Loading...
1/*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bug.h>
22#include <linux/ctype.h>
23#include <linux/delay.h>
24#include <linux/device.h>
25#include <linux/errno.h>
26#include <linux/firewire.h>
27#include <linux/firewire-constants.h>
28#include <linux/idr.h>
29#include <linux/jiffies.h>
30#include <linux/kobject.h>
31#include <linux/list.h>
32#include <linux/mod_devicetable.h>
33#include <linux/module.h>
34#include <linux/mutex.h>
35#include <linux/rwsem.h>
36#include <linux/slab.h>
37#include <linux/spinlock.h>
38#include <linux/string.h>
39#include <linux/workqueue.h>
40
41#include <linux/atomic.h>
42#include <asm/byteorder.h>
43#include <asm/system.h>
44
45#include "core.h"
46
47void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48{
49 ci->p = p + 1;
50 ci->end = ci->p + (p[0] >> 16);
51}
52EXPORT_SYMBOL(fw_csr_iterator_init);
53
54int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55{
56 *key = *ci->p >> 24;
57 *value = *ci->p & 0xffffff;
58
59 return ci->p++ < ci->end;
60}
61EXPORT_SYMBOL(fw_csr_iterator_next);
62
63static const u32 *search_leaf(const u32 *directory, int search_key)
64{
65 struct fw_csr_iterator ci;
66 int last_key = 0, key, value;
67
68 fw_csr_iterator_init(&ci, directory);
69 while (fw_csr_iterator_next(&ci, &key, &value)) {
70 if (last_key == search_key &&
71 key == (CSR_DESCRIPTOR | CSR_LEAF))
72 return ci.p - 1 + value;
73
74 last_key = key;
75 }
76
77 return NULL;
78}
79
80static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81{
82 unsigned int quadlets, i;
83 char c;
84
85 if (!size || !buf)
86 return -EINVAL;
87
88 quadlets = min(block[0] >> 16, 256U);
89 if (quadlets < 2)
90 return -ENODATA;
91
92 if (block[1] != 0 || block[2] != 0)
93 /* unknown language/character set */
94 return -ENODATA;
95
96 block += 3;
97 quadlets -= 2;
98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 c = block[i / 4] >> (24 - 8 * (i % 4));
100 if (c == '\0')
101 break;
102 buf[i] = c;
103 }
104 buf[i] = '\0';
105
106 return i;
107}
108
109/**
110 * fw_csr_string() - reads a string from the configuration ROM
111 * @directory: e.g. root directory or unit directory
112 * @key: the key of the preceding directory entry
113 * @buf: where to put the string
114 * @size: size of @buf, in bytes
115 *
116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key. The string is zero-terminated.
118 * Returns strlen(buf) or a negative error code.
119 */
120int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121{
122 const u32 *leaf = search_leaf(directory, key);
123 if (!leaf)
124 return -ENOENT;
125
126 return textual_leaf_to_string(leaf, buf, size);
127}
128EXPORT_SYMBOL(fw_csr_string);
129
130static void get_ids(const u32 *directory, int *id)
131{
132 struct fw_csr_iterator ci;
133 int key, value;
134
135 fw_csr_iterator_init(&ci, directory);
136 while (fw_csr_iterator_next(&ci, &key, &value)) {
137 switch (key) {
138 case CSR_VENDOR: id[0] = value; break;
139 case CSR_MODEL: id[1] = value; break;
140 case CSR_SPECIFIER_ID: id[2] = value; break;
141 case CSR_VERSION: id[3] = value; break;
142 }
143 }
144}
145
146static void get_modalias_ids(struct fw_unit *unit, int *id)
147{
148 get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 get_ids(unit->directory, id);
150}
151
152static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153{
154 int match = 0;
155
156 if (id[0] == id_table->vendor_id)
157 match |= IEEE1394_MATCH_VENDOR_ID;
158 if (id[1] == id_table->model_id)
159 match |= IEEE1394_MATCH_MODEL_ID;
160 if (id[2] == id_table->specifier_id)
161 match |= IEEE1394_MATCH_SPECIFIER_ID;
162 if (id[3] == id_table->version)
163 match |= IEEE1394_MATCH_VERSION;
164
165 return (match & id_table->match_flags) == id_table->match_flags;
166}
167
168static bool is_fw_unit(struct device *dev);
169
170static int fw_unit_match(struct device *dev, struct device_driver *drv)
171{
172 const struct ieee1394_device_id *id_table =
173 container_of(drv, struct fw_driver, driver)->id_table;
174 int id[] = {0, 0, 0, 0};
175
176 /* We only allow binding to fw_units. */
177 if (!is_fw_unit(dev))
178 return 0;
179
180 get_modalias_ids(fw_unit(dev), id);
181
182 for (; id_table->match_flags != 0; id_table++)
183 if (match_ids(id_table, id))
184 return 1;
185
186 return 0;
187}
188
189static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190{
191 int id[] = {0, 0, 0, 0};
192
193 get_modalias_ids(unit, id);
194
195 return snprintf(buffer, buffer_size,
196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 id[0], id[1], id[2], id[3]);
198}
199
200static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201{
202 struct fw_unit *unit = fw_unit(dev);
203 char modalias[64];
204
205 get_modalias(unit, modalias, sizeof(modalias));
206
207 if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 return -ENOMEM;
209
210 return 0;
211}
212
213struct bus_type fw_bus_type = {
214 .name = "firewire",
215 .match = fw_unit_match,
216};
217EXPORT_SYMBOL(fw_bus_type);
218
219int fw_device_enable_phys_dma(struct fw_device *device)
220{
221 int generation = device->generation;
222
223 /* device->node_id, accessed below, must not be older than generation */
224 smp_rmb();
225
226 return device->card->driver->enable_phys_dma(device->card,
227 device->node_id,
228 generation);
229}
230EXPORT_SYMBOL(fw_device_enable_phys_dma);
231
232struct config_rom_attribute {
233 struct device_attribute attr;
234 u32 key;
235};
236
237static ssize_t show_immediate(struct device *dev,
238 struct device_attribute *dattr, char *buf)
239{
240 struct config_rom_attribute *attr =
241 container_of(dattr, struct config_rom_attribute, attr);
242 struct fw_csr_iterator ci;
243 const u32 *dir;
244 int key, value, ret = -ENOENT;
245
246 down_read(&fw_device_rwsem);
247
248 if (is_fw_unit(dev))
249 dir = fw_unit(dev)->directory;
250 else
251 dir = fw_device(dev)->config_rom + 5;
252
253 fw_csr_iterator_init(&ci, dir);
254 while (fw_csr_iterator_next(&ci, &key, &value))
255 if (attr->key == key) {
256 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 "0x%06x\n", value);
258 break;
259 }
260
261 up_read(&fw_device_rwsem);
262
263 return ret;
264}
265
266#define IMMEDIATE_ATTR(name, key) \
267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268
269static ssize_t show_text_leaf(struct device *dev,
270 struct device_attribute *dattr, char *buf)
271{
272 struct config_rom_attribute *attr =
273 container_of(dattr, struct config_rom_attribute, attr);
274 const u32 *dir;
275 size_t bufsize;
276 char dummy_buf[2];
277 int ret;
278
279 down_read(&fw_device_rwsem);
280
281 if (is_fw_unit(dev))
282 dir = fw_unit(dev)->directory;
283 else
284 dir = fw_device(dev)->config_rom + 5;
285
286 if (buf) {
287 bufsize = PAGE_SIZE - 1;
288 } else {
289 buf = dummy_buf;
290 bufsize = 1;
291 }
292
293 ret = fw_csr_string(dir, attr->key, buf, bufsize);
294
295 if (ret >= 0) {
296 /* Strip trailing whitespace and add newline. */
297 while (ret > 0 && isspace(buf[ret - 1]))
298 ret--;
299 strcpy(buf + ret, "\n");
300 ret++;
301 }
302
303 up_read(&fw_device_rwsem);
304
305 return ret;
306}
307
308#define TEXT_LEAF_ATTR(name, key) \
309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310
311static struct config_rom_attribute config_rom_attributes[] = {
312 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 IMMEDIATE_ATTR(version, CSR_VERSION),
316 IMMEDIATE_ATTR(model, CSR_MODEL),
317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320};
321
322static void init_fw_attribute_group(struct device *dev,
323 struct device_attribute *attrs,
324 struct fw_attribute_group *group)
325{
326 struct device_attribute *attr;
327 int i, j;
328
329 for (j = 0; attrs[j].attr.name != NULL; j++)
330 group->attrs[j] = &attrs[j].attr;
331
332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 attr = &config_rom_attributes[i].attr;
334 if (attr->show(dev, attr, NULL) < 0)
335 continue;
336 group->attrs[j++] = &attr->attr;
337 }
338
339 group->attrs[j] = NULL;
340 group->groups[0] = &group->group;
341 group->groups[1] = NULL;
342 group->group.attrs = group->attrs;
343 dev->groups = (const struct attribute_group **) group->groups;
344}
345
346static ssize_t modalias_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348{
349 struct fw_unit *unit = fw_unit(dev);
350 int length;
351
352 length = get_modalias(unit, buf, PAGE_SIZE);
353 strcpy(buf + length, "\n");
354
355 return length + 1;
356}
357
358static ssize_t rom_index_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
360{
361 struct fw_device *device = fw_device(dev->parent);
362 struct fw_unit *unit = fw_unit(dev);
363
364 return snprintf(buf, PAGE_SIZE, "%d\n",
365 (int)(unit->directory - device->config_rom));
366}
367
368static struct device_attribute fw_unit_attributes[] = {
369 __ATTR_RO(modalias),
370 __ATTR_RO(rom_index),
371 __ATTR_NULL,
372};
373
374static ssize_t config_rom_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
376{
377 struct fw_device *device = fw_device(dev);
378 size_t length;
379
380 down_read(&fw_device_rwsem);
381 length = device->config_rom_length * 4;
382 memcpy(buf, device->config_rom, length);
383 up_read(&fw_device_rwsem);
384
385 return length;
386}
387
388static ssize_t guid_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
390{
391 struct fw_device *device = fw_device(dev);
392 int ret;
393
394 down_read(&fw_device_rwsem);
395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 device->config_rom[3], device->config_rom[4]);
397 up_read(&fw_device_rwsem);
398
399 return ret;
400}
401
402static int units_sprintf(char *buf, const u32 *directory)
403{
404 struct fw_csr_iterator ci;
405 int key, value;
406 int specifier_id = 0;
407 int version = 0;
408
409 fw_csr_iterator_init(&ci, directory);
410 while (fw_csr_iterator_next(&ci, &key, &value)) {
411 switch (key) {
412 case CSR_SPECIFIER_ID:
413 specifier_id = value;
414 break;
415 case CSR_VERSION:
416 version = value;
417 break;
418 }
419 }
420
421 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
422}
423
424static ssize_t units_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426{
427 struct fw_device *device = fw_device(dev);
428 struct fw_csr_iterator ci;
429 int key, value, i = 0;
430
431 down_read(&fw_device_rwsem);
432 fw_csr_iterator_init(&ci, &device->config_rom[5]);
433 while (fw_csr_iterator_next(&ci, &key, &value)) {
434 if (key != (CSR_UNIT | CSR_DIRECTORY))
435 continue;
436 i += units_sprintf(&buf[i], ci.p + value - 1);
437 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
438 break;
439 }
440 up_read(&fw_device_rwsem);
441
442 if (i)
443 buf[i - 1] = '\n';
444
445 return i;
446}
447
448static struct device_attribute fw_device_attributes[] = {
449 __ATTR_RO(config_rom),
450 __ATTR_RO(guid),
451 __ATTR_RO(units),
452 __ATTR_NULL,
453};
454
455static int read_rom(struct fw_device *device,
456 int generation, int index, u32 *data)
457{
458 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
459 int i, rcode;
460
461 /* device->node_id, accessed below, must not be older than generation */
462 smp_rmb();
463
464 for (i = 10; i < 100; i += 10) {
465 rcode = fw_run_transaction(device->card,
466 TCODE_READ_QUADLET_REQUEST, device->node_id,
467 generation, device->max_speed, offset, data, 4);
468 if (rcode != RCODE_BUSY)
469 break;
470 msleep(i);
471 }
472 be32_to_cpus(data);
473
474 return rcode;
475}
476
477#define MAX_CONFIG_ROM_SIZE 256
478
479/*
480 * Read the bus info block, perform a speed probe, and read all of the rest of
481 * the config ROM. We do all this with a cached bus generation. If the bus
482 * generation changes under us, read_config_rom will fail and get retried.
483 * It's better to start all over in this case because the node from which we
484 * are reading the ROM may have changed the ROM during the reset.
485 */
486static int read_config_rom(struct fw_device *device, int generation)
487{
488 const u32 *old_rom, *new_rom;
489 u32 *rom, *stack;
490 u32 sp, key;
491 int i, end, length, ret = -1;
492
493 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
494 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
495 if (rom == NULL)
496 return -ENOMEM;
497
498 stack = &rom[MAX_CONFIG_ROM_SIZE];
499 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
500
501 device->max_speed = SCODE_100;
502
503 /* First read the bus info block. */
504 for (i = 0; i < 5; i++) {
505 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
506 goto out;
507 /*
508 * As per IEEE1212 7.2, during power-up, devices can
509 * reply with a 0 for the first quadlet of the config
510 * rom to indicate that they are booting (for example,
511 * if the firmware is on the disk of a external
512 * harddisk). In that case we just fail, and the
513 * retry mechanism will try again later.
514 */
515 if (i == 0 && rom[i] == 0)
516 goto out;
517 }
518
519 device->max_speed = device->node->max_speed;
520
521 /*
522 * Determine the speed of
523 * - devices with link speed less than PHY speed,
524 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
525 * - all devices if there are 1394b repeaters.
526 * Note, we cannot use the bus info block's link_spd as starting point
527 * because some buggy firmwares set it lower than necessary and because
528 * 1394-1995 nodes do not have the field.
529 */
530 if ((rom[2] & 0x7) < device->max_speed ||
531 device->max_speed == SCODE_BETA ||
532 device->card->beta_repeaters_present) {
533 u32 dummy;
534
535 /* for S1600 and S3200 */
536 if (device->max_speed == SCODE_BETA)
537 device->max_speed = device->card->link_speed;
538
539 while (device->max_speed > SCODE_100) {
540 if (read_rom(device, generation, 0, &dummy) ==
541 RCODE_COMPLETE)
542 break;
543 device->max_speed--;
544 }
545 }
546
547 /*
548 * Now parse the config rom. The config rom is a recursive
549 * directory structure so we parse it using a stack of
550 * references to the blocks that make up the structure. We
551 * push a reference to the root directory on the stack to
552 * start things off.
553 */
554 length = i;
555 sp = 0;
556 stack[sp++] = 0xc0000005;
557 while (sp > 0) {
558 /*
559 * Pop the next block reference of the stack. The
560 * lower 24 bits is the offset into the config rom,
561 * the upper 8 bits are the type of the reference the
562 * block.
563 */
564 key = stack[--sp];
565 i = key & 0xffffff;
566 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
567 goto out;
568
569 /* Read header quadlet for the block to get the length. */
570 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
571 goto out;
572 end = i + (rom[i] >> 16) + 1;
573 if (end > MAX_CONFIG_ROM_SIZE) {
574 /*
575 * This block extends outside the config ROM which is
576 * a firmware bug. Ignore this whole block, i.e.
577 * simply set a fake block length of 0.
578 */
579 fw_error("skipped invalid ROM block %x at %llx\n",
580 rom[i],
581 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
582 rom[i] = 0;
583 end = i;
584 }
585 i++;
586
587 /*
588 * Now read in the block. If this is a directory
589 * block, check the entries as we read them to see if
590 * it references another block, and push it in that case.
591 */
592 for (; i < end; i++) {
593 if (read_rom(device, generation, i, &rom[i]) !=
594 RCODE_COMPLETE)
595 goto out;
596
597 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
598 continue;
599 /*
600 * Offset points outside the ROM. May be a firmware
601 * bug or an Extended ROM entry (IEEE 1212-2001 clause
602 * 7.7.18). Simply overwrite this pointer here by a
603 * fake immediate entry so that later iterators over
604 * the ROM don't have to check offsets all the time.
605 */
606 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
607 fw_error("skipped unsupported ROM entry %x at %llx\n",
608 rom[i],
609 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
610 rom[i] = 0;
611 continue;
612 }
613 stack[sp++] = i + rom[i];
614 }
615 if (length < i)
616 length = i;
617 }
618
619 old_rom = device->config_rom;
620 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
621 if (new_rom == NULL)
622 goto out;
623
624 down_write(&fw_device_rwsem);
625 device->config_rom = new_rom;
626 device->config_rom_length = length;
627 up_write(&fw_device_rwsem);
628
629 kfree(old_rom);
630 ret = 0;
631 device->max_rec = rom[2] >> 12 & 0xf;
632 device->cmc = rom[2] >> 30 & 1;
633 device->irmc = rom[2] >> 31 & 1;
634 out:
635 kfree(rom);
636
637 return ret;
638}
639
640static void fw_unit_release(struct device *dev)
641{
642 struct fw_unit *unit = fw_unit(dev);
643
644 kfree(unit);
645}
646
647static struct device_type fw_unit_type = {
648 .uevent = fw_unit_uevent,
649 .release = fw_unit_release,
650};
651
652static bool is_fw_unit(struct device *dev)
653{
654 return dev->type == &fw_unit_type;
655}
656
657static void create_units(struct fw_device *device)
658{
659 struct fw_csr_iterator ci;
660 struct fw_unit *unit;
661 int key, value, i;
662
663 i = 0;
664 fw_csr_iterator_init(&ci, &device->config_rom[5]);
665 while (fw_csr_iterator_next(&ci, &key, &value)) {
666 if (key != (CSR_UNIT | CSR_DIRECTORY))
667 continue;
668
669 /*
670 * Get the address of the unit directory and try to
671 * match the drivers id_tables against it.
672 */
673 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
674 if (unit == NULL) {
675 fw_error("failed to allocate memory for unit\n");
676 continue;
677 }
678
679 unit->directory = ci.p + value - 1;
680 unit->device.bus = &fw_bus_type;
681 unit->device.type = &fw_unit_type;
682 unit->device.parent = &device->device;
683 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
684
685 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
686 ARRAY_SIZE(fw_unit_attributes) +
687 ARRAY_SIZE(config_rom_attributes));
688 init_fw_attribute_group(&unit->device,
689 fw_unit_attributes,
690 &unit->attribute_group);
691
692 if (device_register(&unit->device) < 0)
693 goto skip_unit;
694
695 continue;
696
697 skip_unit:
698 kfree(unit);
699 }
700}
701
702static int shutdown_unit(struct device *device, void *data)
703{
704 device_unregister(device);
705
706 return 0;
707}
708
709/*
710 * fw_device_rwsem acts as dual purpose mutex:
711 * - serializes accesses to fw_device_idr,
712 * - serializes accesses to fw_device.config_rom/.config_rom_length and
713 * fw_unit.directory, unless those accesses happen at safe occasions
714 */
715DECLARE_RWSEM(fw_device_rwsem);
716
717DEFINE_IDR(fw_device_idr);
718int fw_cdev_major;
719
720struct fw_device *fw_device_get_by_devt(dev_t devt)
721{
722 struct fw_device *device;
723
724 down_read(&fw_device_rwsem);
725 device = idr_find(&fw_device_idr, MINOR(devt));
726 if (device)
727 fw_device_get(device);
728 up_read(&fw_device_rwsem);
729
730 return device;
731}
732
733struct workqueue_struct *fw_workqueue;
734EXPORT_SYMBOL(fw_workqueue);
735
736static void fw_schedule_device_work(struct fw_device *device,
737 unsigned long delay)
738{
739 queue_delayed_work(fw_workqueue, &device->work, delay);
740}
741
742/*
743 * These defines control the retry behavior for reading the config
744 * rom. It shouldn't be necessary to tweak these; if the device
745 * doesn't respond to a config rom read within 10 seconds, it's not
746 * going to respond at all. As for the initial delay, a lot of
747 * devices will be able to respond within half a second after bus
748 * reset. On the other hand, it's not really worth being more
749 * aggressive than that, since it scales pretty well; if 10 devices
750 * are plugged in, they're all getting read within one second.
751 */
752
753#define MAX_RETRIES 10
754#define RETRY_DELAY (3 * HZ)
755#define INITIAL_DELAY (HZ / 2)
756#define SHUTDOWN_DELAY (2 * HZ)
757
758static void fw_device_shutdown(struct work_struct *work)
759{
760 struct fw_device *device =
761 container_of(work, struct fw_device, work.work);
762 int minor = MINOR(device->device.devt);
763
764 if (time_before64(get_jiffies_64(),
765 device->card->reset_jiffies + SHUTDOWN_DELAY)
766 && !list_empty(&device->card->link)) {
767 fw_schedule_device_work(device, SHUTDOWN_DELAY);
768 return;
769 }
770
771 if (atomic_cmpxchg(&device->state,
772 FW_DEVICE_GONE,
773 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
774 return;
775
776 fw_device_cdev_remove(device);
777 device_for_each_child(&device->device, NULL, shutdown_unit);
778 device_unregister(&device->device);
779
780 down_write(&fw_device_rwsem);
781 idr_remove(&fw_device_idr, minor);
782 up_write(&fw_device_rwsem);
783
784 fw_device_put(device);
785}
786
787static void fw_device_release(struct device *dev)
788{
789 struct fw_device *device = fw_device(dev);
790 struct fw_card *card = device->card;
791 unsigned long flags;
792
793 /*
794 * Take the card lock so we don't set this to NULL while a
795 * FW_NODE_UPDATED callback is being handled or while the
796 * bus manager work looks at this node.
797 */
798 spin_lock_irqsave(&card->lock, flags);
799 device->node->data = NULL;
800 spin_unlock_irqrestore(&card->lock, flags);
801
802 fw_node_put(device->node);
803 kfree(device->config_rom);
804 kfree(device);
805 fw_card_put(card);
806}
807
808static struct device_type fw_device_type = {
809 .release = fw_device_release,
810};
811
812static bool is_fw_device(struct device *dev)
813{
814 return dev->type == &fw_device_type;
815}
816
817static int update_unit(struct device *dev, void *data)
818{
819 struct fw_unit *unit = fw_unit(dev);
820 struct fw_driver *driver = (struct fw_driver *)dev->driver;
821
822 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
823 device_lock(dev);
824 driver->update(unit);
825 device_unlock(dev);
826 }
827
828 return 0;
829}
830
831static void fw_device_update(struct work_struct *work)
832{
833 struct fw_device *device =
834 container_of(work, struct fw_device, work.work);
835
836 fw_device_cdev_update(device);
837 device_for_each_child(&device->device, NULL, update_unit);
838}
839
840/*
841 * If a device was pending for deletion because its node went away but its
842 * bus info block and root directory header matches that of a newly discovered
843 * device, revive the existing fw_device.
844 * The newly allocated fw_device becomes obsolete instead.
845 */
846static int lookup_existing_device(struct device *dev, void *data)
847{
848 struct fw_device *old = fw_device(dev);
849 struct fw_device *new = data;
850 struct fw_card *card = new->card;
851 int match = 0;
852
853 if (!is_fw_device(dev))
854 return 0;
855
856 down_read(&fw_device_rwsem); /* serialize config_rom access */
857 spin_lock_irq(&card->lock); /* serialize node access */
858
859 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
860 atomic_cmpxchg(&old->state,
861 FW_DEVICE_GONE,
862 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
863 struct fw_node *current_node = new->node;
864 struct fw_node *obsolete_node = old->node;
865
866 new->node = obsolete_node;
867 new->node->data = new;
868 old->node = current_node;
869 old->node->data = old;
870
871 old->max_speed = new->max_speed;
872 old->node_id = current_node->node_id;
873 smp_wmb(); /* update node_id before generation */
874 old->generation = card->generation;
875 old->config_rom_retries = 0;
876 fw_notify("rediscovered device %s\n", dev_name(dev));
877
878 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
879 fw_schedule_device_work(old, 0);
880
881 if (current_node == card->root_node)
882 fw_schedule_bm_work(card, 0);
883
884 match = 1;
885 }
886
887 spin_unlock_irq(&card->lock);
888 up_read(&fw_device_rwsem);
889
890 return match;
891}
892
893enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
894
895static void set_broadcast_channel(struct fw_device *device, int generation)
896{
897 struct fw_card *card = device->card;
898 __be32 data;
899 int rcode;
900
901 if (!card->broadcast_channel_allocated)
902 return;
903
904 /*
905 * The Broadcast_Channel Valid bit is required by nodes which want to
906 * transmit on this channel. Such transmissions are practically
907 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
908 * to be IRM capable and have a max_rec of 8 or more. We use this fact
909 * to narrow down to which nodes we send Broadcast_Channel updates.
910 */
911 if (!device->irmc || device->max_rec < 8)
912 return;
913
914 /*
915 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
916 * Perform a read test first.
917 */
918 if (device->bc_implemented == BC_UNKNOWN) {
919 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
920 device->node_id, generation, device->max_speed,
921 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
922 &data, 4);
923 switch (rcode) {
924 case RCODE_COMPLETE:
925 if (data & cpu_to_be32(1 << 31)) {
926 device->bc_implemented = BC_IMPLEMENTED;
927 break;
928 }
929 /* else fall through to case address error */
930 case RCODE_ADDRESS_ERROR:
931 device->bc_implemented = BC_UNIMPLEMENTED;
932 }
933 }
934
935 if (device->bc_implemented == BC_IMPLEMENTED) {
936 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
937 BROADCAST_CHANNEL_VALID);
938 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
939 device->node_id, generation, device->max_speed,
940 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
941 &data, 4);
942 }
943}
944
945int fw_device_set_broadcast_channel(struct device *dev, void *gen)
946{
947 if (is_fw_device(dev))
948 set_broadcast_channel(fw_device(dev), (long)gen);
949
950 return 0;
951}
952
953static void fw_device_init(struct work_struct *work)
954{
955 struct fw_device *device =
956 container_of(work, struct fw_device, work.work);
957 struct device *revived_dev;
958 int minor, ret;
959
960 /*
961 * All failure paths here set node->data to NULL, so that we
962 * don't try to do device_for_each_child() on a kfree()'d
963 * device.
964 */
965
966 if (read_config_rom(device, device->generation) < 0) {
967 if (device->config_rom_retries < MAX_RETRIES &&
968 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
969 device->config_rom_retries++;
970 fw_schedule_device_work(device, RETRY_DELAY);
971 } else {
972 if (device->node->link_on)
973 fw_notify("giving up on config rom for node id %x\n",
974 device->node_id);
975 if (device->node == device->card->root_node)
976 fw_schedule_bm_work(device->card, 0);
977 fw_device_release(&device->device);
978 }
979 return;
980 }
981
982 revived_dev = device_find_child(device->card->device,
983 device, lookup_existing_device);
984 if (revived_dev) {
985 put_device(revived_dev);
986 fw_device_release(&device->device);
987
988 return;
989 }
990
991 device_initialize(&device->device);
992
993 fw_device_get(device);
994 down_write(&fw_device_rwsem);
995 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
996 idr_get_new(&fw_device_idr, device, &minor) :
997 -ENOMEM;
998 up_write(&fw_device_rwsem);
999
1000 if (ret < 0)
1001 goto error;
1002
1003 device->device.bus = &fw_bus_type;
1004 device->device.type = &fw_device_type;
1005 device->device.parent = device->card->device;
1006 device->device.devt = MKDEV(fw_cdev_major, minor);
1007 dev_set_name(&device->device, "fw%d", minor);
1008
1009 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1010 ARRAY_SIZE(fw_device_attributes) +
1011 ARRAY_SIZE(config_rom_attributes));
1012 init_fw_attribute_group(&device->device,
1013 fw_device_attributes,
1014 &device->attribute_group);
1015
1016 if (device_add(&device->device)) {
1017 fw_error("Failed to add device.\n");
1018 goto error_with_cdev;
1019 }
1020
1021 create_units(device);
1022
1023 /*
1024 * Transition the device to running state. If it got pulled
1025 * out from under us while we did the intialization work, we
1026 * have to shut down the device again here. Normally, though,
1027 * fw_node_event will be responsible for shutting it down when
1028 * necessary. We have to use the atomic cmpxchg here to avoid
1029 * racing with the FW_NODE_DESTROYED case in
1030 * fw_node_event().
1031 */
1032 if (atomic_cmpxchg(&device->state,
1033 FW_DEVICE_INITIALIZING,
1034 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1035 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1036 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1037 } else {
1038 if (device->config_rom_retries)
1039 fw_notify("created device %s: GUID %08x%08x, S%d00, "
1040 "%d config ROM retries\n",
1041 dev_name(&device->device),
1042 device->config_rom[3], device->config_rom[4],
1043 1 << device->max_speed,
1044 device->config_rom_retries);
1045 else
1046 fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1047 dev_name(&device->device),
1048 device->config_rom[3], device->config_rom[4],
1049 1 << device->max_speed);
1050 device->config_rom_retries = 0;
1051
1052 set_broadcast_channel(device, device->generation);
1053 }
1054
1055 /*
1056 * Reschedule the IRM work if we just finished reading the
1057 * root node config rom. If this races with a bus reset we
1058 * just end up running the IRM work a couple of extra times -
1059 * pretty harmless.
1060 */
1061 if (device->node == device->card->root_node)
1062 fw_schedule_bm_work(device->card, 0);
1063
1064 return;
1065
1066 error_with_cdev:
1067 down_write(&fw_device_rwsem);
1068 idr_remove(&fw_device_idr, minor);
1069 up_write(&fw_device_rwsem);
1070 error:
1071 fw_device_put(device); /* fw_device_idr's reference */
1072
1073 put_device(&device->device); /* our reference */
1074}
1075
1076enum {
1077 REREAD_BIB_ERROR,
1078 REREAD_BIB_GONE,
1079 REREAD_BIB_UNCHANGED,
1080 REREAD_BIB_CHANGED,
1081};
1082
1083/* Reread and compare bus info block and header of root directory */
1084static int reread_config_rom(struct fw_device *device, int generation)
1085{
1086 u32 q;
1087 int i;
1088
1089 for (i = 0; i < 6; i++) {
1090 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1091 return REREAD_BIB_ERROR;
1092
1093 if (i == 0 && q == 0)
1094 return REREAD_BIB_GONE;
1095
1096 if (q != device->config_rom[i])
1097 return REREAD_BIB_CHANGED;
1098 }
1099
1100 return REREAD_BIB_UNCHANGED;
1101}
1102
1103static void fw_device_refresh(struct work_struct *work)
1104{
1105 struct fw_device *device =
1106 container_of(work, struct fw_device, work.work);
1107 struct fw_card *card = device->card;
1108 int node_id = device->node_id;
1109
1110 switch (reread_config_rom(device, device->generation)) {
1111 case REREAD_BIB_ERROR:
1112 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1113 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1114 device->config_rom_retries++;
1115 fw_schedule_device_work(device, RETRY_DELAY / 2);
1116
1117 return;
1118 }
1119 goto give_up;
1120
1121 case REREAD_BIB_GONE:
1122 goto gone;
1123
1124 case REREAD_BIB_UNCHANGED:
1125 if (atomic_cmpxchg(&device->state,
1126 FW_DEVICE_INITIALIZING,
1127 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1128 goto gone;
1129
1130 fw_device_update(work);
1131 device->config_rom_retries = 0;
1132 goto out;
1133
1134 case REREAD_BIB_CHANGED:
1135 break;
1136 }
1137
1138 /*
1139 * Something changed. We keep things simple and don't investigate
1140 * further. We just destroy all previous units and create new ones.
1141 */
1142 device_for_each_child(&device->device, NULL, shutdown_unit);
1143
1144 if (read_config_rom(device, device->generation) < 0) {
1145 if (device->config_rom_retries < MAX_RETRIES &&
1146 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1147 device->config_rom_retries++;
1148 fw_schedule_device_work(device, RETRY_DELAY);
1149
1150 return;
1151 }
1152 goto give_up;
1153 }
1154
1155 fw_device_cdev_update(device);
1156 create_units(device);
1157
1158 /* Userspace may want to re-read attributes. */
1159 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1160
1161 if (atomic_cmpxchg(&device->state,
1162 FW_DEVICE_INITIALIZING,
1163 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1164 goto gone;
1165
1166 fw_notify("refreshed device %s\n", dev_name(&device->device));
1167 device->config_rom_retries = 0;
1168 goto out;
1169
1170 give_up:
1171 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1172 gone:
1173 atomic_set(&device->state, FW_DEVICE_GONE);
1174 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1175 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1176 out:
1177 if (node_id == card->root_node->node_id)
1178 fw_schedule_bm_work(card, 0);
1179}
1180
1181void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1182{
1183 struct fw_device *device;
1184
1185 switch (event) {
1186 case FW_NODE_CREATED:
1187 /*
1188 * Attempt to scan the node, regardless whether its self ID has
1189 * the L (link active) flag set or not. Some broken devices
1190 * send L=0 but have an up-and-running link; others send L=1
1191 * without actually having a link.
1192 */
1193 create:
1194 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1195 if (device == NULL)
1196 break;
1197
1198 /*
1199 * Do minimal intialization of the device here, the
1200 * rest will happen in fw_device_init().
1201 *
1202 * Attention: A lot of things, even fw_device_get(),
1203 * cannot be done before fw_device_init() finished!
1204 * You can basically just check device->state and
1205 * schedule work until then, but only while holding
1206 * card->lock.
1207 */
1208 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1209 device->card = fw_card_get(card);
1210 device->node = fw_node_get(node);
1211 device->node_id = node->node_id;
1212 device->generation = card->generation;
1213 device->is_local = node == card->local_node;
1214 mutex_init(&device->client_list_mutex);
1215 INIT_LIST_HEAD(&device->client_list);
1216
1217 /*
1218 * Set the node data to point back to this device so
1219 * FW_NODE_UPDATED callbacks can update the node_id
1220 * and generation for the device.
1221 */
1222 node->data = device;
1223
1224 /*
1225 * Many devices are slow to respond after bus resets,
1226 * especially if they are bus powered and go through
1227 * power-up after getting plugged in. We schedule the
1228 * first config rom scan half a second after bus reset.
1229 */
1230 INIT_DELAYED_WORK(&device->work, fw_device_init);
1231 fw_schedule_device_work(device, INITIAL_DELAY);
1232 break;
1233
1234 case FW_NODE_INITIATED_RESET:
1235 case FW_NODE_LINK_ON:
1236 device = node->data;
1237 if (device == NULL)
1238 goto create;
1239
1240 device->node_id = node->node_id;
1241 smp_wmb(); /* update node_id before generation */
1242 device->generation = card->generation;
1243 if (atomic_cmpxchg(&device->state,
1244 FW_DEVICE_RUNNING,
1245 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1246 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1247 fw_schedule_device_work(device,
1248 device->is_local ? 0 : INITIAL_DELAY);
1249 }
1250 break;
1251
1252 case FW_NODE_UPDATED:
1253 device = node->data;
1254 if (device == NULL)
1255 break;
1256
1257 device->node_id = node->node_id;
1258 smp_wmb(); /* update node_id before generation */
1259 device->generation = card->generation;
1260 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1261 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1262 fw_schedule_device_work(device, 0);
1263 }
1264 break;
1265
1266 case FW_NODE_DESTROYED:
1267 case FW_NODE_LINK_OFF:
1268 if (!node->data)
1269 break;
1270
1271 /*
1272 * Destroy the device associated with the node. There
1273 * are two cases here: either the device is fully
1274 * initialized (FW_DEVICE_RUNNING) or we're in the
1275 * process of reading its config rom
1276 * (FW_DEVICE_INITIALIZING). If it is fully
1277 * initialized we can reuse device->work to schedule a
1278 * full fw_device_shutdown(). If not, there's work
1279 * scheduled to read it's config rom, and we just put
1280 * the device in shutdown state to have that code fail
1281 * to create the device.
1282 */
1283 device = node->data;
1284 if (atomic_xchg(&device->state,
1285 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1286 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1287 fw_schedule_device_work(device,
1288 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1289 }
1290 break;
1291 }
1292}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/idr.h>
16#include <linux/jiffies.h>
17#include <linux/kobject.h>
18#include <linux/list.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/random.h>
23#include <linux/rwsem.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26#include <linux/string.h>
27#include <linux/workqueue.h>
28
29#include <linux/atomic.h>
30#include <asm/byteorder.h>
31
32#include "core.h"
33
34#define ROOT_DIR_OFFSET 5
35
36void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
37{
38 ci->p = p + 1;
39 ci->end = ci->p + (p[0] >> 16);
40}
41EXPORT_SYMBOL(fw_csr_iterator_init);
42
43int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
44{
45 *key = *ci->p >> 24;
46 *value = *ci->p & 0xffffff;
47
48 return ci->p++ < ci->end;
49}
50EXPORT_SYMBOL(fw_csr_iterator_next);
51
52static const u32 *search_directory(const u32 *directory, int search_key)
53{
54 struct fw_csr_iterator ci;
55 int key, value;
56
57 search_key |= CSR_DIRECTORY;
58
59 fw_csr_iterator_init(&ci, directory);
60 while (fw_csr_iterator_next(&ci, &key, &value)) {
61 if (key == search_key)
62 return ci.p - 1 + value;
63 }
64
65 return NULL;
66}
67
68static const u32 *search_leaf(const u32 *directory, int search_key)
69{
70 struct fw_csr_iterator ci;
71 int last_key = 0, key, value;
72
73 fw_csr_iterator_init(&ci, directory);
74 while (fw_csr_iterator_next(&ci, &key, &value)) {
75 if (last_key == search_key &&
76 key == (CSR_DESCRIPTOR | CSR_LEAF))
77 return ci.p - 1 + value;
78
79 last_key = key;
80 }
81
82 return NULL;
83}
84
85static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
86{
87 unsigned int quadlets, i;
88 char c;
89
90 if (!size || !buf)
91 return -EINVAL;
92
93 quadlets = min(block[0] >> 16, 256U);
94 if (quadlets < 2)
95 return -ENODATA;
96
97 if (block[1] != 0 || block[2] != 0)
98 /* unknown language/character set */
99 return -ENODATA;
100
101 block += 3;
102 quadlets -= 2;
103 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
104 c = block[i / 4] >> (24 - 8 * (i % 4));
105 if (c == '\0')
106 break;
107 buf[i] = c;
108 }
109 buf[i] = '\0';
110
111 return i;
112}
113
114/**
115 * fw_csr_string() - reads a string from the configuration ROM
116 * @directory: e.g. root directory or unit directory
117 * @key: the key of the preceding directory entry
118 * @buf: where to put the string
119 * @size: size of @buf, in bytes
120 *
121 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
122 * @key. The string is zero-terminated. An overlong string is silently truncated such that it
123 * and the zero byte fit into @size.
124 *
125 * Returns strlen(buf) or a negative error code.
126 */
127int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
128{
129 const u32 *leaf = search_leaf(directory, key);
130 if (!leaf)
131 return -ENOENT;
132
133 return textual_leaf_to_string(leaf, buf, size);
134}
135EXPORT_SYMBOL(fw_csr_string);
136
137static void get_ids(const u32 *directory, int *id)
138{
139 struct fw_csr_iterator ci;
140 int key, value;
141
142 fw_csr_iterator_init(&ci, directory);
143 while (fw_csr_iterator_next(&ci, &key, &value)) {
144 switch (key) {
145 case CSR_VENDOR: id[0] = value; break;
146 case CSR_MODEL: id[1] = value; break;
147 case CSR_SPECIFIER_ID: id[2] = value; break;
148 case CSR_VERSION: id[3] = value; break;
149 }
150 }
151}
152
153static void get_modalias_ids(const struct fw_unit *unit, int *id)
154{
155 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
156 const u32 *directories[] = {NULL, NULL, NULL};
157 const u32 *vendor_directory;
158 int i;
159
160 directories[0] = root_directory;
161
162 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
163 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
164 vendor_directory = search_directory(root_directory, CSR_VENDOR);
165 if (!vendor_directory) {
166 directories[1] = unit->directory;
167 } else {
168 directories[1] = vendor_directory;
169 directories[2] = unit->directory;
170 }
171
172 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
173 get_ids(directories[i], id);
174}
175
176static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
177{
178 int match = 0;
179
180 if (id[0] == id_table->vendor_id)
181 match |= IEEE1394_MATCH_VENDOR_ID;
182 if (id[1] == id_table->model_id)
183 match |= IEEE1394_MATCH_MODEL_ID;
184 if (id[2] == id_table->specifier_id)
185 match |= IEEE1394_MATCH_SPECIFIER_ID;
186 if (id[3] == id_table->version)
187 match |= IEEE1394_MATCH_VERSION;
188
189 return (match & id_table->match_flags) == id_table->match_flags;
190}
191
192static const struct ieee1394_device_id *unit_match(struct device *dev,
193 struct device_driver *drv)
194{
195 const struct ieee1394_device_id *id_table =
196 container_of(drv, struct fw_driver, driver)->id_table;
197 int id[] = {0, 0, 0, 0};
198
199 get_modalias_ids(fw_unit(dev), id);
200
201 for (; id_table->match_flags != 0; id_table++)
202 if (match_ids(id_table, id))
203 return id_table;
204
205 return NULL;
206}
207
208static bool is_fw_unit(const struct device *dev);
209
210static int fw_unit_match(struct device *dev, struct device_driver *drv)
211{
212 /* We only allow binding to fw_units. */
213 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
214}
215
216static int fw_unit_probe(struct device *dev)
217{
218 struct fw_driver *driver =
219 container_of(dev->driver, struct fw_driver, driver);
220
221 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
222}
223
224static void fw_unit_remove(struct device *dev)
225{
226 struct fw_driver *driver =
227 container_of(dev->driver, struct fw_driver, driver);
228
229 driver->remove(fw_unit(dev));
230}
231
232static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
233{
234 int id[] = {0, 0, 0, 0};
235
236 get_modalias_ids(unit, id);
237
238 return snprintf(buffer, buffer_size,
239 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
240 id[0], id[1], id[2], id[3]);
241}
242
243static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
244{
245 const struct fw_unit *unit = fw_unit(dev);
246 char modalias[64];
247
248 get_modalias(unit, modalias, sizeof(modalias));
249
250 if (add_uevent_var(env, "MODALIAS=%s", modalias))
251 return -ENOMEM;
252
253 return 0;
254}
255
256const struct bus_type fw_bus_type = {
257 .name = "firewire",
258 .match = fw_unit_match,
259 .probe = fw_unit_probe,
260 .remove = fw_unit_remove,
261};
262EXPORT_SYMBOL(fw_bus_type);
263
264int fw_device_enable_phys_dma(struct fw_device *device)
265{
266 int generation = device->generation;
267
268 /* device->node_id, accessed below, must not be older than generation */
269 smp_rmb();
270
271 return device->card->driver->enable_phys_dma(device->card,
272 device->node_id,
273 generation);
274}
275EXPORT_SYMBOL(fw_device_enable_phys_dma);
276
277struct config_rom_attribute {
278 struct device_attribute attr;
279 u32 key;
280};
281
282static ssize_t show_immediate(struct device *dev,
283 struct device_attribute *dattr, char *buf)
284{
285 struct config_rom_attribute *attr =
286 container_of(dattr, struct config_rom_attribute, attr);
287 struct fw_csr_iterator ci;
288 const u32 *directories[] = {NULL, NULL};
289 int i, value = -1;
290
291 down_read(&fw_device_rwsem);
292
293 if (is_fw_unit(dev)) {
294 directories[0] = fw_unit(dev)->directory;
295 } else {
296 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
297 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
298
299 if (!vendor_directory) {
300 directories[0] = root_directory;
301 } else {
302 // Legacy layout of configuration ROM described in Annex 1 of
303 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
304 // Association, TA Document 1999027)'.
305 directories[0] = vendor_directory;
306 directories[1] = root_directory;
307 }
308 }
309
310 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
311 int key, val;
312
313 fw_csr_iterator_init(&ci, directories[i]);
314 while (fw_csr_iterator_next(&ci, &key, &val)) {
315 if (attr->key == key)
316 value = val;
317 }
318 }
319
320 up_read(&fw_device_rwsem);
321
322 if (value < 0)
323 return -ENOENT;
324
325 // Note that this function is also called by init_fw_attribute_group() with NULL pointer.
326 return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0;
327}
328
329#define IMMEDIATE_ATTR(name, key) \
330 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
331
332static ssize_t show_text_leaf(struct device *dev,
333 struct device_attribute *dattr, char *buf)
334{
335 struct config_rom_attribute *attr =
336 container_of(dattr, struct config_rom_attribute, attr);
337 const u32 *directories[] = {NULL, NULL};
338 size_t bufsize;
339 char dummy_buf[2];
340 int i, ret = -ENOENT;
341
342 down_read(&fw_device_rwsem);
343
344 if (is_fw_unit(dev)) {
345 directories[0] = fw_unit(dev)->directory;
346 } else {
347 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
348 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
349
350 if (!vendor_directory) {
351 directories[0] = root_directory;
352 } else {
353 // Legacy layout of configuration ROM described in Annex 1 of
354 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
355 // Trading Association, TA Document 1999027)'.
356 directories[0] = root_directory;
357 directories[1] = vendor_directory;
358 }
359 }
360
361 // Note that this function is also called by init_fw_attribute_group() with NULL pointer.
362 if (buf) {
363 bufsize = PAGE_SIZE - 1;
364 } else {
365 buf = dummy_buf;
366 bufsize = 1;
367 }
368
369 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
370 int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
371 // Detected.
372 if (result >= 0) {
373 ret = result;
374 } else if (i == 0 && attr->key == CSR_VENDOR) {
375 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
376 // in the root directory follows to the directory entry for vendor ID
377 // instead of the immediate value for vendor ID.
378 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
379 bufsize);
380 if (result >= 0)
381 ret = result;
382 }
383 }
384
385 if (ret >= 0) {
386 /* Strip trailing whitespace and add newline. */
387 while (ret > 0 && isspace(buf[ret - 1]))
388 ret--;
389 strcpy(buf + ret, "\n");
390 ret++;
391 }
392
393 up_read(&fw_device_rwsem);
394
395 return ret;
396}
397
398#define TEXT_LEAF_ATTR(name, key) \
399 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
400
401static struct config_rom_attribute config_rom_attributes[] = {
402 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
403 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
404 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
405 IMMEDIATE_ATTR(version, CSR_VERSION),
406 IMMEDIATE_ATTR(model, CSR_MODEL),
407 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
408 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
409 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
410};
411
412static void init_fw_attribute_group(struct device *dev,
413 struct device_attribute *attrs,
414 struct fw_attribute_group *group)
415{
416 struct device_attribute *attr;
417 int i, j;
418
419 for (j = 0; attrs[j].attr.name != NULL; j++)
420 group->attrs[j] = &attrs[j].attr;
421
422 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
423 attr = &config_rom_attributes[i].attr;
424 if (attr->show(dev, attr, NULL) < 0)
425 continue;
426 group->attrs[j++] = &attr->attr;
427 }
428
429 group->attrs[j] = NULL;
430 group->groups[0] = &group->group;
431 group->groups[1] = NULL;
432 group->group.attrs = group->attrs;
433 dev->groups = (const struct attribute_group **) group->groups;
434}
435
436static ssize_t modalias_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
438{
439 struct fw_unit *unit = fw_unit(dev);
440 int length;
441
442 length = get_modalias(unit, buf, PAGE_SIZE);
443 strcpy(buf + length, "\n");
444
445 return length + 1;
446}
447
448static ssize_t rom_index_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450{
451 struct fw_device *device = fw_device(dev->parent);
452 struct fw_unit *unit = fw_unit(dev);
453
454 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
455}
456
457static struct device_attribute fw_unit_attributes[] = {
458 __ATTR_RO(modalias),
459 __ATTR_RO(rom_index),
460 __ATTR_NULL,
461};
462
463static ssize_t config_rom_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465{
466 struct fw_device *device = fw_device(dev);
467 size_t length;
468
469 down_read(&fw_device_rwsem);
470 length = device->config_rom_length * 4;
471 memcpy(buf, device->config_rom, length);
472 up_read(&fw_device_rwsem);
473
474 return length;
475}
476
477static ssize_t guid_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479{
480 struct fw_device *device = fw_device(dev);
481 int ret;
482
483 down_read(&fw_device_rwsem);
484 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
485 up_read(&fw_device_rwsem);
486
487 return ret;
488}
489
490static ssize_t is_local_show(struct device *dev,
491 struct device_attribute *attr, char *buf)
492{
493 struct fw_device *device = fw_device(dev);
494
495 return sysfs_emit(buf, "%u\n", device->is_local);
496}
497
498static int units_sprintf(char *buf, const u32 *directory)
499{
500 struct fw_csr_iterator ci;
501 int key, value;
502 int specifier_id = 0;
503 int version = 0;
504
505 fw_csr_iterator_init(&ci, directory);
506 while (fw_csr_iterator_next(&ci, &key, &value)) {
507 switch (key) {
508 case CSR_SPECIFIER_ID:
509 specifier_id = value;
510 break;
511 case CSR_VERSION:
512 version = value;
513 break;
514 }
515 }
516
517 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
518}
519
520static ssize_t units_show(struct device *dev,
521 struct device_attribute *attr, char *buf)
522{
523 struct fw_device *device = fw_device(dev);
524 struct fw_csr_iterator ci;
525 int key, value, i = 0;
526
527 down_read(&fw_device_rwsem);
528 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
529 while (fw_csr_iterator_next(&ci, &key, &value)) {
530 if (key != (CSR_UNIT | CSR_DIRECTORY))
531 continue;
532 i += units_sprintf(&buf[i], ci.p + value - 1);
533 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
534 break;
535 }
536 up_read(&fw_device_rwsem);
537
538 if (i)
539 buf[i - 1] = '\n';
540
541 return i;
542}
543
544static struct device_attribute fw_device_attributes[] = {
545 __ATTR_RO(config_rom),
546 __ATTR_RO(guid),
547 __ATTR_RO(is_local),
548 __ATTR_RO(units),
549 __ATTR_NULL,
550};
551
552static int read_rom(struct fw_device *device,
553 int generation, int index, u32 *data)
554{
555 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
556 int i, rcode;
557
558 /* device->node_id, accessed below, must not be older than generation */
559 smp_rmb();
560
561 for (i = 10; i < 100; i += 10) {
562 rcode = fw_run_transaction(device->card,
563 TCODE_READ_QUADLET_REQUEST, device->node_id,
564 generation, device->max_speed, offset, data, 4);
565 if (rcode != RCODE_BUSY)
566 break;
567 msleep(i);
568 }
569 be32_to_cpus(data);
570
571 return rcode;
572}
573
574#define MAX_CONFIG_ROM_SIZE 256
575
576/*
577 * Read the bus info block, perform a speed probe, and read all of the rest of
578 * the config ROM. We do all this with a cached bus generation. If the bus
579 * generation changes under us, read_config_rom will fail and get retried.
580 * It's better to start all over in this case because the node from which we
581 * are reading the ROM may have changed the ROM during the reset.
582 * Returns either a result code or a negative error code.
583 */
584static int read_config_rom(struct fw_device *device, int generation)
585{
586 struct fw_card *card = device->card;
587 const u32 *old_rom, *new_rom;
588 u32 *rom, *stack;
589 u32 sp, key;
590 int i, end, length, ret;
591
592 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
593 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
594 if (rom == NULL)
595 return -ENOMEM;
596
597 stack = &rom[MAX_CONFIG_ROM_SIZE];
598 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
599
600 device->max_speed = SCODE_100;
601
602 /* First read the bus info block. */
603 for (i = 0; i < 5; i++) {
604 ret = read_rom(device, generation, i, &rom[i]);
605 if (ret != RCODE_COMPLETE)
606 goto out;
607 /*
608 * As per IEEE1212 7.2, during initialization, devices can
609 * reply with a 0 for the first quadlet of the config
610 * rom to indicate that they are booting (for example,
611 * if the firmware is on the disk of a external
612 * harddisk). In that case we just fail, and the
613 * retry mechanism will try again later.
614 */
615 if (i == 0 && rom[i] == 0) {
616 ret = RCODE_BUSY;
617 goto out;
618 }
619 }
620
621 device->max_speed = device->node->max_speed;
622
623 /*
624 * Determine the speed of
625 * - devices with link speed less than PHY speed,
626 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
627 * - all devices if there are 1394b repeaters.
628 * Note, we cannot use the bus info block's link_spd as starting point
629 * because some buggy firmwares set it lower than necessary and because
630 * 1394-1995 nodes do not have the field.
631 */
632 if ((rom[2] & 0x7) < device->max_speed ||
633 device->max_speed == SCODE_BETA ||
634 card->beta_repeaters_present) {
635 u32 dummy;
636
637 /* for S1600 and S3200 */
638 if (device->max_speed == SCODE_BETA)
639 device->max_speed = card->link_speed;
640
641 while (device->max_speed > SCODE_100) {
642 if (read_rom(device, generation, 0, &dummy) ==
643 RCODE_COMPLETE)
644 break;
645 device->max_speed--;
646 }
647 }
648
649 /*
650 * Now parse the config rom. The config rom is a recursive
651 * directory structure so we parse it using a stack of
652 * references to the blocks that make up the structure. We
653 * push a reference to the root directory on the stack to
654 * start things off.
655 */
656 length = i;
657 sp = 0;
658 stack[sp++] = 0xc0000005;
659 while (sp > 0) {
660 /*
661 * Pop the next block reference of the stack. The
662 * lower 24 bits is the offset into the config rom,
663 * the upper 8 bits are the type of the reference the
664 * block.
665 */
666 key = stack[--sp];
667 i = key & 0xffffff;
668 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
669 ret = -ENXIO;
670 goto out;
671 }
672
673 /* Read header quadlet for the block to get the length. */
674 ret = read_rom(device, generation, i, &rom[i]);
675 if (ret != RCODE_COMPLETE)
676 goto out;
677 end = i + (rom[i] >> 16) + 1;
678 if (end > MAX_CONFIG_ROM_SIZE) {
679 /*
680 * This block extends outside the config ROM which is
681 * a firmware bug. Ignore this whole block, i.e.
682 * simply set a fake block length of 0.
683 */
684 fw_err(card, "skipped invalid ROM block %x at %llx\n",
685 rom[i],
686 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
687 rom[i] = 0;
688 end = i;
689 }
690 i++;
691
692 /*
693 * Now read in the block. If this is a directory
694 * block, check the entries as we read them to see if
695 * it references another block, and push it in that case.
696 */
697 for (; i < end; i++) {
698 ret = read_rom(device, generation, i, &rom[i]);
699 if (ret != RCODE_COMPLETE)
700 goto out;
701
702 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
703 continue;
704 /*
705 * Offset points outside the ROM. May be a firmware
706 * bug or an Extended ROM entry (IEEE 1212-2001 clause
707 * 7.7.18). Simply overwrite this pointer here by a
708 * fake immediate entry so that later iterators over
709 * the ROM don't have to check offsets all the time.
710 */
711 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
712 fw_err(card,
713 "skipped unsupported ROM entry %x at %llx\n",
714 rom[i],
715 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
716 rom[i] = 0;
717 continue;
718 }
719 stack[sp++] = i + rom[i];
720 }
721 if (length < i)
722 length = i;
723 }
724
725 old_rom = device->config_rom;
726 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
727 if (new_rom == NULL) {
728 ret = -ENOMEM;
729 goto out;
730 }
731
732 down_write(&fw_device_rwsem);
733 device->config_rom = new_rom;
734 device->config_rom_length = length;
735 up_write(&fw_device_rwsem);
736
737 kfree(old_rom);
738 ret = RCODE_COMPLETE;
739 device->max_rec = rom[2] >> 12 & 0xf;
740 device->cmc = rom[2] >> 30 & 1;
741 device->irmc = rom[2] >> 31 & 1;
742 out:
743 kfree(rom);
744
745 return ret;
746}
747
748static void fw_unit_release(struct device *dev)
749{
750 struct fw_unit *unit = fw_unit(dev);
751
752 fw_device_put(fw_parent_device(unit));
753 kfree(unit);
754}
755
756static struct device_type fw_unit_type = {
757 .uevent = fw_unit_uevent,
758 .release = fw_unit_release,
759};
760
761static bool is_fw_unit(const struct device *dev)
762{
763 return dev->type == &fw_unit_type;
764}
765
766static void create_units(struct fw_device *device)
767{
768 struct fw_csr_iterator ci;
769 struct fw_unit *unit;
770 int key, value, i;
771
772 i = 0;
773 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
774 while (fw_csr_iterator_next(&ci, &key, &value)) {
775 if (key != (CSR_UNIT | CSR_DIRECTORY))
776 continue;
777
778 /*
779 * Get the address of the unit directory and try to
780 * match the drivers id_tables against it.
781 */
782 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
783 if (unit == NULL)
784 continue;
785
786 unit->directory = ci.p + value - 1;
787 unit->device.bus = &fw_bus_type;
788 unit->device.type = &fw_unit_type;
789 unit->device.parent = &device->device;
790 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
791
792 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
793 ARRAY_SIZE(fw_unit_attributes) +
794 ARRAY_SIZE(config_rom_attributes));
795 init_fw_attribute_group(&unit->device,
796 fw_unit_attributes,
797 &unit->attribute_group);
798
799 fw_device_get(device);
800 if (device_register(&unit->device) < 0) {
801 put_device(&unit->device);
802 continue;
803 }
804 }
805}
806
807static int shutdown_unit(struct device *device, void *data)
808{
809 device_unregister(device);
810
811 return 0;
812}
813
814/*
815 * fw_device_rwsem acts as dual purpose mutex:
816 * - serializes accesses to fw_device_idr,
817 * - serializes accesses to fw_device.config_rom/.config_rom_length and
818 * fw_unit.directory, unless those accesses happen at safe occasions
819 */
820DECLARE_RWSEM(fw_device_rwsem);
821
822DEFINE_IDR(fw_device_idr);
823int fw_cdev_major;
824
825struct fw_device *fw_device_get_by_devt(dev_t devt)
826{
827 struct fw_device *device;
828
829 down_read(&fw_device_rwsem);
830 device = idr_find(&fw_device_idr, MINOR(devt));
831 if (device)
832 fw_device_get(device);
833 up_read(&fw_device_rwsem);
834
835 return device;
836}
837
838struct workqueue_struct *fw_workqueue;
839EXPORT_SYMBOL(fw_workqueue);
840
841static void fw_schedule_device_work(struct fw_device *device,
842 unsigned long delay)
843{
844 queue_delayed_work(fw_workqueue, &device->work, delay);
845}
846
847/*
848 * These defines control the retry behavior for reading the config
849 * rom. It shouldn't be necessary to tweak these; if the device
850 * doesn't respond to a config rom read within 10 seconds, it's not
851 * going to respond at all. As for the initial delay, a lot of
852 * devices will be able to respond within half a second after bus
853 * reset. On the other hand, it's not really worth being more
854 * aggressive than that, since it scales pretty well; if 10 devices
855 * are plugged in, they're all getting read within one second.
856 */
857
858#define MAX_RETRIES 10
859#define RETRY_DELAY (3 * HZ)
860#define INITIAL_DELAY (HZ / 2)
861#define SHUTDOWN_DELAY (2 * HZ)
862
863static void fw_device_shutdown(struct work_struct *work)
864{
865 struct fw_device *device =
866 container_of(work, struct fw_device, work.work);
867 int minor = MINOR(device->device.devt);
868
869 if (time_before64(get_jiffies_64(),
870 device->card->reset_jiffies + SHUTDOWN_DELAY)
871 && !list_empty(&device->card->link)) {
872 fw_schedule_device_work(device, SHUTDOWN_DELAY);
873 return;
874 }
875
876 if (atomic_cmpxchg(&device->state,
877 FW_DEVICE_GONE,
878 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
879 return;
880
881 fw_device_cdev_remove(device);
882 device_for_each_child(&device->device, NULL, shutdown_unit);
883 device_unregister(&device->device);
884
885 down_write(&fw_device_rwsem);
886 idr_remove(&fw_device_idr, minor);
887 up_write(&fw_device_rwsem);
888
889 fw_device_put(device);
890}
891
892static void fw_device_release(struct device *dev)
893{
894 struct fw_device *device = fw_device(dev);
895 struct fw_card *card = device->card;
896 unsigned long flags;
897
898 /*
899 * Take the card lock so we don't set this to NULL while a
900 * FW_NODE_UPDATED callback is being handled or while the
901 * bus manager work looks at this node.
902 */
903 spin_lock_irqsave(&card->lock, flags);
904 device->node->data = NULL;
905 spin_unlock_irqrestore(&card->lock, flags);
906
907 fw_node_put(device->node);
908 kfree(device->config_rom);
909 kfree(device);
910 fw_card_put(card);
911}
912
913static struct device_type fw_device_type = {
914 .release = fw_device_release,
915};
916
917static bool is_fw_device(const struct device *dev)
918{
919 return dev->type == &fw_device_type;
920}
921
922static int update_unit(struct device *dev, void *data)
923{
924 struct fw_unit *unit = fw_unit(dev);
925 struct fw_driver *driver = (struct fw_driver *)dev->driver;
926
927 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
928 device_lock(dev);
929 driver->update(unit);
930 device_unlock(dev);
931 }
932
933 return 0;
934}
935
936static void fw_device_update(struct work_struct *work)
937{
938 struct fw_device *device =
939 container_of(work, struct fw_device, work.work);
940
941 fw_device_cdev_update(device);
942 device_for_each_child(&device->device, NULL, update_unit);
943}
944
945/*
946 * If a device was pending for deletion because its node went away but its
947 * bus info block and root directory header matches that of a newly discovered
948 * device, revive the existing fw_device.
949 * The newly allocated fw_device becomes obsolete instead.
950 */
951static int lookup_existing_device(struct device *dev, void *data)
952{
953 struct fw_device *old = fw_device(dev);
954 struct fw_device *new = data;
955 struct fw_card *card = new->card;
956 int match = 0;
957
958 if (!is_fw_device(dev))
959 return 0;
960
961 down_read(&fw_device_rwsem); /* serialize config_rom access */
962 spin_lock_irq(&card->lock); /* serialize node access */
963
964 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
965 atomic_cmpxchg(&old->state,
966 FW_DEVICE_GONE,
967 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
968 struct fw_node *current_node = new->node;
969 struct fw_node *obsolete_node = old->node;
970
971 new->node = obsolete_node;
972 new->node->data = new;
973 old->node = current_node;
974 old->node->data = old;
975
976 old->max_speed = new->max_speed;
977 old->node_id = current_node->node_id;
978 smp_wmb(); /* update node_id before generation */
979 old->generation = card->generation;
980 old->config_rom_retries = 0;
981 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
982
983 old->workfn = fw_device_update;
984 fw_schedule_device_work(old, 0);
985
986 if (current_node == card->root_node)
987 fw_schedule_bm_work(card, 0);
988
989 match = 1;
990 }
991
992 spin_unlock_irq(&card->lock);
993 up_read(&fw_device_rwsem);
994
995 return match;
996}
997
998enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
999
1000static void set_broadcast_channel(struct fw_device *device, int generation)
1001{
1002 struct fw_card *card = device->card;
1003 __be32 data;
1004 int rcode;
1005
1006 if (!card->broadcast_channel_allocated)
1007 return;
1008
1009 /*
1010 * The Broadcast_Channel Valid bit is required by nodes which want to
1011 * transmit on this channel. Such transmissions are practically
1012 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
1013 * to be IRM capable and have a max_rec of 8 or more. We use this fact
1014 * to narrow down to which nodes we send Broadcast_Channel updates.
1015 */
1016 if (!device->irmc || device->max_rec < 8)
1017 return;
1018
1019 /*
1020 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
1021 * Perform a read test first.
1022 */
1023 if (device->bc_implemented == BC_UNKNOWN) {
1024 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
1025 device->node_id, generation, device->max_speed,
1026 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1027 &data, 4);
1028 switch (rcode) {
1029 case RCODE_COMPLETE:
1030 if (data & cpu_to_be32(1 << 31)) {
1031 device->bc_implemented = BC_IMPLEMENTED;
1032 break;
1033 }
1034 fallthrough; /* to case address error */
1035 case RCODE_ADDRESS_ERROR:
1036 device->bc_implemented = BC_UNIMPLEMENTED;
1037 }
1038 }
1039
1040 if (device->bc_implemented == BC_IMPLEMENTED) {
1041 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
1042 BROADCAST_CHANNEL_VALID);
1043 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
1044 device->node_id, generation, device->max_speed,
1045 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1046 &data, 4);
1047 }
1048}
1049
1050int fw_device_set_broadcast_channel(struct device *dev, void *gen)
1051{
1052 if (is_fw_device(dev))
1053 set_broadcast_channel(fw_device(dev), (long)gen);
1054
1055 return 0;
1056}
1057
1058static void fw_device_init(struct work_struct *work)
1059{
1060 struct fw_device *device =
1061 container_of(work, struct fw_device, work.work);
1062 struct fw_card *card = device->card;
1063 struct device *revived_dev;
1064 int minor, ret;
1065
1066 /*
1067 * All failure paths here set node->data to NULL, so that we
1068 * don't try to do device_for_each_child() on a kfree()'d
1069 * device.
1070 */
1071
1072 ret = read_config_rom(device, device->generation);
1073 if (ret != RCODE_COMPLETE) {
1074 if (device->config_rom_retries < MAX_RETRIES &&
1075 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1076 device->config_rom_retries++;
1077 fw_schedule_device_work(device, RETRY_DELAY);
1078 } else {
1079 if (device->node->link_on)
1080 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1081 device->node_id,
1082 fw_rcode_string(ret));
1083 if (device->node == card->root_node)
1084 fw_schedule_bm_work(card, 0);
1085 fw_device_release(&device->device);
1086 }
1087 return;
1088 }
1089
1090 revived_dev = device_find_child(card->device,
1091 device, lookup_existing_device);
1092 if (revived_dev) {
1093 put_device(revived_dev);
1094 fw_device_release(&device->device);
1095
1096 return;
1097 }
1098
1099 device_initialize(&device->device);
1100
1101 fw_device_get(device);
1102 down_write(&fw_device_rwsem);
1103 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1104 GFP_KERNEL);
1105 up_write(&fw_device_rwsem);
1106
1107 if (minor < 0)
1108 goto error;
1109
1110 device->device.bus = &fw_bus_type;
1111 device->device.type = &fw_device_type;
1112 device->device.parent = card->device;
1113 device->device.devt = MKDEV(fw_cdev_major, minor);
1114 dev_set_name(&device->device, "fw%d", minor);
1115
1116 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1117 ARRAY_SIZE(fw_device_attributes) +
1118 ARRAY_SIZE(config_rom_attributes));
1119 init_fw_attribute_group(&device->device,
1120 fw_device_attributes,
1121 &device->attribute_group);
1122
1123 if (device_add(&device->device)) {
1124 fw_err(card, "failed to add device\n");
1125 goto error_with_cdev;
1126 }
1127
1128 create_units(device);
1129
1130 /*
1131 * Transition the device to running state. If it got pulled
1132 * out from under us while we did the initialization work, we
1133 * have to shut down the device again here. Normally, though,
1134 * fw_node_event will be responsible for shutting it down when
1135 * necessary. We have to use the atomic cmpxchg here to avoid
1136 * racing with the FW_NODE_DESTROYED case in
1137 * fw_node_event().
1138 */
1139 if (atomic_cmpxchg(&device->state,
1140 FW_DEVICE_INITIALIZING,
1141 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1142 device->workfn = fw_device_shutdown;
1143 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1144 } else {
1145 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1146 dev_name(&device->device),
1147 device->config_rom[3], device->config_rom[4],
1148 1 << device->max_speed);
1149 device->config_rom_retries = 0;
1150
1151 set_broadcast_channel(device, device->generation);
1152
1153 add_device_randomness(&device->config_rom[3], 8);
1154 }
1155
1156 /*
1157 * Reschedule the IRM work if we just finished reading the
1158 * root node config rom. If this races with a bus reset we
1159 * just end up running the IRM work a couple of extra times -
1160 * pretty harmless.
1161 */
1162 if (device->node == card->root_node)
1163 fw_schedule_bm_work(card, 0);
1164
1165 return;
1166
1167 error_with_cdev:
1168 down_write(&fw_device_rwsem);
1169 idr_remove(&fw_device_idr, minor);
1170 up_write(&fw_device_rwsem);
1171 error:
1172 fw_device_put(device); /* fw_device_idr's reference */
1173
1174 put_device(&device->device); /* our reference */
1175}
1176
1177/* Reread and compare bus info block and header of root directory */
1178static int reread_config_rom(struct fw_device *device, int generation,
1179 bool *changed)
1180{
1181 u32 q;
1182 int i, rcode;
1183
1184 for (i = 0; i < 6; i++) {
1185 rcode = read_rom(device, generation, i, &q);
1186 if (rcode != RCODE_COMPLETE)
1187 return rcode;
1188
1189 if (i == 0 && q == 0)
1190 /* inaccessible (see read_config_rom); retry later */
1191 return RCODE_BUSY;
1192
1193 if (q != device->config_rom[i]) {
1194 *changed = true;
1195 return RCODE_COMPLETE;
1196 }
1197 }
1198
1199 *changed = false;
1200 return RCODE_COMPLETE;
1201}
1202
1203static void fw_device_refresh(struct work_struct *work)
1204{
1205 struct fw_device *device =
1206 container_of(work, struct fw_device, work.work);
1207 struct fw_card *card = device->card;
1208 int ret, node_id = device->node_id;
1209 bool changed;
1210
1211 ret = reread_config_rom(device, device->generation, &changed);
1212 if (ret != RCODE_COMPLETE)
1213 goto failed_config_rom;
1214
1215 if (!changed) {
1216 if (atomic_cmpxchg(&device->state,
1217 FW_DEVICE_INITIALIZING,
1218 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1219 goto gone;
1220
1221 fw_device_update(work);
1222 device->config_rom_retries = 0;
1223 goto out;
1224 }
1225
1226 /*
1227 * Something changed. We keep things simple and don't investigate
1228 * further. We just destroy all previous units and create new ones.
1229 */
1230 device_for_each_child(&device->device, NULL, shutdown_unit);
1231
1232 ret = read_config_rom(device, device->generation);
1233 if (ret != RCODE_COMPLETE)
1234 goto failed_config_rom;
1235
1236 fw_device_cdev_update(device);
1237 create_units(device);
1238
1239 /* Userspace may want to re-read attributes. */
1240 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1241
1242 if (atomic_cmpxchg(&device->state,
1243 FW_DEVICE_INITIALIZING,
1244 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1245 goto gone;
1246
1247 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1248 device->config_rom_retries = 0;
1249 goto out;
1250
1251 failed_config_rom:
1252 if (device->config_rom_retries < MAX_RETRIES &&
1253 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1254 device->config_rom_retries++;
1255 fw_schedule_device_work(device, RETRY_DELAY);
1256 return;
1257 }
1258
1259 fw_notice(card, "giving up on refresh of device %s: %s\n",
1260 dev_name(&device->device), fw_rcode_string(ret));
1261 gone:
1262 atomic_set(&device->state, FW_DEVICE_GONE);
1263 device->workfn = fw_device_shutdown;
1264 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1265 out:
1266 if (node_id == card->root_node->node_id)
1267 fw_schedule_bm_work(card, 0);
1268}
1269
1270static void fw_device_workfn(struct work_struct *work)
1271{
1272 struct fw_device *device = container_of(to_delayed_work(work),
1273 struct fw_device, work);
1274 device->workfn(work);
1275}
1276
1277void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1278{
1279 struct fw_device *device;
1280
1281 switch (event) {
1282 case FW_NODE_CREATED:
1283 /*
1284 * Attempt to scan the node, regardless whether its self ID has
1285 * the L (link active) flag set or not. Some broken devices
1286 * send L=0 but have an up-and-running link; others send L=1
1287 * without actually having a link.
1288 */
1289 create:
1290 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1291 if (device == NULL)
1292 break;
1293
1294 /*
1295 * Do minimal initialization of the device here, the
1296 * rest will happen in fw_device_init().
1297 *
1298 * Attention: A lot of things, even fw_device_get(),
1299 * cannot be done before fw_device_init() finished!
1300 * You can basically just check device->state and
1301 * schedule work until then, but only while holding
1302 * card->lock.
1303 */
1304 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1305 device->card = fw_card_get(card);
1306 device->node = fw_node_get(node);
1307 device->node_id = node->node_id;
1308 device->generation = card->generation;
1309 device->is_local = node == card->local_node;
1310 mutex_init(&device->client_list_mutex);
1311 INIT_LIST_HEAD(&device->client_list);
1312
1313 /*
1314 * Set the node data to point back to this device so
1315 * FW_NODE_UPDATED callbacks can update the node_id
1316 * and generation for the device.
1317 */
1318 node->data = device;
1319
1320 /*
1321 * Many devices are slow to respond after bus resets,
1322 * especially if they are bus powered and go through
1323 * power-up after getting plugged in. We schedule the
1324 * first config rom scan half a second after bus reset.
1325 */
1326 device->workfn = fw_device_init;
1327 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1328 fw_schedule_device_work(device, INITIAL_DELAY);
1329 break;
1330
1331 case FW_NODE_INITIATED_RESET:
1332 case FW_NODE_LINK_ON:
1333 device = node->data;
1334 if (device == NULL)
1335 goto create;
1336
1337 device->node_id = node->node_id;
1338 smp_wmb(); /* update node_id before generation */
1339 device->generation = card->generation;
1340 if (atomic_cmpxchg(&device->state,
1341 FW_DEVICE_RUNNING,
1342 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1343 device->workfn = fw_device_refresh;
1344 fw_schedule_device_work(device,
1345 device->is_local ? 0 : INITIAL_DELAY);
1346 }
1347 break;
1348
1349 case FW_NODE_UPDATED:
1350 device = node->data;
1351 if (device == NULL)
1352 break;
1353
1354 device->node_id = node->node_id;
1355 smp_wmb(); /* update node_id before generation */
1356 device->generation = card->generation;
1357 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1358 device->workfn = fw_device_update;
1359 fw_schedule_device_work(device, 0);
1360 }
1361 break;
1362
1363 case FW_NODE_DESTROYED:
1364 case FW_NODE_LINK_OFF:
1365 if (!node->data)
1366 break;
1367
1368 /*
1369 * Destroy the device associated with the node. There
1370 * are two cases here: either the device is fully
1371 * initialized (FW_DEVICE_RUNNING) or we're in the
1372 * process of reading its config rom
1373 * (FW_DEVICE_INITIALIZING). If it is fully
1374 * initialized we can reuse device->work to schedule a
1375 * full fw_device_shutdown(). If not, there's work
1376 * scheduled to read it's config rom, and we just put
1377 * the device in shutdown state to have that code fail
1378 * to create the device.
1379 */
1380 device = node->data;
1381 if (atomic_xchg(&device->state,
1382 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1383 device->workfn = fw_device_shutdown;
1384 fw_schedule_device_work(device,
1385 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1386 }
1387 break;
1388 }
1389}
1390
1391#ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1392#include "device-attribute-test.c"
1393#endif