Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
   1/*
   2 * Xilinx SystemACE device driver
   3 *
   4 * Copyright 2007 Secret Lab Technologies Ltd.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 */
  10
  11/*
  12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
  13 * bitstream from a file on a CF card and squirting it into FPGAs connected
  14 * to the SystemACE JTAG chain.  It also has the advantage of providing an
  15 * MPU interface which can be used to control the FPGA configuration process
  16 * and to use the attached CF card for general purpose storage.
  17 *
  18 * This driver is a block device driver for the SystemACE.
  19 *
  20 * Initialization:
  21 *    The driver registers itself as a platform_device driver at module
  22 *    load time.  The platform bus will take care of calling the
  23 *    ace_probe() method for all SystemACE instances in the system.  Any
  24 *    number of SystemACE instances are supported.  ace_probe() calls
  25 *    ace_setup() which initialized all data structures, reads the CF
  26 *    id structure and registers the device.
  27 *
  28 * Processing:
  29 *    Just about all of the heavy lifting in this driver is performed by
  30 *    a Finite State Machine (FSM).  The driver needs to wait on a number
  31 *    of events; some raised by interrupts, some which need to be polled
  32 *    for.  Describing all of the behaviour in a FSM seems to be the
  33 *    easiest way to keep the complexity low and make it easy to
  34 *    understand what the driver is doing.  If the block ops or the
  35 *    request function need to interact with the hardware, then they
  36 *    simply need to flag the request and kick of FSM processing.
  37 *
  38 *    The FSM itself is atomic-safe code which can be run from any
  39 *    context.  The general process flow is:
  40 *    1. obtain the ace->lock spinlock.
  41 *    2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
  42 *       cleared.
  43 *    3. release the lock.
  44 *
  45 *    Individual states do not sleep in any way.  If a condition needs to
  46 *    be waited for then the state much clear the fsm_continue flag and
  47 *    either schedule the FSM to be run again at a later time, or expect
  48 *    an interrupt to call the FSM when the desired condition is met.
  49 *
  50 *    In normal operation, the FSM is processed at interrupt context
  51 *    either when the driver's tasklet is scheduled, or when an irq is
  52 *    raised by the hardware.  The tasklet can be scheduled at any time.
  53 *    The request method in particular schedules the tasklet when a new
  54 *    request has been indicated by the block layer.  Once started, the
  55 *    FSM proceeds as far as it can processing the request until it
  56 *    needs on a hardware event.  At this point, it must yield execution.
  57 *
  58 *    A state has two options when yielding execution:
  59 *    1. ace_fsm_yield()
  60 *       - Call if need to poll for event.
  61 *       - clears the fsm_continue flag to exit the processing loop
  62 *       - reschedules the tasklet to run again as soon as possible
  63 *    2. ace_fsm_yieldirq()
  64 *       - Call if an irq is expected from the HW
  65 *       - clears the fsm_continue flag to exit the processing loop
  66 *       - does not reschedule the tasklet so the FSM will not be processed
  67 *         again until an irq is received.
  68 *    After calling a yield function, the state must return control back
  69 *    to the FSM main loop.
  70 *
  71 *    Additionally, the driver maintains a kernel timer which can process
  72 *    the FSM.  If the FSM gets stalled, typically due to a missed
  73 *    interrupt, then the kernel timer will expire and the driver can
  74 *    continue where it left off.
  75 *
  76 * To Do:
  77 *    - Add FPGA configuration control interface.
  78 *    - Request major number from lanana
  79 */
  80
  81#undef DEBUG
  82
  83#include <linux/module.h>
  84#include <linux/ctype.h>
  85#include <linux/init.h>
  86#include <linux/interrupt.h>
  87#include <linux/errno.h>
  88#include <linux/kernel.h>
  89#include <linux/delay.h>
  90#include <linux/slab.h>
  91#include <linux/blkdev.h>
  92#include <linux/mutex.h>
  93#include <linux/ata.h>
  94#include <linux/hdreg.h>
  95#include <linux/platform_device.h>
  96#if defined(CONFIG_OF)
  97#include <linux/of_address.h>
  98#include <linux/of_device.h>
  99#include <linux/of_platform.h>
 100#endif
 101
 102MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
 103MODULE_DESCRIPTION("Xilinx SystemACE device driver");
 104MODULE_LICENSE("GPL");
 105
 106/* SystemACE register definitions */
 107#define ACE_BUSMODE (0x00)
 108
 109#define ACE_STATUS (0x04)
 110#define ACE_STATUS_CFGLOCK      (0x00000001)
 111#define ACE_STATUS_MPULOCK      (0x00000002)
 112#define ACE_STATUS_CFGERROR     (0x00000004)	/* config controller error */
 113#define ACE_STATUS_CFCERROR     (0x00000008)	/* CF controller error */
 114#define ACE_STATUS_CFDETECT     (0x00000010)
 115#define ACE_STATUS_DATABUFRDY   (0x00000020)
 116#define ACE_STATUS_DATABUFMODE  (0x00000040)
 117#define ACE_STATUS_CFGDONE      (0x00000080)
 118#define ACE_STATUS_RDYFORCFCMD  (0x00000100)
 119#define ACE_STATUS_CFGMODEPIN   (0x00000200)
 120#define ACE_STATUS_CFGADDR_MASK (0x0000e000)
 121#define ACE_STATUS_CFBSY        (0x00020000)
 122#define ACE_STATUS_CFRDY        (0x00040000)
 123#define ACE_STATUS_CFDWF        (0x00080000)
 124#define ACE_STATUS_CFDSC        (0x00100000)
 125#define ACE_STATUS_CFDRQ        (0x00200000)
 126#define ACE_STATUS_CFCORR       (0x00400000)
 127#define ACE_STATUS_CFERR        (0x00800000)
 128
 129#define ACE_ERROR (0x08)
 130#define ACE_CFGLBA (0x0c)
 131#define ACE_MPULBA (0x10)
 132
 133#define ACE_SECCNTCMD (0x14)
 134#define ACE_SECCNTCMD_RESET      (0x0100)
 135#define ACE_SECCNTCMD_IDENTIFY   (0x0200)
 136#define ACE_SECCNTCMD_READ_DATA  (0x0300)
 137#define ACE_SECCNTCMD_WRITE_DATA (0x0400)
 138#define ACE_SECCNTCMD_ABORT      (0x0600)
 139
 140#define ACE_VERSION (0x16)
 141#define ACE_VERSION_REVISION_MASK (0x00FF)
 142#define ACE_VERSION_MINOR_MASK    (0x0F00)
 143#define ACE_VERSION_MAJOR_MASK    (0xF000)
 144
 145#define ACE_CTRL (0x18)
 146#define ACE_CTRL_FORCELOCKREQ   (0x0001)
 147#define ACE_CTRL_LOCKREQ        (0x0002)
 148#define ACE_CTRL_FORCECFGADDR   (0x0004)
 149#define ACE_CTRL_FORCECFGMODE   (0x0008)
 150#define ACE_CTRL_CFGMODE        (0x0010)
 151#define ACE_CTRL_CFGSTART       (0x0020)
 152#define ACE_CTRL_CFGSEL         (0x0040)
 153#define ACE_CTRL_CFGRESET       (0x0080)
 154#define ACE_CTRL_DATABUFRDYIRQ  (0x0100)
 155#define ACE_CTRL_ERRORIRQ       (0x0200)
 156#define ACE_CTRL_CFGDONEIRQ     (0x0400)
 157#define ACE_CTRL_RESETIRQ       (0x0800)
 158#define ACE_CTRL_CFGPROG        (0x1000)
 159#define ACE_CTRL_CFGADDR_MASK   (0xe000)
 160
 161#define ACE_FATSTAT (0x1c)
 162
 163#define ACE_NUM_MINORS 16
 164#define ACE_SECTOR_SIZE (512)
 165#define ACE_FIFO_SIZE (32)
 166#define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
 167
 168#define ACE_BUS_WIDTH_8  0
 169#define ACE_BUS_WIDTH_16 1
 170
 171struct ace_reg_ops;
 172
 173struct ace_device {
 174	/* driver state data */
 175	int id;
 176	int media_change;
 177	int users;
 178	struct list_head list;
 179
 180	/* finite state machine data */
 181	struct tasklet_struct fsm_tasklet;
 182	uint fsm_task;		/* Current activity (ACE_TASK_*) */
 183	uint fsm_state;		/* Current state (ACE_FSM_STATE_*) */
 184	uint fsm_continue_flag;	/* cleared to exit FSM mainloop */
 185	uint fsm_iter_num;
 186	struct timer_list stall_timer;
 187
 188	/* Transfer state/result, use for both id and block request */
 189	struct request *req;	/* request being processed */
 190	void *data_ptr;		/* pointer to I/O buffer */
 191	int data_count;		/* number of buffers remaining */
 192	int data_result;	/* Result of transfer; 0 := success */
 193
 194	int id_req_count;	/* count of id requests */
 195	int id_result;
 196	struct completion id_completion;	/* used when id req finishes */
 197	int in_irq;
 198
 199	/* Details of hardware device */
 200	resource_size_t physaddr;
 201	void __iomem *baseaddr;
 202	int irq;
 203	int bus_width;		/* 0 := 8 bit; 1 := 16 bit */
 204	struct ace_reg_ops *reg_ops;
 205	int lock_count;
 206
 207	/* Block device data structures */
 208	spinlock_t lock;
 209	struct device *dev;
 210	struct request_queue *queue;
 211	struct gendisk *gd;
 212
 213	/* Inserted CF card parameters */
 214	u16 cf_id[ATA_ID_WORDS];
 215};
 216
 217static DEFINE_MUTEX(xsysace_mutex);
 218static int ace_major;
 219
 220/* ---------------------------------------------------------------------
 221 * Low level register access
 222 */
 223
 224struct ace_reg_ops {
 225	u16(*in) (struct ace_device * ace, int reg);
 226	void (*out) (struct ace_device * ace, int reg, u16 val);
 227	void (*datain) (struct ace_device * ace);
 228	void (*dataout) (struct ace_device * ace);
 229};
 230
 231/* 8 Bit bus width */
 232static u16 ace_in_8(struct ace_device *ace, int reg)
 233{
 234	void __iomem *r = ace->baseaddr + reg;
 235	return in_8(r) | (in_8(r + 1) << 8);
 236}
 237
 238static void ace_out_8(struct ace_device *ace, int reg, u16 val)
 239{
 240	void __iomem *r = ace->baseaddr + reg;
 241	out_8(r, val);
 242	out_8(r + 1, val >> 8);
 243}
 244
 245static void ace_datain_8(struct ace_device *ace)
 246{
 247	void __iomem *r = ace->baseaddr + 0x40;
 248	u8 *dst = ace->data_ptr;
 249	int i = ACE_FIFO_SIZE;
 250	while (i--)
 251		*dst++ = in_8(r++);
 252	ace->data_ptr = dst;
 253}
 254
 255static void ace_dataout_8(struct ace_device *ace)
 256{
 257	void __iomem *r = ace->baseaddr + 0x40;
 258	u8 *src = ace->data_ptr;
 259	int i = ACE_FIFO_SIZE;
 260	while (i--)
 261		out_8(r++, *src++);
 262	ace->data_ptr = src;
 263}
 264
 265static struct ace_reg_ops ace_reg_8_ops = {
 266	.in = ace_in_8,
 267	.out = ace_out_8,
 268	.datain = ace_datain_8,
 269	.dataout = ace_dataout_8,
 270};
 271
 272/* 16 bit big endian bus attachment */
 273static u16 ace_in_be16(struct ace_device *ace, int reg)
 274{
 275	return in_be16(ace->baseaddr + reg);
 276}
 277
 278static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
 279{
 280	out_be16(ace->baseaddr + reg, val);
 281}
 282
 283static void ace_datain_be16(struct ace_device *ace)
 284{
 285	int i = ACE_FIFO_SIZE / 2;
 286	u16 *dst = ace->data_ptr;
 287	while (i--)
 288		*dst++ = in_le16(ace->baseaddr + 0x40);
 289	ace->data_ptr = dst;
 290}
 291
 292static void ace_dataout_be16(struct ace_device *ace)
 293{
 294	int i = ACE_FIFO_SIZE / 2;
 295	u16 *src = ace->data_ptr;
 296	while (i--)
 297		out_le16(ace->baseaddr + 0x40, *src++);
 298	ace->data_ptr = src;
 299}
 300
 301/* 16 bit little endian bus attachment */
 302static u16 ace_in_le16(struct ace_device *ace, int reg)
 303{
 304	return in_le16(ace->baseaddr + reg);
 305}
 306
 307static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
 308{
 309	out_le16(ace->baseaddr + reg, val);
 310}
 311
 312static void ace_datain_le16(struct ace_device *ace)
 313{
 314	int i = ACE_FIFO_SIZE / 2;
 315	u16 *dst = ace->data_ptr;
 316	while (i--)
 317		*dst++ = in_be16(ace->baseaddr + 0x40);
 318	ace->data_ptr = dst;
 319}
 320
 321static void ace_dataout_le16(struct ace_device *ace)
 322{
 323	int i = ACE_FIFO_SIZE / 2;
 324	u16 *src = ace->data_ptr;
 325	while (i--)
 326		out_be16(ace->baseaddr + 0x40, *src++);
 327	ace->data_ptr = src;
 328}
 329
 330static struct ace_reg_ops ace_reg_be16_ops = {
 331	.in = ace_in_be16,
 332	.out = ace_out_be16,
 333	.datain = ace_datain_be16,
 334	.dataout = ace_dataout_be16,
 335};
 336
 337static struct ace_reg_ops ace_reg_le16_ops = {
 338	.in = ace_in_le16,
 339	.out = ace_out_le16,
 340	.datain = ace_datain_le16,
 341	.dataout = ace_dataout_le16,
 342};
 343
 344static inline u16 ace_in(struct ace_device *ace, int reg)
 345{
 346	return ace->reg_ops->in(ace, reg);
 347}
 348
 349static inline u32 ace_in32(struct ace_device *ace, int reg)
 350{
 351	return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
 352}
 353
 354static inline void ace_out(struct ace_device *ace, int reg, u16 val)
 355{
 356	ace->reg_ops->out(ace, reg, val);
 357}
 358
 359static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
 360{
 361	ace_out(ace, reg, val);
 362	ace_out(ace, reg + 2, val >> 16);
 363}
 364
 365/* ---------------------------------------------------------------------
 366 * Debug support functions
 367 */
 368
 369#if defined(DEBUG)
 370static void ace_dump_mem(void *base, int len)
 371{
 372	const char *ptr = base;
 373	int i, j;
 374
 375	for (i = 0; i < len; i += 16) {
 376		printk(KERN_INFO "%.8x:", i);
 377		for (j = 0; j < 16; j++) {
 378			if (!(j % 4))
 379				printk(" ");
 380			printk("%.2x", ptr[i + j]);
 381		}
 382		printk(" ");
 383		for (j = 0; j < 16; j++)
 384			printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
 385		printk("\n");
 386	}
 387}
 388#else
 389static inline void ace_dump_mem(void *base, int len)
 390{
 391}
 392#endif
 393
 394static void ace_dump_regs(struct ace_device *ace)
 395{
 396	dev_info(ace->dev,
 397		 "    ctrl:  %.8x  seccnt/cmd: %.4x      ver:%.4x\n"
 398		 "    status:%.8x  mpu_lba:%.8x  busmode:%4x\n"
 399		 "    error: %.8x  cfg_lba:%.8x  fatstat:%.4x\n",
 400		 ace_in32(ace, ACE_CTRL),
 401		 ace_in(ace, ACE_SECCNTCMD),
 402		 ace_in(ace, ACE_VERSION),
 403		 ace_in32(ace, ACE_STATUS),
 404		 ace_in32(ace, ACE_MPULBA),
 405		 ace_in(ace, ACE_BUSMODE),
 406		 ace_in32(ace, ACE_ERROR),
 407		 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
 408}
 409
 410void ace_fix_driveid(u16 *id)
 411{
 412#if defined(__BIG_ENDIAN)
 413	int i;
 414
 415	/* All half words have wrong byte order; swap the bytes */
 416	for (i = 0; i < ATA_ID_WORDS; i++, id++)
 417		*id = le16_to_cpu(*id);
 418#endif
 419}
 420
 421/* ---------------------------------------------------------------------
 422 * Finite State Machine (FSM) implementation
 423 */
 424
 425/* FSM tasks; used to direct state transitions */
 426#define ACE_TASK_IDLE      0
 427#define ACE_TASK_IDENTIFY  1
 428#define ACE_TASK_READ      2
 429#define ACE_TASK_WRITE     3
 430#define ACE_FSM_NUM_TASKS  4
 431
 432/* FSM state definitions */
 433#define ACE_FSM_STATE_IDLE               0
 434#define ACE_FSM_STATE_REQ_LOCK           1
 435#define ACE_FSM_STATE_WAIT_LOCK          2
 436#define ACE_FSM_STATE_WAIT_CFREADY       3
 437#define ACE_FSM_STATE_IDENTIFY_PREPARE   4
 438#define ACE_FSM_STATE_IDENTIFY_TRANSFER  5
 439#define ACE_FSM_STATE_IDENTIFY_COMPLETE  6
 440#define ACE_FSM_STATE_REQ_PREPARE        7
 441#define ACE_FSM_STATE_REQ_TRANSFER       8
 442#define ACE_FSM_STATE_REQ_COMPLETE       9
 443#define ACE_FSM_STATE_ERROR             10
 444#define ACE_FSM_NUM_STATES              11
 445
 446/* Set flag to exit FSM loop and reschedule tasklet */
 447static inline void ace_fsm_yield(struct ace_device *ace)
 448{
 449	dev_dbg(ace->dev, "ace_fsm_yield()\n");
 450	tasklet_schedule(&ace->fsm_tasklet);
 451	ace->fsm_continue_flag = 0;
 452}
 453
 454/* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
 455static inline void ace_fsm_yieldirq(struct ace_device *ace)
 456{
 457	dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
 458
 459	if (ace->irq == NO_IRQ)
 460		/* No IRQ assigned, so need to poll */
 461		tasklet_schedule(&ace->fsm_tasklet);
 462	ace->fsm_continue_flag = 0;
 463}
 464
 465/* Get the next read/write request; ending requests that we don't handle */
 466struct request *ace_get_next_request(struct request_queue * q)
 467{
 468	struct request *req;
 469
 470	while ((req = blk_peek_request(q)) != NULL) {
 471		if (req->cmd_type == REQ_TYPE_FS)
 472			break;
 473		blk_start_request(req);
 474		__blk_end_request_all(req, -EIO);
 475	}
 476	return req;
 477}
 478
 479static void ace_fsm_dostate(struct ace_device *ace)
 480{
 481	struct request *req;
 482	u32 status;
 483	u16 val;
 484	int count;
 485
 486#if defined(DEBUG)
 487	dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
 488		ace->fsm_state, ace->id_req_count);
 489#endif
 490
 491	/* Verify that there is actually a CF in the slot. If not, then
 492	 * bail out back to the idle state and wake up all the waiters */
 493	status = ace_in32(ace, ACE_STATUS);
 494	if ((status & ACE_STATUS_CFDETECT) == 0) {
 495		ace->fsm_state = ACE_FSM_STATE_IDLE;
 496		ace->media_change = 1;
 497		set_capacity(ace->gd, 0);
 498		dev_info(ace->dev, "No CF in slot\n");
 499
 500		/* Drop all in-flight and pending requests */
 501		if (ace->req) {
 502			__blk_end_request_all(ace->req, -EIO);
 503			ace->req = NULL;
 504		}
 505		while ((req = blk_fetch_request(ace->queue)) != NULL)
 506			__blk_end_request_all(req, -EIO);
 507
 508		/* Drop back to IDLE state and notify waiters */
 509		ace->fsm_state = ACE_FSM_STATE_IDLE;
 510		ace->id_result = -EIO;
 511		while (ace->id_req_count) {
 512			complete(&ace->id_completion);
 513			ace->id_req_count--;
 514		}
 515	}
 516
 517	switch (ace->fsm_state) {
 518	case ACE_FSM_STATE_IDLE:
 519		/* See if there is anything to do */
 520		if (ace->id_req_count || ace_get_next_request(ace->queue)) {
 521			ace->fsm_iter_num++;
 522			ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
 523			mod_timer(&ace->stall_timer, jiffies + HZ);
 524			if (!timer_pending(&ace->stall_timer))
 525				add_timer(&ace->stall_timer);
 526			break;
 527		}
 528		del_timer(&ace->stall_timer);
 529		ace->fsm_continue_flag = 0;
 530		break;
 531
 532	case ACE_FSM_STATE_REQ_LOCK:
 533		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
 534			/* Already have the lock, jump to next state */
 535			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
 536			break;
 537		}
 538
 539		/* Request the lock */
 540		val = ace_in(ace, ACE_CTRL);
 541		ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
 542		ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
 543		break;
 544
 545	case ACE_FSM_STATE_WAIT_LOCK:
 546		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
 547			/* got the lock; move to next state */
 548			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
 549			break;
 550		}
 551
 552		/* wait a bit for the lock */
 553		ace_fsm_yield(ace);
 554		break;
 555
 556	case ACE_FSM_STATE_WAIT_CFREADY:
 557		status = ace_in32(ace, ACE_STATUS);
 558		if (!(status & ACE_STATUS_RDYFORCFCMD) ||
 559		    (status & ACE_STATUS_CFBSY)) {
 560			/* CF card isn't ready; it needs to be polled */
 561			ace_fsm_yield(ace);
 562			break;
 563		}
 564
 565		/* Device is ready for command; determine what to do next */
 566		if (ace->id_req_count)
 567			ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
 568		else
 569			ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
 570		break;
 571
 572	case ACE_FSM_STATE_IDENTIFY_PREPARE:
 573		/* Send identify command */
 574		ace->fsm_task = ACE_TASK_IDENTIFY;
 575		ace->data_ptr = ace->cf_id;
 576		ace->data_count = ACE_BUF_PER_SECTOR;
 577		ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
 578
 579		/* As per datasheet, put config controller in reset */
 580		val = ace_in(ace, ACE_CTRL);
 581		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
 582
 583		/* irq handler takes over from this point; wait for the
 584		 * transfer to complete */
 585		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
 586		ace_fsm_yieldirq(ace);
 587		break;
 588
 589	case ACE_FSM_STATE_IDENTIFY_TRANSFER:
 590		/* Check that the sysace is ready to receive data */
 591		status = ace_in32(ace, ACE_STATUS);
 592		if (status & ACE_STATUS_CFBSY) {
 593			dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
 594				ace->fsm_task, ace->fsm_iter_num,
 595				ace->data_count);
 596			ace_fsm_yield(ace);
 597			break;
 598		}
 599		if (!(status & ACE_STATUS_DATABUFRDY)) {
 600			ace_fsm_yield(ace);
 601			break;
 602		}
 603
 604		/* Transfer the next buffer */
 605		ace->reg_ops->datain(ace);
 606		ace->data_count--;
 607
 608		/* If there are still buffers to be transfers; jump out here */
 609		if (ace->data_count != 0) {
 610			ace_fsm_yieldirq(ace);
 611			break;
 612		}
 613
 614		/* transfer finished; kick state machine */
 615		dev_dbg(ace->dev, "identify finished\n");
 616		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
 617		break;
 618
 619	case ACE_FSM_STATE_IDENTIFY_COMPLETE:
 620		ace_fix_driveid(ace->cf_id);
 621		ace_dump_mem(ace->cf_id, 512);	/* Debug: Dump out disk ID */
 622
 623		if (ace->data_result) {
 624			/* Error occurred, disable the disk */
 625			ace->media_change = 1;
 626			set_capacity(ace->gd, 0);
 627			dev_err(ace->dev, "error fetching CF id (%i)\n",
 628				ace->data_result);
 629		} else {
 630			ace->media_change = 0;
 631
 632			/* Record disk parameters */
 633			set_capacity(ace->gd,
 634				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
 635			dev_info(ace->dev, "capacity: %i sectors\n",
 636				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
 637		}
 638
 639		/* We're done, drop to IDLE state and notify waiters */
 640		ace->fsm_state = ACE_FSM_STATE_IDLE;
 641		ace->id_result = ace->data_result;
 642		while (ace->id_req_count) {
 643			complete(&ace->id_completion);
 644			ace->id_req_count--;
 645		}
 646		break;
 647
 648	case ACE_FSM_STATE_REQ_PREPARE:
 649		req = ace_get_next_request(ace->queue);
 650		if (!req) {
 651			ace->fsm_state = ACE_FSM_STATE_IDLE;
 652			break;
 653		}
 654		blk_start_request(req);
 655
 656		/* Okay, it's a data request, set it up for transfer */
 657		dev_dbg(ace->dev,
 658			"request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
 659			(unsigned long long)blk_rq_pos(req),
 660			blk_rq_sectors(req), blk_rq_cur_sectors(req),
 661			rq_data_dir(req));
 662
 663		ace->req = req;
 664		ace->data_ptr = req->buffer;
 665		ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
 666		ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
 667
 668		count = blk_rq_sectors(req);
 669		if (rq_data_dir(req)) {
 670			/* Kick off write request */
 671			dev_dbg(ace->dev, "write data\n");
 672			ace->fsm_task = ACE_TASK_WRITE;
 673			ace_out(ace, ACE_SECCNTCMD,
 674				count | ACE_SECCNTCMD_WRITE_DATA);
 675		} else {
 676			/* Kick off read request */
 677			dev_dbg(ace->dev, "read data\n");
 678			ace->fsm_task = ACE_TASK_READ;
 679			ace_out(ace, ACE_SECCNTCMD,
 680				count | ACE_SECCNTCMD_READ_DATA);
 681		}
 682
 683		/* As per datasheet, put config controller in reset */
 684		val = ace_in(ace, ACE_CTRL);
 685		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
 686
 687		/* Move to the transfer state.  The systemace will raise
 688		 * an interrupt once there is something to do
 689		 */
 690		ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
 691		if (ace->fsm_task == ACE_TASK_READ)
 692			ace_fsm_yieldirq(ace);	/* wait for data ready */
 693		break;
 694
 695	case ACE_FSM_STATE_REQ_TRANSFER:
 696		/* Check that the sysace is ready to receive data */
 697		status = ace_in32(ace, ACE_STATUS);
 698		if (status & ACE_STATUS_CFBSY) {
 699			dev_dbg(ace->dev,
 700				"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
 701				ace->fsm_task, ace->fsm_iter_num,
 702				blk_rq_cur_sectors(ace->req) * 16,
 703				ace->data_count, ace->in_irq);
 704			ace_fsm_yield(ace);	/* need to poll CFBSY bit */
 705			break;
 706		}
 707		if (!(status & ACE_STATUS_DATABUFRDY)) {
 708			dev_dbg(ace->dev,
 709				"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
 710				ace->fsm_task, ace->fsm_iter_num,
 711				blk_rq_cur_sectors(ace->req) * 16,
 712				ace->data_count, ace->in_irq);
 713			ace_fsm_yieldirq(ace);
 714			break;
 715		}
 716
 717		/* Transfer the next buffer */
 718		if (ace->fsm_task == ACE_TASK_WRITE)
 719			ace->reg_ops->dataout(ace);
 720		else
 721			ace->reg_ops->datain(ace);
 722		ace->data_count--;
 723
 724		/* If there are still buffers to be transfers; jump out here */
 725		if (ace->data_count != 0) {
 726			ace_fsm_yieldirq(ace);
 727			break;
 728		}
 729
 730		/* bio finished; is there another one? */
 731		if (__blk_end_request_cur(ace->req, 0)) {
 732			/* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
 733			 *      blk_rq_sectors(ace->req),
 734			 *      blk_rq_cur_sectors(ace->req));
 735			 */
 736			ace->data_ptr = ace->req->buffer;
 737			ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
 738			ace_fsm_yieldirq(ace);
 739			break;
 740		}
 741
 742		ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
 743		break;
 744
 745	case ACE_FSM_STATE_REQ_COMPLETE:
 746		ace->req = NULL;
 747
 748		/* Finished request; go to idle state */
 749		ace->fsm_state = ACE_FSM_STATE_IDLE;
 750		break;
 751
 752	default:
 753		ace->fsm_state = ACE_FSM_STATE_IDLE;
 754		break;
 755	}
 756}
 757
 758static void ace_fsm_tasklet(unsigned long data)
 759{
 760	struct ace_device *ace = (void *)data;
 761	unsigned long flags;
 762
 763	spin_lock_irqsave(&ace->lock, flags);
 764
 765	/* Loop over state machine until told to stop */
 766	ace->fsm_continue_flag = 1;
 767	while (ace->fsm_continue_flag)
 768		ace_fsm_dostate(ace);
 769
 770	spin_unlock_irqrestore(&ace->lock, flags);
 771}
 772
 773static void ace_stall_timer(unsigned long data)
 774{
 775	struct ace_device *ace = (void *)data;
 776	unsigned long flags;
 777
 778	dev_warn(ace->dev,
 779		 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
 780		 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
 781		 ace->data_count);
 782	spin_lock_irqsave(&ace->lock, flags);
 783
 784	/* Rearm the stall timer *before* entering FSM (which may then
 785	 * delete the timer) */
 786	mod_timer(&ace->stall_timer, jiffies + HZ);
 787
 788	/* Loop over state machine until told to stop */
 789	ace->fsm_continue_flag = 1;
 790	while (ace->fsm_continue_flag)
 791		ace_fsm_dostate(ace);
 792
 793	spin_unlock_irqrestore(&ace->lock, flags);
 794}
 795
 796/* ---------------------------------------------------------------------
 797 * Interrupt handling routines
 798 */
 799static int ace_interrupt_checkstate(struct ace_device *ace)
 800{
 801	u32 sreg = ace_in32(ace, ACE_STATUS);
 802	u16 creg = ace_in(ace, ACE_CTRL);
 803
 804	/* Check for error occurrence */
 805	if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
 806	    (creg & ACE_CTRL_ERRORIRQ)) {
 807		dev_err(ace->dev, "transfer failure\n");
 808		ace_dump_regs(ace);
 809		return -EIO;
 810	}
 811
 812	return 0;
 813}
 814
 815static irqreturn_t ace_interrupt(int irq, void *dev_id)
 816{
 817	u16 creg;
 818	struct ace_device *ace = dev_id;
 819
 820	/* be safe and get the lock */
 821	spin_lock(&ace->lock);
 822	ace->in_irq = 1;
 823
 824	/* clear the interrupt */
 825	creg = ace_in(ace, ACE_CTRL);
 826	ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
 827	ace_out(ace, ACE_CTRL, creg);
 828
 829	/* check for IO failures */
 830	if (ace_interrupt_checkstate(ace))
 831		ace->data_result = -EIO;
 832
 833	if (ace->fsm_task == 0) {
 834		dev_err(ace->dev,
 835			"spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
 836			ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
 837			ace_in(ace, ACE_SECCNTCMD));
 838		dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
 839			ace->fsm_task, ace->fsm_state, ace->data_count);
 840	}
 841
 842	/* Loop over state machine until told to stop */
 843	ace->fsm_continue_flag = 1;
 844	while (ace->fsm_continue_flag)
 845		ace_fsm_dostate(ace);
 846
 847	/* done with interrupt; drop the lock */
 848	ace->in_irq = 0;
 849	spin_unlock(&ace->lock);
 850
 851	return IRQ_HANDLED;
 852}
 853
 854/* ---------------------------------------------------------------------
 855 * Block ops
 856 */
 857static void ace_request(struct request_queue * q)
 858{
 859	struct request *req;
 860	struct ace_device *ace;
 861
 862	req = ace_get_next_request(q);
 863
 864	if (req) {
 865		ace = req->rq_disk->private_data;
 866		tasklet_schedule(&ace->fsm_tasklet);
 867	}
 868}
 869
 870static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
 871{
 872	struct ace_device *ace = gd->private_data;
 873	dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
 874
 875	return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
 876}
 877
 878static int ace_revalidate_disk(struct gendisk *gd)
 879{
 880	struct ace_device *ace = gd->private_data;
 881	unsigned long flags;
 882
 883	dev_dbg(ace->dev, "ace_revalidate_disk()\n");
 884
 885	if (ace->media_change) {
 886		dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
 887
 888		spin_lock_irqsave(&ace->lock, flags);
 889		ace->id_req_count++;
 890		spin_unlock_irqrestore(&ace->lock, flags);
 891
 892		tasklet_schedule(&ace->fsm_tasklet);
 893		wait_for_completion(&ace->id_completion);
 894	}
 895
 896	dev_dbg(ace->dev, "revalidate complete\n");
 897	return ace->id_result;
 898}
 899
 900static int ace_open(struct block_device *bdev, fmode_t mode)
 901{
 902	struct ace_device *ace = bdev->bd_disk->private_data;
 903	unsigned long flags;
 904
 905	dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
 906
 907	mutex_lock(&xsysace_mutex);
 908	spin_lock_irqsave(&ace->lock, flags);
 909	ace->users++;
 910	spin_unlock_irqrestore(&ace->lock, flags);
 911
 912	check_disk_change(bdev);
 913	mutex_unlock(&xsysace_mutex);
 914
 915	return 0;
 916}
 917
 918static int ace_release(struct gendisk *disk, fmode_t mode)
 919{
 920	struct ace_device *ace = disk->private_data;
 921	unsigned long flags;
 922	u16 val;
 923
 924	dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
 925
 926	mutex_lock(&xsysace_mutex);
 927	spin_lock_irqsave(&ace->lock, flags);
 928	ace->users--;
 929	if (ace->users == 0) {
 930		val = ace_in(ace, ACE_CTRL);
 931		ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
 932	}
 933	spin_unlock_irqrestore(&ace->lock, flags);
 934	mutex_unlock(&xsysace_mutex);
 935	return 0;
 936}
 937
 938static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 939{
 940	struct ace_device *ace = bdev->bd_disk->private_data;
 941	u16 *cf_id = ace->cf_id;
 942
 943	dev_dbg(ace->dev, "ace_getgeo()\n");
 944
 945	geo->heads	= cf_id[ATA_ID_HEADS];
 946	geo->sectors	= cf_id[ATA_ID_SECTORS];
 947	geo->cylinders	= cf_id[ATA_ID_CYLS];
 948
 949	return 0;
 950}
 951
 952static const struct block_device_operations ace_fops = {
 953	.owner = THIS_MODULE,
 954	.open = ace_open,
 955	.release = ace_release,
 956	.check_events = ace_check_events,
 957	.revalidate_disk = ace_revalidate_disk,
 958	.getgeo = ace_getgeo,
 959};
 960
 961/* --------------------------------------------------------------------
 962 * SystemACE device setup/teardown code
 963 */
 964static int __devinit ace_setup(struct ace_device *ace)
 965{
 966	u16 version;
 967	u16 val;
 968	int rc;
 969
 970	dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
 971	dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
 972		(unsigned long long)ace->physaddr, ace->irq);
 973
 974	spin_lock_init(&ace->lock);
 975	init_completion(&ace->id_completion);
 976
 977	/*
 978	 * Map the device
 979	 */
 980	ace->baseaddr = ioremap(ace->physaddr, 0x80);
 981	if (!ace->baseaddr)
 982		goto err_ioremap;
 983
 984	/*
 985	 * Initialize the state machine tasklet and stall timer
 986	 */
 987	tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
 988	setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
 989
 990	/*
 991	 * Initialize the request queue
 992	 */
 993	ace->queue = blk_init_queue(ace_request, &ace->lock);
 994	if (ace->queue == NULL)
 995		goto err_blk_initq;
 996	blk_queue_logical_block_size(ace->queue, 512);
 997
 998	/*
 999	 * Allocate and initialize GD structure
1000	 */
1001	ace->gd = alloc_disk(ACE_NUM_MINORS);
1002	if (!ace->gd)
1003		goto err_alloc_disk;
1004
1005	ace->gd->major = ace_major;
1006	ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1007	ace->gd->fops = &ace_fops;
1008	ace->gd->queue = ace->queue;
1009	ace->gd->private_data = ace;
1010	snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1011
1012	/* set bus width */
1013	if (ace->bus_width == ACE_BUS_WIDTH_16) {
1014		/* 0x0101 should work regardless of endianess */
1015		ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1016
1017		/* read it back to determine endianess */
1018		if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1019			ace->reg_ops = &ace_reg_le16_ops;
1020		else
1021			ace->reg_ops = &ace_reg_be16_ops;
1022	} else {
1023		ace_out_8(ace, ACE_BUSMODE, 0x00);
1024		ace->reg_ops = &ace_reg_8_ops;
1025	}
1026
1027	/* Make sure version register is sane */
1028	version = ace_in(ace, ACE_VERSION);
1029	if ((version == 0) || (version == 0xFFFF))
1030		goto err_read;
1031
1032	/* Put sysace in a sane state by clearing most control reg bits */
1033	ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1034		ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1035
1036	/* Now we can hook up the irq handler */
1037	if (ace->irq != NO_IRQ) {
1038		rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1039		if (rc) {
1040			/* Failure - fall back to polled mode */
1041			dev_err(ace->dev, "request_irq failed\n");
1042			ace->irq = NO_IRQ;
1043		}
1044	}
1045
1046	/* Enable interrupts */
1047	val = ace_in(ace, ACE_CTRL);
1048	val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1049	ace_out(ace, ACE_CTRL, val);
1050
1051	/* Print the identification */
1052	dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1053		 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1054	dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1055		(unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1056
1057	ace->media_change = 1;
1058	ace_revalidate_disk(ace->gd);
1059
1060	/* Make the sysace device 'live' */
1061	add_disk(ace->gd);
1062
1063	return 0;
1064
1065err_read:
1066	put_disk(ace->gd);
1067err_alloc_disk:
1068	blk_cleanup_queue(ace->queue);
1069err_blk_initq:
1070	iounmap(ace->baseaddr);
1071err_ioremap:
1072	dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1073		 (unsigned long long) ace->physaddr);
1074	return -ENOMEM;
1075}
1076
1077static void __devexit ace_teardown(struct ace_device *ace)
1078{
1079	if (ace->gd) {
1080		del_gendisk(ace->gd);
1081		put_disk(ace->gd);
1082	}
1083
1084	if (ace->queue)
1085		blk_cleanup_queue(ace->queue);
1086
1087	tasklet_kill(&ace->fsm_tasklet);
1088
1089	if (ace->irq != NO_IRQ)
1090		free_irq(ace->irq, ace);
1091
1092	iounmap(ace->baseaddr);
1093}
1094
1095static int __devinit
1096ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1097	  int irq, int bus_width)
1098{
1099	struct ace_device *ace;
1100	int rc;
1101	dev_dbg(dev, "ace_alloc(%p)\n", dev);
1102
1103	if (!physaddr) {
1104		rc = -ENODEV;
1105		goto err_noreg;
1106	}
1107
1108	/* Allocate and initialize the ace device structure */
1109	ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1110	if (!ace) {
1111		rc = -ENOMEM;
1112		goto err_alloc;
1113	}
1114
1115	ace->dev = dev;
1116	ace->id = id;
1117	ace->physaddr = physaddr;
1118	ace->irq = irq;
1119	ace->bus_width = bus_width;
1120
1121	/* Call the setup code */
1122	rc = ace_setup(ace);
1123	if (rc)
1124		goto err_setup;
1125
1126	dev_set_drvdata(dev, ace);
1127	return 0;
1128
1129err_setup:
1130	dev_set_drvdata(dev, NULL);
1131	kfree(ace);
1132err_alloc:
1133err_noreg:
1134	dev_err(dev, "could not initialize device, err=%i\n", rc);
1135	return rc;
1136}
1137
1138static void __devexit ace_free(struct device *dev)
1139{
1140	struct ace_device *ace = dev_get_drvdata(dev);
1141	dev_dbg(dev, "ace_free(%p)\n", dev);
1142
1143	if (ace) {
1144		ace_teardown(ace);
1145		dev_set_drvdata(dev, NULL);
1146		kfree(ace);
1147	}
1148}
1149
1150/* ---------------------------------------------------------------------
1151 * Platform Bus Support
1152 */
1153
1154static int __devinit ace_probe(struct platform_device *dev)
1155{
1156	resource_size_t physaddr = 0;
1157	int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1158	u32 id = dev->id;
1159	int irq = NO_IRQ;
1160	int i;
1161
1162	dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1163
1164	/* device id and bus width */
1165	of_property_read_u32(dev->dev.of_node, "port-number", &id);
1166	if (id < 0)
1167		id = 0;
1168	if (of_find_property(dev->dev.of_node, "8-bit", NULL))
1169		bus_width = ACE_BUS_WIDTH_8;
1170
1171	for (i = 0; i < dev->num_resources; i++) {
1172		if (dev->resource[i].flags & IORESOURCE_MEM)
1173			physaddr = dev->resource[i].start;
1174		if (dev->resource[i].flags & IORESOURCE_IRQ)
1175			irq = dev->resource[i].start;
1176	}
1177
1178	/* Call the bus-independent setup code */
1179	return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1180}
1181
1182/*
1183 * Platform bus remove() method
1184 */
1185static int __devexit ace_remove(struct platform_device *dev)
1186{
1187	ace_free(&dev->dev);
1188	return 0;
1189}
1190
1191#if defined(CONFIG_OF)
1192/* Match table for of_platform binding */
1193static const struct of_device_id ace_of_match[] __devinitconst = {
1194	{ .compatible = "xlnx,opb-sysace-1.00.b", },
1195	{ .compatible = "xlnx,opb-sysace-1.00.c", },
1196	{ .compatible = "xlnx,xps-sysace-1.00.a", },
1197	{ .compatible = "xlnx,sysace", },
1198	{},
1199};
1200MODULE_DEVICE_TABLE(of, ace_of_match);
1201#else /* CONFIG_OF */
1202#define ace_of_match NULL
1203#endif /* CONFIG_OF */
1204
1205static struct platform_driver ace_platform_driver = {
1206	.probe = ace_probe,
1207	.remove = __devexit_p(ace_remove),
1208	.driver = {
1209		.owner = THIS_MODULE,
1210		.name = "xsysace",
1211		.of_match_table = ace_of_match,
1212	},
1213};
1214
1215/* ---------------------------------------------------------------------
1216 * Module init/exit routines
1217 */
1218static int __init ace_init(void)
1219{
1220	int rc;
1221
1222	ace_major = register_blkdev(ace_major, "xsysace");
1223	if (ace_major <= 0) {
1224		rc = -ENOMEM;
1225		goto err_blk;
1226	}
1227
1228	rc = platform_driver_register(&ace_platform_driver);
1229	if (rc)
1230		goto err_plat;
1231
1232	pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1233	return 0;
1234
1235err_plat:
1236	unregister_blkdev(ace_major, "xsysace");
1237err_blk:
1238	printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1239	return rc;
1240}
1241module_init(ace_init);
1242
1243static void __exit ace_exit(void)
1244{
1245	pr_debug("Unregistering Xilinx SystemACE driver\n");
1246	platform_driver_unregister(&ace_platform_driver);
1247	unregister_blkdev(ace_major, "xsysace");
1248}
1249module_exit(ace_exit);