Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver
   4 *
   5 * Copyright (C) 2014-2019 Renesas Electronics Inc.
   6 *
   7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/interrupt.h>
  14#include <linux/list.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_dma.h>
  19#include <linux/of_platform.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24
  25#include "../dmaengine.h"
  26
  27/*
  28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
  29 * @node: entry in the parent's chunks list
  30 * @src_addr: device source address
  31 * @dst_addr: device destination address
  32 * @size: transfer size in bytes
  33 */
  34struct rcar_dmac_xfer_chunk {
  35	struct list_head node;
  36
  37	dma_addr_t src_addr;
  38	dma_addr_t dst_addr;
  39	u32 size;
  40};
  41
  42/*
  43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
  44 * @sar: value of the SAR register (source address)
  45 * @dar: value of the DAR register (destination address)
  46 * @tcr: value of the TCR register (transfer count)
  47 */
  48struct rcar_dmac_hw_desc {
  49	u32 sar;
  50	u32 dar;
  51	u32 tcr;
  52	u32 reserved;
  53} __attribute__((__packed__));
  54
  55/*
  56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
  57 * @async_tx: base DMA asynchronous transaction descriptor
  58 * @direction: direction of the DMA transfer
  59 * @xfer_shift: log2 of the transfer size
  60 * @chcr: value of the channel configuration register for this transfer
  61 * @node: entry in the channel's descriptors lists
  62 * @chunks: list of transfer chunks for this transfer
  63 * @running: the transfer chunk being currently processed
  64 * @nchunks: number of transfer chunks for this transfer
  65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
  66 * @hwdescs.mem: hardware descriptors memory for the transfer
  67 * @hwdescs.dma: device address of the hardware descriptors memory
  68 * @hwdescs.size: size of the hardware descriptors in bytes
  69 * @size: transfer size in bytes
  70 * @cyclic: when set indicates that the DMA transfer is cyclic
  71 */
  72struct rcar_dmac_desc {
  73	struct dma_async_tx_descriptor async_tx;
  74	enum dma_transfer_direction direction;
  75	unsigned int xfer_shift;
  76	u32 chcr;
  77
  78	struct list_head node;
  79	struct list_head chunks;
  80	struct rcar_dmac_xfer_chunk *running;
  81	unsigned int nchunks;
  82
  83	struct {
  84		bool use;
  85		struct rcar_dmac_hw_desc *mem;
  86		dma_addr_t dma;
  87		size_t size;
  88	} hwdescs;
  89
  90	unsigned int size;
  91	bool cyclic;
  92};
  93
  94#define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
  95
  96/*
  97 * struct rcar_dmac_desc_page - One page worth of descriptors
  98 * @node: entry in the channel's pages list
  99 * @descs: array of DMA descriptors
 100 * @chunks: array of transfer chunk descriptors
 101 */
 102struct rcar_dmac_desc_page {
 103	struct list_head node;
 104
 105	union {
 106		DECLARE_FLEX_ARRAY(struct rcar_dmac_desc, descs);
 107		DECLARE_FLEX_ARRAY(struct rcar_dmac_xfer_chunk, chunks);
 108	};
 109};
 110
 111#define RCAR_DMAC_DESCS_PER_PAGE					\
 112	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
 113	sizeof(struct rcar_dmac_desc))
 114#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
 115	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
 116	sizeof(struct rcar_dmac_xfer_chunk))
 117
 118/*
 119 * struct rcar_dmac_chan_slave - Slave configuration
 120 * @slave_addr: slave memory address
 121 * @xfer_size: size (in bytes) of hardware transfers
 122 */
 123struct rcar_dmac_chan_slave {
 124	phys_addr_t slave_addr;
 125	unsigned int xfer_size;
 126};
 127
 128/*
 129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
 130 * @addr: slave dma address
 131 * @dir: direction of mapping
 132 * @slave: slave configuration that is mapped
 133 */
 134struct rcar_dmac_chan_map {
 135	dma_addr_t addr;
 136	enum dma_data_direction dir;
 137	struct rcar_dmac_chan_slave slave;
 138};
 139
 140/*
 141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
 142 * @chan: base DMA channel object
 143 * @iomem: channel I/O memory base
 144 * @index: index of this channel in the controller
 145 * @irq: channel IRQ
 146 * @src: slave memory address and size on the source side
 147 * @dst: slave memory address and size on the destination side
 148 * @mid_rid: hardware MID/RID for the DMA client using this channel
 149 * @lock: protects the channel CHCR register and the desc members
 150 * @desc.free: list of free descriptors
 151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
 152 * @desc.active: list of active descriptors (activated with issue_pending)
 153 * @desc.done: list of completed descriptors
 154 * @desc.wait: list of descriptors waiting for an ack
 155 * @desc.running: the descriptor being processed (a member of the active list)
 156 * @desc.chunks_free: list of free transfer chunk descriptors
 157 * @desc.pages: list of pages used by allocated descriptors
 158 */
 159struct rcar_dmac_chan {
 160	struct dma_chan chan;
 161	void __iomem *iomem;
 162	unsigned int index;
 163	int irq;
 164
 165	struct rcar_dmac_chan_slave src;
 166	struct rcar_dmac_chan_slave dst;
 167	struct rcar_dmac_chan_map map;
 168	int mid_rid;
 169
 170	spinlock_t lock;
 171
 172	struct {
 173		struct list_head free;
 174		struct list_head pending;
 175		struct list_head active;
 176		struct list_head done;
 177		struct list_head wait;
 178		struct rcar_dmac_desc *running;
 179
 180		struct list_head chunks_free;
 181
 182		struct list_head pages;
 183	} desc;
 184};
 185
 186#define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
 187
 188/*
 189 * struct rcar_dmac - R-Car Gen2 DMA Controller
 190 * @engine: base DMA engine object
 191 * @dev: the hardware device
 192 * @dmac_base: remapped base register block
 193 * @chan_base: remapped channel register block (optional)
 194 * @n_channels: number of available channels
 195 * @channels: array of DMAC channels
 196 * @channels_mask: bitfield of which DMA channels are managed by this driver
 197 * @modules: bitmask of client modules in use
 198 */
 199struct rcar_dmac {
 200	struct dma_device engine;
 201	struct device *dev;
 202	void __iomem *dmac_base;
 203	void __iomem *chan_base;
 204
 205	unsigned int n_channels;
 206	struct rcar_dmac_chan *channels;
 207	u32 channels_mask;
 208
 209	DECLARE_BITMAP(modules, 256);
 210};
 211
 212#define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
 213
 214#define for_each_rcar_dmac_chan(i, dmac, chan)						\
 215	for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++)	\
 216		if (!((dmac)->channels_mask & BIT(i))) continue; else
 217
 218/*
 219 * struct rcar_dmac_of_data - This driver's OF data
 220 * @chan_offset_base: DMAC channels base offset
 221 * @chan_offset_stride: DMAC channels offset stride
 222 */
 223struct rcar_dmac_of_data {
 224	u32 chan_offset_base;
 225	u32 chan_offset_stride;
 226};
 227
 228/* -----------------------------------------------------------------------------
 229 * Registers
 230 */
 231
 232#define RCAR_DMAISTA			0x0020
 233#define RCAR_DMASEC			0x0030
 234#define RCAR_DMAOR			0x0060
 235#define RCAR_DMAOR_PRI_FIXED		(0 << 8)
 236#define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
 237#define RCAR_DMAOR_AE			(1 << 2)
 238#define RCAR_DMAOR_DME			(1 << 0)
 239#define RCAR_DMACHCLR			0x0080	/* Not on R-Car Gen4 */
 240#define RCAR_DMADPSEC			0x00a0
 241
 242#define RCAR_DMASAR			0x0000
 243#define RCAR_DMADAR			0x0004
 244#define RCAR_DMATCR			0x0008
 245#define RCAR_DMATCR_MASK		0x00ffffff
 246#define RCAR_DMATSR			0x0028
 247#define RCAR_DMACHCR			0x000c
 248#define RCAR_DMACHCR_CAE		(1 << 31)
 249#define RCAR_DMACHCR_CAIE		(1 << 30)
 250#define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
 251#define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
 252#define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
 253#define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
 254#define RCAR_DMACHCR_RPT_SAR		(1 << 27)
 255#define RCAR_DMACHCR_RPT_DAR		(1 << 26)
 256#define RCAR_DMACHCR_RPT_TCR		(1 << 25)
 257#define RCAR_DMACHCR_DPB		(1 << 22)
 258#define RCAR_DMACHCR_DSE		(1 << 19)
 259#define RCAR_DMACHCR_DSIE		(1 << 18)
 260#define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
 261#define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
 262#define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
 263#define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
 264#define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
 265#define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
 266#define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
 267#define RCAR_DMACHCR_DM_FIXED		(0 << 14)
 268#define RCAR_DMACHCR_DM_INC		(1 << 14)
 269#define RCAR_DMACHCR_DM_DEC		(2 << 14)
 270#define RCAR_DMACHCR_SM_FIXED		(0 << 12)
 271#define RCAR_DMACHCR_SM_INC		(1 << 12)
 272#define RCAR_DMACHCR_SM_DEC		(2 << 12)
 273#define RCAR_DMACHCR_RS_AUTO		(4 << 8)
 274#define RCAR_DMACHCR_RS_DMARS		(8 << 8)
 275#define RCAR_DMACHCR_IE			(1 << 2)
 276#define RCAR_DMACHCR_TE			(1 << 1)
 277#define RCAR_DMACHCR_DE			(1 << 0)
 278#define RCAR_DMATCRB			0x0018
 279#define RCAR_DMATSRB			0x0038
 280#define RCAR_DMACHCRB			0x001c
 281#define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
 282#define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
 283#define RCAR_DMACHCRB_DPTR_SHIFT	16
 284#define RCAR_DMACHCRB_DRST		(1 << 15)
 285#define RCAR_DMACHCRB_DTS		(1 << 8)
 286#define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
 287#define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
 288#define RCAR_DMACHCRB_PRI(n)		((n) << 0)
 289#define RCAR_DMARS			0x0040
 290#define RCAR_DMABUFCR			0x0048
 291#define RCAR_DMABUFCR_MBU(n)		((n) << 16)
 292#define RCAR_DMABUFCR_ULB(n)		((n) << 0)
 293#define RCAR_DMADPBASE			0x0050
 294#define RCAR_DMADPBASE_MASK		0xfffffff0
 295#define RCAR_DMADPBASE_SEL		(1 << 0)
 296#define RCAR_DMADPCR			0x0054
 297#define RCAR_DMADPCR_DIPT(n)		((n) << 24)
 298#define RCAR_DMAFIXSAR			0x0010
 299#define RCAR_DMAFIXDAR			0x0014
 300#define RCAR_DMAFIXDPBASE		0x0060
 301
 302/* For R-Car Gen4 */
 303#define RCAR_GEN4_DMACHCLR		0x0100
 304
 305/* Hardcode the MEMCPY transfer size to 4 bytes. */
 306#define RCAR_DMAC_MEMCPY_XFER_SIZE	4
 307
 308/* -----------------------------------------------------------------------------
 309 * Device access
 310 */
 311
 312static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
 313{
 314	if (reg == RCAR_DMAOR)
 315		writew(data, dmac->dmac_base + reg);
 316	else
 317		writel(data, dmac->dmac_base + reg);
 318}
 319
 320static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
 321{
 322	if (reg == RCAR_DMAOR)
 323		return readw(dmac->dmac_base + reg);
 324	else
 325		return readl(dmac->dmac_base + reg);
 326}
 327
 328static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
 329{
 330	if (reg == RCAR_DMARS)
 331		return readw(chan->iomem + reg);
 332	else
 333		return readl(chan->iomem + reg);
 334}
 335
 336static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
 337{
 338	if (reg == RCAR_DMARS)
 339		writew(data, chan->iomem + reg);
 340	else
 341		writel(data, chan->iomem + reg);
 342}
 343
 344static void rcar_dmac_chan_clear(struct rcar_dmac *dmac,
 345				 struct rcar_dmac_chan *chan)
 346{
 347	if (dmac->chan_base)
 348		rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
 349	else
 350		rcar_dmac_write(dmac, RCAR_DMACHCLR, BIT(chan->index));
 351}
 352
 353static void rcar_dmac_chan_clear_all(struct rcar_dmac *dmac)
 354{
 355	struct rcar_dmac_chan *chan;
 356	unsigned int i;
 357
 358	if (dmac->chan_base) {
 359		for_each_rcar_dmac_chan(i, dmac, chan)
 360			rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
 361	} else {
 362		rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
 363	}
 364}
 365
 366/* -----------------------------------------------------------------------------
 367 * Initialization and configuration
 368 */
 369
 370static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
 371{
 372	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 373
 374	return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
 375}
 376
 377static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
 378{
 379	struct rcar_dmac_desc *desc = chan->desc.running;
 380	u32 chcr = desc->chcr;
 381
 382	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
 383
 384	if (chan->mid_rid >= 0)
 385		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
 386
 387	if (desc->hwdescs.use) {
 388		struct rcar_dmac_xfer_chunk *chunk =
 389			list_first_entry(&desc->chunks,
 390					 struct rcar_dmac_xfer_chunk, node);
 391
 392		dev_dbg(chan->chan.device->dev,
 393			"chan%u: queue desc %p: %u@%pad\n",
 394			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
 395
 396#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 397		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 398				     chunk->src_addr >> 32);
 399		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 400				     chunk->dst_addr >> 32);
 401		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
 402				     desc->hwdescs.dma >> 32);
 403#endif
 404		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
 405				     (desc->hwdescs.dma & 0xfffffff0) |
 406				     RCAR_DMADPBASE_SEL);
 407		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
 408				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
 409				     RCAR_DMACHCRB_DRST);
 410
 411		/*
 412		 * Errata: When descriptor memory is accessed through an IOMMU
 413		 * the DMADAR register isn't initialized automatically from the
 414		 * first descriptor at beginning of transfer by the DMAC like it
 415		 * should. Initialize it manually with the destination address
 416		 * of the first chunk.
 417		 */
 418		rcar_dmac_chan_write(chan, RCAR_DMADAR,
 419				     chunk->dst_addr & 0xffffffff);
 420
 421		/*
 422		 * Program the descriptor stage interrupt to occur after the end
 423		 * of the first stage.
 424		 */
 425		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
 426
 427		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
 428		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
 429
 430		/*
 431		 * If the descriptor isn't cyclic enable normal descriptor mode
 432		 * and the transfer completion interrupt.
 433		 */
 434		if (!desc->cyclic)
 435			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
 436		/*
 437		 * If the descriptor is cyclic and has a callback enable the
 438		 * descriptor stage interrupt in infinite repeat mode.
 439		 */
 440		else if (desc->async_tx.callback)
 441			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
 442		/*
 443		 * Otherwise just select infinite repeat mode without any
 444		 * interrupt.
 445		 */
 446		else
 447			chcr |= RCAR_DMACHCR_DPM_INFINITE;
 448	} else {
 449		struct rcar_dmac_xfer_chunk *chunk = desc->running;
 450
 451		dev_dbg(chan->chan.device->dev,
 452			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
 453			chan->index, chunk, chunk->size, &chunk->src_addr,
 454			&chunk->dst_addr);
 455
 456#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 457		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 458				     chunk->src_addr >> 32);
 459		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 460				     chunk->dst_addr >> 32);
 461#endif
 462		rcar_dmac_chan_write(chan, RCAR_DMASAR,
 463				     chunk->src_addr & 0xffffffff);
 464		rcar_dmac_chan_write(chan, RCAR_DMADAR,
 465				     chunk->dst_addr & 0xffffffff);
 466		rcar_dmac_chan_write(chan, RCAR_DMATCR,
 467				     chunk->size >> desc->xfer_shift);
 468
 469		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
 470	}
 471
 472	rcar_dmac_chan_write(chan, RCAR_DMACHCR,
 473			     chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
 474}
 475
 476static int rcar_dmac_init(struct rcar_dmac *dmac)
 477{
 478	u16 dmaor;
 479
 480	/* Clear all channels and enable the DMAC globally. */
 481	rcar_dmac_chan_clear_all(dmac);
 482	rcar_dmac_write(dmac, RCAR_DMAOR,
 483			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
 484
 485	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
 486	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
 487		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
 488		return -EIO;
 489	}
 490
 491	return 0;
 492}
 493
 494/* -----------------------------------------------------------------------------
 495 * Descriptors submission
 496 */
 497
 498static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
 499{
 500	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
 501	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
 502	unsigned long flags;
 503	dma_cookie_t cookie;
 504
 505	spin_lock_irqsave(&chan->lock, flags);
 506
 507	cookie = dma_cookie_assign(tx);
 508
 509	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
 510		chan->index, tx->cookie, desc);
 511
 512	list_add_tail(&desc->node, &chan->desc.pending);
 513	desc->running = list_first_entry(&desc->chunks,
 514					 struct rcar_dmac_xfer_chunk, node);
 515
 516	spin_unlock_irqrestore(&chan->lock, flags);
 517
 518	return cookie;
 519}
 520
 521/* -----------------------------------------------------------------------------
 522 * Descriptors allocation and free
 523 */
 524
 525/*
 526 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
 527 * @chan: the DMA channel
 528 * @gfp: allocation flags
 529 */
 530static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 531{
 532	struct rcar_dmac_desc_page *page;
 533	unsigned long flags;
 534	LIST_HEAD(list);
 535	unsigned int i;
 536
 537	page = (void *)get_zeroed_page(gfp);
 538	if (!page)
 539		return -ENOMEM;
 540
 541	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
 542		struct rcar_dmac_desc *desc = &page->descs[i];
 543
 544		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
 545		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
 546		INIT_LIST_HEAD(&desc->chunks);
 547
 548		list_add_tail(&desc->node, &list);
 549	}
 550
 551	spin_lock_irqsave(&chan->lock, flags);
 552	list_splice_tail(&list, &chan->desc.free);
 553	list_add_tail(&page->node, &chan->desc.pages);
 554	spin_unlock_irqrestore(&chan->lock, flags);
 555
 556	return 0;
 557}
 558
 559/*
 560 * rcar_dmac_desc_put - Release a DMA transfer descriptor
 561 * @chan: the DMA channel
 562 * @desc: the descriptor
 563 *
 564 * Put the descriptor and its transfer chunk descriptors back in the channel's
 565 * free descriptors lists. The descriptor's chunks list will be reinitialized to
 566 * an empty list as a result.
 567 *
 568 * The descriptor must have been removed from the channel's lists before calling
 569 * this function.
 570 */
 571static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
 572			       struct rcar_dmac_desc *desc)
 573{
 574	unsigned long flags;
 575
 576	spin_lock_irqsave(&chan->lock, flags);
 577	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
 578	list_add(&desc->node, &chan->desc.free);
 579	spin_unlock_irqrestore(&chan->lock, flags);
 580}
 581
 582static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
 583{
 584	struct rcar_dmac_desc *desc, *_desc;
 585	unsigned long flags;
 586	LIST_HEAD(list);
 587
 588	/*
 589	 * We have to temporarily move all descriptors from the wait list to a
 590	 * local list as iterating over the wait list, even with
 591	 * list_for_each_entry_safe, isn't safe if we release the channel lock
 592	 * around the rcar_dmac_desc_put() call.
 593	 */
 594	spin_lock_irqsave(&chan->lock, flags);
 595	list_splice_init(&chan->desc.wait, &list);
 596	spin_unlock_irqrestore(&chan->lock, flags);
 597
 598	list_for_each_entry_safe(desc, _desc, &list, node) {
 599		if (async_tx_test_ack(&desc->async_tx)) {
 600			list_del(&desc->node);
 601			rcar_dmac_desc_put(chan, desc);
 602		}
 603	}
 604
 605	if (list_empty(&list))
 606		return;
 607
 608	/* Put the remaining descriptors back in the wait list. */
 609	spin_lock_irqsave(&chan->lock, flags);
 610	list_splice(&list, &chan->desc.wait);
 611	spin_unlock_irqrestore(&chan->lock, flags);
 612}
 613
 614/*
 615 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
 616 * @chan: the DMA channel
 617 *
 618 * Locking: This function must be called in a non-atomic context.
 619 *
 620 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
 621 * be allocated.
 622 */
 623static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
 624{
 625	struct rcar_dmac_desc *desc;
 626	unsigned long flags;
 627	int ret;
 628
 629	/* Recycle acked descriptors before attempting allocation. */
 630	rcar_dmac_desc_recycle_acked(chan);
 631
 632	spin_lock_irqsave(&chan->lock, flags);
 633
 634	while (list_empty(&chan->desc.free)) {
 635		/*
 636		 * No free descriptors, allocate a page worth of them and try
 637		 * again, as someone else could race us to get the newly
 638		 * allocated descriptors. If the allocation fails return an
 639		 * error.
 640		 */
 641		spin_unlock_irqrestore(&chan->lock, flags);
 642		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
 643		if (ret < 0)
 644			return NULL;
 645		spin_lock_irqsave(&chan->lock, flags);
 646	}
 647
 648	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
 649	list_del(&desc->node);
 650
 651	spin_unlock_irqrestore(&chan->lock, flags);
 652
 653	return desc;
 654}
 655
 656/*
 657 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
 658 * @chan: the DMA channel
 659 * @gfp: allocation flags
 660 */
 661static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 662{
 663	struct rcar_dmac_desc_page *page;
 664	unsigned long flags;
 665	LIST_HEAD(list);
 666	unsigned int i;
 667
 668	page = (void *)get_zeroed_page(gfp);
 669	if (!page)
 670		return -ENOMEM;
 671
 672	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
 673		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
 674
 675		list_add_tail(&chunk->node, &list);
 676	}
 677
 678	spin_lock_irqsave(&chan->lock, flags);
 679	list_splice_tail(&list, &chan->desc.chunks_free);
 680	list_add_tail(&page->node, &chan->desc.pages);
 681	spin_unlock_irqrestore(&chan->lock, flags);
 682
 683	return 0;
 684}
 685
 686/*
 687 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
 688 * @chan: the DMA channel
 689 *
 690 * Locking: This function must be called in a non-atomic context.
 691 *
 692 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
 693 * descriptor can be allocated.
 694 */
 695static struct rcar_dmac_xfer_chunk *
 696rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
 697{
 698	struct rcar_dmac_xfer_chunk *chunk;
 699	unsigned long flags;
 700	int ret;
 701
 702	spin_lock_irqsave(&chan->lock, flags);
 703
 704	while (list_empty(&chan->desc.chunks_free)) {
 705		/*
 706		 * No free descriptors, allocate a page worth of them and try
 707		 * again, as someone else could race us to get the newly
 708		 * allocated descriptors. If the allocation fails return an
 709		 * error.
 710		 */
 711		spin_unlock_irqrestore(&chan->lock, flags);
 712		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
 713		if (ret < 0)
 714			return NULL;
 715		spin_lock_irqsave(&chan->lock, flags);
 716	}
 717
 718	chunk = list_first_entry(&chan->desc.chunks_free,
 719				 struct rcar_dmac_xfer_chunk, node);
 720	list_del(&chunk->node);
 721
 722	spin_unlock_irqrestore(&chan->lock, flags);
 723
 724	return chunk;
 725}
 726
 727static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
 728				     struct rcar_dmac_desc *desc, size_t size)
 729{
 730	/*
 731	 * dma_alloc_coherent() allocates memory in page size increments. To
 732	 * avoid reallocating the hardware descriptors when the allocated size
 733	 * wouldn't change align the requested size to a multiple of the page
 734	 * size.
 735	 */
 736	size = PAGE_ALIGN(size);
 737
 738	if (desc->hwdescs.size == size)
 739		return;
 740
 741	if (desc->hwdescs.mem) {
 742		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
 743				  desc->hwdescs.mem, desc->hwdescs.dma);
 744		desc->hwdescs.mem = NULL;
 745		desc->hwdescs.size = 0;
 746	}
 747
 748	if (!size)
 749		return;
 750
 751	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
 752					       &desc->hwdescs.dma, GFP_NOWAIT);
 753	if (!desc->hwdescs.mem)
 754		return;
 755
 756	desc->hwdescs.size = size;
 757}
 758
 759static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
 760				 struct rcar_dmac_desc *desc)
 761{
 762	struct rcar_dmac_xfer_chunk *chunk;
 763	struct rcar_dmac_hw_desc *hwdesc;
 764
 765	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
 766
 767	hwdesc = desc->hwdescs.mem;
 768	if (!hwdesc)
 769		return -ENOMEM;
 770
 771	list_for_each_entry(chunk, &desc->chunks, node) {
 772		hwdesc->sar = chunk->src_addr;
 773		hwdesc->dar = chunk->dst_addr;
 774		hwdesc->tcr = chunk->size >> desc->xfer_shift;
 775		hwdesc++;
 776	}
 777
 778	return 0;
 779}
 780
 781/* -----------------------------------------------------------------------------
 782 * Stop and reset
 783 */
 784static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
 785{
 786	u32 chcr;
 787	unsigned int i;
 788
 789	/*
 790	 * Ensure that the setting of the DE bit is actually 0 after
 791	 * clearing it.
 792	 */
 793	for (i = 0; i < 1024; i++) {
 794		chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 795		if (!(chcr & RCAR_DMACHCR_DE))
 796			return;
 797		udelay(1);
 798	}
 799
 800	dev_err(chan->chan.device->dev, "CHCR DE check error\n");
 801}
 802
 803static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
 804{
 805	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 806
 807	/* set DE=0 and flush remaining data */
 808	rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
 809
 810	/* make sure all remaining data was flushed */
 811	rcar_dmac_chcr_de_barrier(chan);
 812}
 813
 814static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
 815{
 816	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 817
 818	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
 819		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
 820		  RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
 821	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
 822	rcar_dmac_chcr_de_barrier(chan);
 823}
 824
 825static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
 826{
 827	struct rcar_dmac_desc *desc, *_desc;
 828	unsigned long flags;
 829	LIST_HEAD(descs);
 830
 831	spin_lock_irqsave(&chan->lock, flags);
 832
 833	/* Move all non-free descriptors to the local lists. */
 834	list_splice_init(&chan->desc.pending, &descs);
 835	list_splice_init(&chan->desc.active, &descs);
 836	list_splice_init(&chan->desc.done, &descs);
 837	list_splice_init(&chan->desc.wait, &descs);
 838
 839	chan->desc.running = NULL;
 840
 841	spin_unlock_irqrestore(&chan->lock, flags);
 842
 843	list_for_each_entry_safe(desc, _desc, &descs, node) {
 844		list_del(&desc->node);
 845		rcar_dmac_desc_put(chan, desc);
 846	}
 847}
 848
 849static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
 850{
 851	struct rcar_dmac_chan *chan;
 852	unsigned int i;
 853
 854	/* Stop all channels. */
 855	for_each_rcar_dmac_chan(i, dmac, chan) {
 856		/* Stop and reinitialize the channel. */
 857		spin_lock_irq(&chan->lock);
 858		rcar_dmac_chan_halt(chan);
 859		spin_unlock_irq(&chan->lock);
 860	}
 861}
 862
 863static int rcar_dmac_chan_pause(struct dma_chan *chan)
 864{
 865	unsigned long flags;
 866	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 867
 868	spin_lock_irqsave(&rchan->lock, flags);
 869	rcar_dmac_clear_chcr_de(rchan);
 870	spin_unlock_irqrestore(&rchan->lock, flags);
 871
 872	return 0;
 873}
 874
 875/* -----------------------------------------------------------------------------
 876 * Descriptors preparation
 877 */
 878
 879static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
 880					  struct rcar_dmac_desc *desc)
 881{
 882	static const u32 chcr_ts[] = {
 883		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
 884		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
 885		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
 886		RCAR_DMACHCR_TS_64B,
 887	};
 888
 889	unsigned int xfer_size;
 890	u32 chcr;
 891
 892	switch (desc->direction) {
 893	case DMA_DEV_TO_MEM:
 894		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
 895		     | RCAR_DMACHCR_RS_DMARS;
 896		xfer_size = chan->src.xfer_size;
 897		break;
 898
 899	case DMA_MEM_TO_DEV:
 900		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
 901		     | RCAR_DMACHCR_RS_DMARS;
 902		xfer_size = chan->dst.xfer_size;
 903		break;
 904
 905	case DMA_MEM_TO_MEM:
 906	default:
 907		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
 908		     | RCAR_DMACHCR_RS_AUTO;
 909		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
 910		break;
 911	}
 912
 913	desc->xfer_shift = ilog2(xfer_size);
 914	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
 915}
 916
 917/*
 918 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
 919 *
 920 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
 921 * converted to scatter-gather to guarantee consistent locking and a correct
 922 * list manipulation. For slave DMA direction carries the usual meaning, and,
 923 * logically, the SG list is RAM and the addr variable contains slave address,
 924 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
 925 * and the SG list contains only one element and points at the source buffer.
 926 */
 927static struct dma_async_tx_descriptor *
 928rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
 929		       unsigned int sg_len, dma_addr_t dev_addr,
 930		       enum dma_transfer_direction dir, unsigned long dma_flags,
 931		       bool cyclic)
 932{
 933	struct rcar_dmac_xfer_chunk *chunk;
 934	struct rcar_dmac_desc *desc;
 935	struct scatterlist *sg;
 936	unsigned int nchunks = 0;
 937	unsigned int max_chunk_size;
 938	unsigned int full_size = 0;
 939	bool cross_boundary = false;
 940	unsigned int i;
 941#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 942	u32 high_dev_addr;
 943	u32 high_mem_addr;
 944#endif
 945
 946	desc = rcar_dmac_desc_get(chan);
 947	if (!desc)
 948		return NULL;
 949
 950	desc->async_tx.flags = dma_flags;
 951	desc->async_tx.cookie = -EBUSY;
 952
 953	desc->cyclic = cyclic;
 954	desc->direction = dir;
 955
 956	rcar_dmac_chan_configure_desc(chan, desc);
 957
 958	max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
 959
 960	/*
 961	 * Allocate and fill the transfer chunk descriptors. We own the only
 962	 * reference to the DMA descriptor, there's no need for locking.
 963	 */
 964	for_each_sg(sgl, sg, sg_len, i) {
 965		dma_addr_t mem_addr = sg_dma_address(sg);
 966		unsigned int len = sg_dma_len(sg);
 967
 968		full_size += len;
 969
 970#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 971		if (i == 0) {
 972			high_dev_addr = dev_addr >> 32;
 973			high_mem_addr = mem_addr >> 32;
 974		}
 975
 976		if ((dev_addr >> 32 != high_dev_addr) ||
 977		    (mem_addr >> 32 != high_mem_addr))
 978			cross_boundary = true;
 979#endif
 980		while (len) {
 981			unsigned int size = min(len, max_chunk_size);
 982
 983#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 984			/*
 985			 * Prevent individual transfers from crossing 4GB
 986			 * boundaries.
 987			 */
 988			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
 989				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
 990				cross_boundary = true;
 991			}
 992			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
 993				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
 994				cross_boundary = true;
 995			}
 996#endif
 997
 998			chunk = rcar_dmac_xfer_chunk_get(chan);
 999			if (!chunk) {
1000				rcar_dmac_desc_put(chan, desc);
1001				return NULL;
1002			}
1003
1004			if (dir == DMA_DEV_TO_MEM) {
1005				chunk->src_addr = dev_addr;
1006				chunk->dst_addr = mem_addr;
1007			} else {
1008				chunk->src_addr = mem_addr;
1009				chunk->dst_addr = dev_addr;
1010			}
1011
1012			chunk->size = size;
1013
1014			dev_dbg(chan->chan.device->dev,
1015				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
1016				chan->index, chunk, desc, i, sg, size, len,
1017				&chunk->src_addr, &chunk->dst_addr);
1018
1019			mem_addr += size;
1020			if (dir == DMA_MEM_TO_MEM)
1021				dev_addr += size;
1022
1023			len -= size;
1024
1025			list_add_tail(&chunk->node, &desc->chunks);
1026			nchunks++;
1027		}
1028	}
1029
1030	desc->nchunks = nchunks;
1031	desc->size = full_size;
1032
1033	/*
1034	 * Use hardware descriptor lists if possible when more than one chunk
1035	 * needs to be transferred (otherwise they don't make much sense).
1036	 *
1037	 * Source/Destination address should be located in same 4GiB region
1038	 * in the 40bit address space when it uses Hardware descriptor,
1039	 * and cross_boundary is checking it.
1040	 */
1041	desc->hwdescs.use = !cross_boundary && nchunks > 1;
1042	if (desc->hwdescs.use) {
1043		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
1044			desc->hwdescs.use = false;
1045	}
1046
1047	return &desc->async_tx;
1048}
1049
1050/* -----------------------------------------------------------------------------
1051 * DMA engine operations
1052 */
1053
1054static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
1055{
1056	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1057	int ret;
1058
1059	INIT_LIST_HEAD(&rchan->desc.chunks_free);
1060	INIT_LIST_HEAD(&rchan->desc.pages);
1061
1062	/* Preallocate descriptors. */
1063	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
1064	if (ret < 0)
1065		return -ENOMEM;
1066
1067	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
1068	if (ret < 0)
1069		return -ENOMEM;
1070
1071	return pm_runtime_get_sync(chan->device->dev);
1072}
1073
1074static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1075{
1076	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1077	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1078	struct rcar_dmac_chan_map *map = &rchan->map;
1079	struct rcar_dmac_desc_page *page, *_page;
1080	struct rcar_dmac_desc *desc;
1081	LIST_HEAD(list);
1082
1083	/* Protect against ISR */
1084	spin_lock_irq(&rchan->lock);
1085	rcar_dmac_chan_halt(rchan);
1086	spin_unlock_irq(&rchan->lock);
1087
1088	/*
1089	 * Now no new interrupts will occur, but one might already be
1090	 * running. Wait for it to finish before freeing resources.
1091	 */
1092	synchronize_irq(rchan->irq);
1093
1094	if (rchan->mid_rid >= 0) {
1095		/* The caller is holding dma_list_mutex */
1096		clear_bit(rchan->mid_rid, dmac->modules);
1097		rchan->mid_rid = -EINVAL;
1098	}
1099
1100	list_splice_init(&rchan->desc.free, &list);
1101	list_splice_init(&rchan->desc.pending, &list);
1102	list_splice_init(&rchan->desc.active, &list);
1103	list_splice_init(&rchan->desc.done, &list);
1104	list_splice_init(&rchan->desc.wait, &list);
1105
1106	rchan->desc.running = NULL;
1107
1108	list_for_each_entry(desc, &list, node)
1109		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1110
1111	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1112		list_del(&page->node);
1113		free_page((unsigned long)page);
1114	}
1115
1116	/* Remove slave mapping if present. */
1117	if (map->slave.xfer_size) {
1118		dma_unmap_resource(chan->device->dev, map->addr,
1119				   map->slave.xfer_size, map->dir, 0);
1120		map->slave.xfer_size = 0;
1121	}
1122
1123	pm_runtime_put(chan->device->dev);
1124}
1125
1126static struct dma_async_tx_descriptor *
1127rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1128			  dma_addr_t dma_src, size_t len, unsigned long flags)
1129{
1130	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1131	struct scatterlist sgl;
1132
1133	if (!len)
1134		return NULL;
1135
1136	sg_init_table(&sgl, 1);
1137	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1138		    offset_in_page(dma_src));
1139	sg_dma_address(&sgl) = dma_src;
1140	sg_dma_len(&sgl) = len;
1141
1142	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1143				      DMA_MEM_TO_MEM, flags, false);
1144}
1145
1146static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1147				    enum dma_transfer_direction dir)
1148{
1149	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1150	struct rcar_dmac_chan_map *map = &rchan->map;
1151	phys_addr_t dev_addr;
1152	size_t dev_size;
1153	enum dma_data_direction dev_dir;
1154
1155	if (dir == DMA_DEV_TO_MEM) {
1156		dev_addr = rchan->src.slave_addr;
1157		dev_size = rchan->src.xfer_size;
1158		dev_dir = DMA_TO_DEVICE;
1159	} else {
1160		dev_addr = rchan->dst.slave_addr;
1161		dev_size = rchan->dst.xfer_size;
1162		dev_dir = DMA_FROM_DEVICE;
1163	}
1164
1165	/* Reuse current map if possible. */
1166	if (dev_addr == map->slave.slave_addr &&
1167	    dev_size == map->slave.xfer_size &&
1168	    dev_dir == map->dir)
1169		return 0;
1170
1171	/* Remove old mapping if present. */
1172	if (map->slave.xfer_size)
1173		dma_unmap_resource(chan->device->dev, map->addr,
1174				   map->slave.xfer_size, map->dir, 0);
1175	map->slave.xfer_size = 0;
1176
1177	/* Create new slave address map. */
1178	map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1179				     dev_dir, 0);
1180
1181	if (dma_mapping_error(chan->device->dev, map->addr)) {
1182		dev_err(chan->device->dev,
1183			"chan%u: failed to map %zx@%pap", rchan->index,
1184			dev_size, &dev_addr);
1185		return -EIO;
1186	}
1187
1188	dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1189		rchan->index, dev_size, &dev_addr, &map->addr,
1190		dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1191
1192	map->slave.slave_addr = dev_addr;
1193	map->slave.xfer_size = dev_size;
1194	map->dir = dev_dir;
1195
1196	return 0;
1197}
1198
1199static struct dma_async_tx_descriptor *
1200rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1201			unsigned int sg_len, enum dma_transfer_direction dir,
1202			unsigned long flags, void *context)
1203{
1204	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1205
1206	/* Someone calling slave DMA on a generic channel? */
1207	if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1208		dev_warn(chan->device->dev,
1209			 "%s: bad parameter: len=%d, id=%d\n",
1210			 __func__, sg_len, rchan->mid_rid);
1211		return NULL;
1212	}
1213
1214	if (rcar_dmac_map_slave_addr(chan, dir))
1215		return NULL;
1216
1217	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1218				      dir, flags, false);
1219}
1220
1221#define RCAR_DMAC_MAX_SG_LEN	32
1222
1223static struct dma_async_tx_descriptor *
1224rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1225			  size_t buf_len, size_t period_len,
1226			  enum dma_transfer_direction dir, unsigned long flags)
1227{
1228	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1229	struct dma_async_tx_descriptor *desc;
1230	struct scatterlist *sgl;
1231	unsigned int sg_len;
1232	unsigned int i;
1233
1234	/* Someone calling slave DMA on a generic channel? */
1235	if (rchan->mid_rid < 0 || buf_len < period_len) {
1236		dev_warn(chan->device->dev,
1237			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1238			__func__, buf_len, period_len, rchan->mid_rid);
1239		return NULL;
1240	}
1241
1242	if (rcar_dmac_map_slave_addr(chan, dir))
1243		return NULL;
1244
1245	sg_len = buf_len / period_len;
1246	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1247		dev_err(chan->device->dev,
1248			"chan%u: sg length %d exceeds limit %d",
1249			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1250		return NULL;
1251	}
1252
1253	/*
1254	 * Allocate the sg list dynamically as it would consume too much stack
1255	 * space.
1256	 */
1257	sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT);
1258	if (!sgl)
1259		return NULL;
1260
1261	sg_init_table(sgl, sg_len);
1262
1263	for (i = 0; i < sg_len; ++i) {
1264		dma_addr_t src = buf_addr + (period_len * i);
1265
1266		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1267			    offset_in_page(src));
1268		sg_dma_address(&sgl[i]) = src;
1269		sg_dma_len(&sgl[i]) = period_len;
1270	}
1271
1272	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1273				      dir, flags, true);
1274
1275	kfree(sgl);
1276	return desc;
1277}
1278
1279static int rcar_dmac_device_config(struct dma_chan *chan,
1280				   struct dma_slave_config *cfg)
1281{
1282	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1283
1284	/*
1285	 * We could lock this, but you shouldn't be configuring the
1286	 * channel, while using it...
1287	 */
1288	rchan->src.slave_addr = cfg->src_addr;
1289	rchan->dst.slave_addr = cfg->dst_addr;
1290	rchan->src.xfer_size = cfg->src_addr_width;
1291	rchan->dst.xfer_size = cfg->dst_addr_width;
1292
1293	return 0;
1294}
1295
1296static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1297{
1298	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1299	unsigned long flags;
1300
1301	spin_lock_irqsave(&rchan->lock, flags);
1302	rcar_dmac_chan_halt(rchan);
1303	spin_unlock_irqrestore(&rchan->lock, flags);
1304
1305	/*
1306	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1307	 * be running.
1308	 */
1309
1310	rcar_dmac_chan_reinit(rchan);
1311
1312	return 0;
1313}
1314
1315static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1316					       dma_cookie_t cookie)
1317{
1318	struct rcar_dmac_desc *desc = chan->desc.running;
1319	struct rcar_dmac_xfer_chunk *running = NULL;
1320	struct rcar_dmac_xfer_chunk *chunk;
1321	enum dma_status status;
1322	unsigned int residue = 0;
1323	unsigned int dptr = 0;
1324	unsigned int chcrb;
1325	unsigned int tcrb;
1326	unsigned int i;
1327
1328	if (!desc)
1329		return 0;
1330
1331	/*
1332	 * If the cookie corresponds to a descriptor that has been completed
1333	 * there is no residue. The same check has already been performed by the
1334	 * caller but without holding the channel lock, so the descriptor could
1335	 * now be complete.
1336	 */
1337	status = dma_cookie_status(&chan->chan, cookie, NULL);
1338	if (status == DMA_COMPLETE)
1339		return 0;
1340
1341	/*
1342	 * If the cookie doesn't correspond to the currently running transfer
1343	 * then the descriptor hasn't been processed yet, and the residue is
1344	 * equal to the full descriptor size.
1345	 * Also, a client driver is possible to call this function before
1346	 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1347	 * will be the next descriptor, and the done list will appear. So, if
1348	 * the argument cookie matches the done list's cookie, we can assume
1349	 * the residue is zero.
1350	 */
1351	if (cookie != desc->async_tx.cookie) {
1352		list_for_each_entry(desc, &chan->desc.done, node) {
1353			if (cookie == desc->async_tx.cookie)
1354				return 0;
1355		}
1356		list_for_each_entry(desc, &chan->desc.pending, node) {
1357			if (cookie == desc->async_tx.cookie)
1358				return desc->size;
1359		}
1360		list_for_each_entry(desc, &chan->desc.active, node) {
1361			if (cookie == desc->async_tx.cookie)
1362				return desc->size;
1363		}
1364
1365		/*
1366		 * No descriptor found for the cookie, there's thus no residue.
1367		 * This shouldn't happen if the calling driver passes a correct
1368		 * cookie value.
1369		 */
1370		WARN(1, "No descriptor for cookie!");
1371		return 0;
1372	}
1373
1374	/*
1375	 * We need to read two registers.
1376	 * Make sure the control register does not skip to next chunk
1377	 * while reading the counter.
1378	 * Trying it 3 times should be enough: Initial read, retry, retry
1379	 * for the paranoid.
1380	 */
1381	for (i = 0; i < 3; i++) {
1382		chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1383					    RCAR_DMACHCRB_DPTR_MASK;
1384		tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
1385		/* Still the same? */
1386		if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1387			      RCAR_DMACHCRB_DPTR_MASK))
1388			break;
1389	}
1390	WARN_ONCE(i >= 3, "residue might be not continuous!");
1391
1392	/*
1393	 * In descriptor mode the descriptor running pointer is not maintained
1394	 * by the interrupt handler, find the running descriptor from the
1395	 * descriptor pointer field in the CHCRB register. In non-descriptor
1396	 * mode just use the running descriptor pointer.
1397	 */
1398	if (desc->hwdescs.use) {
1399		dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
1400		if (dptr == 0)
1401			dptr = desc->nchunks;
1402		dptr--;
1403		WARN_ON(dptr >= desc->nchunks);
1404	} else {
1405		running = desc->running;
1406	}
1407
1408	/* Compute the size of all chunks still to be transferred. */
1409	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1410		if (chunk == running || ++dptr == desc->nchunks)
1411			break;
1412
1413		residue += chunk->size;
1414	}
1415
1416	/* Add the residue for the current chunk. */
1417	residue += tcrb << desc->xfer_shift;
1418
1419	return residue;
1420}
1421
1422static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1423					   dma_cookie_t cookie,
1424					   struct dma_tx_state *txstate)
1425{
1426	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1427	enum dma_status status;
1428	unsigned long flags;
1429	unsigned int residue;
1430	bool cyclic;
1431
1432	status = dma_cookie_status(chan, cookie, txstate);
1433	if (status == DMA_COMPLETE || !txstate)
1434		return status;
1435
1436	spin_lock_irqsave(&rchan->lock, flags);
1437	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1438	cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1439	spin_unlock_irqrestore(&rchan->lock, flags);
1440
1441	/* if there's no residue, the cookie is complete */
1442	if (!residue && !cyclic)
1443		return DMA_COMPLETE;
1444
1445	dma_set_residue(txstate, residue);
1446
1447	return status;
1448}
1449
1450static void rcar_dmac_issue_pending(struct dma_chan *chan)
1451{
1452	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1453	unsigned long flags;
1454
1455	spin_lock_irqsave(&rchan->lock, flags);
1456
1457	if (list_empty(&rchan->desc.pending))
1458		goto done;
1459
1460	/* Append the pending list to the active list. */
1461	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1462
1463	/*
1464	 * If no transfer is running pick the first descriptor from the active
1465	 * list and start the transfer.
1466	 */
1467	if (!rchan->desc.running) {
1468		struct rcar_dmac_desc *desc;
1469
1470		desc = list_first_entry(&rchan->desc.active,
1471					struct rcar_dmac_desc, node);
1472		rchan->desc.running = desc;
1473
1474		rcar_dmac_chan_start_xfer(rchan);
1475	}
1476
1477done:
1478	spin_unlock_irqrestore(&rchan->lock, flags);
1479}
1480
1481static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1482{
1483	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1484
1485	synchronize_irq(rchan->irq);
1486}
1487
1488/* -----------------------------------------------------------------------------
1489 * IRQ handling
1490 */
1491
1492static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1493{
1494	struct rcar_dmac_desc *desc = chan->desc.running;
1495	unsigned int stage;
1496
1497	if (WARN_ON(!desc || !desc->cyclic)) {
1498		/*
1499		 * This should never happen, there should always be a running
1500		 * cyclic descriptor when a descriptor stage end interrupt is
1501		 * triggered. Warn and return.
1502		 */
1503		return IRQ_NONE;
1504	}
1505
1506	/* Program the interrupt pointer to the next stage. */
1507	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1508		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1509	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1510
1511	return IRQ_WAKE_THREAD;
1512}
1513
1514static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1515{
1516	struct rcar_dmac_desc *desc = chan->desc.running;
1517	irqreturn_t ret = IRQ_WAKE_THREAD;
1518
1519	if (WARN_ON_ONCE(!desc)) {
1520		/*
1521		 * This should never happen, there should always be a running
1522		 * descriptor when a transfer end interrupt is triggered. Warn
1523		 * and return.
1524		 */
1525		return IRQ_NONE;
1526	}
1527
1528	/*
1529	 * The transfer end interrupt isn't generated for each chunk when using
1530	 * descriptor mode. Only update the running chunk pointer in
1531	 * non-descriptor mode.
1532	 */
1533	if (!desc->hwdescs.use) {
1534		/*
1535		 * If we haven't completed the last transfer chunk simply move
1536		 * to the next one. Only wake the IRQ thread if the transfer is
1537		 * cyclic.
1538		 */
1539		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1540			desc->running = list_next_entry(desc->running, node);
1541			if (!desc->cyclic)
1542				ret = IRQ_HANDLED;
1543			goto done;
1544		}
1545
1546		/*
1547		 * We've completed the last transfer chunk. If the transfer is
1548		 * cyclic, move back to the first one.
1549		 */
1550		if (desc->cyclic) {
1551			desc->running =
1552				list_first_entry(&desc->chunks,
1553						 struct rcar_dmac_xfer_chunk,
1554						 node);
1555			goto done;
1556		}
1557	}
1558
1559	/* The descriptor is complete, move it to the done list. */
1560	list_move_tail(&desc->node, &chan->desc.done);
1561
1562	/* Queue the next descriptor, if any. */
1563	if (!list_empty(&chan->desc.active))
1564		chan->desc.running = list_first_entry(&chan->desc.active,
1565						      struct rcar_dmac_desc,
1566						      node);
1567	else
1568		chan->desc.running = NULL;
1569
1570done:
1571	if (chan->desc.running)
1572		rcar_dmac_chan_start_xfer(chan);
1573
1574	return ret;
1575}
1576
1577static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1578{
1579	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1580	struct rcar_dmac_chan *chan = dev;
1581	irqreturn_t ret = IRQ_NONE;
1582	bool reinit = false;
1583	u32 chcr;
1584
1585	spin_lock(&chan->lock);
1586
1587	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1588	if (chcr & RCAR_DMACHCR_CAE) {
1589		struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
1590
1591		/*
1592		 * We don't need to call rcar_dmac_chan_halt()
1593		 * because channel is already stopped in error case.
1594		 * We need to clear register and check DE bit as recovery.
1595		 */
1596		rcar_dmac_chan_clear(dmac, chan);
1597		rcar_dmac_chcr_de_barrier(chan);
1598		reinit = true;
1599		goto spin_lock_end;
1600	}
1601
1602	if (chcr & RCAR_DMACHCR_TE)
1603		mask |= RCAR_DMACHCR_DE;
1604	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1605	if (mask & RCAR_DMACHCR_DE)
1606		rcar_dmac_chcr_de_barrier(chan);
1607
1608	if (chcr & RCAR_DMACHCR_DSE)
1609		ret |= rcar_dmac_isr_desc_stage_end(chan);
1610
1611	if (chcr & RCAR_DMACHCR_TE)
1612		ret |= rcar_dmac_isr_transfer_end(chan);
1613
1614spin_lock_end:
1615	spin_unlock(&chan->lock);
1616
1617	if (reinit) {
1618		dev_err(chan->chan.device->dev, "Channel Address Error\n");
1619
1620		rcar_dmac_chan_reinit(chan);
1621		ret = IRQ_HANDLED;
1622	}
1623
1624	return ret;
1625}
1626
1627static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1628{
1629	struct rcar_dmac_chan *chan = dev;
1630	struct rcar_dmac_desc *desc;
1631	struct dmaengine_desc_callback cb;
1632
1633	spin_lock_irq(&chan->lock);
1634
1635	/* For cyclic transfers notify the user after every chunk. */
1636	if (chan->desc.running && chan->desc.running->cyclic) {
1637		desc = chan->desc.running;
1638		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1639
1640		if (dmaengine_desc_callback_valid(&cb)) {
1641			spin_unlock_irq(&chan->lock);
1642			dmaengine_desc_callback_invoke(&cb, NULL);
1643			spin_lock_irq(&chan->lock);
1644		}
1645	}
1646
1647	/*
1648	 * Call the callback function for all descriptors on the done list and
1649	 * move them to the ack wait list.
1650	 */
1651	while (!list_empty(&chan->desc.done)) {
1652		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1653					node);
1654		dma_cookie_complete(&desc->async_tx);
1655		list_del(&desc->node);
1656
1657		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1658		if (dmaengine_desc_callback_valid(&cb)) {
1659			spin_unlock_irq(&chan->lock);
1660			/*
1661			 * We own the only reference to this descriptor, we can
1662			 * safely dereference it without holding the channel
1663			 * lock.
1664			 */
1665			dmaengine_desc_callback_invoke(&cb, NULL);
1666			spin_lock_irq(&chan->lock);
1667		}
1668
1669		list_add_tail(&desc->node, &chan->desc.wait);
1670	}
1671
1672	spin_unlock_irq(&chan->lock);
1673
1674	/* Recycle all acked descriptors. */
1675	rcar_dmac_desc_recycle_acked(chan);
1676
1677	return IRQ_HANDLED;
1678}
1679
1680/* -----------------------------------------------------------------------------
1681 * OF xlate and channel filter
1682 */
1683
1684static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1685{
1686	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1687	struct of_phandle_args *dma_spec = arg;
1688
1689	/*
1690	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1691	 * function knows from which device it wants to allocate a channel from,
1692	 * and would be perfectly capable of selecting the channel it wants.
1693	 * Forcing it to call dma_request_channel() and iterate through all
1694	 * channels from all controllers is just pointless.
1695	 */
1696	if (chan->device->device_config != rcar_dmac_device_config)
1697		return false;
1698
1699	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1700}
1701
1702static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1703					   struct of_dma *ofdma)
1704{
1705	struct rcar_dmac_chan *rchan;
1706	struct dma_chan *chan;
1707	dma_cap_mask_t mask;
1708
1709	if (dma_spec->args_count != 1)
1710		return NULL;
1711
1712	/* Only slave DMA channels can be allocated via DT */
1713	dma_cap_zero(mask);
1714	dma_cap_set(DMA_SLAVE, mask);
1715
1716	chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
1717				     ofdma->of_node);
1718	if (!chan)
1719		return NULL;
1720
1721	rchan = to_rcar_dmac_chan(chan);
1722	rchan->mid_rid = dma_spec->args[0];
1723
1724	return chan;
1725}
1726
1727/* -----------------------------------------------------------------------------
1728 * Power management
1729 */
1730
1731#ifdef CONFIG_PM
1732static int rcar_dmac_runtime_suspend(struct device *dev)
1733{
1734	return 0;
1735}
1736
1737static int rcar_dmac_runtime_resume(struct device *dev)
1738{
1739	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1740
1741	return rcar_dmac_init(dmac);
1742}
1743#endif
1744
1745static const struct dev_pm_ops rcar_dmac_pm = {
1746	/*
1747	 * TODO for system sleep/resume:
1748	 *   - Wait for the current transfer to complete and stop the device,
1749	 *   - Resume transfers, if any.
1750	 */
1751	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1752				      pm_runtime_force_resume)
1753	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1754			   NULL)
1755};
1756
1757/* -----------------------------------------------------------------------------
1758 * Probe and remove
1759 */
1760
1761static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1762				struct rcar_dmac_chan *rchan)
1763{
1764	struct platform_device *pdev = to_platform_device(dmac->dev);
1765	struct dma_chan *chan = &rchan->chan;
1766	char pdev_irqname[5];
1767	char *irqname;
1768	int ret;
1769
1770	rchan->mid_rid = -EINVAL;
1771
1772	spin_lock_init(&rchan->lock);
1773
1774	INIT_LIST_HEAD(&rchan->desc.free);
1775	INIT_LIST_HEAD(&rchan->desc.pending);
1776	INIT_LIST_HEAD(&rchan->desc.active);
1777	INIT_LIST_HEAD(&rchan->desc.done);
1778	INIT_LIST_HEAD(&rchan->desc.wait);
1779
1780	/* Request the channel interrupt. */
1781	sprintf(pdev_irqname, "ch%u", rchan->index);
1782	rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1783	if (rchan->irq < 0)
1784		return -ENODEV;
1785
1786	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1787				 dev_name(dmac->dev), rchan->index);
1788	if (!irqname)
1789		return -ENOMEM;
1790
1791	/*
1792	 * Initialize the DMA engine channel and add it to the DMA engine
1793	 * channels list.
1794	 */
1795	chan->device = &dmac->engine;
1796	dma_cookie_init(chan);
1797
1798	list_add_tail(&chan->device_node, &dmac->engine.channels);
1799
1800	ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1801					rcar_dmac_isr_channel,
1802					rcar_dmac_isr_channel_thread, 0,
1803					irqname, rchan);
1804	if (ret) {
1805		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1806			rchan->irq, ret);
1807		return ret;
1808	}
1809
1810	return 0;
1811}
1812
1813#define RCAR_DMAC_MAX_CHANNELS	32
1814
1815static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1816{
1817	struct device_node *np = dev->of_node;
1818	int ret;
1819
1820	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1821	if (ret < 0) {
1822		dev_err(dev, "unable to read dma-channels property\n");
1823		return ret;
1824	}
1825
1826	/* The hardware and driver don't support more than 32 bits in CHCLR */
1827	if (dmac->n_channels <= 0 ||
1828	    dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
1829		dev_err(dev, "invalid number of channels %u\n",
1830			dmac->n_channels);
1831		return -EINVAL;
1832	}
1833
1834	/*
1835	 * If the driver is unable to read dma-channel-mask property,
1836	 * the driver assumes that it can use all channels.
1837	 */
1838	dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
1839	of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
1840
1841	/* If the property has out-of-channel mask, this driver clears it */
1842	dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
1843
1844	return 0;
1845}
1846
1847static int rcar_dmac_probe(struct platform_device *pdev)
1848{
1849	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1850		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1851		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1852		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1853	const struct rcar_dmac_of_data *data;
1854	struct rcar_dmac_chan *chan;
1855	struct dma_device *engine;
1856	void __iomem *chan_base;
1857	struct rcar_dmac *dmac;
1858	unsigned int i;
1859	int ret;
1860
1861	data = of_device_get_match_data(&pdev->dev);
1862	if (!data)
1863		return -EINVAL;
1864
1865	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1866	if (!dmac)
1867		return -ENOMEM;
1868
1869	dmac->dev = &pdev->dev;
1870	platform_set_drvdata(pdev, dmac);
1871	ret = dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1872	if (ret)
1873		return ret;
1874
1875	ret = dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1876	if (ret)
1877		return ret;
1878
1879	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1880	if (ret < 0)
1881		return ret;
1882
1883	/*
1884	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1885	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1886	 * is connected to microTLB 0 on currently supported platforms, so we
1887	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1888	 * level we can't disable it selectively, so ignore channel 0 for now if
1889	 * the device is part of an IOMMU group.
1890	 */
1891	if (device_iommu_mapped(&pdev->dev))
1892		dmac->channels_mask &= ~BIT(0);
1893
1894	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1895				      sizeof(*dmac->channels), GFP_KERNEL);
1896	if (!dmac->channels)
1897		return -ENOMEM;
1898
1899	/* Request resources. */
1900	dmac->dmac_base = devm_platform_ioremap_resource(pdev, 0);
1901	if (IS_ERR(dmac->dmac_base))
1902		return PTR_ERR(dmac->dmac_base);
1903
1904	if (!data->chan_offset_base) {
1905		dmac->chan_base = devm_platform_ioremap_resource(pdev, 1);
1906		if (IS_ERR(dmac->chan_base))
1907			return PTR_ERR(dmac->chan_base);
1908
1909		chan_base = dmac->chan_base;
1910	} else {
1911		chan_base = dmac->dmac_base + data->chan_offset_base;
1912	}
1913
1914	for_each_rcar_dmac_chan(i, dmac, chan) {
1915		chan->index = i;
1916		chan->iomem = chan_base + i * data->chan_offset_stride;
1917	}
1918
1919	/* Enable runtime PM and initialize the device. */
1920	pm_runtime_enable(&pdev->dev);
1921	ret = pm_runtime_resume_and_get(&pdev->dev);
1922	if (ret < 0) {
1923		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1924		goto err_pm_disable;
1925	}
1926
1927	ret = rcar_dmac_init(dmac);
1928	pm_runtime_put(&pdev->dev);
1929
1930	if (ret) {
1931		dev_err(&pdev->dev, "failed to reset device\n");
1932		goto err_pm_disable;
1933	}
1934
1935	/* Initialize engine */
1936	engine = &dmac->engine;
1937
1938	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1939	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1940
1941	engine->dev		= &pdev->dev;
1942	engine->copy_align	= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1943
1944	engine->src_addr_widths	= widths;
1945	engine->dst_addr_widths	= widths;
1946	engine->directions	= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1947	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1948
1949	engine->device_alloc_chan_resources	= rcar_dmac_alloc_chan_resources;
1950	engine->device_free_chan_resources	= rcar_dmac_free_chan_resources;
1951	engine->device_prep_dma_memcpy		= rcar_dmac_prep_dma_memcpy;
1952	engine->device_prep_slave_sg		= rcar_dmac_prep_slave_sg;
1953	engine->device_prep_dma_cyclic		= rcar_dmac_prep_dma_cyclic;
1954	engine->device_config			= rcar_dmac_device_config;
1955	engine->device_pause			= rcar_dmac_chan_pause;
1956	engine->device_terminate_all		= rcar_dmac_chan_terminate_all;
1957	engine->device_tx_status		= rcar_dmac_tx_status;
1958	engine->device_issue_pending		= rcar_dmac_issue_pending;
1959	engine->device_synchronize		= rcar_dmac_device_synchronize;
1960
1961	INIT_LIST_HEAD(&engine->channels);
1962
1963	for_each_rcar_dmac_chan(i, dmac, chan) {
1964		ret = rcar_dmac_chan_probe(dmac, chan);
1965		if (ret < 0)
1966			goto err_pm_disable;
1967	}
1968
1969	/* Register the DMAC as a DMA provider for DT. */
1970	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1971					 NULL);
1972	if (ret < 0)
1973		goto err_pm_disable;
1974
1975	/*
1976	 * Register the DMA engine device.
1977	 *
1978	 * Default transfer size of 32 bytes requires 32-byte alignment.
1979	 */
1980	ret = dma_async_device_register(engine);
1981	if (ret < 0)
1982		goto err_dma_free;
1983
1984	return 0;
1985
1986err_dma_free:
1987	of_dma_controller_free(pdev->dev.of_node);
1988err_pm_disable:
1989	pm_runtime_disable(&pdev->dev);
1990	return ret;
1991}
1992
1993static void rcar_dmac_remove(struct platform_device *pdev)
1994{
1995	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1996
1997	of_dma_controller_free(pdev->dev.of_node);
1998	dma_async_device_unregister(&dmac->engine);
1999
2000	pm_runtime_disable(&pdev->dev);
2001}
2002
2003static void rcar_dmac_shutdown(struct platform_device *pdev)
2004{
2005	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
2006
2007	rcar_dmac_stop_all_chan(dmac);
2008}
2009
2010static const struct rcar_dmac_of_data rcar_dmac_data = {
2011	.chan_offset_base	= 0x8000,
2012	.chan_offset_stride	= 0x80,
2013};
2014
2015static const struct rcar_dmac_of_data rcar_gen4_dmac_data = {
2016	.chan_offset_base	= 0x0,
2017	.chan_offset_stride	= 0x1000,
2018};
2019
2020static const struct of_device_id rcar_dmac_of_ids[] = {
2021	{
2022		.compatible = "renesas,rcar-dmac",
2023		.data = &rcar_dmac_data,
2024	}, {
2025		.compatible = "renesas,rcar-gen4-dmac",
2026		.data = &rcar_gen4_dmac_data,
2027	}, {
2028		.compatible = "renesas,dmac-r8a779a0",
2029		.data = &rcar_gen4_dmac_data,
2030	},
2031	{ /* Sentinel */ }
2032};
2033MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
2034
2035static struct platform_driver rcar_dmac_driver = {
2036	.driver		= {
2037		.pm	= &rcar_dmac_pm,
2038		.name	= "rcar-dmac",
2039		.of_match_table = rcar_dmac_of_ids,
2040	},
2041	.probe		= rcar_dmac_probe,
2042	.remove_new	= rcar_dmac_remove,
2043	.shutdown	= rcar_dmac_shutdown,
2044};
2045
2046module_platform_driver(rcar_dmac_driver);
2047
2048MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2049MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2050MODULE_LICENSE("GPL v2");