549				       &buf[offset], block_size);
2550		if (ret < 0)
2551			return ret;
2552
2553		WARN_ON(ret != block_size);
2554	}
2555
2556	return 0;
2557}
2558
2559/**
2560 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2561 * @aux: DisplayPort AUX channel
2562 * @dpcd: DisplayPort configuration data
2563 * @caps: buffer to return the capability info in
2564 *
2565 * Read capabilities common to all LTTPRs.
2566 *
2567 * Returns 0 on success or a negative error code on failure.
2568 */
2569int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2570				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2571				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2572{
2573	return drm_dp_read_lttpr_regs(aux, dpcd,
2574				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2575				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2576}
2577EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2578
2579/**
2580 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2581 * @aux: DisplayPort AUX channel
2582 * @dpcd: DisplayPort configuration data
2583 * @dp_phy: LTTPR PHY to read the capabilities for
2584 * @caps: buffer to return the capability info in
2585 *
2586 * Read the capabilities for the given LTTPR PHY.
2587 *
2588 * Returns 0 on success or a negative error code on failure.
2589 */
2590int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2591			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2592			       enum drm_dp_phy dp_phy,
2593			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2594{
2595	return drm_dp_read_lttpr_regs(aux, dpcd,
2596				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2597				      caps, DP_LTTPR_PHY_CAP_SIZE);
2598}
2599EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2600
2601static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2602{
2603	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2604}
2605
2606/**
2607 * drm_dp_lttpr_count - get the number of detected LTTPRs
2608 * @caps: LTTPR common capabilities
2609 *
2610 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2611 *
2612 * Returns:
2613 *   -ERANGE if more than supported number (8) of LTTPRs are detected
2614 *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2615 *   otherwise the number of detected LTTPRs
2616 */
2617int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2618{
2619	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2620
2621	switch (hweight8(count)) {
2622	case 0:
2623		return 0;
2624	case 1:
2625		return 8 - ilog2(count);
2626	case 8:
2627		return -ERANGE;
2628	default:
2629		return -EINVAL;
2630	}
2631}
2632EXPORT_SYMBOL(drm_dp_lttpr_count);
2633
2634/**
2635 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2636 * @caps: LTTPR common capabilities
2637 *
2638 * Returns the maximum link rate supported by all detected LTTPRs.
2639 */
2640int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2641{
2642	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2643
2644	return drm_dp_bw_code_to_link_rate(rate);
2645}
2646EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2647
2648/**
2649 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2650 * @caps: LTTPR common capabilities
2651 *
2652 * Returns the maximum lane count supported by all detected LTTPRs.
2653 */
2654int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2655{
2656	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2657
2658	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2659}
2660EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2661
2662/**
2663 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2664 * @caps: LTTPR PHY capabilities
2665 *
2666 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2667 * voltage swing level 3.
2668 */
2669bool
2670drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2671{
2672	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2673
2674	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2675}
2676EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2677
2678/**
2679 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2680 * @caps: LTTPR PHY capabilities
2681 *
2682 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2683 * pre-emphasis level 3.
2684 */
2685bool
2686drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2687{
2688	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2689
2690	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2691}
2692EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2693
2694/**
2695 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2696 * @aux: DisplayPort AUX channel
2697 * @data: DP phy compliance test parameters.
2698 *
2699 * Returns 0 on success or a negative error code on failure.
2700 */
2701int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2702				struct drm_dp_phy_test_params *data)
2703{
2704	int err;
2705	u8 rate, lanes;
2706
2707	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2708	if (err < 0)
2709		return err;
2710	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2711
2712	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2713	if (err < 0)
2714		return err;
2715	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2716
2717	if (lanes & DP_ENHANCED_FRAME_CAP)
2718		data->enhanced_frame_cap = true;
2719
2720	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2721	if (err < 0)
2722		return err;
2723
2724	switch (data->phy_pattern) {
2725	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2726		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2727				       &data->custom80, sizeof(data->custom80));
2728		if (err < 0)
2729			return err;
2730
2731		break;
2732	case DP_PHY_TEST_PATTERN_CP2520:
2733		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2734				       &data->hbr2_reset,
2735				       sizeof(data->hbr2_reset));
2736		if (err < 0)
2737			return err;
2738	}
2739
2740	return 0;
2741}
2742EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2743
2744/**
2745 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2746 * @aux: DisplayPort AUX channel
2747 * @data: DP phy compliance test parameters.
2748 * @dp_rev: DP revision to use for compliance testing
2749 *
2750 * Returns 0 on success or a negative error code on failure.
2751 */
2752int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2753				struct drm_dp_phy_test_params *data, u8 dp_rev)
2754{
2755	int err, i;
2756	u8 test_pattern;
2757
2758	test_pattern = data->phy_pattern;
2759	if (dp_rev < 0x12) {
2760		test_pattern = (test_pattern << 2) &
2761			       DP_LINK_QUAL_PATTERN_11_MASK;
2762		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2763					 test_pattern);
2764		if (err < 0)
2765			return err;
2766	} else {
2767		for (i = 0; i < data->num_lanes; i++) {
2768			err = drm_dp_dpcd_writeb(aux,
2769						 DP_LINK_QUAL_LANE0_SET + i,
2770						 test_pattern);
2771			if (err < 0)
2772				return err;
2773		}
2774	}
2775
2776	return 0;
2777}
2778EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2779
2780static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2781{
2782	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2783		return "Invalid";
2784
2785	switch (pixelformat) {
2786	case DP_PIXELFORMAT_RGB:
2787		return "RGB";
2788	case DP_PIXELFORMAT_YUV444:
2789		return "YUV444";
2790	case DP_PIXELFORMAT_YUV422:
2791		return "YUV422";
2792	case DP_PIXELFORMAT_YUV420:
2793		return "YUV420";
2794	case DP_PIXELFORMAT_Y_ONLY:
2795		return "Y_ONLY";
2796	case DP_PIXELFORMAT_RAW:
2797		return "RAW";
2798	default:
2799		return "Reserved";
2800	}
2801}
2802
2803static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2804					   enum dp_colorimetry colorimetry)
2805{
2806	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2807		return "Invalid";
2808
2809	switch (colorimetry) {
2810	case DP_COLORIMETRY_DEFAULT:
2811		switch (pixelformat) {
2812		case DP_PIXELFORMAT_RGB:
2813			return "sRGB";
2814		case DP_PIXELFORMAT_YUV444:
2815		case DP_PIXELFORMAT_YUV422:
2816		case DP_PIXELFORMAT_YUV420:
2817			return "BT.601";
2818		case DP_PIXELFORMAT_Y_ONLY:
2819			return "DICOM PS3.14";
2820		case DP_PIXELFORMAT_RAW:
2821			return "Custom Color Profile";
2822		default:
2823			return "Reserved";
2824		}
2825	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2826		switch (pixelformat) {
2827		case DP_PIXELFORMAT_RGB:
2828			return "Wide Fixed";
2829		case DP_PIXELFORMAT_YUV444:
2830		case DP_PIXELFORMAT_YUV422:
2831		case DP_PIXELFORMAT_YUV420:
2832			return "BT.709";
2833		default:
2834			return "Reserved";
2835		}
2836	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2837		switch (pixelformat) {
2838		case DP_PIXELFORMAT_RGB:
2839			return "Wide Float";
2840		case DP_PIXELFORMAT_YUV444:
2841		case DP_PIXELFORMAT_YUV422:
2842		case DP_PIXELFORMAT_YUV420:
2843			return "xvYCC 601";
2844		default:
2845			return "Reserved";
2846		}
2847	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2848		switch (pixelformat) {
2849		case DP_PIXELFORMAT_RGB:
2850			return "OpRGB";
2851		case DP_PIXELFORMAT_YUV444:
2852		case DP_PIXELFORMAT_YUV422:
2853		case DP_PIXELFORMAT_YUV420:
2854			return "xvYCC 709";
2855		default:
2856			return "Reserved";
2857		}
2858	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2859		switch (pixelformat) {
2860		case DP_PIXELFORMAT_RGB:
2861			return "DCI-P3";
2862		case DP_PIXELFORMAT_YUV444:
2863		case DP_PIXELFORMAT_YUV422:
2864		case DP_PIXELFORMAT_YUV420:
2865			return "sYCC 601";
2866		default:
2867			return "Reserved";
2868		}
2869	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2870		switch (pixelformat) {
2871		case DP_PIXELFORMAT_RGB:
2872			return "Custom Profile";
2873		case DP_PIXELFORMAT_YUV444:
2874		case DP_PIXELFORMAT_YUV422:
2875		case DP_PIXELFORMAT_YUV420:
2876			return "OpYCC 601";
2877		default:
2878			return "Reserved";
2879		}
2880	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2881		switch (pixelformat) {
2882		case DP_PIXELFORMAT_RGB:
2883			return "BT.2020 RGB";
2884		case DP_PIXELFORMAT_YUV444:
2885		case DP_PIXELFORMAT_YUV422:
2886		case DP_PIXELFORMAT_YUV420:
2887			return "BT.2020 CYCC";
2888		default:
2889			return "Reserved";
2890		}
2891	case DP_COLORIMETRY_BT2020_YCC:
2892		switch (pixelformat) {
2893		case DP_PIXELFORMAT_YUV444:
2894		case DP_PIXELFORMAT_YUV422:
2895		case DP_PIXELFORMAT_YUV420:
2896			return "BT.2020 YCC";
2897		default:
2898			return "Reserved";
2899		}
2900	default:
2901		return "Invalid";
2902	}
2903}
2904
2905static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2906{
2907	switch (dynamic_range) {
2908	case DP_DYNAMIC_RANGE_VESA:
2909		return "VESA range";
2910	case DP_DYNAMIC_RANGE_CTA:
2911		return "CTA range";
2912	default:
2913		return "Invalid";
2914	}
2915}
2916
2917static const char *dp_content_type_get_name(enum dp_content_type content_type)
2918{
2919	switch (content_type) {
2920	case DP_CONTENT_TYPE_NOT_DEFINED:
2921		return "Not defined";
2922	case DP_CONTENT_TYPE_GRAPHICS:
2923		return "Graphics";
2924	case DP_CONTENT_TYPE_PHOTO:
2925		return "Photo";
2926	case DP_CONTENT_TYPE_VIDEO:
2927		return "Video";
2928	case DP_CONTENT_TYPE_GAME:
2929		return "Game";
2930	default:
2931		return "Reserved";
2932	}
2933}
2934
2935void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
2936{
2937	drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
2938		   vsc->revision, vsc->length);
2939	drm_printf(p, "    pixelformat: %s\n",
2940		   dp_pixelformat_get_name(vsc->pixelformat));
2941	drm_printf(p, "    colorimetry: %s\n",
2942		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2943	drm_printf(p, "    bpc: %u\n", vsc->bpc);
2944	drm_printf(p, "    dynamic range: %s\n",
2945		   dp_dynamic_range_get_name(vsc->dynamic_range));
2946	drm_printf(p, "    content type: %s\n",
2947		   dp_content_type_get_name(vsc->content_type));
2948}
2949EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2950
2951/**
2952 * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
2953 * @aux: DisplayPort AUX channel
2954 * @dpcd: DisplayPort configuration data
2955 *
2956 * Returns true if vsc sdp is supported, else returns false
2957 */
2958bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
2959{
2960	u8 rx_feature;
2961
2962	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
2963		return false;
2964
2965	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) {
2966		drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
2967		return false;
2968	}
2969
2970	return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
2971}
2972EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
2973
2974/**
2975 * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
2976 * @vsc: vsc sdp initialized according to its purpose as defined in
2977 *       table 2-118 - table 2-120 in DP 1.4a specification
2978 * @sdp: valid handle to the generic dp_sdp which will be packed
2979 *
2980 * Returns length of sdp on success and error code on failure
2981 */
2982ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
2983			    struct dp_sdp *sdp)
2984{
2985	size_t length = sizeof(struct dp_sdp);
2986
2987	memset(sdp, 0, sizeof(struct dp_sdp));
2988
2989	/*
2990	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
2991	 * VSC SDP Header Bytes
2992	 */
2993	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
2994	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
2995	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
2996	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
2997
2998	if (vsc->revision == 0x6) {
2999		sdp->db[0] = 1;
3000		sdp->db[3] = 1;
3001	}
3002
3003	/*
3004	 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3005	 * Format as per DP 1.4a spec and DP 2.0 respectively.
3006	 */
3007	if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3008		goto out;
3009
3010	/* VSC SDP Payload for DB16 through DB18 */
3011	/* Pixel Encoding and Colorimetry Formats  */
3012	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3013	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3014
3015	switch (vsc->bpc) {
3016	case 6:
3017		/* 6bpc: 0x0 */
3018		break;
3019	case 8:
3020		sdp->db[17] = 0x1; /* DB17[3:0] */
3021		break;
3022	case 10:
3023		sdp->db[17] = 0x2;
3024		break;
3025	case 12:
3026		sdp->db[17] = 0x3;
3027		break;
3028	case 16:
3029		sdp->db[17] = 0x4;
3030		break;
3031	default:
3032		WARN(1, "Missing case %d\n", vsc->bpc);
3033		return -EINVAL;
3034	}
3035
3036	/* Dynamic Range and Component Bit Depth */
3037	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3038		sdp->db[17] |= 0x80;  /* DB17[7] */
3039
3040	/* Content Type */
3041	sdp->db[18] = vsc->content_type & 0x7;
3042
3043out:
3044	return length;
3045}
3046EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3047
3048/**
3049 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3050 * @dpcd: DisplayPort configuration data
3051 * @port_cap: port capabilities
3052 *
3053 * Returns maximum frl bandwidth supported by PCON in GBPS,
3054 * returns 0 if not supported.
3055 */
3056int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3057			       const u8 port_cap[4])
3058{
3059	int bw;
3060	u8 buf;
3061
3062	buf = port_cap[2];
3063	bw = buf & DP_PCON_MAX_FRL_BW;
3064
3065	switch (bw) {
3066	case DP_PCON_MAX_9GBPS:
3067		return 9;
3068	case DP_PCON_MAX_18GBPS:
3069		return 18;
3070	case DP_PCON_MAX_24GBPS:
3071		return 24;
3072	case DP_PCON_MAX_32GBPS:
3073		return 32;
3074	case DP_PCON_MAX_40GBPS:
3075		return 40;
3076	case DP_PCON_MAX_48GBPS:
3077		return 48;
3078	case DP_PCON_MAX_0GBPS:
3079	default:
3080		return 0;
3081	}
3082
3083	return 0;
3084}
3085EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3086
3087/**
3088 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3089 * @aux: DisplayPort AUX channel
3090 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3091 *
3092 * Returns 0 if success, else returns negative error code.
3093 */
3094int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3095{
3096	int ret;
3097	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3098		 DP_PCON_ENABLE_LINK_FRL_MODE;
3099
3100	if (enable_frl_ready_hpd)
3101		buf |= DP_PCON_ENABLE_HPD_READY;
3102
3103	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3104
3105	return ret;
3106}
3107EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3108
3109/**
3110 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3111 * @aux: DisplayPort AUX channel
3112 *
3113 * Returns true if success, else returns false.
3114 */
3115bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3116{
3117	int ret;
3118	u8 buf;
3119
3120	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3121	if (ret < 0)
3122		return false;
3123
3124	if (buf & DP_PCON_FRL_READY)
3125		return true;
3126
3127	return false;
3128}
3129EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3130
3131/**
3132 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3133 * @aux: DisplayPort AUX channel
3134 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3135 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3136 * In Concurrent Mode, the FRL link bring up can be done along with
3137 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3138 * the DP Link training.
3139 *
3140 * Returns 0 if success, else returns negative error code.
3141 */
3142
3143int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3144				u8 frl_mode)
3145{
3146	int ret;
3147	u8 buf;
3148
3149	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3150	if (ret < 0)
3151		return ret;
3152
3153	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3154		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3155	else
3156		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3157
3158	switch (max_frl_gbps) {
3159	case 9:
3160		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3161		break;
3162	case 18:
3163		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3164		break;
3165	case 24:
3166		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3167		break;
3168	case 32:
3169		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3170		break;
3171	case 40:
3172		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3173		break;
3174	case 48:
3175		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3176		break;
3177	case 0:
3178		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3179		break;
3180	default:
3181		return -EINVAL;
3182	}
3183
3184	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3185	if (ret < 0)
3186		return ret;
3187
3188	return 0;
3189}
3190EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3191
3192/**
3193 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3194 * @aux: DisplayPort AUX channel
3195 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3196 * @frl_type : FRL training type, can be Extended, or Normal.
3197 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3198 * starting from min, and stops when link training is successful. In Extended
3199 * FRL training, all frl bw selected in the mask are trained by the PCON.
3200 *
3201 * Returns 0 if success, else returns negative error code.
3202 */
3203int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3204				u8 frl_type)
3205{
3206	int ret;
3207	u8 buf = max_frl_mask;
3208
3209	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3210		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3211	else
3212		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3213
3214	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3215	if (ret < 0)
3216		return ret;
3217
3218	return 0;
3219}
3220EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3221
3222/**
3223 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3224 * @aux: DisplayPort AUX channel
3225 *
3226 * Returns 0 if success, else returns negative error code.
3227 */
3228int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3229{
3230	int ret;
3231
3232	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3233	if (ret < 0)
3234		return ret;
3235
3236	return 0;
3237}
3238EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3239
3240/**
3241 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3242 * @aux: DisplayPort AUX channel
3243 *
3244 * Returns 0 if success, else returns negative error code.
3245 */
3246int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3247{
3248	int ret;
3249	u8 buf = 0;
3250
3251	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3252	if (ret < 0)
3253		return ret;
3254	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3255		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3256			    aux->name);
3257		return -EINVAL;
3258	}
3259	buf |= DP_PCON_ENABLE_HDMI_LINK;
3260	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3261	if (ret < 0)
3262		return ret;
3263
3264	return 0;
3265}
3266EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3267
3268/**
3269 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3270 * @aux: DisplayPort AUX channel
3271 *
3272 * Returns true if link is active else returns false.
3273 */
3274bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3275{
3276	u8 buf;
3277	int ret;
3278
3279	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3280	if (ret < 0)
3281		return false;
3282
3283	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3284}
3285EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3286
3287/**
3288 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3289 * @aux: DisplayPort AUX channel
3290 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3291 * Valid only if the MODE returned is FRL. For Normal Link training mode
3292 * only 1 of the bits will be set, but in case of Extended mode, more than
3293 * one bits can be set.
3294 *
3295 * Returns the link mode : TMDS or FRL on success, else returns negative error
3296 * code.
3297 */
3298int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3299{
3300	u8 buf;
3301	int mode;
3302	int ret;
3303
3304	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3305	if (ret < 0)
3306		return ret;
3307
3308	mode = buf & DP_PCON_HDMI_LINK_MODE;
3309
3310	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3311		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3312
3313	return mode;
3314}
3315EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3316
3317/**
3318 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3319 * during link failure between PCON and HDMI sink
3320 * @aux: DisplayPort AUX channel
3321 * @connector: DRM connector
3322 * code.
3323 **/
3324
3325void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3326					   struct drm_connector *connector)
3327{
3328	u8 buf, error_count;
3329	int i, num_error;
3330	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3331
3332	for (i = 0; i < hdmi->max_lanes; i++) {
3333		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3334			return;
3335
3336		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3337		switch (error_count) {
3338		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3339			num_error = 100;
3340			break;
3341		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3342			num_error = 10;
3343			break;
3344		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3345			num_error = 3;
3346			break;
3347		default:
3348			num_error = 0;
3349		}
3350
3351		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3352			aux->name, num_error, i);
3353	}
3354}
3355EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3356
3357/*
3358 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3359 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3360 *
3361 * Returns true is PCON encoder is DSC 1.2 else returns false.
3362 */
3363bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3364{
3365	u8 buf;
3366	u8 major_v, minor_v;
3367
3368	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3369	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3370	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3371
3372	if (major_v == 1 && minor_v == 2)
3373		return true;
3374
3375	return false;
3376}
3377EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3378
3379/*
3380 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3381 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3382 *
3383 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3384 */
3385int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3386{
3387	u8 slice_cap1, slice_cap2;
3388
3389	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3390	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3391
3392	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3393		return 24;
3394	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3395		return 20;
3396	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3397		return 16;
3398	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3399		return 12;
3400	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3401		return 10;
3402	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3403		return 8;
3404	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3405		return 6;
3406	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3407		return 4;
3408	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3409		return 2;
3410	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3411		return 1;
3412
3413	return 0;
3414}
3415EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3416
3417/*
3418 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3419 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3420 *
3421 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3422 */
3423int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3424{
3425	u8 buf;
3426
3427	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3428
3429	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3430}
3431EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3432
3433/*
3434 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3435 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3436 *
3437 * Returns the bpp precision supported by the PCON encoder.
3438 */
3439int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3440{
3441	u8 buf;
3442
3443	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3444
3445	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3446	case DP_PCON_DSC_ONE_16TH_BPP:
3447		return 16;
3448	case DP_PCON_DSC_ONE_8TH_BPP:
3449		return 8;
3450	case DP_PCON_DSC_ONE_4TH_BPP:
3451		return 4;
3452	case DP_PCON_DSC_ONE_HALF_BPP:
3453		return 2;
3454	case DP_PCON_DSC_ONE_BPP:
3455		return 1;
3456	}
3457
3458	return 0;
3459}
3460EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3461
3462static
3463int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3464{
3465	u8 buf;
3466	int ret;
3467
3468	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3469	if (ret < 0)
3470		return ret;
3471
3472	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3473
3474	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3475		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3476		buf |= pps_buf_config << 2;
3477	}
3478
3479	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3480	if (ret < 0)
3481		return ret;
3482
3483	return 0;
3484}
3485
3486/**
3487 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3488 * for DSC1.2 between PCON & HDMI2.1 sink
3489 * @aux: DisplayPort AUX channel
3490 *
3491 * Returns 0 on success, else returns negative error code.
3492 */
3493int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3494{
3495	int ret;
3496
3497	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3498	if (ret < 0)
3499		return ret;
3500
3501	return 0;
3502}
3503EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3504
3505/**
3506 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3507 * HDMI sink
3508 * @aux: DisplayPort AUX channel
3509 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3510 *
3511 * Returns 0 on success, else returns negative error code.
3512 */
3513int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3514{
3515	int ret;
3516
3517	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3518	if (ret < 0)
3519		return ret;
3520
3521	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3522	if (ret < 0)
3523		return ret;
3524
3525	return 0;
3526}
3527EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3528
3529/*
3530 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3531 * override registers
3532 * @aux: DisplayPort AUX channel
3533 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3534 * bits_per_pixel.
3535 *
3536 * Returns 0 on success, else returns negative error code.
3537 */
3538int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3539{
3540	int ret;
3541
3542	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3543	if (ret < 0)
3544		return ret;
3545	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3546	if (ret < 0)
3547		return ret;
3548	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3549	if (ret < 0)
3550		return ret;
3551
3552	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3553	if (ret < 0)
3554		return ret;
3555
3556	return 0;
3557}
3558EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3559
3560/*
3561 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3562 * @aux: displayPort AUX channel
3563 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3564 *
3565 * Returns 0 on success, else returns negative error code.
3566 */
3567int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3568{
3569	int ret;
3570	u8 buf;
3571
3572	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3573	if (ret < 0)
3574		return ret;
3575
3576	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3577		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3578	else
3579		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3580
3581	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3582	if (ret < 0)
3583		return ret;
3584
3585	return 0;
3586}
3587EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3588
3589/**
3590 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3591 * @aux: The DP AUX channel to use
3592 * @bl: Backlight capability info from drm_edp_backlight_init()
3593 * @level: The brightness level to set
3594 *
3595 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3596 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3597 *
3598 * Returns: %0 on success, negative error code on failure
3599 */
3600int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3601				u16 level)
3602{
3603	int ret;
3604	u8 buf[2] = { 0 };
3605
3606	/* The panel uses the PWM for controlling brightness levels */
3607	if (!bl->aux_set)
3608		return 0;
3609
3610	if (bl->lsb_reg_used) {
3611		buf[0] = (level & 0xff00) >> 8;
3612		buf[1] = (level & 0x00ff);
3613	} else {
3614		buf[0] = level;
3615	}
3616
3617	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3618	if (ret != sizeof(buf)) {
3619		drm_err(aux->drm_dev,
3620			"%s: Failed to write aux backlight level: %d\n",
3621			aux->name, ret);
3622		return ret < 0 ? ret : -EIO;
3623	}
3624
3625	return 0;
3626}
3627EXPORT_SYMBOL(drm_edp_backlight_set_level);
3628
3629static int
3630drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3631			     bool enable)
3632{
3633	int ret;
3634	u8 buf;
3635
3636	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3637	if (!bl->aux_enable)
3638		return 0;
3639
3640	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3641	if (ret != 1) {
3642		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3643			aux->name, ret);
3644		return ret < 0 ? ret : -EIO;
3645	}
3646	if (enable)
3647		buf |= DP_EDP_BACKLIGHT_ENABLE;
3648	else
3649		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3650
3651	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3652	if (ret != 1) {
3653		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3654			aux->name, ret);
3655		return ret < 0 ? ret : -EIO;
3656	}
3657
3658	return 0;
3659}
3660
3661/**
3662 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3663 * @aux: The DP AUX channel to use
3664 * @bl: Backlight capability info from drm_edp_backlight_init()
3665 * @level: The initial backlight level to set via AUX, if there is one
3666 *
3667 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3668 * restoring any important backlight state such as the given backlight level, the brightness byte
3669 * count, backlight frequency, etc.
3670 *
3671 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3672 * that the driver handle enabling/disabling the panel through implementation-specific means using
3673 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3674 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3675 * the EDP_BL_PWR GPIO.
3676 *
3677 * Returns: %0 on success, negative error code on failure.
3678 */
3679int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3680			     const u16 level)
3681{
3682	int ret;
3683	u8 dpcd_buf;
3684
3685	if (bl->aux_set)
3686		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3687	else
3688		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3689
3690	if (bl->pwmgen_bit_count) {
3691		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3692		if (ret != 1)
3693			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3694				    aux->name, ret);
3695	}
3696
3697	if (bl->pwm_freq_pre_divider) {
3698		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3699		if (ret != 1)
3700			drm_dbg_kms(aux->drm_dev,
3701				    "%s: Failed to write aux backlight frequency: %d\n",
3702				    aux->name, ret);
3703		else
3704			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3705	}
3706
3707	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3708	if (ret != 1) {
3709		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3710			    aux->name, ret);
3711		return ret < 0 ? ret : -EIO;
3712	}
3713
3714	ret = drm_edp_backlight_set_level(aux, bl, level);
3715	if (ret < 0)
3716		return ret;
3717	ret = drm_edp_backlight_set_enable(aux, bl, true);
3718	if (ret < 0)
3719		return ret;
3720
3721	return 0;
3722}
3723EXPORT_SYMBOL(drm_edp_backlight_enable);
3724
3725/**
3726 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3727 * @aux: The DP AUX channel to use
3728 * @bl: Backlight capability info from drm_edp_backlight_init()
3729 *
3730 * This function handles disabling DPCD backlight controls on a panel over AUX.
3731 *
3732 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3733 * that the driver handle enabling/disabling the panel through implementation-specific means using
3734 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3735 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3736 * the EDP_BL_PWR GPIO.
3737 *
3738 * Returns: %0 on success or no-op, negative error code on failure.
3739 */
3740int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3741{
3742	int ret;
3743
3744	ret = drm_edp_backlight_set_enable(aux, bl, false);
3745	if (ret < 0)
3746		return ret;
3747
3748	return 0;
3749}
3750EXPORT_SYMBOL(drm_edp_backlight_disable);
3751
3752static inline int
3753drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3754			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3755{
3756	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3757	int ret;
3758	u8 pn, pn_min, pn_max;
3759
3760	if (!bl->aux_set)
3761		return 0;
3762
3763	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3764	if (ret != 1) {
3765		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3766			    aux->name, ret);
3767		return -ENODEV;
3768	}
3769
3770	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3771	bl->max = (1 << pn) - 1;
3772	if (!driver_pwm_freq_hz)
3773		return 0;
3774
3775	/*
3776	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3777	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3778	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3779	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3780	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3781	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3782	 */
3783
3784	/* Find desired value of (F x P)
3785	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3786	 * applied automatically. So no need to check that.
3787	 */
3788	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3789
3790	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3791	 * satisfying the conditions below.
3792	 * - Pn is in the range of Pn_min and Pn_max
3793	 * - F is in the range of 1 and 255
3794	 * - FxP is within 25% of desired value.
3795	 *   Note: 25% is arbitrary value and may need some tweak.
3796	 */
3797	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3798	if (ret != 1) {
3799		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3800			    aux->name, ret);
3801		return 0;
3802	}
3803	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3804	if (ret != 1) {
3805		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3806			    aux->name, ret);
3807		return 0;
3808	}
3809	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3810	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3811
3812	/* Ensure frequency is within 25% of desired value */
3813	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3814	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3815	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3816		drm_dbg_kms(aux->drm_dev,
3817			    "%s: Driver defined backlight frequency (%d) out of range\n",
3818			    aux->name, driver_pwm_freq_hz);
3819		return 0;
3820	}
3821
3822	for (pn = pn_max; pn >= pn_min; pn--) {
3823		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3824		fxp_actual = f << pn;
3825		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3826			break;
3827	}
3828
3829	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3830	if (ret != 1) {
3831		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3832			    aux->name, ret);
3833		return 0;
3834	}
3835	bl->pwmgen_bit_count = pn;
3836	bl->max = (1 << pn) - 1;
3837
3838	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3839		bl->pwm_freq_pre_divider = f;
3840		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3841			    aux->name, driver_pwm_freq_hz);
3842	}
3843
3844	return 0;
3845}
3846
3847static inline int
3848drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3849			      u8 *current_mode)
3850{
3851	int ret;
3852	u8 buf[2];
3853	u8 mode_reg;
3854
3855	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3856	if (ret != 1) {
3857		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3858			    aux->name, ret);
3859		return ret < 0 ? ret : -EIO;
3860	}
3861
3862	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3863	if (!bl->aux_set)
3864		return 0;
3865
3866	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3867		int size = 1 + bl->lsb_reg_used;
3868
3869		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3870		if (ret != size) {
3871			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3872				    aux->name, ret);
3873			return ret < 0 ? ret : -EIO;
3874		}
3875
3876		if (bl->lsb_reg_used)
3877			return (buf[0] << 8) | buf[1];
3878		else
3879			return buf[0];
3880	}
3881
3882	/*
3883	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3884	 * the driver should assume max brightness
3885	 */
3886	return bl->max;
3887}
3888
3889/**
3890 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3891 * interface.
3892 * @aux: The DP aux device to use for probing
3893 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3894 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3895 * @edp_dpcd: A cached copy of the eDP DPCD
3896 * @current_level: Where to store the probed brightness level, if any
3897 * @current_mode: Where to store the currently set backlight control mode
3898 *
3899 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3900 * along with also probing the current and maximum supported brightness levels.
3901 *
3902 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3903 * default frequency from the panel is used.
3904 *
3905 * Returns: %0 on success, negative error code on failure.
3906 */
3907int
3908drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3909		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3910		       u16 *current_level, u8 *current_mode)
3911{
3912	int ret;
3913
3914	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3915		bl->aux_enable = true;
3916	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3917		bl->aux_set = true;
3918	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3919		bl->lsb_reg_used = true;
3920
3921	/* Sanity check caps */
3922	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3923		drm_dbg_kms(aux->drm_dev,
3924			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3925			    aux->name);
3926		return -EINVAL;
3927	}
3928
3929	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3930	if (ret < 0)
3931		return ret;
3932
3933	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3934	if (ret < 0)
3935		return ret;
3936	*current_level = ret;
3937
3938	drm_dbg_kms(aux->drm_dev,
3939		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3940		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3941	if (bl->aux_set) {
3942		drm_dbg_kms(aux->drm_dev,
3943			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3944			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3945			    bl->lsb_reg_used);
3946	}
3947
3948	return 0;
3949}
3950EXPORT_SYMBOL(drm_edp_backlight_init);
3951
3952#if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3953	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3954
3955static int dp_aux_backlight_update_status(struct backlight_device *bd)
3956{
3957	struct dp_aux_backlight *bl = bl_get_data(bd);
3958	u16 brightness = backlight_get_brightness(bd);
3959	int ret = 0;
3960
3961	if (!backlight_is_blank(bd)) {
3962		if (!bl->enabled) {
3963			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3964			bl->enabled = true;
3965			return 0;
3966		}
3967		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3968	} else {
3969		if (bl->enabled) {
3970			drm_edp_backlight_disable(bl->aux, &bl->info);
3971			bl->enabled = false;
3972		}
3973	}
3974
3975	return ret;
3976}
3977
3978static const struct backlight_ops dp_aux_bl_ops = {
3979	.update_status = dp_aux_backlight_update_status,
3980};
3981
3982/**
3983 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3984 * @panel: DRM panel
3985 * @aux: The DP AUX channel to use
3986 *
3987 * Use this function to create and handle backlight if your panel
3988 * supports backlight control over DP AUX channel using DPCD
3989 * registers as per VESA's standard backlight control interface.
3990 *
3991 * When the panel is enabled backlight will be enabled after a
3992 * successful call to &drm_panel_funcs.enable()
3993 *
3994 * When the panel is disabled backlight will be disabled before the
3995 * call to &drm_panel_funcs.disable().
3996 *
3997 * A typical implementation for a panel driver supporting backlight
3998 * control over DP AUX will call this function at probe time.
3999 * Backlight will then be handled transparently without requiring
4000 * any intervention from the driver.
4001 *
4002 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4003 *
4004 * Return: 0 on success or a negative error code on failure.
4005 */
4006int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4007{
4008	struct dp_aux_backlight *bl;
4009	struct backlight_properties props = { 0 };
4010	u16 current_level;
4011	u8 current_mode;
4012	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4013	int ret;
4014
4015	if (!panel || !panel->dev || !aux)
4016		return -EINVAL;
4017
4018	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
4019			       EDP_DISPLAY_CTL_CAP_SIZE);
4020	if (ret < 0)
4021		return ret;
4022
4023	if (!drm_edp_backlight_supported(edp_dpcd)) {
4024		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4025		return 0;
4026	}
4027
4028	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4029	if (!bl)
4030		return -ENOMEM;
4031
4032	bl->aux = aux;
4033
4034	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4035				     &current_level, &current_mode);
4036	if (ret < 0)
4037		return ret;
4038
4039	props.type = BACKLIGHT_RAW;
4040	props.brightness = current_level;
4041	props.max_brightness = bl->info.max;
4042
4043	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4044						  panel->dev, bl,
4045						  &dp_aux_bl_ops, &props);
4046	if (IS_ERR(bl->base))
4047		return PTR_ERR(bl->base);
4048
4049	backlight_disable(bl->base);
4050
4051	panel->backlight = bl->base;
4052
4053	return 0;
4054}
4055EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4056
4057#endif
4058
4059/* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4060static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
4061				     int symbol_size, bool is_mst)
4062{
4063	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4064	int align = is_mst ? 4 / lane_count : 1;
4065
4066	return ALIGN(cycles, align);
4067}
4068
4069static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
4070					 int bpp_x16, int symbol_size, bool is_mst)
4071{
4072	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4073	int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
4074							  bpp_x16, symbol_size, is_mst);
4075	int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4076
4077	return slice_count * (slice_data_cycles + slice_eoc_cycles);
4078}
4079
4080/**
4081 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4082 * @lane_count: DP link lane count
4083 * @hactive: pixel count of the active period in one scanline of the stream
4084 * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
4085 * @bpp_x16: bits per pixel in .4 binary fixed point
4086 * @flags: DRM_DP_OVERHEAD_x flags
4087 *
4088 * Calculate the BW allocation overhead of a DP link stream, depending
4089 * on the link's
4090 * - @lane_count
4091 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4092 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4093 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4094 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4095 * as well as the stream's
4096 * - @hactive timing
4097 * - @bpp_x16 color depth
4098 * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
4099 * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4100 * channel coding efficiency, for that see
4101 * @drm_dp_link_bw_channel_coding_efficiency().
4102 *
4103 * Returns the overhead as 100% + overhead% in 1ppm units.
4104 */
4105int drm_dp_bw_overhead(int lane_count, int hactive,
4106		       int dsc_slice_count,
4107		       int bpp_x16, unsigned long flags)
4108{
4109	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4110	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4111	u32 overhead = 1000000;
4112	int symbol_cycles;
4113
4114	if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4115		DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 %d.%04d\n",
4116			      lane_count, hactive,
4117			      bpp_x16 >> 4, (bpp_x16 & 0xf) * 625);
4118		return 0;
4119	}
4120
4121	/*
4122	 * DP Standard v2.1 2.6.4.1
4123	 * SSC downspread and ref clock variation margin:
4124	 *   5300ppm + 300ppm ~ 0.6%
4125	 */
4126	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4127		overhead += 6000;
4128
4129	/*
4130	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4131	 * FEC symbol insertions for 8b/10b channel coding:
4132	 * After each 250 data symbols on 2-4 lanes:
4133	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
4134	 * After each 2 x 250 data symbols on 1 lane:
4135	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4136	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4137	 *   256 * 256 bytes + 1 FEC_PM
4138	 * or
4139	 *   128 * 512 bytes + 1 FEC_PM
4140	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4141	 */
4142	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4143		overhead += 24016;
4144
4145	/*
4146	 * DP Standard v2.1 2.7.9, 5.9.7
4147	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4148	 * coding efficiency.
4149	 */
4150	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4151		(flags & DRM_DP_BW_OVERHEAD_FEC));
4152
4153	if (flags & DRM_DP_BW_OVERHEAD_DSC)
4154		symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4155							      dsc_slice_count,
4156							      bpp_x16, symbol_size,
4157							      is_mst);
4158	else
4159		symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4160							  bpp_x16, symbol_size,
4161							  is_mst);
4162
4163	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4164					    overhead * 16),
4165				hactive * bpp_x16);
4166}
4167EXPORT_SYMBOL(drm_dp_bw_overhead);
4168
4169/**
4170 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4171 * @is_uhbr: Whether the link has a 128b/132b channel coding
4172 *
4173 * Return the channel coding efficiency of the given DP link type, which is
4174 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4175 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4176 * and for 128b/132b any link or PHY level control symbol insertion overhead
4177 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4178 * corresponding FEC overhead is BW allocation specific, included in the value
4179 * returned by drm_dp_bw_overhead().
4180 *
4181 * Returns the efficiency in the 100%/coding-overhead% ratio in
4182 * 1ppm units.
4183 */
4184int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4185{
4186	if (is_uhbr)
4187		return 967100;
4188	else
4189		/*
4190		 * Note that on 8b/10b MST the efficiency is only
4191		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4192		 * not accounted for here.
4193		 */
4194		return 800000;
4195}
4196EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4197
4198/**
4199 * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4200 * @max_link_rate: max DPRX link rate in 10kbps units
4201 * @max_lanes: max DPRX lane count
4202 *
4203 * Given a link rate and lanes, get the data bandwidth.
4204 *
4205 * Data bandwidth is the actual payload rate, which depends on the data
4206 * bandwidth efficiency and the link rate.
4207 *
4208 * Note that protocol layers above the DPRX link level considered here can
4209 * further limit the maximum data rate. Such layers are the MST topology (with
4210 * limits on the link between the source and first branch device as well as on
4211 * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4212 * which in turn can encapsulate an MST link with its own limit - with each
4213 * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4214 *
4215 * Returns the maximum data rate in kBps units.
4216 */
4217int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4218{
4219	int ch_coding_efficiency =
4220		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4221
4222	return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4223					      ch_coding_efficiency),
4224				  1000000 * 8);
4225}
4226EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);